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In number theory, 

We assume that n is an integer.  We focus our attention on the polynomial n2 + n 

+ 41.  Further, we analyze the behavior of the factorization of integers of the form 

q(n) = n2 + n + 41.        (expression 1) 

where n is a non-negative integer.  It was shown by Legendre, in 1798 that if  

0≤ n ≤ 40 then r(n) is a prime number.  Certain patterns become evident when 

considering points (a,n) where  

q(n) ≡ 0 mod a.        (expression 2) 

The collection of all such points produces what we are calling a “graph of discrete 

divisors”.  It has certain repeated features.  From experimental data, we find that 

the integer points in this dataset are contained by parabolas.  And more, the 

parabolas are described by a closed form expression.  We see that the parabolas 

are indexed (r,c) by pairs of relatively prime integers.  The expression for the 

middle parabolas is  

p(r,c) = (c*x – r*y)2 - x*(c*x – r*y) – x + 41*r2   (expression 3) 

The restrictions on p(r,c) are that 0<r<c and gcd(r,c) = 1.  Where gcd() means 

greatest common divisor of two arguments.  And all four of r,c,x, and y are 

integers. 

When we take the derivative of p(r,c) with respect to x and set this expression 

equal to zero, we obtain 

x = (163*r2)/4        (expression 4) 



Each such pair (r,c) yields (again determined experimentally and by observation of 

calculation in a computer algebra system) an integer polynomial a*z2 + b*z + c.  

The first few (r,c) pairs are (2,1); (3,2); (3,1); (4,3); (4,1) and (5,4).  Again, r and c 

must be relatively prime numbers.  Further, the quartic r(a*z2 + b*z + c) will factor 

algebraically over the integers into two quadratic expressions.  We call this our 

“parabola conjecture” (or conjecture ‘a’).  Certain structure in the ‘graph of 

discrete divisors’ are do to elementary relationships between pairs of co-prime 

integers.  

We conjecture that all composite values of r(n) arise by substituting integer values 

of z into q(a*z2 + b*z + c), where this quartic divisors algebraically over Z for a*z2 + 

b*z + c a quadratic polynomial determined by a pair of relatively prime integers (r, 

c).  We are confident of this conjecture because of the structure of the graph of 

discrete divisors produced by some computer code in our computer algebra 

system (Maple).  We call this our “no stray points conjecture” (or conjecture ‘b’)  

because all the points in the graph appear to lie on a parabola. 

We further conjecture that the minimum x-values for parabolas corresponding to 

(r, c) are given by expression 4.  The vertical lines x = 163*c2/4 where c = 2, 3, 4, …  

The numerical evidence seems to support this.  This is called our “parabolas line 

up conjecture. 

Theorem 1 – Consider r(n) with n a non negative integer.  Then, 

r(n) never has a factor less than 41. 

We prove Theorem 1 with a modular construction.  We make a residue table of 

r(y) mod x, with all the prime divisors less than 41.  A form of the fundamental 

theorem of arithmetic states that any integer greater than one is either a prime 

number, or can be written as a unique product of prime numbers (ignoring the 

order).  So if r(n) never has a prime factor less than 41, then by extension it never 

has a prime factor less than 41. 

For example, to determine that r(n) is never divisible by 2, note the first column of 

the residue table.  If n is even then r(n) is odd.  Similarly, if n is odd then r(n) is 



also odd.  In either case, r(n) does not have factorization by 2.  Since all integers 

are either even or odd, r(n) is never divisible by 2 when n is a positive integer. 

Also, for divisibility by 3, there are 3 cases to check.  They are n ≡ 0, 1, and 2 mod 

3.  r(0) mod 3 is 2.  r(1) mod 3 is 1 and r(2) mod 3 is 2.  Since none of these results 

is 0, we have that r(n) is never divisible by 3.  This is the second column of the 

residue table. 

The number 0 is first found in the residue table for the cases r(0) mod 41 and 

r(40) mod 41.  We can see that 402 + 40 + 41 = 412.  This means that if n is 

congruent to 0 mod 41 then r(n) will be divisible by 41.  What’s more is that these 

are the only two cases for divisibility by 41.  Similarly, if n is congruent to 40 mod 

41 the r(n) will also be divisible by 41. 

After the residue table, we observe a curve fit to our ‘graph of discrete divisors’ 

which has points when q(y) mod x is divisible by x.  This is an exact curve fit.  The 

points (x,y) can be seen in a data table, and on a bifurcation graph. 

< see residue table > 

Thus we have shown that q(n) never has a factor less than 41. 

Theorem 2 

Since q(a) = a2 + a + 41, we want to show that q(a) = q(-a-1). 

Proof of theorem 2 

Because q(a) = a*(a+1) + 41, 

Now q(-a -1) = (-a -1)*(-a -1 +1) + 41. 

So q(-a -1) = (-a –1)*(-a) + 41, 

And q(-a -1) = q(a). 

End of proof of theorem 2. 

Corrolary 1 

Further, if r(b) mod c ≡ 0 then q(c –b -1) mod c ≡ 0. 

We see that it is amazing that the data points all fall within an exact curve fit.  All 

the parabolas have integer coefficients. 
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