A prime producing quadratic expression

By Matthew Anderson 2019

An interesting quadratic expression

- r(n) = n² + n + 41 and assume n is an integer
- Is prime for n= 0,1, .. 39

Never has a divisor less than 41

Has an interesting pattern of being prime or composite

In this presentation expect two proofs – one by logical inference, one by trying all possibilities.

Warm up exercise Quadratic Expressions that factor

Let $f(x) = x^2 - 5x + 6$ and x be an integer.

f(x) = (x-2)(x-3)

If f(x) is prime, one of the terms must be equal to ± 1 .

There will be 4 cases.

For primality, require $x-2 = \pm 1$ or $x-3 = \pm 1$.

So the 4 cases are x = 1,3; 2, 4

Warm up exercise Quadratic Expressions that factor

Let $f(x) = x^2 - 5x + 6$ and x be an integer.xf(x) = (x-2)(x-3)0If f(x) is prime, one of the terms must be1equal to ± 1 .2There will be 4 cases.3For primality, require $x-2 = \pm 1$ or $x-3 = \pm 1$.5So the 4 cases are x = 1,3; 2, 46

f(x)

Warm up exercise Quadratic Expressions that factor

Let $f(x) = x^2 - 5x + 6$ and x be an integer. f(x) Х f(x) = (x-2)(x-3)0 6 If f(x) is prime, one of the terms must be 2 1 2 0 equal to ± 1 . 3 0 There will be 4 cases. 4 2 For primality, require $x-2 = \pm 1$ or $x-3 = \pm 1$. So the 4 cases are x = 1,3; 2, 4

Any quadratic function that factors linearly in the integers and has integer input will be prime for at most 4 input values. (There is a proof on the next slide \bigcirc)

Theorem 1 Any quadratic function that factors linearly in the integers and has integer input will be prime for at most 4 input values.

```
Proof
Let f(x) be a trinomial. Explicitly f(x) = (x-a)(x-b).
We want f(x) a prime number with x an integer.
Set both parts equal to \pm 1.
Then x-a = \pm 1 and x-b = \pm 1.
It follows that
x = b \pm 1 and x=a \pm 1.
These are the only possibilities for a prime number f(x).
```

Which was what we wanted.

This is a theorem and not a conjecture or an observation.

First few values of r(n)

n	r(n)	By inspecting the table,
0	41	we can deduce that
1	43	n^2+n+41 is prime for
2	47	0≤n≤40
•••		
39	1601	note that r(n) = n(n+1) + 41.

so $r(40) = 40*41 + 41 = 41^2$.

Natural Numbers

• The natural numbers are 1, 2, 3, ...

• We will use only integers throughout this presentation.

Divisibility by 2

- $r(n) = n^2 + n + 41$
- The square of an even number is even.
- The square of an odd number is odd.
- The sum of 2 even numbers and an odd is odd.
- The sum of 3 odd numbers is odd.
- r(n) is always odd, no matter if x is even or odd.
- r(n) is never divisible by 2.

Divisibility by 3

```
Again r(n) = n^2 + n + 41.
There are 3 possible remainders mod 3.
  0, 1, and 2
r(0) \mod 3 = 2
r(1) \mod 3 = 1
r(2) \mod 3 = 2
Since r(n) \mod 3 is never 0,
r(n) is never divisible by 3.
```

Prime Divisors less than 41

I built an excel table. The rows are the remainders and the columns are the primes. Each entry at location (r,c) is evaluated as (r^2 + r + 41) mod c

If the value is 0 then r(n) is divisible by c, as long as n = r mod c.

Residue table

If n= 0 mod 41 or 40 mod 41 then r(n) is divisible by 41. Also, If n= 1 or 41 mod 43 then 43 divides r(n). Either way, r(n) is composite.

Since there are no zero values in the table for primes smaller than 41, r(n) is never divisible by any prime smaller than 41.

	2	3	5	7	11	13	17	19	23	29	31	37	41	43
0	1	2	1	6	8	2	7	3	18	12	10	4	0	41
1	1	1	3	1	10	4	9	5	20	14	12	6	2	0
2		2	2	5	3	8	13	9	1	18	16	10	6	4
3			3	4	9	1	2	15	7	24	22	16	12	10
4			1	5	6	9	10	4	15	3	30	24	20	18
5				1	5	6	3	14	2	13	9	34	30	28
6				6	6	5	15	7	14	25	21	9	1	40
7					9	6	12	2	5	10	4	23	15	11
8					3	9	11	18	21	26	20	2	31	27
9					10	1	12	17	16	15	7	20	8	2
10					8	8	15	18	13	6	27	3	28	22
11						4	3	2	12	28	18	25	9	1
12						2	10	7	13	23	11	12	33	25
13							2	14	16	20	6	1	18	8
14							13	4	21	19	3	29	5	36
15							9	15	5	20	2	22	35	23
16							7	9	14	23	3	17	26	12
17								5	2	28	6	14	19	3
18								3	15	6	11	13	14	39
19									7	15	18	14	11	34
20									1	26	27	17	10	31
21									20	10	7	22	11	30
22									18	25	20	29	14	31
23										13	4	1	19	34
24										3	21	12	26	39
25										24	9	25	35	3
26										18	30	3	5	12
27										14	22	20	18	23
28										12	16	2	33	36
29											12	23	9	8
30											10	9	28	25
31											10	34	8	1
32												24	31	22
33												16	15	2
34												10	1	27
35												6	30	11
36												4	20	40
37													12	28
38													6	18
39													2	10
40													0	4
41														0

The "These Data Points Come in Pairs" Theorem about generalized r(n)

```
Let r(a) = a(a+1) + p.

Show that r(a) = r(-a - 1).

Proof Because r(a) = a^*(a+1) + p.

Now r(-a - 1) = (-a - 1)(-a - 1 + 1) + p.

So r(-a - 1) = (-a - 1)(-a) + p.

And r(-a - 1) = (a + 1)a + p.

Thus r(-a - 1) = r(a).

Which was what we wanted.
```

This means that, essentially, the data points come in pairs.

From a lookup table to a graph

- The x axis is the divisors. I did not just use the primes, because allowing for composite divisors makes the patterns easier to see.
- The y axis are the same as in the table.
- If r(y) mod x = 0 then plot a point.
- Every time r(x) is composite, there is at least one corresponding point on the graph.

Patterns in the graph of divisors

Count the parabolas by columns

Count the parabolas by columns

1, 1, 2, 2, 4, 2, 6

Count the parabolas by columns

1, 1, 2, 2, 4, 2, 6

The Euler phi function exactly describes this sequence. <u>oeis.org/A10</u>

Numbering scheme for parabolas

Let r stand for row

- Similarly let c stand for column
- Let p(r,c) be the parabola indexed by r , c.

Require that 0<c<r

Also Require that

Gcd(r,c) = 1.

That is, the row and column index must be relatively prime.

Describe equations for parabolas

- For example, if y_{2,1}(x) = x² + 40 then the composition of functions h(g(x)) factors algebraically.
- $r(x) = x^2 + x + 41$
- $r(y(x)) = (x^2+40)^2 + (x^2+40) + 41$
- $r \circ y(x) = (x^2+x+41)(x^2-x+41)$

This is a 4th order polynomial with algebraic factorization. It shows that under certain circumstances r is composite for all input x.

Two more one parameter expressions

Use the technique of composition of functions

- $Y[3,1] = 2*z^2 + z + 81$ x[3,1] = h(y[3,1](z))
- $X[3,1] = (4z^2 + 163)(z^2 + z + 41)$

Some Data from the graph

- Values (y,x) that make h(x) divisible by y
- And r(x) is still x² + x + 41
 (41,0)
 (41,40)
 (43,1)
 (43,41)
 (47,2)
 Note that if x=41*k then r(x) = 41*{/}

Note that if x=41*k then r(x) = 41*{41k^2+k+1} This would make r(x) composite.

A 2 parameter expression

 $h(n) = n^2 + n + 41$ $y(a,z) = a^{*}z^{2} + (a-1)^{*}z + 41^{*}a - 1$ Through the composition of functions $h(y(a,z)) = (z^2+z+41) *$ $(a^2*z^2+z*a^2-a+41*a^2+1)$ Again, this algebraic factorization indicates that h(n) is composite for all integers a and z. see the oeis.org/A201998/

Maple Code for exact curve fit parabolas

```
> x[1, 1, bottom] := z^2+z+41; y[1, 1] := z;
> p2 := plot([x[1, 1, bottom], y[1, 1], z = 0..20]);
> with(plots);
> display(p2);
>
> x[1, 1, top] := z^2+z+41; y[1, 1, top] := z^2+40;
> p3 := plot([x[1, 1, top], y[1, 1, top], z = 0 .. 20]);
> display(p3);
>
> y[2, 1] := 2*z^2+z+81; x[2, 1] := 4*z^2+163;
> p4 := plot([x[2, 1], y[2, 1], z = -10 ... 10]);
> display(p4);
>
> y[3, 1] := 3*z^2+2*z+122; x[3, 1] := 9*z^2+3*z+367;
> p5 := plot([x[3, 1], y[3, 1], z = -4 ... 3]);
>
> y[3, 2] := 6*z^2+z+244; x[3, 2] := 9*z^2+3*z+367;
> p6 := plot([x[3, 2], y[3, 2], z = -4..3]);
```

Graph of divisors $y^2 + y + 41 \mod x \equiv 0$

Note the exact curve fit of the parabolas to the divisibility points.

Method of Quadratic Curve Fit

- Start with 3 data points.
- Solve a system of 3 equations and 3 unknowns.
- A generalized quadratic expression is
 Parabola = A*x^2 + B*x + C.

Method

Choose 3 data points. Introduce variable t. Use t = -1, 0 and 1 and the Y part of the data point. Solve a system of 3 variables And 3 unknowns. Determine the expression for the Parabola.

Repeat.

Horizontal minimum of parabolas is at $163*x^2/4$.

Data points for $x^2 + x + 41 \mod y \equiv 0$

(x,y) 0,41 40,41 1, 43 41, 43 2,47 44, 47 3, 53 49, 53 4,61 56, 61 5,71 65,71

Graph with 10 parabolas

Each of the 10 parabola on the previous slide can be matched with an expression on this page.

$ \begin{array}{ c c c } & \underline{h} := n^2 + n + 41 : \\ & \Rightarrow \# Small equation coefficients doublecheck \\ & & \\ &$		
yldl := factor(subs(n = z, h))		
	$yldl := z^2 + z + 41$	(1)
> $y1d2 := factor(subs(n = z^2 + 40, h));$	(2) = (2 + 1)(2 - 1)	
	$y_{1d2} := (z + z + 41) (z - z + 41)$	(2)
> $y2d1 := factor(subs(n = 2z^2 + z + 81, h));$		
	$y2dI := (4z^2 + 163)(z^2 + z + 41)$	(3)
$ \rangle$ > $y_{3}dI := factor(subs(n = 3 x^{2} + 2 x + 122 h))$		
	$y3dI := (z^2 + z + 41) (9z^2 + 3z + 367)$	(4)
> $y3d2 := factor(subs(n = 6z^2 + z + 244, h));$		_
	$y3d2 := (4z^2 + 163)(9z^2 + 3z + 367)$	(5)
> $y4d1 := factor(subs(n = 4z^2 + 3z + 163, h));$		
	$y4d1 := (16z^2 + 8z + 653)(z^2 + z + 41)$	(6)
> $y4d3 := factor(subs(n = 12 z2 + 5 z + 489, h));$	y/d2 := (16 + 2 + 8 + 653) (9 + 2 + 3 + 367)	
	$y_{742} = (102 + 02 + 055)(52 + 52 + 507)$	0
> $y5d1 := factor(subs(n = 5z^2 + 4z + 204, h));$		
	$y5d1 := (z^2 + z + 41) (25 z^2 + 15 z + 1021)$	(8)
> $y_{5d2} := factor(subs(n = 10z^2 + z + 407, h));$	$y5d2 := (4z^2 + 163) (25z^2 + 5z + 1019)$	(9)
$5 y5d3 := factor(subs(n = 15z^2 + 4z + 611, h));$		
	$y5d3 := (25z^2 + 5z + 1019) (9z^2 + 3z + 367)$	(10)
> $y5d4 := factor(subs(n = 20 z^2 + 11 z + 816, h));$		

Graph of divisibility

Notice the vertical lines are tangent to the parabolas.

Euler totient function

- Is the number of factors of a natural number.
- Is in encyclopedia oeis.org/A000010.
- Sequence starts 1,1,2,2,4,2 and so on.
- Is the count of the number of parabolas in a column.

Invitation to contribute

- If anyone is interested in working on this project with me, please let me know.
- <u>Matt.c1.Anderson@gmail.com</u>
- This project is similar to one of Landau's problems of 1912. Are there infinitely many primes of the form p = n^2 + 1? These problems are hard and unsolved.

Thank you

- Thanks to Colin Starr at Willamette University.
- Thanks to Peter Otto at Willamette U. for useful suggestions on this project.
- Thanks to Chris Sinclair at the University of Oregon for assistance.