A prime producing quadratic expression

By Matthew Anderson

April, 2016
ORMATYC conference Salishan Oregon

An interesting quadratic expression

- $h(x)=x^{2}+x+41$

Is prime for $\mathrm{x}=0$.. 39
Never has a divisor less than 41
Has an interesting pattern of being prime or composite
In this presentation expect two proofs - one by logical inference, one by trying all possibilities.

Warm up exercise
 Quadratic Expressions that factor

Let $f(x)=x^{2}-5 x+6$ and x be an integer.

What do we do with trinomials like this?

We factor them.

Warm up exercise
 Quadratic Expressions that factor

Let $f(x)=x^{2}-5 x+6$ and x be an integer.

Warm up exercise
 Quadratic Expressions that factor

Let $f(x)=x^{2}-5 x+6$ and x be an integer.
$f(x)=(x-2)(x-3)$
If $f(x)$ is prime, one of the terms must be equal to ± 1.
There will be 4 cases.
For primality, require $x-2= \pm 1$ or $x-3= \pm 1$.
So the 4 cases are $x=1,3 ; 2,4$

Warm up exercise
 Quadratic Expressions that factor

Let $f(x)=x^{2}-5 x+6$ and x be an integer.
$f(x)=(x-2)(x-3)$
If $f(x)$ is prime, one of the terms must be equal to ± 1.
There will be 4 cases.
For primality, require $x-2= \pm 1$ or $x-3= \pm 1$.

x	$f(x)$
0	6
1	2
2	0
3	0
4	2
5	6
6	12

So the 4 cases are $x=1,3 ; 2,4$

Warm up exercise
 Quadratic Expressions that factor

Let $f(x)=x^{2}-5 x+6$ and x be an integer.
$f(x)=(x-2)(x-3)$
If $f(x)$ is prime, one of the terms must be equal to ± 1.
There will be 4 cases.

x	$f(x)$
0	6
1	2
2	0
3	0
4	2

For primality, require $x-2= \pm 1$ or $x-3= \pm 1$.
So the 4 cases are $x=1,3 ; 2,4$

Any quadratic function that factors linearly in the integers and has integer input will be prime for at most 4 input values. (There is a proof around here somewhere ())

Theorem 1 Any quadratic function that factors linearly in the integers and has integer input will be prime for at most 4 input values.

Proof
Let $f(x)$ be a trinomial. Explicitly $f(x)=(x-a)^{*}(x-b)$.
We want $f(x)$ a prime number with x an integer.
Set both parts equal to ± 1.
Then $\mathrm{x}-\mathrm{a}= \pm 1$ and $\mathrm{x}-\mathrm{b}= \pm 1$.
It follows that
$\mathrm{x}=\mathrm{b} \pm 1$ and $\mathrm{x}=\mathrm{a} \pm 1$.
These are the only possibilities for a prime number $f(x)$.

Which was what we wanted.
pause

First few values of $h(x)$

x	$h(x)$
0	41
1	43
2	47
\ldots	
39	1601

By inspecting the table, we can deduce that $x^{\wedge} 2+x+41$ is prime for $0 \leq x \leq 40$
note that $h(x)=x(x+1)+41$.
so $h(40)=40^{*} 41+41=41^{\wedge} 2$.

Divisibility by 2

- $h(x)=x^{2}+x+41$
- The square of an even number is even.
- The square of an odd number is odd.
- The sum of 2 even numbers and an odd is odd.
- The sum of 3 odd numbers is odd.
- $h(x)$ is always odd, no matter if x is even or odd.
- $h(x)$ is never divisible by 2 .

Divisibility by 3

Again $h(x)=x^{\wedge} 2+x+41$.
There are 3 possible remainders mod 3 .
0,1 , and 2
$h(0) \bmod 3=2$
$h(1) \bmod 3=1$
$h(2) \bmod 3=2$
Since $h(x) \bmod 3$ is never 0 , $h(x)$ is never divisible by 3 .

Prime Divisors less than 41

I built an excel table. The rows are the remainders and the columns are the primes.
Each entry at location (r, c) is evaluated as
$\left(r^{\wedge} 2+r+41\right) \bmod c$

If the value is 0 then $h(x)$ is divisible by c , as long as $\mathrm{x}=\mathrm{r} \bmod \mathrm{c}$.

Residue table

If $x=0 \bmod 41$ or $40 \bmod 41$ then $h(x)$ is divisible by 41. Also, If $x=1$ or $41 \bmod 43$ then 43 divides $h(x)$. Either way, $h(x)$ is composite.

Since there are no zero values in the table for primes smaller than $41, h(x)$ is never divisible by any prime smaller than 41.

	2	3	5	7	11	13	17	19	23	29	31	37	41	43
0	1	2	1	6	8	2	7	3	18	12	10	4	0	41
1	1	1	3	1	10	4	9	5	20	14	12	6	2	0
2		2	2	5	3	8	13	9	1	18	16	10	6	4
3			3	4	9	1	2	15	7	24	22	16	12	10
4			1	5	6	9	10	4	15	3	30	24	20	18
5				1	5	6	3	14	2	13	9	34	30	28
6				6	6	5	15	7	14	25	21	9	1	40
7					9	6	12	2	5	10	4	23	15	11
8					3	9	11	18	21	26	20	2	31	27
9					10	1	12	17	16	15	7	20	8	2
10					8	8	15	18	13	6	27	3	28	22
11						4	3	2	12	28	18	25	9	1
12						2	10	7	13	23	11	12	33	25
13							2	14	16	20	6	1	18	8
14							13	4	21	19	3	29	5	36
15							9	15	5	20	2	22	35	23
16							7	9	14	23	3	17	26	12
17								5	2	28	6	14	19	3
18								3	15	6	11	13	14	39
19									7	15	18	14	11	34
20									1	26	27	17	10	31
21									20	10	7	22	11	30
22									18	25	20	29	14	31
23										13	4	1	19	34
24										3	21	12	26	39
25										24	9	25	35	3
26										18	30	3	5	12
27										14	22	20	18	23
28										12	16	2	33	36
29											12	23	9	8
30											10	9	28	25
31											10	34	8	1
32												24	31	22
33												16	15	2
34												10	1	27
35												6	30	11
36												4	20	40
37													12	28
38													6	18
39													2	10
40													0	4
41														0

A theorem about h(n)

Let $h(a)=a *(a+1)+41$.
Show that $h(a)=h(-a-1)$.
Proof Because $h(a)=a *(a+1) * 41$.
Now h(-a -1$)=(-a-1)(-a-1+1)+41$.
So h(-a -1$)=(-a-1)(-a)+41$.
And $h(-a-1)=(a+1) * a+41$.
Thus $\mathrm{h}(-\mathrm{a}-1)=\mathrm{h}(\mathrm{a})$.
Which was what we wanted.

From a lookup table to a graph

- The x axis is the integers. I did not just use the primes, because allowing for composite divisors makes the patterns easier to see.
- The y axis are the same as in the table.
- If $h(y) \bmod x=0$ then plot a point.
- Every time $h(x)$ is composite, there is at least one corresponding point on the graph.

Patterns in the graph of divisors

Count the parabolas by columns

Count the parabolas by columns

$1,1,2,2, \quad 4,2, \quad 6$

Count the parabolas by columns

The Euler phi function exactly describes this sequence. oeis.org/A10

Numbering scheme for parabolas

Let r stand for row
Similarly let c stand for column
Let $p(r, c)$ be the parabola indexed by r, c.
Require that $0<c<r$
Also Require that
$\operatorname{Gcd}(r, c)=1$.
That is, the row and column index must be relatively prime.

Describe equations for parabolas

- For example, if $y_{2,1}(x)=x^{2}+40$ then the composition of functions $h(g(x))$ factors algebraically.
- $h(x)=x^{2}+x+41$
- $h(y(x))=\left(x^{2}+40\right)^{2}+\left(x^{2}+40\right)+41$
- $\operatorname{Hoy}(x)=\left(x^{2}+x+41\right)\left(x^{2}-x+41\right)$

This is a $4^{\text {th }}$ order polynomial with algebraic factorization.

Two more one parameter expressions

Use the technique of composition of functions

- $\mathrm{Y}[3,1]=2^{*} \mathrm{z}^{\wedge} 2+\mathrm{z}+81$
$\mathrm{x}[3,1]=\mathrm{h}(\mathrm{y}[3,1](\mathrm{z}))$
$X[3,1]=\left(4 z^{\wedge} 2+163\right)^{*}\left(z^{\wedge} 2+z+41\right)$
$Y[3,2]=3^{*} Z^{\wedge} 2+2^{*} z+122$

$$
x[3,2]=\left(9^{*} z^{\wedge} 2+3 z+367\right)^{*}\left(z^{\wedge} 2+z+41\right)
$$

Data for the graph

- Values (y, x) that make $h(x)$ divisible by y
- And $h(x)$ is still $x^{\wedge} 2+x+41$
$(41,0)$
$(41,40)$
$(43,1)$
$(43,41)$
$(47,2)$
Note that if $x=41^{*} k$ then $h(x)=41^{*}\left\{41 k^{\wedge} 2+k+1\right\}$
This would make $h(x)$ composite.

A 2 parameter expression

$h(n)=n^{\wedge} 2+n+41$
$y(a, z)=a^{*} z^{\wedge} 2+(a-1)^{*} z+41^{*} a-1$
Through the composition of functions
$h(y(a, z))=\left(z^{\wedge} 2+z+41\right) *$
$\left(a^{\wedge} 2^{*} z^{\wedge} 2+z^{*} a^{\wedge} 2-a+41^{*} a^{\wedge} 2+1\right)$
Again, this algebraic factorization indicates that $h(n)$ is composite for all integers a and z.

Conjecture

I conjecture that there is an expression in many variables that restricts n and completely covers all the cases that $h(n)$ is composite.

If this was true, one could possibly prove that $h(n)$ is prime an infinite number of times.

Maple Code for exact curve fit parabolas

```
> x[1, 1, bottom]:= z^2+z+41; y[1, 1]:= z;
>p2 := plot([x[1, 1, bottom], y[1, 1], z = 0 .. 20]);
> with(plots);
> display(p2);
>
> x[1, 1, top]:= z^2+z+41; y[1, 1, top]:= z^2+40;
> p3 := plot([x[1, 1, top], y[1, 1, top], z = 0 .. 20]);
> display(p3);
>
>y[2,1]:= 2* z^2+z+81;x[2,1]:= 4* *^2+163;
> p4 := plot([x[2, 1], y[2, 1], z = -10 .. 10]);
> display(p4);
>
>y[3,1]:= 3* z^2+2*z+122;x[3, 1]:= 9* z^2+3*z+367;
>p5 := plot([x[3, 1], y[3, 1], z = -4 .. 3]);
>
> y[3, 2] := 6*z^2+z+244;x[3, 2] := 9*z^2+3*z+367;
> p6 := plot([x[3, 2], y[3, 2], z = -4 .. 3]);
```


Graph of divisors $y^{\wedge} 2+y+41 \bmod x \equiv 0$

Graph with 10 parabolas

Each of the 10 parabola on the previous slide can be matched with an expression on this page.

```
> k- nn}\mp@subsup{n}{}{2}+n+4
> # Small equartion coefflemens doublecheck
3
> yidl i- facton(sumbs(n=z,h))
> yId2 =m factar(rubs(n=2 +40,h));
> yzdt - factor(suse(n=2\mp@subsup{z}{}{2}+z+81,h)).
>ysdi - facror(subs(n=3\mp@subsup{z}{}{2}+2z+122,h)):
>y3dz- factor(nubs(n=6\mp@subsup{z}{}{2}+z+244,h));
>
> yvdz = factor(mubs(n=4\mp@subsup{z}{}{2}+3z+163,h));
> y*ds = factor(subs(n-12z+5}+5z+489,h))
> ysdl }=\operatorname{factar(zubs(n=5z+4z+204,h)):
>> y3@2 i- factor( mubs(n=102 2}+z+407,h))
>> y{\overline{ds}=|=factor(zubs(n=15\mp@subsup{z}{}{2}+4z+611,h));
P> ysdd =m factor(mbs(n=20,2+11z+816,h));
```

```
    yidi = =2}+z+4
```

 yidi = =2}+z+4
 yldz = (z+z+41)(z-z+41)
 yldz = (z+z+41)(z-z+41)
 y2dz:=(4\mp@subsup{z}{}{2}+163)(\mp@subsup{z}{}{2}+z+41)
 y2dz:=(4\mp@subsup{z}{}{2}+163)(\mp@subsup{z}{}{2}+z+41)
 yzdz=(z+z+41)(9\mp@subsup{z}{}{2}+3z+367)
 yzdz=(z+z+41)(9\mp@subsup{z}{}{2}+3z+367)
 y3dz = (4\mp@subsup{z}{}{2}+163)(9\mp@subsup{z}{}{2}+3z+367)
 y3dz = (4\mp@subsup{z}{}{2}+163)(9\mp@subsup{z}{}{2}+3z+367)
 y+dl=(16z+8z+653)(z+z+41)
 y+dl=(16z+8z+653)(z+z+41)
 y4ds}=(16\mp@subsup{z}{}{2}+8z+653)(9\mp@subsup{z}{}{2}+3z+367
y4ds}=(16\mp@subsup{z}{}{2}+8z+653)(9\mp@subsup{z}{}{2}+3z+367
y5dl=((2 +z+41)(25z+15z+1021)
y5dl=((2 +z+41)(25z+15z+1021)
ysdz:=(4\mp@subsup{z}{}{2}+163)(25\mp@subsup{z}{}{2}+5z+1019)
ysdz:=(4\mp@subsup{z}{}{2}+163)(25\mp@subsup{z}{}{2}+5z+1019)
y5ds:=(25z'2}+5z+1019)(9\mp@subsup{z}{}{2}+3z+367

```
y5ds:=(25z'2}+5z+1019)(9\mp@subsup{z}{}{2}+3z+367
```


Graph of divisibility

Vertical lines at $163 * n^{\wedge} 2 / 4$

Notice the vertical lines are tangent to the parabolas.

A possible expression

Expression for the parabola at a given row and column
$p(r, c)=c^{2} x^{2}-2 c r x y+r^{2} y^{2}-(c r+1) x+r^{2} y+41 r^{2}$.

Again $1<r, 0<r<c$ and $G C D(r, c)=1$.

Invitation to contribute

- If anyone is interested in working on this project with me, please let me know.
- Matt.c1.Anderson@gmail.com
- This project is similar to one of Landau's problems of 1912. Are there infinitely many primes of the form $p=n^{\wedge} 2+1$? These problems are hard and unsolved.

Thank you

- Thanks to Colin Starr for allowing me to give this talk.
- Thanks to Peter Otto for useful suggestions on this project.
- Thanks to Willamette University for having an academic listener program to expose me to such a great topic.

