Analysis of the trinomial $f(n)=n^{2}+n+17$.
Abstract - Assuming that n is an non-negative integer, we find a pattern of when $f(n)=n^{2}+n+17$ is a composite number. We assign n as $n=A^{*} x^{2}+B^{*} x+C$. Where A, B, and C are determined by numerical evidence. The $f(n)$ factors algebraically, and $f(n)$ is a composite number.

We use the Maple program to calculate the values of ' n ' where $f(n)$ is a composite number. Then we graph these results. The graph shows some structure for the composite cases. See Maple code.

```
> # 6-29-2023
>
    x := Vector[row](49) :
    y:= Vector[row](49) :
    counter := 1:
    for }a\mathrm{ from 2 to 200 do
    for }b\mathrm{ from 0 to }a-1\mathrm{ do
    if }\operatorname{mod}(\mp@subsup{b}{}{2}+b+17,a)=
        then x[counter]:=a:y[counter] ]=b:counter := counter + 1;
    end if;
    end do:
    end do:
counter
```

$>\operatorname{plot}(x, y$, style $=$ point, symbol $=$ asterisk, color $=$ black $)$

$>$ \# this is a graph of 49 data points of $y^{2}+y+17 \boldsymbol{\operatorname { m o d } x}=0$.
> \# It can be curve fit with parabolas.
$>$ \# This graph shows 5 parabolas
$>$ \# The names of the parabolas are p top; $; p_{\text {bottom }} ; p_{2,1} ; p_{3,2} ;$ and $p_{3,1}$

$>$

Hope you find this page interesting.

