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Preface

Soil physics aims at understanding physical processes in terrestrial envi-
ronments and at the quantitative prediction of the associated phenomena.
This is challenging because the underlying processes are often nonlinear and
coupled, and they run in hierarchical heterogeneous media with hardly known
architectures. These media – porous structures with intricate geometries
that originate from various generators operating on different length scales –
set terrestrial systems apart from other large environmental compartments
like the atmosphere or the ocean. In these other compartments, multi-
scale phenomena almost exclusively arise from the dynamics of the process,
typically from fluid dynamics, whereas the boundary conditions are irrelevant
to a great extent.

While the physics of most processes relevant for soils is understood reason-
ably well at the scale of individual pores, this is no more the case at the larger
scales of a soil profile. As scales increase even further, eventually to entire
landscapes, ever more heuristic approximations have to be introduced in order
to arrive at palpable results. These in turn are mandatory for understanding
and handling a great many environmental and engineering problems.

These notes attempt to explore the transition from fundamental under-
standing to heuristic description and quantitative approaches to larger scales.
The thematic focus is on transport processes, in particular on subsurface
flow of water, on transport of dissolved substances, plant nutrients as well as
groundwater contaminants, and on the movement of thermal energy. These
processes are studied at scales ranging from a few hundred micrometers
to a few hundreds of meters. Much smaller and much larger scales are
only considered occasionally. Notable omissions in the spectrum of phys-
ical processes include soil mechanics, soil erosion, surface water, and soil-
vegetation-atmosphere interactions. Also, experimental methods are not
represented to the depth that would do justice to their importance in a
still essentially explorative discipline. I should acknowledge and emphasize
that transport processes, while being an essential and in some sense primary
aspect of soil systems, are but one class of processes relevant for the function
of soils in the environment. Much larger classes are formed by chemical
interactions, microbiological processes, and by the actions of macroflora and
-fauna.
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ii Preface

The notes are written from a rather fundamental perspective but attempt
to keep applications in mind. They try to strike a balance between clean
mathematical formulations and simple intuitive concepts, with necessarily
many compromises on both ends. The material is aimed at advanced un-
dergraduate and graduate students in environmental sciences, physics, and
engineering and it does require some passion for mathematics. Some problems
are added at the end of each chapter. They fall into two classes: (i) simple
calculations, just applying some equations given in the text, or marginal
extensions of the theory and (ii) qualitative explorations of complicated
phenomena which demand bold assumptions and may only yield order of
magnitude answers. The first class is aimed at exercising the mechanics of the
theory while the second one is to entice the reader to plough deeper.

Although the roots of these notes reach back to 1993, they continue to
evolve, with the material still not adequately balanced and certainly contain-
ing a number of suboptimal explanations, mistakes, and errors, hopefully not
too many. I am most grateful for any and all suggestions on how to correct
and improve things such that they best serve the reader.

How to Work through these Notes The chapters following the introduc-
tion are arranged such that fundamental processes are studied first, bringing
there representation from the pore scale to the continuum scale, and only
then are they explored as they work in soils. However, the chapters are
rather independent of each other, with ample cross-references where previous
results are required, such that they may be worked through along different
lines. With the priority on the continuous development of the thematic fields,
the sequence 2, 3, [5], 6, 4, 7, 8 may be optimal, whereas with a priority on
increasing difficulty, the sequence 3.1, 3.3, 4, 5, 7, [8], 2, 3.2, 6 is more
appropriate.

Acknowledgements I thank a number of colleagues for providing critical
comments, data sets, images, and numerical solvers: Hans-Jörg Vogel, now
at Umweltforschungszentrum (UFZ), Halle, for the images on soil cross-
sections, reconstructed three-dimensional representations, and innumerable
discussions on soil hydraulics; Ute Wollschläger, now at UFZ, Leipzig, for
many of her research results on groundwater flow in the Rhein-Neckar region;
Dietmar Wagenbach, Institute of Environmental Physics (IUP), Heidelberg
University, for critically reading the chapter on fluid dynamics; Ed Sudicky,
University of Waterloo, for the Borden data set; Isabelle Cousin, Institut
National de la Recherche Agronomique, Orléans, for the three-dimensional
dataset from microscopic cross-sections of a soil sample. Whenever satellite
images were needed for illustration, modis.gsfc.nasa.gov was my source.
The numerical simulations of groundwater flow were run with an AMG
(algebraic multi-grid) solver developed by Peter Bastian and Olaf Ippisch,
Interdisciplinary Center for Scientific Computing (IWR), Heidelberg Univer-
sity. Those of flow in the vadose zone were done with SWMS, the precursor of
HYDRUS, by Jirka Šimu̇nek, UC Riverside.
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Finally, I am glad to acknowledge my students for everything from pointing
out errors to suggesting improvements. Most importantly though, I appre-
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Symbols

This list contains the most important symbols and notations used. It is still
rather incomplete and will be upgraded in a future version. Where possible,
a reference (equation and page number) is given and the unit is indicated in
brackets.

The mathematical structure of symbols is indicated by their typographical
appearance:

a scalar
a, â vector, unit length vector

A tensor
sin standard function

Subscripts usually refer to a component of a vector (x, y, z, or 1, 2, 3) or to
the phase (g, w, s). When dealing with quantities that refer to different scales,
the superscripts µ and m are used to indicate the micro- and the macroscale,
respectively. They are suppressed when only one scale is considered.

Parentheses (. . . ) are used for arguments of functions and operators, brack-
ets [. . . ] group terms or indicate concentrations of a chemical component, and
curly brackets {. . . } collect operators.

The arguments of functions are suppressed if they are clear from the
context, e.g., ∂xf instead of ∂xf(x). They are written, however, if the depen-
dence on an argument is emphasized, e.g., Kd(Cw) for a nonlinear adsorption
isotherm. Similarly, derivatives are written as shorthand operators: ∂x, ∂xx
for the first and second partial derivative with respect to x, respectively, and
dt for the total derivative ∂t + v · ∇ with respect to time. If the derivative is
to be emphasized, the long form ∂⋄

∂x is used.

Sign Convention

The normal vector n on the surface of some volume points outwards. The
vertical (z) axis points downward, in the direction of the acceleration of
gravity. Its origin is typically chosen at the soil surface. Accordingly, z is
called the depth.
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Introduction

Our physical environment may be divided roughly into three spheres: the
atmosphere, the oceans, and the terrestrial environment. The latter may
be further subdivide into (i) soils and sediments, (ii) snow, glaciers and ice
shields, (iii) vegetation, and, depending on the perspective, (iv) surface wa-
ters like rivers and small lakes. Soils and their icy analogues are structurally
similar in that they are both solid porous media whose pore space is filled
with liquid water and with air. The main difference between them is that one
is of predominantly mineral origin while the other consists almost exclusively
of frozen water. They both may be considered as a boundary region between
the fluid compartments – atmosphere and oceans – and the solid lithosphere,
possibly a rather thick one. Vegetation may also be looked upon as another
boundary, one between soil and atmosphere. While its most important
function is arguably the assimilation of solar energy into carbon compounds
by consuming CO2 and producing O2, its next important function is the
increase of the coupling between soil and atmosphere. This is accomplished
on the one hand by the rooting system which pervades the top soil layers
and on the other by the stems and foliage that tap into the atmosphere.
The extent of the soil-atmosphere boundary layer, which is measured in
centimeters for bare soil, thereby extends to meters or even tens of meters
with vegetation. This in turn leads to a dramatic increase of the water,
carbon, energy, and momentum fluxes between soil and atmosphere. Finally,
the inclusion of small surface waters into terrestrial systems is debatable since
they clearly share important properties with oceans. However, they are also
akin to structures found in some sedimentary units, in particular in karstic
regions with their extended cave systems with openings ranging from a few
millimeters to hundreds of meters.

In these notes, after outlining the general global context, we focus on soils
and there primarily on the flow of water, the transport of dissolved chemicals,
and the movement of heat. Important aspects which will not be covered
here include soil mechanics and the dynamics of soil structures, erosion and
sedimentation, and the very genesis and evolution of soils. Soils provide a
number of crucial ecosystem functions. To name a few, they store water
for the eventual uptake by plant roots, moderate local temperature through

1
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the latent heat of evaporating water, and act as highly efficient filters and
reactors which lead to clean groundwater. The importance of soils is for
instance illustrated by Churkina and Running [1998] who found that net
primary production – the net growth of plants – is limited by the availability
of water for about 50% of the land surface and by low temperatures for about
30%. Obviously, there is some overlap between these, most importantly on
the Tibetan plateau which is dry and cold over large stretches. Still, soils
are a critical factor in net primary production, hence in the fluxes of water,
energy, and carbon between soil and atmosphere, for about 2/3 of the Earth’s
land surface.

1.1
Global Terrestrial Water and Energy Fluxes

Water, as a liquid component, is almost always on the move, typically in
intricate and entangled cycles. We first look at terrestrial water fluxes at the
global scale (Figure 1.1). The global water cycle transports water from the
oceans through the atmosphere over the continents where it precipitates and
eventually returns to the ocean as continental runoff. Exclude Antarctica,
the average flux is 348 mmy−1 which corresponds to a flow of 47 ·103 km3y−1

distributed over the continental area of 134 · 106 km2.

In the internal land-atmosphere water cycle 58% of the total precipitation
of 836 mmy−1 returns to the atmosphere via evapotranspiration (ET). This
flux may be decomposed into three major components: evaporation from the
soil surface (176 mmy−1), transpiration of soil moisture taken up by plant
roots and transported to the leafs where it evaporates (233 mmy−1), and
interception, precipitation that did not reach the soil surface but directly
evaporates from the leaf surfaces (80 mmy−1).

We notice in passing that sometimes “blue” and “green” water is distin-
guished, particularly for the purpose of water resources management. Blue
water refers to rivers and lakes while green water refers to that in the subsur-
face which can, potentially, be directly tapped by the vegetation [Falkenmark

and Rockström 2006].

Earth’s water cycles are driven by solar radiation (Figure 1.2). The total
incoming short-wave energy flux received from the sun outside of the atmo-
sphere is some 342Wm−2. Over the land surface, again excluding Antarctica,
some 60% of this flux is on average scattered back into space either by the
atmosphere – by clouds, aerosols, and molecules – or by the land surface
(albedo). Eventually, 140 Wm−2 is absorbed by the land surface.

The incoming short-wave radiation is counterbalanced by (i) outgoing long-
wave (thermal) radiation with a net flux of 66 Wm−2 and (ii) convective heat
fluxes totaling 72 Wm−2. The net thermal radiation is actually the difference
of two rather large fluxes: the thermal emission of the Earth surface with some
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Figure 1.1. Schematic of global terrestrial water cycle [after Dirmeyer et al.
2006]. The numbers have been calculated from simulations of the 10-year period
1986-1995 by 15 different global circulation models. In addition to the average
numbers for the entire period (yellow rectangles), the range of fluctuations within
and between years is indicated. Fluxes are in mmy−1, soil storage is in mm. The
numbers represent averages over the continental area, excluding Antarctica. With
an area of 134 · 106 km2, a flux of 1 mmy−1 corresponds to a flow of 134 km3y−1.

390 Wm−2, of which a small fraction, some 40 Wm−2, is emitted directly
into space through the “atmospheric radiative window”, and back radiation
from greenhouse gases (H2O, CO2, CH4,. . . ), aerosols, and clouds [Kiehl and

Trenberth 1997]. Also the convective heat flux may be separated into two
components, the sensible heat flux with some 33 Wm−2 in the form of raising
warm air and the latent heat flux with some 39 Wm−2 which represents the
energy stored in the evaporated water that is released upon condensation
higher up in the atmosphere. This last energy flux drives the water cycle
through evaporation, transport, and condensation of water. The fluxes of
latent heat, 39 Wm−2, and of evaporated water, 488 mmy−1 (Figure 1.1),
are linked through the latent heat of evaporation, 2.5 MJkg−1.

Two small fluxes remain to be mentioned. The ground heat flux of 1Wm−2

represents global warming during the 10-year period 1986-1995 considered.
It leads to a net heat flux into the ground, opposite to the geothermal flux
of some 0.06 Wm−2. The “other fluxes”, some 0.8 Wm−2, originate for
instance from the melting of precipitated snow.
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Figure 1.2. Schematic of global terrestrial energy fluxes [Wm−2] after Dirmeyer
et al. [2006]. The numbers have been obtained from the model runs that already
led to Figure 1.1 and are presented in analogy.

A caveat has to be added to the numbers given in Figures 1.1–1.2. The cor-
responding fluxes can neither be measured directly nor calculated in a simple
manner from other measurements, hence are not known objectively. Instead,
they have been obtained as ensemble averages from 15 different global circu-
lation models (GCMs) which (i) represent our best current understanding of
the complicated processes in the terrestrial environment, the atmosphere, and
the ocean and which (ii) have been calibrated with available measurements,
hence include our best current quantitative knowledge.

We finally notice that such cycles and average fluxes are gross simplifica-
tions of an exceedingly complicated reality. Local fluxes may easily deviate
by an order of magnitude from the global average – just think of the Sahara,
the Kongo basin, and Siberia – and the cycles in Figure 1.1 disintegrate into
a multi-scale hierarchy of entangled flows as we move to higher resolutions of
reality.

1.2

Anthropogenic Use of Water

Our society uses and consumes water in many different ways. A very small
fraction is consumed directly for drinking and cooking but the largest fraction
goes into crop production on irrigated land. Further usage includes a wide
spectrum of industrial productions and municipal waste removal. In the
following, we will only consider water going into agricultural production since
this is the dominating and still increasing fraction of anthropogenic water use,
it is the major limiting factor in food production, and it is a strong motivation
to study water movement in the terrestrial environment.
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1.2.1
Water Quantity

Globally, some 40% of all crop is produced on irrigated land with increasing
tendency. These crops are primarily used for food, both for people and for
animals. An increasing fraction is transformed into biofuel, however. For
instance, by 2005, one sixth of the US corn production was converted to
ethanol which then supplied some 2% of the domestic demand for fuel. In
Brazil, even one half of the sugarcane production was processed to ethanol.
One effect of this growing demand are increasing food prices: the price of corn
in the US doubled within a year, for instance. Another one is the unabated
pressure on water resources for irrigation.

Estimates for the water consumption of some goods are given in Ta-
ble 1.1. Worldwide, some 2.4 · 106 km2 of land are irrigated with an av-
erage of 1.2 my−1. This leads to a water demand for irrigation of some
2.9 · 103 km3y−1, of which 50. . . 80% is lost to evapotranspiration [Postel
et al. 1996]. Translated into the units of Figure 1.1, demand for irrigation
corresponds to 22 mmy−1 or 2.6% of the total precipitation on the continents
except Antarctica. The picture becomes more alarming, however, when we
realize that only a small fraction of the total precipitation is available for
anthropogenic use. This is essentially the average recharge of aquifers and a
fraction of the river flow in inhabited areas. Storm-flow, for instance, is only
usable when large intermediate storage is available, mostly dammed valleys,
and flow through uninhabited land would have to be redirected for usage.
As an aside, we notice that in many regions, groundwater is pumped at a
rate that exceeds recharge which is not a sustainable practice. This so-called
water mining is not considered in the following. Postel et al. [1996] estimated

Table 1.1. Total consumption of water – kg of water per kg of product, often
called “virtual water” – for the production of various crops and meat (adapted from
United Nations [2006]). The numbers are global estimates deduced from statistical
information for individual countries. Depending on crop, irrigation technology, and
climate, large deviations from the average value occur. Rice, for instance requires
between 900 kg/kg in Belgium and 15’000 kg/kg in Sudan [Hoekstra and Hung
2002].

product [kg] water consumption [kg]
potatoes 160
maize 450
wheat 1’200
rice 2’700
poultry 2’800
pork 6’000
beef 16’000
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Figure 1.3. Huang He (Yellow river) at Lanzhou, with some 2000 km to go to
the sea, in September 2004. This is the second longest river in China and number
6 in the world. During the decade 1990-1999, this stream did not reach the sea for
extended periods of 50 to 200 days but trickled out between 200 and more than
600 km inland [Fu et al. 2004].

the presently available runoff as 12.5 ·103 km3y−1. Hence a realistic estimate
for the water demand for irrigation is some 23% of the sustainably available
freshwater.

The impact of irrigation on natural waters strongly varies between regions
and seasons. This is exemplified by the Huang He, the Yellow river, in
northern China (Figure 1.3) with regularly trickles out far inland. A large
multi-decadal water project, the “South-North Water Transfer Project”, is
currently under way to relieve the situation by diverting water from the
Chang Jiang (Yangtse) catchment, Chinas largest river, to that of the Huang
He. The Colorado river in the USA and Mexico, the Nile river in North
Africa, or the Amu- and Syr-Darya in the Aral region (Figure 1.4) have a
very similar fate: all of them are consumed to a large degree by irrigation
projects and the remaining flow is typically heavily polluted with agricultural
and industrial contaminants.

Tapping into an essential natural cycle to an extent as is done with the
water cycle raises the question of responsible management, and in particular
the question of the most efficient use of water. One phenomenon that must
be understood and predicted is the falling of water tables which result in
desertification, when natural vegetation does not reach the water anymore,
or to salt-water intrusion in coastal regions. Another, equally dangerous phe-
nomenon are raising water tables due to large amounts of imported irrigation
water. This may lead to swamping and, particularly in dry regions, to salin-
ization which may irreversibly destroy the soil’s capacity to carry vegetation.
Often, regional climatic changes are associated with both of these phenomena
as is for instance the case in the Aral region where a moderately humid and
partly forested region turned into a desert with frequent dust storms sweeping
the region. In contrast, the Central Valley of California became more humid
through the import of large amounts of water from other catchments. Clearly,
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Figure 1.4. Aral region as seen from the MODIS sensor aboard Terra on
December 2002. The blue line indicates the perimeter of the Aral Sea in 1970
and the green lines outline irrigated land. Satellite image: MODIS Land Rapid
Response Team, NASA/GSFC

attempts to alleviate adverse effects of older irrigation projects and to prevent
them for new projects demand a quantitative understanding of the flow of
water through the subsurface.

1.2.2
Water Quality

So far, we focussed on the quantity of available water. This issue cannot
be regarded without simultaneously addressing quality, however, since a
minimal quality of the water is required for most uses. In the first place, this
concerns salinity, the total salt load, irrespective of the salt’s composition.
For instance, most crops can tolerate a salinity of 1 g ℓ−1 but only very few can
cope with 6 g ℓ−1. As a reference, the mean salinity of the oceans is 34 g ℓ−1.
Sea water is thus utterly useless for irrigation. The quality requirements
become much more strict for specific toxic substances, in particular when
the water is potentially used for direct consumption like our tap water.
Examples are the World Health Organization’s (WHO) limit on arsenic which
is 10 µg ℓ−1 or the German limit for the concentration of the sum of all
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Figure 1.5. Arsenic distribution in the groundwater of Bangladesh drawn as an
overlay of the concentration estimates from Smedley and Kinniburgh [2002] over
a satellite image of the region as seen from the MODIS sensor aboard Terra in
October 2002. The World Health Organization’s limit on arsenic in drinking water
is 10 µg ℓ−1. Satellite image: MODIS Land Rapid Response Team, NASA/GSFC

pesticides in drinking water which is 0.5 µg ℓ−1. Quality requirements may
thus severely limit the available quantity of water.

Water is an almost universal solvent and thus contains a huge diversity of
dissolved substances, particularly in developed regions. Quantitatively, the
major sources of solutes are (i) rocks and soil minerals, which are dissolved
by the percolating water, and (ii) the ocean primarily through spray. Such
completely natural processes may actually lead to quite severe environmental
problems as is exemplified by the arsenic contamination of a large fraction of
the aquifers in Bangladesh (Figure 1.5 and Burgess et al. [2010]). Human
activity provides another important source of dissolved substances. The
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largest quantity again comes from agricultural production which releases
huge amounts of fertilizers, pesticides, and in recent years even hormones
into the environment. A fraction of these substances eventually ends up in
surface- and groundwater. Then there is the plethora of substances released
by industrial and individual activities: organic compounds like the gasoline
additive MTBE, gasoline itself and other hydrocarbons from spills, as well as
inorganic substances like heavy metals from mine tailings, abrasion of tires,
and waste dumps or the emissions of sulfur-, nitrogen- and carbon-oxides into
the air which are eventually dissolved in precipitation.

Obviously, there also exist efficient cleaning mechanisms which may be
roughly grouped into (i) phase changes and (ii) reaction-filtration processes.
Phase change is dominated by evaporation from ocean and land surfaces
with the formation of sea ice in polar regions being of secondary importance.
Cleaning is accomplished by excluding solutes, hence by concentrating them
in the liquid phase. As concentration increases, some solutes may actually
precipitate, form a solid phase, and thus be removed from the water cycle.
Reaction-filtration acts most intensely in soils, and in particular in the top
layer with a thickness of 0.1. . . 1 m. Here, the porous matrix provides an
effective filter for large particles like bacteria, viruses, and, to a lesser degree,
colloids. Smaller particles like ions may be retained by the electrical surface
charges that are typical for the soil matrix. Most soils in temperate climates
exhibit a negative surface charge that originates from clay minerals. They
strongly adsorb cations like NH+

4 , PO
+
4 , K

+, and a range of heavy metals
like lead, cadmium, or platinum. While this cleans percolating water, it does
not permanently remove anything. Indeed, the load of filtered and adsorbed
substances may be released by erosion or by changing chemical conditions,
in particular if pH-values decrease because of acid rain and thereby cause
surface charges to change their sign. Besides filtration and adsorption, the
biologically active top layers of soils form a very efficient reactor for the
decomposition of most organic compounds, either chemically or, more often,
microbiologically. The rich spectrum of microorganisms in soils and their
adaptability to changing environmental conditions and substances is a major
cleaning agent in the water cycle. As an example, consider pesticide appli-
cation in Germany. In 1995, a total of some 35 · 106 kg was applied to an
area of some 2 · 105 km2. With an average seepage of 0.25 my−1 – volume of
water seeping into groundwater per unit area of soil surface – and presuming
negligible sorption and decay, we calculate an average pesticide concentration
in the groundwater of some 0.7 mg ℓ−1. Some of this pesticide mass is indeed
found in the ground- and surface waters. A country-wide study between 1990
and 1995 estimated that some 30% of the groundwater was contaminated by
pesticides or by their decay products and found some 10% of the measured
concentrations were larger than 0.1 µg ℓ−1, the German legal limit for any
single pesticide. While these results are alarming – 70% of all drinking
water in Germany stems from groundwater – they also demonstrate that
sorption and decay reduce pesticide concentrations on average by a factor
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of at least 103. After all, 90% of the measurements showed values below
0.1 µg ℓ−1, corresponding to a reduction by a factor of more than 7 · 103,
and some 70% of the measurements showed no contamination at all. The soil
environment thus appears as a rather efficient reactor, at least on average and
for those organic substances which are amenable to microbial decomposition.
Apparently, this system may also fail, often because of insufficient contact
time when water flow is high and contaminants pass the active zone in a short
time. A notorious problem in this context is the so called preferential flow

which occurs (i) along macroscopic voids like cracks, worm holes, and root
channels, (ii) with flow fingers that originate in unstable infiltration fronts, or
(iii) due to strong heterogeneities which lead to a rather thin network of flow
channels. A sufficiently detailed and accurate description of the flow field is
thus a prerequisite for understanding the movement of dissolved substances
from the soil surface to groundwater and further on to some pumping well or
other exit surface.

We mention in passing that microbial decay also occurs in deeper soil layers
and in aquifers, although typically at much lower rates than in the top layers.
This has lead to the concept of natural attenuation which presumes that,
given enough time and transport distance, a large class of contaminants will
eventually be decomposed by the natural microbial population, possibly after
some initial evolution. An engineered variant, enhanced natural attenuation,
attempts to provide the microbial population with an energy source, e.g.,
nitrate, to facilitate co-metabolic decomposition of the contaminants. Since
such a feeding can only be done through adding the required substances to the
water that will eventually flow past the population of interest, the flow field
needs to be known with sufficient accuracy. While this is already difficult,
the microbial population adds a further complication in that it may change
the pore space, hence the hydraulic properties of the material, by its very
growth. This nicely illustrates the challenges faced by quantitative models
of subsurface transport. They must yield accurate predictions at a typically
large scale of interest, from a few meters to man kilometers, while taking
into account processes which operate at a very much smaller scale, here the
clogging of the pore space with operates in the reaction zone with a thickness
ranging from a fraction of a millimeter to a few millimeters.

1.3

Why Study Small-Scale Processes in Soils?

After looking into the large-scale environmental issues soils are involved in,
the question arises: “Why should we study transport processes at very small
scales instead of directly working at the scale of eventual interest?” The
answer to this has many facets.

First and foremost, soils are thin with thicknesses on the order of a meter
and the strongest gradients are orthogonal to the surface. Hence, while soils
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are a global phenomenon and contribute to many aspects of the global envi-
ronment, the pertinent processes are rather local. Even if we extend “soils” to
include sediments, and with them groundwater where flow is predominantly
horizontal, most phenomena still occur at rather small scales on the order of
a few kilometers. This is in stark contrast to the atmosphere and, to a lesser
extent, to the oceans both of which can only be understood at the global
scale.

To be sure, there exist descriptions of soils at scales that are very much
larger than a few meters, actually all the way up to the global scale. Such
descriptions are for instance required for our daily weather predictions or
for the representation of the carbon cycle in climate models. They are
highly heuristic, however, and little more than a regression summary of past
experiences, very often even a fudge component that is adjusted such that the
models fit best with observations. While this may suffice for predicting an
essentially stationary system, it is not satisfactory for dealing with a system
that may evolve into states we have never observed quantitatively before.
Unfortunately, we have to accept that currently there is little to immediately
ameliorate the situation: Upscaling, the transfer of small-scale understanding
to larger scales, is still a thorny area of active research. However, ever more
powerful computers may eventually open an avenue to directly incorporate
our solid small-scale concepts into simulations of phenomena at the very much
larger scales of interest.

It is furthermore worth mentioning that the processes illuminated in the
following chapters, and the challenges encountered thereby, are highly rel-
evant in a number of other fields. Examples include printing, where the
infiltration of dyes into the porous texture of paper or cloth is of interest, or
fuel cells, where the transport of gases into a porous catalytic structure and
the removal of the resulting fluid is of crucial importance.

Finally, as a more fundamental comment, we appear to understand nature
primarily at the microscopic scale. For the continuum, where the individual
atoms are not visible anymore, this understanding is often cast into differen-
tial equations. Solving them then provides the vehicle to move up to larger
scales. This works fine, and is a most powerful approach, as long as the
phenomena at the larger scales are determined exclusively by the processes
represented by the differential equations at hand. A prime example for this
are the large fluid compartments, the atmosphere and the oceans. Natural
porous media are an altogether different matter, however. As we will see,
at each particular scale new structural elements typically enter the picture
and modify the transport processes. Still, since we only understand these
processes at very small scales, we have to start there and try to work our way
up.





2

Fluid Dynamics

Fluid dynamics covers an often unsuspected range of phenomena that include
the tea in your cup as well as a rushing river, molten magma, the ocean and
the atmosphere, all the way to clusters of galaxies. . . and it also describes the
flow of water through porous media. All these phenomena share a common
structure in that they comprise a very large ensemble of “particles” – which
may be anything from atoms to stars – that only interact locally during
collisions which conserve particles and momentum, and which are isotropic
[Goldenfeld and Kadanoff 1999]. The term “collision” is used in a weak
sense here and merely indicates that, in contrast to a solid, particles are not
bound to their position relative to their neighbors but are free to move and
thereby interact with various other particles. This freedom to move is the
defining characteristic of a fluid: it cannot maintain shear forces in static
equilibrium.

For our purpose, we start at the scale where a fluid can be defined as a
continuum object without the necessity to explicitly account for its atomistic
nature. For slow motion in a large domain, the macroscopic state of such a
fluid may be described by a few parameters the number of which equals the
number of conserved quantities. For a simple fluid, conserved quantities are
mass, energy, and momentum. Pressure p, temperature T , and velocity v are
typically chosen as easily observable parameters. Their values at location x

are defined from appropriate averages of the (large) ensemble of particles in
the neighborhood Ω of x. Prerequisites for this are that (i) Ω is much larger
than the mean distance between particles, some 3 nm for air at standard
temperature and pressure and about an order of magnitude smaller for water,
(ii) Ω is much smaller than the spatial resolution of the macroscopic scale, and
(iii) the time between collisions is much smaller than the temporal resolution
of the macroscopic scale. With these premises it is useful to introduce the
notion of a fluid element, a macroscopically infinitesimal volume of constant
mass that is moved and deformed by the macroscopic velocity field v. Notice
that a fluid element is but an accounting volume and that its nature is rather
ephemeral as its boundary becomes fuzzy due to molecular diffusion and its
overall shape may be deformed strongly, e.g., in shear fields. For sufficiently
slow flow fields, this does not cause difficulties, since the fluid element is only
required to exist for an infinitesimal time, macroscopically speaking.

13
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Figure 2.1.
Fluid element with volume V , boundary
∂V and surface element dA. The forces
acting on an infinitesimal sub-volume dV
of the fluid element are shown in green.
The pressure field which is the dominating
driving force here is indicated by the cyan
contours and the blue lines show some
trajectories.
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Modeling the dynamics of a fluid consists of three steps: (i) postulate
forces and phenomenological equations that relate these forces to the resulting
fluxes, (ii) formulate appropriate conservation laws, and (iii) specify appro-
priate thermodynamic relations – material properties – like the dependence
of mass density on pressure and temperature, ρ(p, T ). Once the dynamics is
formulated, typically as a set of partial differential equations together with
some functional relations, initial and boundary conditions have to be specified
such that they describe the initial state and the external forcing of the fluid,
respectively. We will work through this program in the following.

2.1

Generic Formulation of Single Phase Dynamics

Consider the dynamics of an unbounded, isothermal, and isotropic fluid
which is only subject to mechanical forces of gravity, pressure gradient, and
friction.

2.1.1
Forces and Fluxes

Let V be an arbitrary fluid element with boundary ∂V and area element
dA = n̂dA, where n̂ is the outward pointing normal vector with unit length
(Figure 2.1).

Gravity The force resulting from the acceleration of gravity g acting on
the fluid element is

Fg =

∫

V

g ρ dV︸︷︷︸
dm

. (2.1)

Pressure The hydrostatic pressure field p exerts the force

Fp = −
∫

∂V

p dA = −
∫

V

∇p dV , (2.2)

where the sign reflects dA pointing outwards and Gauss’ theorem has been
used for the second equality.
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Figure 2.2.
Momentum flux across boundary ∂V of fluid
element V . The infinitesimal volumes dV and
dV ′ are exchanged by some microscopic process
and carry their respective momenta p and p′

with them. Hence, x-momentum is exchanged
in x- and y- direction and similarly also y-
momentum. This gives rise to the tensor Π of
momentum flux. Exchange processes range from
molecular diffusion to turbulence.

Friction Viscous forces develop in a fluid whenever velocity gradients exist.
At the molecular level, viscosity results from the transfer of momentum
when molecules are exchanged between high- and low-velocity regions due
to thermal motion. As a generalization at the macroscopic level, we consider
the exchange of infinitesimal volumes which leads to the momentum flux Π

(Figure 2.2). A component Πij of the second rank tensor Π gives the amount
of i-momentum that flows in j-direction through a unit area per unit time.
A specific form of this tensor will be discussed in Section 2.2 below.

To calculate the viscous force, we recall that a rate of change of momentum
corresponds to a force, i.e., F = dtp. Integrating the momentum flux Πij over
the boundary ∂V of the fluid element, yields the total inflow of momentum
per unit time, hence the rate of change of the fluid element’s momentum.
Thus, the viscous force that acts on the element becomes

Fv = −
∫

∂V

Π · dA = −
∫

V

∇ · Π dV , (2.3)

where the sign again stems from dA pointing outwards and the Gauss theo-
rem was used for the second equality. In Cartesian coordinates {x, y, z}, the
x-component of Fv is for instance given by

Fvx = −
∫

∂V

{Πxx,Πxy,Πxz} · dA = −
∫

V

∇ · {Πxx,Πxy,Πxz} dV

= −
∫

V

∂xΠxx + ∂yΠxy + ∂zΠxz dV . (2.4)

2.1.2
Conservation Laws

For the situation we consider here, the conserved quantities of interest are
mass and linear momentum.

Mass Conservation of fluid mass is conveniently formulated in the Eulerian
framework where a volume element is considered that is fixed in space. With
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mass conserved, the rate of change of mass in volume V equals the mass flow
across its boundary ∂V ,

∂t

∫

V

ρ dV

︸ ︷︷ ︸
mass in V

= −
∫

∂V

[ρv] · dA
︸ ︷︷ ︸

mass flow across ∂V

Gauss
= −

∫

V

∇ · [ρv] dV , (2.5)

where the sign stems from dA pointing outwards. Since V is arbitrary, this
implies

∂tρ+∇ · [ρv] = 0 . (2.6)

Momentum Conservation of linear momentum is most easily formulated
in the Lagrangian framework, i.e., by moving with the fluid element. The
momentum mv of the fluid element is [

∫
V
ρ dV ]v, where v is the velocity of

its center of gravity. Since by definition the mass of a fluid element remains
constant, the rate of change of the momentum is mdtv. This rate equals the
sum of the external forces on the element, hence

[∫

V

ρ dV
]
dtv = Fg + Fp + Fv =

∫

V

[ρg −∇p−∇ · Π] dV (2.7)

and further, since V is again arbitrary,

ρdtv = ρg −∇p−∇ · Π . (2.8)

This is the Navier-Stokes equation. For fluid flow through porous media,
this is a rather general formulation. Notice however that fluid flow in other
environments may demand modifications or additional terms. For instance,
flow in the large fluid compartments of the Earth, the atmosphere and the
oceans, is described by replacing ρg by −ρ∇Φ, where Φ(x) =

∫ x

∞
g(ξ) · dξ

is the geopotential, and the Coriolis force −2ρω × v is added to account
for the Earth’s rotation with angular velocity ω. In a similar manner,
electromagnetic forces may be included which leads to the field of magnetohy-
drodynamics that describes conservation of momentum in a plasma.

2.1.3
Dynamics

Combining (2.6) and (2.8) yields a formal description for the dynamics of a
general fluid. Obviously, it is incomplete since there are, in three dimensions,
11 unknowns – ρ, p, the components of v, and the independent components
of the symmetric tensor Π – but only 4 equations. The remaining equations
are supplemented by descriptions of material properties, i.e., by relating ρ
and Π to p and v.
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2.2

Material Properties

At the beginning of this chapter, we chose to represent a fluid at the scale of a
continuum, hence to disregard that in reality it is composed of atoms. This is
successful because experience taught us that for most fluid flow phenomena it
is quite sufficient to represent their physics at the scale of atoms in an average
way. This typically leads to relations between continuum-scale variables, for
instance between the fluid’s mass density, temperature, and pressure. At
least in principle, these relations could be calculated “from first principles”,
specifically from the interaction potential and the mass of the constituent
atoms or molecules. However, since already small quantities of any substance
involve a huge number of atoms, such calculations are not practical and it
is more efficient to measure the desired relations and to parametrize the
data.

In a single fluid system, pertinent material properties of the fluid are its
density and viscosity which in general depend on temperature, pressure and,
for liquids, solute concentration. In the following, we neglect the influence of
solutes.

2.2.1
Density

We consider a fluid element and write its density as ρ(T, p) with differen-
tial

dρ =
∂ρ

∂T

∣∣∣∣
p

dT +
∂ρ

∂p

∣∣∣∣
T

dp . (2.9)

Introducing the coefficient of thermal expansion and the isothermal com-
pressibility,

κT := −1

ρ

∂ρ

∂T

∣∣∣∣
p

and κp :=
1

ρ

∂ρ

∂p

∣∣∣∣
T

, (2.10)

respectively, (2.9) may be written as ρ−1dρ = −κTdT + κpdp. We notice in
passing that the usual definition of the coefficients (2.10) refers to volume
changes, e.g., κp = −V −1∂pV . However, writing ρ(T, p) = m/V (T, p), where
m is the constant mass of the fluid element and V its volume shows that the
two definitions are identical.

The compressibility of liquids is practically independent of pressure in
the range of interest for fluid flow near the Earth surface. For constant
temperature T0 = const, we then obtain ρ(T0, p) = ρ(T0, p0) exp(κp[p− p0]).
For pure water at T = 0◦C, κT ≈ 10−4 K−1 and κp ≈ 5 · 10−10 N−1m2. For
an ideal gas, one finds from the gas law κT = T−1 and κp = p−1.
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Figure 2.3.
Classical Gedankenexperiment on viscosity.
Momentum is input through the movement of
the plates, transported into the fluid through
molecular interactions, and dissipated into
heat eventually [Landau and Lifschitz 1981,
§16]. Near the plates, the velocity field
deviates from the ideal shape due to the
formation of a boundary layer. Its thickness
is greatly exaggerated, however.
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2.2.2
Viscosity

In the classical Gedanken experiment, two large parallel plates with a fluid
between them are envisaged to move past each other. Let A be the area
of the plates, ℓ the distance between them, and Fx the force that acts on
each of them, in opposite direction (Figure 2.3). Each of the plates inputs
the momentum Fx/A per unit area and unit time into the fluid. Through
molecular interactions, this momentum is transported into the adjacent fluid
and on to deeper layers, setting up a shearing motion. On its way through the
fluid, momentum continuously gets dissipated into heat. For the stationary
case, this leads to constant velocities v0 and −v0, respectively, for the plates.
For simple fluids with laminar flow and sufficiently large ℓ, one finds Fx/A =
µv0/ℓ, where µ is the (dynamic) viscosity of the fluid. Instead of looking at
the entire experiment, we just focus on two parallel flow planes in the fluid.
In this way, we circumvent the difficulties associated with the boundary layer
that inevitably develops at material boundaries. We notice that the shear
stress Fx/A equals the momentum flux dtpx/A and, for two flow planes with
an infinitesimal distance, we replace v0/ℓ by the corresponding derivative.
This finally yields for the momentum flux

Πxy = −µdvx
dy

, (2.11)

where x is the direction of the relative velocity between the planes and y is
perpendicular to them.

The situation becomes more complicated in the multi-dimensional case
where the tensorial properties of the momentum flux Π become manifest.
Landau and Lifschitz [1981], their §15, deduce the form of Π with components
Πij from the following physical postulates: (i) Friction (momentum flux)
occurs only if different parts of the fluid move with different velocities. Hence,
Πij depends only on spatial derivatives of the velocity, and, for sufficiently
small gradients of the velocity, this dependence will be linear. (ii) There is
no friction in a fluid that is in constant rotation with angular velocity ω,
hence with v = ω × x. Combinations of ∂xj

vi that satisfy this postulate are
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∂xj
vi+∂xi

vj . The most general form of a second order tensor satisfying both
postulates is

Πij = −µ
[ ∂vi
∂xj

+
∂vj
∂xi

− 2

3
δij

∑

k

∂vk
∂xk

︸ ︷︷ ︸
∇·v

]
+ λδij

∑

k

∂vk
∂xk

︸ ︷︷ ︸
∇·v

, (2.12)

where δij is Kronecker’s delta and the term in brackets was chosen such that
its contraction is zero. Recall that the contraction corresponds to the sum
over all components i = j which, for a second rank tensor, yields the trace.
Hence, the expression in brackets is a zero trace tensor. The coefficients µ
and λ can be shown to be positive [Landau and Lifschitz 1981, §16] and are
called coefficients of viscosity. Less formal derivations of (2.12) are given in
several textbooks, e.g., in Section 5.6 of Tritton [1988].

For an incompressible fluid, ∇ · v = 0, hence

Πij = −µ
[∂vj
∂xi

+
∂vi
∂xj

]
. (2.13)

This, and more generally (2.12), is Newton’s law of viscosity with the dynamic
viscosity µ. A fluid for which (2.12) is valid is called Newtonian. All gases
and non-polymeric liquids belong to this class.

Parameterization of µ(T, p) The dependence of the viscosity on temper-
ature and pressure is characteristically different for liquids and for gases. In
liquids, viscosity decreases with temperature and is practically independent
of pressure. It is often parameterized by

µliq(T )

µliq(T0)
≈ exp

(
β
[ 1
T

− 1

T0

])
. (2.14)

Parameters for water at T0 = 283 K are µliq(T0) ≈ 1.307 · 10−3 N s m−2 and
β ≈ 2.4 · 103 K. For water, this description is only accurate to about 10% in
the temperature range from 273 K to 300 K. However, for natural systems
this accuracy suffices since dissolved substances lead to higher uncertainty.
Should need arise, a parameterization with four digits accuracy is given by
Cho et al. [1999].

The viscosity of gases increases with temperature and is again practically
independent of pressure. For an ideal gas, one finds

µgas(T ) =

√
mkT

3σ2
= µ0

√
T

T0
, (2.15)

where m is the mass of a molecule, k is Boltzmann’s constant, and σ is
the molecule’s effective cross sectional area. For air at T0 = 273 K, µ0 ≈
1.74 · 10−5 N s m−2.
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Figure 2.4.
Relation between shear stress (momentum flux)
and strain rate (transverse velocity gradient) for
different types of fluids. For a Newtonian fluid,
the viscosity is constant whereas it increases
with shear stress in a dilatant fluid and vice
versa in a pseudoplastic fluid. Correspondingly,
they are also referred to as shear thickening
and shear thinning, respectively. The Bingham
plastic may be regarded as a transition between
a solid (low stress) and a fluid (high stress).
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Viscous Force for Incompressible Newtonian Fluid We notice that the
Πij are the components of a symmetric second order tensor Π, the tensor
of momentum flux. Inserting (2.13) into (2.3) and using ∇ · v = 0 leads
to

Fv = µ

∫

V

[∇ · ∇]v dV = µ

∫

V

∇2v dV , (2.16)

which is the force of friction for an incompressible Newtonian fluid. In Carte-
sian coordinates, the x-component of ∇2v is ∂xxvx + ∂yyvx + ∂zzvx.

Non-Newtonian Fluids Although we only consider Newtonian fluids in the
following, it is worth taking a side look at other fluids. All pure fluids share
the property that they cannot sustain any shear stress in static equilibrium
since their constituting particles are asymptotically free. This distinguishes
them from pure solids where particles are bound to their relative positions.
Solids thus show elastic behavior, where an applied shear stress leads to a
dislocation of particles from their equilibrium position and to a corresponding
force that drives them back. Hence, a solid deforms to the point where either
the two forces balance each other and the shear stress can be maintained
indefinitely or the solid adjusts irreversibly, eventually breaks.

The deformation in response to an external stress (force per unit area)
is called the strain and the stress-strain relation is an important material
property of any solid. The analogous relation for a fluid is that between shear
stress and rate of strain: an imposed shear stress leads to an increase of the
shear velocity, hence of the transverse velocity gradient, which in turn leads to
a higher momentum dissipation rate. Hence, a fluid accelerates to the point
where either input flux and dissipation rate of momentum balance each other
or the fluid separates thereby interrupting the transfer of momentum.

For an incompressible Newtonian fluid, (2.13) ascertains that the rate of
strain is linearly related to the shear stress with viscosity µ as constant
of proportionality. For non-Newtonian fluids, µ becomes a function of the
shear stress Π (Figure 2.4). Depending on the shape of µ(Π), two types are
distinguished, dilatants, stress-thickening fluids, and pseudoplastics, stress-
thinning fluids. Examples of dilatants include a wide range of emulsions like
cornstarch on which a person can run spectacularly but sinks in once the rapid
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motion is stopped. A more practical application is liquid armor in sport’s or
military suits. An examples of a pseudoplastic is glacier ice on which a person
can easily walk, but which also flows into a valley under its own weight. Other
examples are many paints which can be applied like a thin liquid with a brush
but which will not drip. Many fluids are “complex” and show thinning as
well as thickening regimes and even jammed states with no more flow. The
latter makes the transition between fluids and solids in that the material is
solid below some stress threshold and becomes fluid above. This is called a
Bingham plastic. Examples of such materials include drilling mud, ketchup,
or whiped cream. Since the rich macroscopic phenomenology depends on
molecular-scale details, this opens the way to engineering “smart fluids”
whose behavior can be controlled through electric or magnetic fields or which
react to various internal variable like temperature, surfactant concentration,
and emulsion density [e.g., Brown et al. 2010].

2.3

Flow of Incompressible Newtonian Fluid

With the results of the preceding sections, we formulate the dynamics of a
uniform and incompressible Newtonian fluid and consider some particular
solutions.

2.3.1
Dynamics

We choose to work in the Eulerian framework, i.e., in a coordinate system
that is fixed in space. The total rate of change following the motion of a fluid
element, i.e., the total derivative dt, then consists of the local component ∂t
and of the component v · ∇ that results from the element’s velocity. Hence,
dt = ∂t + v · ∇.

The dynamics of the fluid is obtained by combining mass balance (2.6),
linear momentum balance (2.8), incompressibility assumption ρ = const, and
viscosity model (2.16) to

∇ · v = 0

ρ∂tv + ρ[v · ∇]v = ρg −∇p+ µ∇2v . (2.17)

The second equation is Navier-Stokes’ equation for an incompressible Newto-
nian fluid [Tritton 1988]. It is often written in kinematic form, by dividing by
the constant fluid density ρ and introducing the kinematic viscosity ν = µ/ρ,
as

∂tv + [v · ∇]v = g − 1

ρ
∇p+ ν∇2v . (2.18)
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Before looking into solutions of these equations, we want to understand
their physical meaning. The external forces may be separated into the driving
forces ρg and −∇p, and into the frictional, slowing, force µ∇2v. The former
may be expressed in terms of the potential

ψf := p− ρg · x , (2.19)

which we will call the “fluid potential”. The action of the frictional force
is understood best for slow motion, where [v · ∇]v may be neglected, and
in the absence of the other forces, ∂tv = ν∇2v. With (4.7) on page 80, we
recognize this as a diffusion equation for the velocity with diffusion coefficient
ν [L2/T]. Hence, the friction term dissipates the fluctuations of v, into heat.
In analogy, we recognize µ as the coefficient of momentum dissipation. Hence,
we may write the momentum equation (2.17) as

ρdtv︸︷︷︸
rate of change

= −∇ψf︸ ︷︷ ︸
generation

+ µ∇2v︸ ︷︷ ︸
dissipation

. (2.20)

Solving (2.18) is in general very difficult because of the nonlinear inertia
term [v·∇]v = [∇×v]×v− 1

2∇v2 which relates to the physical phenomenon of
turbulence [Frisch 1995]. Short of a full analysis, which is still impossible for
the general case, we may gain more insight by either approximating (2.18) to
the point where analytical solutions become feasible or by doing a similarity
analysis which provides scaling relations for phenomena in geometrically
similar flow domains. For both approaches, it is useful to write (2.18) in
dimensionless form. To that end, we consider a specific but arbitrary flow
domain which is characterized by length ℓ. We denote the characteristic time
for changes of the external forcing by τ and the magnitude of a typical flow
velocity by u. Introducing the dimensionless variables

t′ =
t

τ
, x′ =

x

ℓ
, v′ =

v

u
, (2.21)

hence the derivatives ∂t′ = τ∂t and ∇′ = ℓ∇, transforms (2.18) into

u

τ
∂t′v

′ +
u2

ℓ
[v′ · ∇′]v′ = gĝ − 1

ρℓ
∇′p+

νu

ℓ2
∇′2v′ , (2.22)

where ĝ = g/g is the unit vector pointing in the direction of g. Notice that p
remains dimensional at this point. Dividing by u2/ℓ isolates the inertia term
and leads to the dimensionless form

St ∂t′v
′ + [v′ · ∇′]v′ =

1

Fr
ĝ −∇′p′ +

1

Re
∇′2v′ , (2.23)

where now p′ = p/[u2ρ] is introduced and

St :=
ℓ

uτ
, Fr :=

u2

ℓg
, Re :=

ρuℓ

µ
=
uℓ

ν
(2.24)
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are the Strouhal, Froude, and Reynolds number, respectively. These dimen-
sionless numbers quantify the relative importance of inertia with respect to
that of transient forcing (St), gravity (Fr), and viscosity (Re). As will be
illuminated in the following, these numbers facilitate the classification of the
wide range of flow phenomena.

We first focus on the Reynolds number and, as a preliminary, recall that for
a system with linear dynamics, different temporal and spatial frequencies do
not interact, in particular they cannot exchange energy or momentum with
each other. Next, recognize that, given the molecular nature of viscosity as
envisaged in Section 2.2.2, dissipation is not very effective at larger scales.
This is reflected by the small values of the kinematic viscosity ν = µ/ρ, the
relevant property here, which is some 10−6 m2s−1 for water and 10−5 m2s−1

for air. One can actually show that the amplitude of a fluctuation with
wavelength λ decays exponentially with time, but that the decay time is
proportional to λ2/ν (Exercise 7.1). Still, viscosity is the only process that
eventually dissipates momentum, hence kinetic energy, into heat and thereby
drives a fluid towards static equilibrium.

The efficiency of dissipation greatly increases in processes with a nonlinear
dynamics where different modes become coupled such that momentum and
energy is handed down from larger to ever smaller scales where it is eventually
dissipated efficiently. Such a coupling between modes is accomplished by the
term [v·∇]v in the Navier-Stokes equation which leads to an instability of flow
patterns and causes them to break up into ever smaller units (Exercise 2.1).
For the case of fully developed turbulence, for very large values of Re, this
gives rise to the so-called Richardson-cascade, famously described as “Big
whorls have little whorls that feed on their velocity, and little whorls have

smaller whorls and so on to viscosity” [Richardson 1922]. It is also referred
to as Kolmogorov’s β-cascade which the K41-theory hypothesized to be self-
similar [Kolmogorov 1941; Frisch 1995]. This was subsequently confirmed
experimentally. Kinetic energy thus enters the fluid at some large scale
through the action of gravity or some external pressure field, cascades down
the so-called inertial range without loss and is eventually dissipated in the
molecular range. We notice that there exist no dissipation mechanisms within
the momentum cascade, hence the self-similar scaling.

The Reynolds number is thus recognized as indicator for the efficiency
of macroscopic momentum dissipation. For Re ≪ Recrit, the inertia term
[v ·∇]v is negligible, hence also the coupling between modes, and momentum
dissipation occurs at the time scale λ2/ν. When the inertial term is not
completely negligible, turbulent flow can be expected at least in parts of
the flow domain. This also means that flow is transient even for stationary
external forcing. The extent of turbulent regions increases with increasing
magnitude of [v ·∇]v and with it also the character of the flow changes, from
laminar through intermittent to fully turbulent for Re ≫ Recrit. The value of
Recrit depends on the geometry of the flow domain, sometimes on small-scale
properties of the boundary. For some simple domains, such critical values are
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reported in the engineering literature. For instance Recrit ≈ 2′300 . . . 4′000 for
a long circular pipe with diameter ℓ and with a moderately rough wall.

The Froude number weighs the gravitational force against the inertial
force, more precisely its vertical component. Hence, for a situation with
Fr ≪ Frcrit the vertical component of [v · ∇]v can be neglected while the
horizontal ones may remain dominating. This is in particular the case for
the regime of large Reynolds numbers which then leads to turbulence that
is restricted to the horizontal. This is often an excellent approximation for
large-scale environmental systems including the atmosphere and the ocean.
As a consequence of this, the dominant rotation of vortices, from twisters to
cyclones, is in horizontal planes. We notice in passing that, depending on
the perspective, there exist alternative definitions of the Froude number, in
particular the square root of the definition in (2.24).

Finally, the Strouhal number quantifies the inertial force relative to the
external forcing. It may furthermore be considered as ratio between the
internal time scale ℓ/u and the external time scale τ . It is worth mentioning
that an external forcing may actually force in the interior of the flow domain.
The decisive point is that it is none of the fluids forces that have been
incorporated into the formulation of the Navier-Stokes equation. An example
are flying and swimming animals whose action on their surrounding fluid is
characterized by the Strouhal number [Taylor et al. 2003; Eloy 2011]. Like
for the other dimensionless numbers there also exist alternative formulations
for St, in particular ℓω/u, where ω is a characteristic frequency, and, as
introduced originally by Lord Rayleigh [1915], the inverse of the modern
definition given in (2.24).

2.3.2
Approximations of Navier-Stokes Equation

We focus on slow flow with Re ≪ Recrit, where viscosity dominates inertia,
hence [v′ · ∇′]v′ may be neglected with respect to other terms containing v′.
With this (2.25) may be approximated by

St∂t′v
′ =

1

Fr
ĝ −∇′p′ +

1

Re
∇′2v′ . (2.25)

This linear differential equation describes laminar flow and is referred to as
the time-dependent Stokes equation or as the equation of creeping flow.

For many small-scale flow phenomena, in particular for fine textured porous
media, external forcing varies slowly on the time scale of the internal dynam-
ics, i.e., St ≪ 1. Flow may then be approximated as stationary,

1

Re
∇′2v′ = ∇′p′ − 1

Fr
ĝ (2.26)

or, in dimensional form, by

µ∇2v = ∇p− ρg . (2.27)
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This is the time-independent Stokes equation. Notice in passing that what-
ever the approximation is, we can never drop ∇′p′ since p is one of the state
variables that must be retained in at least one term. Indeed, the ∇′p′ always
adjusts such that the other terms are balanced.

Example: Water Infiltrating in Soil Consider a heavy rainfall event of 1 hour
duration that has 10 mm of water infiltrate a sandy soil. Hence, a characteristic
time for the external forcing is τ = 103 s. (We do not care about the factor
of 3.6 since we want to get an order of magnitude estimate only, and the result
is only useful if the terms are separated by several orders of magnitude.) As a
characteristic length choose the radius of a large pore, ℓ = 100 µm. To estimate
a typical velocity, assume that the infiltrating water passes through 1/3 of the
volume – part of the volume is occupied by solid matrix and not all pores may be
conducting water – which gives u = 30 mm/h or about 10−5 ms−1. (Here, we do
care about the factor of 3, but for didactical reasons only, in order to emphasize
that water moves at a higher velocity in the porous medium than outside.)
Finally, the kinematic viscosity of water is about 10−6 m2s−1. Inserting these
values into (2.24) yields

St = 10−2 , Fr = 10−5 , Re = 10−3 .

Recalling Recrit = O(103) for a cylindrical tube, we thus first conclude that
the inertia term can be safely neglected and the Stokes approximation is valid.
Next, we deduce from St that the time scale of the internal dynamics is 2
orders of magnitudes shorter than that of the external forcing. Hence, the
time-independent Stokes equation (2.27) may be used. Finally, making the bold
assumption ∇′2v′ = O(1), we infer that gravity (Fr) dominates friction by 2
orders of magnitude. Dropping the friction term would leave us with ∇p = ρg,
the equation for hydrostatic equilibrium. Its solution is ph(x) = p0+ρg ·x, with
p0 the pressure at x = 0.

Hydrostatic equilibrium is, to a reasonable approximation, the solution of the
flow problem. (This is indeed the case for many environmental systems, from
porous media to the ocean and the atmosphere.) We can do quite a bit better
than hydrostatic equilibrium, however. Write p as a sum of hydrostatic pressure
ph and deviation p∗, hence p = ph + p∗. Insert this into (2.27) with ph given
above to find

µ∇2v = ∇p∗

for the pressure deviation. Solutions of this equation will be obtained in Sec-
tion 2.3.5. We notice that irrespective of whether ∇′2v′ = O(1), the decompo-
sition p = ph + p∗ is always possible since the Stokes equation is linear.

We notice with Figure 2.5 that in the time-independent Stokes regime, the
forces acting on a fluid element cancel, which means that the velocity adapts
such that the viscous force (momentum dissipation) compensates the sum
Fg + Fp of gravitational and pressure force (momentum generation). In an
isotropic fluid this means that v is always parallel to Fg + Fp.
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Figure 2.5.
Forces on a fluid element with
stationary Stokes flow. The
velocity adjusts such that the
resulting force vanishes. For
an isotropic fluid, this leads to
velocity v being parallel to the
driving force Fg + Fp.

2.3.3
Similarity Analysis

We consider a fixed but arbitrary flow domain Ω′ and for simplicity limit our
interest to slow stationary flow, that is to

1

Fr
ĝ −∇′p′ +

1

Re
∇′2v′ = 0 , (2.28)

with appropriate boundary conditions. The solution of this problem may be
written as

v′(x′) = fv(x
′; Fr,Re) , p′(x′) = fp(x

′; Fr,Re) , (2.29)

where fv and fp are dimensionless functions, fv vector-valued and fp scalar.
Depending on the geometry of the flow domain, these functions can be very
complicated. Two flow problems are called similar if (i) their flow domains are
geometrically similar, (ii) the system parameters g, ℓ, µ, and u are such that
Fr and Re are the same, and (iii) the dimensionless boundary conditions are
identical. Obviously, two similar flow problems lead to identical mathematical
problems when expressed in dimensionless terms and their solutions may be
written as

v(x)

u
= fv

(x
ℓ
; Fr,Re

)
,

p(x)

u2ρ
= fp

(x
ℓ
; Fr,Re

)
. (2.30)

We gain further insight into the flow problem by realizing that the dimen-
sionless solution (2.29) may be transformed with any combination of the
dimensionless numbers Fr and Re. For instance, with u = µRe/[ρℓ] from
(2.24), we obtain

v(x)

µ/[ρℓ]
= fv1

(x
ℓ
; Fr,Re

)
,

p(x)

µ2/[ρℓ2]
= fp1

(x
ℓ
; Fr,Re

)
, (2.31)

with fv1 = Re fv and fp1 = Re2fp. From this we learn that, however
complicated the shape of the flow domain may be, for similar flow problems
the velocity scales proportionally to µ and inversely to ℓ while pressure scales
with the square of these quantities, hence proportionally to [µ/ℓ]2.
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In an analogous manner, we may take any quantity of interest, bring it
into a convenient dimensionless form, and conclude that, besides its possible
dependence on the scaled location x/ℓ, it must only depend on Fr and Re. We
finally remark that this type of analysis is not limited to the Navier-Stokes
equation or to stationary systems.

2.3.4
Initial and Boundary Conditions

Formulation (2.17) for the dynamics of a fluid may be interpreted as the
description of the infinite ensemble of all possible evolutions for a fluid with
material properties ρ and µ. A particular evolution is selected from this
ensemble by specifying initial and boundary conditions. Specifying the initial
condition corresponds to setting up an experiment in a chosen state or, more
typically for a natural environment, to observing it. Similarly, specifying
boundary conditions corresponds to forcing and experiment or at least to
observe its natural forcing.

Given flow domain Ω with boundary ∂Ω, a typical situation would be
that v(x) and p(x) are given throughout Ω at initial time t0. With these
functions given, the initial acceleration ρ∂tv of the fluid at each point can
be calculated immediately from (2.17). Typical boundary conditions would
be v(x), p(x), or a combination of them on ∂Ω. These would prescribe fluid
flow across the boundary or the level of a connected reservoir.

The challenge from a practical perspective is that it may be difficult, even
impossible, to setup a fluid system in a prescribed state or to observe it
throughout Ω. Think of a porous medium or of the atmosphere. This means
that the initial state in the physical world differs from that in the model
representation. Whether this difficulty is severe depends on the flow regime.
For intermediate to high Reynolds numbers, evolutions with neighboring
initial states diverge rapidly such that predictions are limited to some time
span. An example in case is weather prediction, the more general context
is deterministic chaos [e.g., Schuster and Just 2005]. The situation is more
benign for low Reynolds numbers where viscosity, hence dissipation, domi-
nates. In such a system, initial states decay exponentially and evolutions from
different initial states converge. Hence, a sufficient “spin-up” time suffices to
bring a model that starts from an inaccurate initial state close to the real
system. An example is rainfall-driven subsurface water flow.

Besides the many practical issues, boundary conditions also evoke a few
fundamental problems. One of them is associated with the very definition of
a boundary, another one with the representation of the relevant physical pro-
cesses. To appreciate the former, consider as an example the soil-atmosphere
interface while zooming down from the scale of the planetary boundary
layer, a few hundred meters, all the way to the soil-water-air interface at
the molecular scale of about one nanometer. To glimpse at some of the
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implications, we recall that understanding fluid flow in terms of the Navier-
Stokes equation rests on the construct of a fluid element. Choosing its size
determines which phenomena, processes, and scales are to be parameterized,
i.e., represented in an averaged way as material properties, and which ones
are to be described explicitly. Among others, this limits the spatial resolution
of the representation.

At the large end, and for turbulent flow, choosing the size of the fluid
element involves the following trade-off: The larger the fluid element, the
more of the momentum cascade generated by the inertia term can be included
into an effective dissipation term. As an example, within the K41-theory ,
a first-order approximation to momentum transfer in turbulent flow, the
dissipation term for atmospheric flow is described by an eddy viscosity that
is about 1 m2s−1, a factor of 105 larger than its molecular analog. For
many flow phenomena, this may allow a non-turbulent approximation despite
dominating turbulence at smaller scales. The trade-off comes from the fact
that such a simplification comes at the cost of spatial resolution which then,
for instance, hinders the correct estimation of the lifetime of an atmospheric
low-pressure system.

At the small end, a more fundamental issue arises, fundamental in the sense
of “cannot be addressed in the context of fluid dynamics”. This emanates
from the requirement that a fluid element is large compared to the mean
distance between its constituting particles. Obviously, we cannot study small-
scale processes like the movement of a contact-line where solid, water, and
air meet in a triple-line, [Thompson and Robbins 1989] or the movement of
water in clays [Kirkpatrick et al. 2005], since both involve interactions at
distances on the order of a few particle diameters in an essential way.

This general situation is typical for environmental systems, indeed for any
multi-scale system from material science through economics all the way to
socio-cultural environments, and also the concepts to approach them are
similar. The current credo is to get as much quantitative small-scale insight
as possible and to arrive at structurally correct large-scale representation that
can be parameterized at the larger scale. Ideally this involves the deduction of
some scaling law from small-scale insight, which allows the projection from
small to large scales, and the estimation of the appropriate parameters at
the large scale. Such approximate representations of small-scale features and
processes are the largest source of uncertainty for otherwise well-developed
model. This is what makes models models, imperfect representations of
reality that must constantly be checked against experiments.

2.3.5
Particular Solutions

Disregarding the intricacies associated with boundaries discussed above, we
invoke approximations like v = 0 at an immobile solid boundary in order to
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vx(r)
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r

Figure 2.6.
Cross-section through velocity field for
Hagen-Poiseuille flow, i.e., slow laminar flow
in long circular cylinder. The cyan lines
indicate contours of the pressure field and
the thin black line represents the velocity
profile.

consider solutions of the Stokes equation (2.27) for some simple geometries.
Focussing on the essential part, we neglect gravity, and only consider

µ∇2v = ∇p . (2.32)

Long Cylindrical Tube Let r be the radial distance from the center and x
the direction along the tube (Figure 2.6). Denote the radius of the tube by
r0. For stationary Stokes flow, the pressure gradient is constant and, due to
symmetry, parallel to x. Symmetry further requires the velocity components
perpendicular to x to vanish. Hence, from (2.32), ∇2vx = µ−1∂xp. Using
cylinder coordinates {r, ϕ, x} and noting that ∂ϕvx = 0 = ∂xvx, we obtain
∇2vx = r−1∂r[r∂rvx] and further r−1∂r[r∂rvx] = µ−1∂xp. Solving this for the
boundary conditions vx(r0) = 0 and ∂xvx(0) = 0 (symmetry) yields

vx(r) = −∂xp
4µ

[
r20 − r2

]
, (2.33)

the well-known parabolic velocity profile of Hagen-Poiseuille flow. Integrating
over the cross section gives the flow

q = −πr
4
0

8µ
∂xp (2.34)

and, dividing by the cross-sectional area πr20, the flux

j =
q

πr20
= −1

8

r20
µ
∂xp (2.35)

which corresponds to the average velocity in the tube.

Bundle of Long Cylindrical Tubes Consider a densely packed bundle of
cylindrical tubes, all with radius r0, with the space between the tubes filled
with some solid. With the solution for the individual tubes given in (2.33),
the only notable relation is that for the average flux 〈j〉 through the “porous
medium as a whole”, i.e., the flow per area of porous medium. Looking at
the unit cell of the cross section, an equilateral triangle, we find π/

√
12 for

the areal fraction of pores and hence for the average flux

〈j〉 = − π

16
√
3

r20
µ
∂xp . (2.36)
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Again, this may be interpreted as an average velocity, not in the tubes,
however, but in the “porous medium as a whole”. The average velocity in
the tubes is higher by a factor of

√
12/π, i.e., by the inverse of the porosity,

the volume fraction of the pores.

General Cylindrical Form For steady flow in a general cylindrical form,
only the x-components of ∇p and v will be non-zero and ∂xp is constant.
Hence, as seen above, the flow is described by ∇2vx = µ−1∂xp = const.
Integration yields

j = −αℓ
2

µ
∂xp , (2.37)

where ℓ is some characteristic diameter and α is a constant that depends on
the form of the cross-section. As before, we can also consider an ensemble of
parallel cylindrical forms, each of them possibly with a different cross-section,
and find for the average flux through such a “porous medium”

〈j〉 = −αφℓ
2

µ
∂xp , (2.38)

where φ is again the porosity. Choosing circular cylinders, possibly all with
different radii, we arrive at the most simple, albeit not very realistic, model
for a porous medium, the parallel bundle of capillaries.

Exercises

2.1 Momentum Cascade in Navier-Stokes Equation Study the momentum cas-
cade introduced into the Navier-Stokes equation through the inertia term [v · ∇]v
in the simplified model ∂tu + 1

2
∂xu

2 = 0 in a spatially infinite domain and initial
state u(x, 0) = cos(x). Also discuss to what extent this is a useful approximation
of the Navier-Stokes equation.

2.2 Flow through Slit Consider a horizontal infinite slit of width 2ℓ. For laminar
fluid flow in this slit, calculate the velocity profile and the flow per unit length.
What are the conditions for laminar flow?

2.3 Film Flow Consider a vertical, perfectly water-wet glass plate with a uniform,
20 µm thick film of water flowing down its face. Calculate the velocity profile
and the flow per unit length for T = 20◦C and for 0◦C (assume water to be
liquid).

2.4 Compressibility of Water Consider an isothermal, vertical column of water.
Let p0 be the pressure at the surface. What is the pressure at 10 m depth?

2.5† Sap Flow in Trees The giant California redwood tree (sequoia semperviren)
grows to heights in excess of 100 m. Discuss the possibility to transport the
total transpiration flux of some 2 mmd−1 through capillaries. Make reasonable
assumptions whenever required.
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Fluids in Porous Media

The dynamics of large fluid compartments – the ocean or the atmosphere,
even rivers and lakes – is often dominated by the nonlinear inertia term [v·∇]v
which causes turbulence. Boundary conditions for these compartments are
simple because the direct influence of the boundaries extends only through
a small fraction of the flow domain. In contrast, the dynamics of fluids in
porous media is generally dominated by the porous matrix which pervades
the entire volume and leads to an efficient dissipation of the fluid’s kinetic
energy. In return, the internal dynamics becomes rather simple, essentially
described by Stokes’ law. The situation becomes complicated again when
multiple fluids are to be considered, as is typically the case in soils, where
the air- and the water-phase coexist, or in oil reservoirs with gas-, water- and
oil-phases. In the following, we first take separate looks at the architecture
of porous media and at multiphase fluid systems. In the next step, we will
integrate the two and move to a larger scale by averaging over the details of
the pore-space.

3.1
Architecture of Porous Media

A porous medium is characterized by a partitioning of the total volume into
solid matrix and pore space, with the latter being filled by one or more fluids.
This partitioning indeed applies to most volume elements all the way down to
some characteristic size ℓ. Since we focus on fluid movement, we are mostly
interested in porous media with a connected pore space. Foams and similar
porous structures will thus not be touched.

Closer scrutiny of the above characterization reveals that a precise and
general definition of a porous medium is cumbersome. What is the size
of ℓ, for instance? Choosing it too small would exclude stony soils while a
value that is too large would accommodate strange media like karstic caverns.
Whatever the eventually chosen size, ℓ has to be very much smaller than
the extent of the total volume of interest. After all, there is no point in
considering three grains of sand and the space between them as a porous

31



32 3 Fluids in Porous Media

Figure 3.1.
Artificial porous medium created from sieved sand
poured between two parallel glass plates, a so-called
Hele-Shaw cell. This may serve as a simple two-
dimensional model for a porous medium.

1 mm

medium. For such objects, the shape of the flow domain must be described
explicitly. An analogous difficulty arises with the connectivity of the pore
space. Do, for instance, the boundaries between mineral grains in a granite
constitute a connection? The answer certainly depends on the fluxes and
time scale of interest. If the leakage of a mountain lake is of interest, such
exceedingly thin conduits may be neglected. On the other hand, if the concern
is with leakage from a nuclear depository, diffusion into grain interstices may
be important.

3.1.1
Simple Porous Media

Bundles of capillaries, introduced in Section 2.3.5, would qualify as porous
media and they are indeed often used to illustrate basic concepts. However,
the single flow direction they permit and the constant radius of the individual
pores makes them less than ideal models for soils, sediments, and rocks. A
more realistic model is a heap of sand (Figure 3.1).

A simple unconsolidated medium may be described in many different ways,
for instance by its grain size distribution. A significant effort has been
spent to deduce the pore size distribution and hydraulic material properties
from such measurements [e.g., Arya and Paris 1981]. The approach consists
of making reasonable assumptions on the shape and packing of the grains
and then, using basic geometry, to calculate the quantities of interest. For
instance, assuming spherical grains with equal radii in the densest packing
leads to a porosity, the volume fraction of the pore space, of φ = 1−π/[3

√
2] ≈

0.26 (Kepler’s conjecture). With this, one may calculate a characteristic
radius rc of the pore space as the ratio between its volume φV and its
surface area A. For the densest packing with spheres of radius r, one finds
rc = [φ/3]r ≈ 0.087r. We notice, however, that this radius is only a rough
measure: the pore size distribution is very wide, even for spherical particles
all with the same radius and in a regular close-packed arrangement.

Making the grain size distribution wider reduces the porosity, since smaller
spheres fill the space between larger ones. Thus also the characteristic ra-
dius rc decreases. Natural porous media typically consist of rough and non-
spherical particles. As a consequence of the friction between them, there exist
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Figure 3.2.
Braided river, here beneath Haute
Glacier d’Arolla, Switzerland. Many
reservoirs originated from such
glaciofluvial deposits. However,
scales were much larger than here,
typically hundreds of kilometers
during interglacial periods and at the
end of the last ice age.

many metastable configurations with a less dense packing. The phenomenon
of metastable states becomes more pronounced for smaller particles, where
surface forces are more dominant, and for oblique or platy particles. Clay
soils, for instance, have a porosity that easily exceeds 0.5.

The simple porous media considered so far are dominated by a single
length-scale, the characteristic radius r of the grains, or, alternatively, the
corresponding radius rc of the pores. Nature shows much more involved archi-
tectures, however, which result from a variety of generating processes.

3.1.2
Sediments

Many geomorphologic processes lead to the deposition of porous formations.
Initially, and often for millions of years, these formations are unconsolidated
in the sense that their matrix can only support moderate shear forces. Since
the compressibility of liquids like water and oil is comparable to that of
sandstone, unconsolidated formations are stable as long as the pore space is
filled with some liquid. Removing it leads to compression by the weight of
the overlaying material, to a reduction of the pore space, to land subsidence,
and eventually even to the destruction of the reservoir.

Unconsolidated Sediments Obviously, coarse-grained deposits are of par-
ticular interest since they lead to high conductivities for fluids. Such deposits
typically evolve in the headwaters of rivers, often in conjunction with nearby
glaciers, where the kinetic energy of the water is still high enough to transport
gravel and coarse sand. An example of such an environment is shown in
Figure 3.2. The highly variable flow and deposition history of such rivers
leads to a complicated architecture of the resulting reservoir. As is already
apparent from the photograph, lenses of fine sand will be embedded in layers
of coarse sand and gravel with occasional pockets of rubble. These may be
expected to be elongated along the main direction of the depositing flow.
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Figure 3.3. Multi-scale architecture of a typical sedimentary structure,
illustrated by an outcrop at Rue de Fabron near Nice, France. Arrows indicate
the path of increasing magnification and the rectangles mark the clipping for the
next higher step.

Their vertical extent is rather small, however, since the flow will tend to
form flat sheets due to the overwhelming impact of gravity. We thus expect
exquisitely complicated, multi-scale structures in such deposits which indeed
may be observed at any sand or gravel quarry or at some other outcrop
(Figure 3.3). This structure will be reflected in the formations’ conductivity
for fluids.

Consolidated Sediments In their evolution, sediments are often consoli-
dated and transformed through diagenetic processes. Still, they may retain a
seizable fraction of their original porosity. This is for instance the case with
sandstones, which are near-ideal examples of rigid porous media. Also, most
igneous rocks are porous and permeable to liquids even though porosity and
permeability varies greatly. Crystalline and metamorphic rocks like granite
and gneiss have a very low porosity, typically less than 1%, and an exceedingly
low permeability. These values may increase drastically if the rock is fractured
by tectonic motion or by unloading when the overlaying material is eroded
(Figure 3.4). Minerals along such fractures will slowly get dissolved by per-
colating water, eventually leading to a rather high permeability. This effect
is even stronger with sedimentary rocks like limestone which dissolves rather
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Figure 3.4.
Exposed face of
fractured sedimen-
tary rock from the
Mauer quarry near
Heidelberg. Notice
that fractures form
a roughly orthogonal
network which results
in a strong anisotropy
for the hydraulic
conductivity. Height of
this image is some 2 m.

quickly. Large conduits all the way to huge caverns and even subsurface
streams may develop leading to so-called karstic environments. This then
obviously transcends the notion of a porous medium.

3.1.3
Soils

Soils are the Earth’s skin. They form at the interface between atmosphere and
lithosphere from rocks and organic debris through a multitude of complicated
and only partly understood processes. A still most readable and comprehen-
sive description of soil formation is Jenny [1941, reprinted 1994].

Soil formation involves the physical and chemical weathering of the original
rocks, i.e., the disintegration of the mineral conglomerate. Thereby some
minerals are dissolved while the more stable ones are released, eventually
as individual grains. Some rocks, for instance limestone, contain practically
no stable minerals and over time they are dissolved almost completely. The
dissolved components yield nutrients for bacteria, fungi, and eventually for
plants. These in turn contribute to the soil’s evolution on all scales, from
the formation of organo-mineral complexes to root channels which provide a
direct link between the atmosphere and deeper soil layers. Eventually, the
lower life forms are followed by animals, from the miniscule enchytrae and
nematodes through earthworms, typically by far the largest mass fraction of
soil biota, all the way to moles and larger burrowing mammals. By digging
their living space into the ground, they mix the soil and create structures with
a wide range of scales. Physical processes of course continue to contribute to
soil formation also after the initial weathering. These are primarily freeze-
thaw cycles in cold regions, shrinking-swelling cycles in moderately humid
regions, and erosion-sedimentation processes almost everywhere. The impor-
tant aspect here is that the soil environment is dynamic, not static, and that
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Figure 3.5.
Thin section of about 1 mm length
from a loamy-clay soil. Clearly
distinguishable are the system of
macropores with diameters of some
0.1 mm, small soil aggregates (lighter
shades of brown) with sizes of about
0.3 mm, and the system of meso-
and micropores. (Image courtesy of
H.-J. Vogel)

structures may be expected over a wide range of scales. While this might be
reminiscent of turbulence, although at time scales of years to centuries for
a typical soil layer, we notice a qualitative difference: Turbulence originates
from a single “generator”, the inertia term [v · ∇]v. This leads to the same
structures at all scales and allows for comparatively simple scaling laws [Frisch
1995]. In contrast, soil structures result from many different generators and
have vastly different forms. We thus cannot expect simple transitions between
scales.

The multiscale nature of the pore space, which is typical for most soils,
is easily appreciated by looking at even small samples as illustrated in the
following examples.

Example: Meso- and Micropore System of a Loamy-Clay Soil At the smallest
scale of interest here, we consider a thin section of about 1 mm length from a
loamy-clay soil (Figure 3.5). The largest pores visible here have a diameter
of about 0.1 mm, corresponding to a capillary height of about 0.3 m as may
be calculated from (3.2). With a static water phase, these pores are thus air-
filled whenever the water table is more than 0.3 m below them. In addition
to the macropores, there appears a continuum of smaller pores all the way
down to the resolution limit of a few micrometers. This network of so called
meso- and micropores penetrates the aggregates as well as the darker material
between them. Their wide range of sizes assures that some water is retained
in the soil even at large distances from a water table and under rather dry
conditions. This hydraulic moderation makes soils the perfect environment for
many lifeforms.

Example: Macropore System of a Loamy-Clay Soil Looking at a soil sample
on a larger scale, only the macropores are perceptible. Figure 3.6 shows three
cross-sections, out of a stack of 120, that were obtained from a larger sample
extracted from the so called B-horizon – the one below the densely rooted top-
most layer with a high organic content – of a loamy-clay soil. After excavation,
the sample was impregnated for stabilization and was grinded down in steps of
0.1 mm. The faces were photographed and digitized with a resolution of 0.12 mm
[Cousin et al. 1996]. Visible structures range from the prominent cavity in the
leftmost image – it is some 30 mm long, 5 mm wide, and, as inspection of images
not shown here reveals, at least 2 mm deep – through almost circular voids from
vertical worm channels, all the way to very small voids that originate from thin
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Figure 3.6. Horizontal cross-sections through a sample taken at 0.4 m depth
from a loamy-clay soil near Beauce, France [Cousin et al. 1996]. The side length
of the square sections is 48 mm with a resolution of 0.12 mm. The smallest visible
pores thus are comparable to the largest pores in Figure 3.5. The vertical distance
between the sections shown here is 6 mm. White represents the pore space, black
the soil matrix which itself is again porous at a smaller scale. (Data courtesy of
I. Cousin)

Figure 3.7.
Three-dimensional reconstruction of
the macropore system for a selection
from the dataset shown in Figure 3.6.
Resolution is 0.12 mm horizontally
and 0.10 mm vertically. (Image
courtesy of H.-J. Vogel)

plant roots and enchytrae. As illustrated in Figure 3.5, much smaller pores exist
in the soil matrix but they are not resolved here.

A three-dimensional reconstruction of the macropore system of a sub-volume
illustrates that this network of large pores is connected rather well (Figure 3.7).
In a well-drained soil, macropores are only filled with water during short times
after heavy rainfall events. During such events, infiltrating water bypasses the
finer textured soil matrix. It is thus lost for plants and recharges groundwater
directly. Thereby, it may carry solutes past the reactive surface layer and lead
to a contamination of deeper soil layers or of the groundwater. Most of the time,
however, the macropore system acts as a fast conduit for the exchange of gases
between soil and atmosphere.

We notice in passing that the soil environment also provides a wide spectrum
of physicochemical micro-sites as is apparent from the various shades of red
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and brown visible in Figure 3.5. They indicate the presence of organic
material as well as of iron- and manganese-oxides. Obviously, this adds
significantly to the complexity of the soil environment. Representing a typical
soil in its full complicated glory is quite impossible and we will have to restrict
ourselves to highly simplified models. To this end, we will in the following
envisage a rigid porous medium with a completely water-wet matrix surface.
The latter leads to a thin film of adsorbed water that covers the entire soil
matrix at all times, as will be shown in the next section.

3.2

Multiple Phases

We focus on small multiphase systems with relevant scales of about a mil-
limeter. We first realize that, despite more than two centuries of active
research starting with Young [1805] and periodical summaries in comprehen-
sive reviews [Dussan 1979; de Gennes 1985; Good 1992; Bonn et al. 2009], and
despite the huge importance of this topic in technologies like coating, printing,
and microfluidics with engineered interactions between various fluids, our
quantitative understanding is still limited. Nevertheless, many aspects are
understood rather well at the microscopic scale due to advances in numerical
simulations of molecular dynamics and due to novel experimental techniques
like isotope dilution spectroscopy [Stiopkin et al. 2011].

Before considering flow domains that contain multiple fluids, we shortly
recall the forces that act between molecules. They all originate from the
electrical fields of the molecules and may be repulsive, when molecules come
so close that their electron orbitals begin to overlap, or attractive due to
the interaction of permanent or induced dipoles. The forces that stem from
interacting orbitals are short-ranged and decay proportional to exp(−r/r0),
where r0 is of the order of the molecule’s radius. Dipole interactions on the
other hand are long-ranged, reaching across several molecules, and decay only
algebraically proportional to [r/r0]

−7. They are summarized into the van

der Waals force which results from the Keesom energy for two permanent
interacting dipoles, the Debye energy for a permanent dipole interacting
with a non-polar molecule, and the London dispersion energy for two non-
polar molecules interacting through quantum fluctuations. All these energies
have an r−6-dependence on distance r, hence their collection into the r−7

van der Waals force. Some molecules, most prominently water, form H-
bonds which result from a proton (hydrogen) that is shared between two
electronegative atoms (oxygen). Such bonds are considerably weaker than
the corresponding covalent bonds. In water, for instance, where the molecule
has a diameter of about 0.275 nm, the covalent O–H bond has the atoms at a
mean distance of 0.099 nm whereas for the H-bond this is 0.117 nm. However,
with the interaction potential being proportional to r−2, H-bonds are much
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Figure 3.8.
Schematic forces between a molecule and
its neighbors (blue arrows) in liquid l,
vapor v, and at the interface between
them. The red arrow indicates the net
force on a molecule from the attraction by
its neighbors. Obviously, in equilibrium
it is counterbalanced by a corresponding
repulsive force.
Notice that the interfacial energy depends
on both of the fluids it separates.

stronger than van der Waals forces. For water, the interaction energy at
room temperature is on the order of the thermal energy. As a consequence,
the various bonds are not very stable. They break and form again on a time
scale of a few 10−10 s [Skinner 2010].

Next, we consider the differentiation of fluids into gases and liquids. The
density of gases is so low that intermolecular forces are only relevant for
a small fraction of the time, during the collisions. Apart from these short
intervals, molecules move freely. As a consequence, a gas fills all of the
available space and all gases mix. In contrast, the density of liquids is much
higher. For instance, water at room temperature is by a factor of 103 denser
than air. Since the mass of the molecules is the same to within a factor of
two – H2O vs N2 and O2 – the mean distance between molecules is smaller
in water by a factor of about 10. The arrangement of molecules in a liquid is
determined by the equilibrium between attractive and repulsive forces under
the disturbance by the thermal energy. Consequently, a liquid will maintain
its density which is determined by the thermodynamic variables, and will
in general not fill the entire available volume. Finally, liquids need not be
miscible.

3.2.1
Interfacial Energy and Tension

Since gases mix completely, the existence of an interface demands at least
one liquid. To be specific, we imagine in the following the interface between
liquid l and vapor v. Nothing fundamental would change, however, if we
considered two immiscible liquids like water and oil.

Forces on a molecule in the interior of a fluid average out almost perfectly
over time. At an interface, this is no longer the case since some of the
bonds dangle into the respective other fluid. This leads to a net normal
force and to a corresponding interfacial energy (Figure 3.8). Indeed, moving
a molecule from the interface to the interior releases the interfacial energy
Eint
lv =

∫∞

0
Fint
lv · dx, where the subscripts indicate the liquid and its vapor.

Integration is along the path of the molecule with the upper bound being
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Figure 3.9.
A liquid film is suspended between an outer planar ring
and a thin inner thread. The interfacial tension flv forces
the thread into a circle with radius r. Reducing r by δs
requires the work 2πrflvδs. This increases the area of the
liquid by 2πrδs, hence its interfacial energy by 2πrσlvδs.
Since δs is arbitrary, this leads to σlv = flv. We notice in
passing that in reality a film consists of two interfaces and
that all the above quantities would have to be multiplied
by 2. This does not affect the final relation, however.

flv
δs

v
r

thread

l

ring

immaterial because of the short range of the forces. Such a translocation
reduces the interfacial area by A, the area taken up by the molecule. Hence
we assign the areal energy density σlv := Eint

lv /A to the interface. For the
water-air interface, a thickness of some 0.3 nm has been reported [Stiopkin
et al. 2011], about one molecular layer, and the interfacial energy density at
20◦C is σwa = 0.0725 Nm−1.

In equilibrium, and with other forces negligible, the energy density associ-
ated with the interface leads to a minimal interface area for the given volumes
of fluids. For two immiscible fluids, e.g., water and air, this means that one
will form perfect spheres in the other. Examples are air bubbles in sirup
or honey and, vice versa, free-floating water blobs sometimes demonstrated
in space crafts. When other forces become important, with gravity being
the most common example, the interfaces will be deformed such that the
total energy of the system is minimal. An instance of this is the convenient
separation of water and air in a cup of tea.

The tendency of a liquid interface to minimize its area results in tangential
forces. They are for instance the culprit when a beautiful soap bubble, once
punctured, collapses into an ugly drop of dirty water. Figure 3.9 illustrates
that the interfacial tension, the tangential force per unit length of interface,
equals the interfacial energy density,

σlv = flv . (3.1)

Notice that the interfacial tension σ12 between fluids 1 and 2 becomes neg-
ative when the molecular attraction 1–1 is weaker than 1–2. For two liquids,
this leads to the complete dissolution, e.g., of alcohol and water.

3.2.2
Discontinuity of Pressure

Tensions in a curved interface add up to a normal force which is balanced by a
corresponding pressure within the fluid. Thus, pressure across a curved liquid
interface is discontinuous. In order to calculate the pressure jump, first notice
that every smooth surface is described locally by the two major radii of curva-
ture, r1 and r2. We consider an infinitesimal area element dA which extends
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r1

dα

r2Flv

2σlv sin(dα)r1

2σlv sin(dα)r2

dα Figure 3.10.
Sketch for calculating discontinuity
of pressure across the interface
between a liquid and its vapor.
The major radii of curvature are
r1 and r2. With half-angle dα
they span an infinitesimal area
element. Tangental forces resulting
from interfacial tension lead to the
net normal force Flv on the area
element.

by the angle ±dα from the center of the respective radius (Figure 3.10).
The net force from the interfacial tension on this element equals Flv =
4σlv[r1 + r2] sin

2(dα). It is balanced by the pressure Flv/[4r1r2 sin
2(dα)].

Hence

∆plv := pl − pv = σlv

[ 1

r1
+

1

r2

]
= 2σlvH , (3.2)

where

H =
1

2

[ 1

r1
+

1

r2

]
(3.3)

is the mean curvature of the interface. Equation (3.2) is the Young-Laplace

equation. For a spherical interface with radius r, ∆plv = 2σlv/r.

In deducing (3.2) we used the convention that r is positive if it is located
within the liquid. The two radii r1 and r2 need not have the same sign.
This is for instance the case for so-called pendular rings that form when
water is bound by capillary forces between two grains of sand (Figure 3.29).
Furthermore, one or both of the radii may be infinite as is the case for a
cylinder and a plane, respectively.

Further insight is gained by moving to the larger scale of the entire con-
nected liquid. In static equilibrium and in the absence of forces other than
those from the interface, the pressure at each location within the fluid is
constant. If this were not the case, a flow would be induced, in contradiction
to the equilibrium assumption. Hence, the pressure jump across the interface
must be the same everywhere, implying that the rightmost part of (3.2) is
constant. Hence, the curvature of the interface is constant. An interface
between two fluids in static equilibrium is thus a minimal area surface with
constant curvature.
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Figure 3.11.
Tensions – tangential forces per unit
length – σsl, σlv, and σsv solid, a liquid,
and its vapor. The contact angle γ adjust
such that the horizontal components of
the three forces balance each other.
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3.2.3
Equilibrium Distribution of Multiple Phases

In a system with at least three phases and with all forces other than inter-
facial negligible, liquid interfaces form spherical calottes that are bounded
by contact lines. Normal to a contact line, the interfaces extend the contact
angle.

Liquid on Solid We first consider a flat solid surface in contact with a liquid
and its vapor (Figure 3.11). The contact angle γ can be calculated either by
minimizing the total interfacial energy, with the additional condition that the
liquid volume is constant, or by balancing the horizontal components of the
interfacial tensions at the contact line. The latter is typically much easier
and readily leads to the Young equation [Young 1805]

σlv cos(γ) = σsv − σsl . (3.4)

This equation implies three regimes: (i) For σlv ≥ |σsv − σsl|, the solid
is partially wet, where “wet” means “covered by liquid”. An example for
this is a drop of water on a car’s windshield. (ii) With increasing σsl,
hence decreasing attraction of liquid molecules by the solid, the contact angle
increases until, for σsl > σsv − σlv, the liquid forms a perfect sphere and the
solid becomes dry. Water drops on plant leafs or on a freshly oiled wooden
table are examples for this regime. (iii) With increasing σsv, the contact
angle decreases until, for σsv > σsl + σlv, the liquid spreads completely and
forms a films, the solid thus becoming wet as for water on a very clean glass
surface.

We finally comment that all forces must balance at a stationary contact
line, not just their horizontal components. Indeed, the vertical component of
σlv is balanced by elastic forces in the solid, and a corresponding deformation.
While the latter is minute for solids, it is observable when the solid is replaced
by a more deformable substance like a gel [Jerison et al. 2011].

Two Liquids Imagine a pond of water with a small volume of a light oil
added to its surface (Figure 3.12). Again formulate the balance of forces at
the stationary contact line to obtain

cos(γ) =
σ2
wa − σ2

wo − σ2
oa

2σwoσoa
, (3.5)

where the cosine theorem σ2
wa = σ2

wo+σ
2
oa+2σwoσoa cos(γ) was used.
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Figure 3.12.
Interfacial tensions in a water-oil-air
system. The triangle shows the
addition of forces. Equation (3.5)
is obtained with the cosine theorem
using cos(π − γ) = − cos(γ).

As in the previous case, three regimes can be distinguished in a very similar
way with a contact line forming if the tensions satisfy the triangle condition,
i.e., any of the tensions is smaller than the sum of the other two. If this is
not the case, we find either complete spreading of the oil on the water or the
formation of a sphere.

Rise of Liquid in Cylindrical Capillary A liquid in a thin capillary rises
to a certain height h, positive if the liquid is wetting and negative if it is
non-wetting. Consider a very clean, vertical, cylindrical glass capillary with
radius R whose lower end is in contact with a water table. We observe that
the entire capillary is covered by a thin film of water and that a meniscus
has risen to height h. This height may be calculated from the force balance
at the upper end of the meniscus, where the bulk water meets the thin film
extending above. Here, the force from interfacial tension, 2πRσlv, balances
the weight of the liquid column “hanging” at that line, πR2hρlvg, where
ρlv = ρl−ρv (Figure 3.13). Neglecting the small volume of the meniscus, the
capillary rise becomes

h =
2σlv
ρlvgR

= − 2σlv
ρlvgr

, (3.6)

where R is the radius of the capillary and r the one of the interface. We notice
that the water film that extends beyond the meniscus is also hold in place by
interfacial forces which, apparently, are stronger than those at the meniscus.
This is easily accomplished by a the liquid film becoming slightly thinner
at greater height, thereby bringing the lv-interface nearer to the sl-interface
such that the liquid molecules are influenced more by the stronger attraction
from the solid.

For incomplete wetting, contact angle γ > 0, we notice from Figure 3.13
that only cos(γ)σlv is available for balancing the force from the weight of the
liquid column. Hence, the capillary rise will be reduced to

h =
2 cos(γ)σlv
ρlvgR

. (3.7)
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Figure 3.13.
Rise of a liquid in a smooth-walled
vertical capillary with radius R.
Attraction of the liquid’s molecules by
the solid is assumed to be much larger
than by the neighboring fluid, σ12 <
σ13 < 0, hence the liquid wets the
solid wall completely. Neglecting
the thickness of the liquid film,
the radius of the interface is r =
−R. It is negative because it is
outside of liquid 2. The dashed lines
indicate imaginary cuts along which
the force balance is considered. The
enlargement sketches the net force
(red) on a water molecule and its
components from the solid (black) and
from liquids 2 (blue) and 3 (yellow).
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Rise of Liquid in Corrugated Capillary The equilibrium configuration
of a liquid in a smooth-walled capillary with constant radius R is unique,
i.e., independent of the path on which the equilibrium was established. This is
not true anymore for a corrugated capillary since the condition for equilibrium
is satisfied for different heights of the liquid column. For a completely
wetting liquid and a capillary whose cross-section is circular at every height h
equilibrium is still given by (3.6), although with a possibly varying radius
R(h). Such an equilibrium is stable if the gain in gravitational energy
by an infinitesimal raise of the meniscus by dh would be larger than the
corresponding reduction in interfacial energy, hence if

dR

dh
> −ρlvg

2σlv
R2 (3.8)

at the equilibrium height (Figure 3.14). Which one of the stable equilibria is
attained eventually depends on the history.

The situation becomes even more complicated if, instead of a single cap-
illary, we consider a three-dimensional network of corrugated pores. There
we expect many possible equilibrium configurations of the liquid phase for
any given position of the liquid table. As a starter, consider two corru-
gated, roughly parallel vertical capillaries that are connected by a horizontal
capillary. Depending on details of the geometry of this structure, the fluid
phases may be continuous – there is a continuous path between any two
points in a phase that never leaves it – or any of them may be discontinuous
with entrapped vapor or liquid. In such a medium, the actually realized
configuration does not only depend on the previous configuration, but also
on the speed with which the boundary conditions are changed.
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Figure 3.14.
Corrugated capillary with circular cross-
section with radius R(h) (left). With the
liquid table at the lower end, there exist
two stable configurations for the liquid –
A (light blue) and B (dark blue) – with
the height of the respective menisci
determined by the balance between
capillary pressure plv and hydrostatic
pressure ph (right). There is a further
equilibrium point u which is unstable,
however. A small deviation will grow
until one of the stable points is reached.
Depending on the geometry, there may
exist more, or fewer, stable as well as
unstable equilibrium points. (Adapted
from Haines [1930].)

Capillary Length We notice that (3.7) yields a convenient measure for the
length scale below which capillarity must be taken into account. If we deem
capillary effects as important when the height of rise exceeds the diameter of
the tube, then we find the characteristic capillary length

ℓc =

√
| cos(γ)|σ

ρg
. (3.9)

For a water-air system in a perfectly wettable medium with γ = 0 one finds
ℓc ≈ 2.7 mm. Replacing the air by an oil whose density is 1% less than that
of water and with σwo = 50 mNm−1 leads to a capillary length that is about
an order of magnitude larger, ℓc ≈ 22 mm.

3.3
Transition to Continuum Scale

The detailed description of the pore geometry, with relevant lengths in the
micrometer range, and of pore-scale phenomena is not feasible for any domain
of practical environmental interest. These have extents on the order of 1 m,
often far more. Even for just 1 m3, we would have to cope with some
1018 degrees of freedom! Obviously, we must come up with an averaged
description along a similar line as the one that leads from gas dynamics to
thermodynamics. Hence, we want to make the transition from the discrete
pore space to the continuum and to macroscopic field variables which describe
the observed phenomena.
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3.3.1
Representative Elementary Volume

In a pore-scale representation, each point belongs to one of the phases, either
to the solid matrix or to some fluid. For a formal representation, we use the
indicator function which for phase i is defined as

χi(x) =

{
1 , x ∈ phase i,

0 , x 6∈ phase i.
(3.10)

Clearly, such a definition is not very useful operationally, since the decision
of whether a point belongs to i or not is difficult and may even be impossible,
e.g., in a fractal medium. However, this difficulty may be circumvented by
thinking of a regularized representation of the pore space, i.e., one where the
true pore space has been convolved with a sufficiently narrow test function.
Such a regularization is done implicitly by all measuring instruments. An
example of a measured indicator function of the pore space is shown in
Figure 3.6, provided that white represents 1 and black 0.

A natural way for reducing the pore-scale description to a more manageable
form is the averaging of the indicator functions with some convenient weight
function κ(x) to obtain

θi(x) := 〈χi〉(x) :=
∫

Ω

χi(x+ x′)κ(x′) dx′ , (3.11)

where Ω is the support of κ and θi is the volume fraction of phase i, sometimes
also called the macroscopic phase density. Similarly, we obtain for the average
of some microscopic property αµ of phase i the macroscopic value

αm(x) := 〈αµχi〉(x) :=
∫

Ω

αµ(x+ x′)χi(x+ x′)κ(x′) dx′ . (3.12)

For such averages to be unbiased, we require κ(x) ≥ 0 and
∫
Ω
κ(x) dx = 1.

Popular choices for κ are a (i) constant within a spherical support of radius σ
and 0 outside or (ii) the n-dimensional Gaussian [2πσ2]n/2 exp(−|x|2/[2σ2])
with zero mean and variance σ2 which averages over a typical distance σ.
The latter has the advantage that the averages are smooth, i.e., their spatial
derivatives of arbitrary order are continuous.

We notice that averaging transforms the discrete microscopic description,
where each point belongs to exactly one phase, to a continuous representation
where at each point the densities of the macroscopic quantities are given
(Figure 3.15). Hence the notion of a transition to the continuum scale.

In general, definition (3.11) depends on the choice of κ which makes all
subsequent considerations rather cumbersome. However, if the indicator
function χi is sufficiently uniform at some large scale, increasing the averaging
volume Ω will eventually lead to a value for θi that depends neither on
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microscopic macroscopic

dA

∂V

∂Vw

V

∂V

Figure 3.15. Transition from pore-scale (microscopic) to continuum (macro-
scopic) representation. Consider a macroscopic volume V with boundary ∂V
(dotted line). Microscopically, the detailed distribution of all the phases is available,
e.g., of the water phase Vw ⊂ V with external boundary ∂Vw ⊂ ∂V (red line).
Macroscopically, the phases and possibly other quantities are replaced by the
superposition of continuous fields (uniformly colored regions). These fields may
vary in space, but on a much larger scale than that of the averaging volume.

the size nor on the form of Ω. Such an averaging volume is called a
representative elementary volume. It is the means for an objective transition
from a pore-scale representation to one at the continuum scale and is thus of
fundamental importance. Early studies of porous media considered averaging
functions that were constant within some bounded support and 0 outside,
and introduced the notion of a representative elementary volume (REV) for
a volume of linear extent ℓ [Bear 1972].

Example: REV for Porosity of Macropore System We consider the volume
fraction of the pore space, the so called porosity , of the soil sample illustrated in
Figure 3.6 and Figure 3.7 and use a cube of side length ℓ as averaging volume with
a weight function that is constant within the cube. From a coverage of the entire
sample volume with such cubes, we obtain the distribution of local porosities as
a function of ℓ (Figure 3.16). For very small values of ℓ, this distribution is very
broad with extremes given by cubes that are completely within the matrix or in
the pore space. With increasing values of ℓ, the representation of both, matrix
and pore space, become coarser and the difference between cubes decreases.
Eventually, we may postulate an REV with a size of about 17 mm. Fluctuations
at larger scales would then be attributed to macroscopic variability.

In the following, we will use ”REV” as shorthand for the requirement that
some microscopic quantity becomes approximately constant when averaged
with a weight function of characteristic extent ℓ, even if this function is
smooth and possibly with unbounded support.

We realize that the transition to continuous fields replaces the original
pore-scale representation by a new one. Considering some process like water
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Figure 3.16.
Estimated porosity of soil sample
from Figure 3.6 as a function
of averaging cube’s length. The
cyan curve represents a particular
location. The other curves represent
the ensemble of all cubes: average
(magenta), minimum and maximum,
and the two quartiles. Half of all
values are within the gray band. The
linear extent of a reasonable REV
would be some 17 mm.
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flow or heat transport in both representations, we may hope that the respec-
tive descriptions approach each other at a sufficiently large scale, ideally that
of the REV. However, large deviations between the two are to be expected
at smaller scales. Hence, despite the fact that we will eventually formulate
differential equations for the dynamics of transport processes in porous media,
evaluating the ensuing solutions at scales smaller than the REV will generally
not reflect the physical processes correctly. This becomes particularly virulent
near boundaries. This issue is of course not limited to the transition from
the pore-scale to the continuum, but applies to all transitions between scales
that involve some kind of averaging and also to measuring processes, where
the measuring volume takes the role of the REV.

3.3.2
Texture

In soil science, “texture” refers to the grain size distribution of a soil while
“structure” refers to the soil’s aggregation into crumbs and blocks. Here, we
employ a more general semantic with “texture” encompassing the small-scale
shapes of a porous medium for which a statistical representation suffices.
“Structure” on the other hand refers to features that must be represented
explicitly. Consider for instance a soil at a scale of 1 m. Soil layers or earth-
worm channels here would belong to the structure while the system of meso-
and micropores would constitute the texture. This extended notion is useful
at any scale and in particular for hierarchically heterogeneous media.

After the transition from the pore scale to the continuum scale, the texture
of the pore space is reduced to a few statistical quantities like volume and
surface densities, correlation functions and lengths, and possibly some con-
nectivity functions. Here, we only consider the lowest order description, the
volume density of the pore space which is usually referred to as the porosity φ.
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Formally, φ = 〈χφ〉 is obtained from the indicator function χφ of the pore
space through (3.11).

It is often convenient to also introduce the bulk density ρb which is ob-
tained by averaging the mass density ρm of the solid matrix. With (3.12)
this may be written as

ρb =
〈
ρm(x)[1− χφ(x)]

〉
. (3.13)

Assuming ρm to be constant, which is a good approximation for mineral
porous media for which ρm ≈ 2.65 · 103 kg m−3, we obtain

ρb = ρm[1− φ] . (3.14)

Since both ρb and ρm can be measured with reasonable effort for many porous
media, this equality is often used to calculate the porosity φ.

3.3.3
State Variables

To describe the macroscopic state of a fluid in a porous medium in thermo-
dynamic equilibrium, the amount of fluid and its potential energy must be
given. We will find later, in Section 3.4, that these two state variables may
be linked with each other, although through a rather complicated hysteric
relation.

Amount of Fluid The volume fraction θi of phase i – the volume of phase i
per volume of porous medium – was already defined in (3.11). Sometimes,
the saturation

Θi :=
θi
φ

(3.15)

is used instead of the volume fraction. It most useful for dealing with
incompressible media, which will be the case in the following.

In analogy to the bulk density (3.14), the macroscopic mass density of
phase i could be introduced. We will not do this, however, and will al-
ways write it explicitly as ρiθi, where ρi is the mass density of the pure
fluid.

Potential Energy Potentials are more convenient than forces for describing
fluid flow through porous media. We define the potential energy, more
precisely its density, by the energy required to move a unit volume of fluid
from some reference state to a particular state in the porous medium. In
general, we define the state of an element of fluid i by its height z, its
pressure pi and temperature Ti, and by the concentrations Cij of chemical
species j. The energy of this state is referred to that in a reference state
which we choose as z = z0, p = p0, T = T0, and Cij = 0.
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In the following, we consider the simple case of isothermal flow of a pure
fluid. The only contributions to the potential energy ψi per unit volume of
fluid i then come from gravity and from the pressure difference. Hence,

ψi(x) = pi(x)− p0︸ ︷︷ ︸
ψp

−
∫ z

z0

ρi(z
′)g dz′

︸ ︷︷ ︸
ψg

, (3.16)

where z is the downward pointing component of x, ψp is called the pressure

potential and ψg the gravity potential. For an incompressible medium, this
reduces to

ψi(x) = [pi(x)− p0]− [z − z0]ρig , (3.17)

which is analogous to the fluid potential introduced in (2.19). The pressure
term pi may consist of several components and actually be of a rather com-
plicated nature. To appreciate this, we start out from the most simple case
and proceed to more complicated ones.

First consider the two fluids water and air in a water-wet, rigid porous
medium and choose the ambient air pressure as p0. Since the density of air is
three orders of magnitudes smaller than that of water, the hydrostatic pres-
sure in the air is negligible. For bound water, pw < p0, the only contribution
to the pressure potential comes from the interfacial forces and is given by
(3.2). This is the typical situation in a well-aerated soil at a sufficient height
above the water table. Things get a bit more complicated when the air is
under pressure pa > p0. This occurs for instance when an irrigation front in
an initially unsaturated soil compresses the air ahead or in a gas reservoir.
Then, pa − p0 gets added to the interfacial pressure jump. Similarly, when
the density of some overlying fluid i is not negligible, the hydrostatic pressure
ρigh, where h is the vertical extent of fluid i, has to be added.

For free water in the above porous medium, pw ≥ p0. Now, water is
not kept in place by interfacial forces anymore and the hydrostatic pressure
pw = ρwgz develops, where z is the depth below the corresponding free water
table. This is the typical situation in groundwater. A note in passing: bound
and free states are sometimes, and in a somewhat sloppy manner, associated
with an unsaturated and saturated medium, respectively. The difference
between the two notions becomes apparent when we consider the capillary in
Figure 3.13. For a height less than h, the capillary is saturated with fluid 2.
However, the pressure in this region is lower than the pressure in fluid 3,
hence fluid 2 is bound. In a porous medium, this zone of full saturation, but
still bound fluid, belongs to the capillary fringe.

The situation becomes considerable more complicated with saturated com-
pressible porous media. Here, the pressure in the fluid phase compensates a
fraction of the weight of the overlying mass. Then, the hydrostatic pressure
does not only depend on ρi but also on the density of the matrix and on the
relative compressibilities of fluid and matrix. This component is sometimes
referred to as overload pressure or overload potential.
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Finally, we consider the case of a medium that dries out ever more and
again assume a water-wet rigid porous medium. As water is removed, the
largest pores empty first because water is bound less tightly there as may
be seen from (3.2). Assume circular and cylindrical pores for simplicity and
rearrange (3.2) for the water-air system as pw = pa + 2σwa/r, where r < 0
is the radius of the interface. With pa = 105 Pa and σwa = 0.0725 N m−2,
we find that pw would become negative once the interfacial radius falls below
1.45 µm. It is then appropriate to replace the notion of a pressure by that of
an energy density, actually by the chemical potential of the fluid phase. We
will thus write (3.17) as

ψi(x) = ψim − [z − z0]ρig (3.18)

and refer to ψim as the matric potential. In our notation, this potential is
negative when the fluid is bound and positive when it is free. For the case
of water – i → w –, ψw is usually called the soil water potential and the
subscript w is dropped in the matric potential

ψm = pw − pa . (3.19)

A thermodynamic definition of ψm is postponed to Section 8.1.2.

Head It is sometimes convenient to express the potential energy per unit
weight ρig instead of unit volume. Then, (3.18) becomes

hi(x) = him − [z − z0] , (3.20)

where hi = ψi/[ρig] is the hydraulic head and him thematric head. The inter-
pretation of these quantities is that the energy density is expressed in terms of
the height of an equivalent fluid column. Notice that a negative value of the
matric head indicates bound water with the meaning that the corresponding
potential could hold a hanging fluid column of the given height.

3.3.4
Mass Balance

We first envisage a macroscopically uniform and rigid porous medium whose
pore space is completely filled with a single fluid, say water of mass density
ρw. We consider a macroscopic volume element V with boundary ∂V . This
element is chosen to be an REV and its shape shall be arbitrary but invariable
(Eulerian perspective). Let Vw ⊂ V be the water-filled part and let ∂Vw ⊂ ∂V
be its external boundary (Figure 3.15). Conservation of the mass of water
means that the rate of change of the mass within a volume equals the
mass flow across the volume’s boundary. Microscopically, the volume to
be considered is Vw with its boundary ∂Vw. From the macroscopic per-
spective, however, there exists no explicit representation of water phase and
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solid matrix anymore and we need to operate with V and ∂V , respectively.
Formulating the microscopic conservation of the mass of water yields

∂t

∫

Vw

ρµw dV = −
∫

∂Vw

ρµwv
µ · dA = −

∫

Vw

∇ · [ρµwvµ] dV , (3.21)

where the superscript µ indicates microscale quantities, the minus sign comes
from the area element dA pointing outwards, and Gauss’ theorem has been
applied for the second equality. Notice that in writing (3.21), we have
implicitly used v = 0|∂V \∂Vw

and ρw = 0|V \Vw
in order to apply Gauss’

theorem. In the next step, we use that divergence and integral may be
interchanged in the last term (Exercise 3.11) and obtain

∂t

∫

Vw

ρµw dV

︸ ︷︷ ︸
‖Vw‖〈ρµw〉w

+∇ ·
∫

Vw

ρµwv
µ dV

︸ ︷︷ ︸
‖Vw‖〈ρµwvµ〉w

= 0 , (3.22)

where ‖Vw‖ is the volume of Vw and 〈. . . 〉w indicates averaging over Vw. Di-
viding this by ‖V ‖, and noting that ‖Vw‖/‖V ‖ equals the volume fraction θw
of the water phase, yields

∂t[θw〈ρµw〉w] +∇ · [θw〈ρµwvµ〉w] = 0 . (3.23)

This is the conservation of mass formulated at the macroscopic scale. We may
identify the terms in brackets as the macroscopic mass density and mass flux,
respectively. The second term is difficult since it depends on the microscopic
correlation between density and velocity. This is not severe for the case of
weakly compressible fluid, however. For this case, the correlation is small
because ρµw depends only weakly on pressure whereas vµ depends on its
gradient. Hence, 〈ρµwvµ〉w = 〈ρµw〉w〈vµ〉w is a good approximation.

We choose to finally formulate the mass balance in terms of the real density
of water and of the macroscopic volume flux

ρw := 〈ρµw〉w and jw := θw〈vµ〉w , (3.24)

respectively, where superscripts are dropped in favor of a more compact
notation. We thus obtain

∂t[θwρw] +∇ · [ρwjw] = 0 . (3.25)

Up to now, we only considered exchange of water across some boundary
∂V . We will in the following also look at situations, where water is extracted
directly out of V , for instance by pumping wells or plant roots. Let γw be the
volume extraction rate, that is the volume of water that is extracted per unit
time and unit volume. Since this formulation is already at the macroscopic
scale, it is easily accommodated by modifying (3.25) into

∂t[θwρw] +∇ · [ρwjw] = −ρwγw . (3.26)
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Finally, we comment that (3.25)–(3.26) may be written down directly as
conservation equations at the macroscopic scale. However, while formally
correct – of course: it is just a mathematical statement – this is not so useful
because the quantities ρw and jw could then not be related to microscopic
quantities and pure material properties as is the case with (3.24).

3.3.5
Empirical Flux Law

Macroscopic conservation of linear momentum could be formulated in analogy
to the conservation of mass by averaging the microscopic momentum equation
[Gray and Hassanizadeh 1998]. We will follow a different path, however, and
rely on qualitative arguments – explicit calculation as was done for the simple
geometries of Section 2.3.5 are no longer feasible – to arrive at a macroscopic
flux law. Thereby, all the complications arising from the intricate geometry
of a porous medium are hidden in appropriate material properties.

Stationary Newtonian Flow We assume that (i) external forcing changes
so slowly that the flow may be considered as stationary, (ii) flow is so slow that
inertia may be neglected, and (iii) the extent of the flow domain is so small
that gravity can be neglected, relative to friction. These conditions can be
quantified through the dimensionless numbers defined in (2.24). For instance,
(iii) may be formulated as Fr ≫ Re, or, using (2.24), as ℓ2g/[uν] ≪ 1. These
assumptions lead to the simplified Stokes equation (2.32), µ∇2v = ∇p. We
notice that this is a linear equation, i.e., if {v, p} is a solution then {αv, αp}
is also one. We further recall that v is parallel to −∇2v (Figure 2.5), hence
v = −κ∇2v with κ(x) some scalar function, typically highly variable in space,
which represents the complicated pore geometry. Notice that [κ] = L2. With
this, we obtain the generalization

v = −κ(x)
µ

∇p (3.27)

of Hagen-Poiseuille’s law. It establishes a linear relation between v and
−∇p with a constant of proportionality that scales with the square of a
length, a typical diameter in the pore space, and inversely with the fluid’s
viscosity.

After deriving the flux law at the pore scale, we deduce the corresponding
relation at the continuum scale by averaging over a plane REV. Denote this
plane by Γ, its orthonormal vector by n̂, and the intersection of Γ with the
pore space by Γw (Figure 3.17). The macroscopic volume flow through Γw is
then given by

‖Γ‖jw · n̂ =

∫

Γw

vµ · n̂ dA = ‖Γw‖〈vµ · n̂〉w , (3.28)
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Γ

n̂

‖Γ‖jw

‖Γ‖[jw · n̂]n̂

Γ

Γw

n̂

vµ

[vµ · n̂]n̂

Figure 3.17. Flow through macroscopic planar REV Γ with orthonormal vector
n̂ in microscopic (left) and macroscopic (right) representation, respectively. The
red arrows indicate the projection of velocity or flow vectors (blue) into the direction
of n̂. Γw ⊂ Γ is the region occupied by the water (light blue).

where ‖Γw‖ is the area of Γw and 〈. . . 〉w denotes the average over this area.
Next, we divide by ‖Γ‖ and notice that ‖Γw‖/‖Γ‖ = ‖Vw‖/‖V ‖ = θw if Γ is
an REV and if the pore space is sufficiently irregular. Since n̂ is arbitrary,
this again leads to jw = θw〈vµ〉w. Inserting (3.27) finally produces

jw = −θw
1

µ
〈κ∇pµ〉w . (3.29)

Notice that κ is not constant but varies in space at least as rapidly as ∇pµ.
Hence, the average depends strongly on correlations between κ and ∇pµ,
i.e., on details of the pore space. We resolve this difficulty by (i) recalling
that κ(x) represents the geometry of the pore space and neither depends on
v nor on ∇p and by (ii) invoking the linearity of Stokes law. Hence, the
magnitude of the microscopic pressure gradient is proportional to that of the
macroscopic one, ‖∇pµ‖ ∝ ‖∇p‖, even though they are almost never parallel
due to the geometry of the pore space. With this, ∇pµ = a(x)∇p and

jw = − 1

µ
θw〈κa〉w︸ ︷︷ ︸

=:k

∇p = − k

µ
∇p , (3.30)

where k, the permeability, is a second rank, symmetric tensor. This law is
named after Darcy who, while studying water flow through sand filters in
order to optimize the water supplies of the city of Dijon, suggested a linear
relation between the water flow and the height difference between the water
levels at the inlet and outlet ends of the columns [Darcy 1856].

The permeability k is a material property of the pore space. For microscop-
ically anisotropic media, k is also anisotropic and causes the flux direction
to deviate from that of its driving force −∇p (Figure 3.18). For isotropic
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−∇p

jw

Figure 3.18.
The macroscopic flux jw and its driving force
−∇p (large arrows) in anisotropic media need
not be parallel, even though their microscopic
counterparts vµ and −∇pµ are (small arrows).

media, k may be replaced by a scalar. Finally, notice that the elements of k
scale like ℓ2, where ℓ is a characteristic diameter of the pore space.

Sometimes, particularly in the engineering literature, the elements of k are
given in units of darcy with 1 darcy = 0.987 · 10−12 m−2.

Finally notice that the volume flux jw may be interpreted as a velocity, it is
sometimes referred to as Darcy velocity, and corresponds to the velocity that
would be required in the absence of the porous matrix, to sustain the given
volume flux. It is related to the average microscopic velocity 〈vµ〉w by (3.24).
This average is usually called the pore water velocity and, in formulations at
the macroscopic scale, denoted by v. Hence,

jw = θwv . (3.31)

The two constants that occur in Darcy’s law, k and µ, are often merged
into one, the hydraulic conductivity

K :=
k

µ
, (3.32)

which may be interpreted as a material property of some geologic envi-
ronment, for instance of an aquifer or an oil reservoir. Obviously, such a
definition is only useful when the fluid stays always the same.

Multiple Driving Forces We deduced Darcy’s law under the premiss of
stationary and slow flow of a Newtonian fluid that is only driven by a
pressure gradient. Extension to gravity as an additional driving force is
straightforward whereas releasing the other assumptions leads to a much more
complicated analysis and may even invalidate the very concept of relating
macroscale velocity and macroscale driving force.

When there are driving forces other then the negative pressure gradient,
we can include them in our analysis by simply replacing −∇p with the sum
F of all driving forces per unit volume. This is correct for an isotropic fluid
and as long as the flow may be assumed to be stationary (Figure 2.5). The
case encountered most often is a fluid driven by gravity and pressure gradient
for which Darcy’s law may be written as

jw = − 1

µ
k[∇p− ρg] . (3.33)
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We notice in passing that static equilibrium, that is jw = 0, implies ∇p = ρg.
Choosing z to point upwards with z = 0 at the free surface, this leads for
incompressible media to

p(z) = p0 − ρgz or ψm(z) = −ρgz . (3.34)

Non-Newtonian Fluids For non-Newtonian fluids, a number of empirical
viscosity models have been proposed to replace (2.11). A popular one is the
power-law Πyx = −β|dyvx|n−1dyvx with coefficients β and n. One can show
that this also leads to a power-law for the macroscopic velocity,

|jw|n−1jw = − 1

µeff
k∇p , (3.35)

where the coefficients n and µeff depend on the fluid [Bird et al. 1960].

Weak Inertia For flow that cannot be considered as slow, hence Re ≈
Recrit, the effect of inertia is not yet dominating but also cannot be neglected.
Probably the first modification of Darcy’s law for this regime was proposed
by Forchheimer [1901]. For one-dimensional flow in a uniform and isotropic
porous media, he suggested the empirical relation

jw + βjnw = −K∂xp , (3.36)

where β, n, andK are coefficients that depend on the shape of the pore space.
Using a homogenization approach, Mei and Auriault [1991] found n = 3 and
concluded that Darcy’s law is thus also applicable for moderately high flow
velocities.

Non-Stationary Flow While weak inertia and non-Newtonian behavior can
be handled at least in an empirical way, the situation is more severe for
non-stationary flow. If the external time scale that is given by the temporal
change of the pressure at the boundary ∂V is comparable or even shorter than
the internal time scale which is given by the dynamics inside V , we cannot
expect a functional relation between jw and ∇p anymore. Then, the very
formulation of a flux law becomes impossible. This is generally not a problem
for sufficiently small volumes and slowly changing external forcing. However,
it becomes a dominating issue when the reference volume increases, as is the
case when moving from the laboratory through the field to the regional scale,
and if the forcing is fast as for instance when starting to pump a well or with
the onset of a strong rainfall event after a dry period.

3.4

Material Properties

Combining the conservation of mass, for instance (3.25), and Darcy’s empir-
ical flux law (3.33) readily yields a generic formulation for the macroscopic



3.4 Material Properties 57

dynamics of fluids in porous media. Using the matric potential ψm instead
of pressure p and dropping subscripts this may be written as

∂t[θρ] +∇ · [ρj] = 0

j = −K[∇ψm − ρg] . (3.37)

Obviously, this formulation must be supplemented by descriptions of the
material properties: the relation between θ and ψm, the hydraulic conduc-
tivity K, and possibly the density ρ in case the fluid is compressible.

Here, a remark is in order: The description of temporal changes of fluid
content and divergence of flow at the macroscopic scale by (3.37) is based
on the local equilibrium hypothesis, on the assumption that microscopic
processes are fast on the time scale of the macroscopic processes and may
thus be considered as being in equilibrium. Material properties, which reflect
the action of microscopic processes at the macroscale, thus must not depend
on the speed of macroscopic evolution. If experimental evidence shows that
this hypothesis is not satisfied, then (3.37) is not valid.

3.4.1
Capacity

The pressure jump across an interface – the matric potential – is related to
the mean curvature of the interface by (3.2). This curvature in turn is bound
by the radius of the respective pore and by the contact angle. Hence, we
expect for a porous medium a relation between the water-saturated volume
fraction θ and the matric potential ψm and define the hydraulic or soil water
capacity as

C(ψm) :=
∂θ

∂ψm
. (3.38)

Traditionally, the integral of this function, the fluid fraction

θ(ψm) = θ0 +

∫ ψm

0

C(ψ′
m) dψm (3.39)

as a function of the matric potential is more popular and graphical represen-
tations almost invariably show θ(ψm), not C(ψm). Depending on context and
discipline θ(ψm) is referred to as soil water characteristic, pressure-saturation
relation, or desaturation-imbibition curve.

Bundle of Capillaries Consider a bundle of vertical capillaries in Fig-
ure 3.19. With their lower ends in a free wetting fluid, the height of the
menisci is given by (3.6). Above the capillary fringe – given by the capillary
rise in the largest pore –, the fluid fraction decreases monotonically with
height. Consider a thin horizontal section with height ∆z. According to
(3.34), the matric potential changes by ∆ψm = −ρg∆z across that height.
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Figure 3.19.
Hydraulic capacity
of porous medium
illustrated for a bundle
of capillaries.
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Figure 3.20.
Hysteresis of hydraulic capacity in natural porous
media during invasion of fluid 2 into pore initially
filled with fluid 1, and vice versa.
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Denoting the corresponding change of the fluid fraction by ∆θ, we define the
hydraulic capacity C as the ratio ∆θ/∆ψm, in the limit ∆ψm → 0.

We thus already recognize the important fact that θ(ψm) can be read
directly from the fluid fraction for a stationary situation above a free fluid
table. This remains true also for natural porous media.

We notice in passing, that the distribution of radii of a bundle of capillaries
can be calculated easily from measurements of C(ψm). This cannot be
extended to natural porous media, however.

Porous Medium While C(ψm) and θ(ψm) are unique functions for a bun-
dle of cylindrical capillaries, the situations becomes much more complicated
for a general porous medium where the pore radius is almost never constant.
To understand the impact of this, we consider a single pore that is wider
in the middle (Figure 3.20). Starting from a pore that is initially saturated
with fluid 1, pressure at one end shall decrease gradually. Once it falls below
the entry pressure for fluid 2, the interface moves gradually into the pore up
to the next pore throat, where the pore radius is minimal. This corresponds
to meniscus I in Figure 3.20. Reducing the pressure any further empties the
entire cavity and leads to meniscus II because the pore radius in the cavity is
too large to sustain the interface whose radius is determined by the pressure
jump across the interface. Reverting at this point and gradually increasing
the pressure will not lead back to I, however. Instead, fluid 1 will invade
the cavity until the pressure is increased such that the jump at the interface
corresponds to the largest radius, menuscus III. Increasing it any further has
fluid 1 fill the entire cavity and actually also the adjacent throat because
the pore radii are smaller than the interfacial radius. Such discontinuous
changes of the fluid content are referred to as Haines jumps [Haines 1930].
Understanding a single pore, we expect that for a porous medium both the
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h
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Figure 3.21. Experimental setup used by Topp and Miller [1966] for the direct
measurement of soil hydraulic properties of sample S. Instrumentation includes
tensiometers T with pressure transducers P1 and P2, γ-ray transmission with
sample region G, capillary flow meter Q, and water reservoirs R1 and R2. Notice
that reservoir R1 is used as a Mariotte bottle that supplies water at a constant
pressure independent of the fill level. Air inlets A ensure that air pressure in the
sample is uniform and equal to ambient pressure.

hydraulic capacity C(ψm) and also θ(ψm) are hysteretic. This was indeed
already found in the first experiments reported by Haines [1930] and Richards

[1931] and it has been studied in great detail ever after.

Topp and Miller [1966] did some of the early measurements of air-water
systems in flow cells filled with various mixtures of glass beads (Figure 3.21).
They used a horizontal flow cell in which the matric potential ψm could be
adjusted in a wide range by varying the height h. Pressure pa in the air
phase was uniform and equal to that of the ambient air due to air inlets A.
Water content θ was measured with γ-ray attenuation and ψm = pw − pa in
the sample was directly obtained from pressure transducer P1. Some directly
measured soil water characteristics θ(ψm) are shown in Figure 3.22.

We first focus on wetting or imbibition cycles. As a preparatory step to
reach a well-defined initial state, the medium is first completely saturated
with water and then drained by reducing the matric head from 0 to about
−65 cm. This is the so-called primary drainage branch. The imbibition
branch that starts from this end point does not reach a complete saturation
anymore: the saturation only reaches about 0.85, even for p = 0. This results
from residual air, i.e., from air which is completely enclosed by water and
does not form a connected phase anymore. The next draining produces the
secondary drainage branch which is now only followed up to a certain matric
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Figure 3.22.
Pressure-saturation relation measured
by Topp and Miller [1966] with the
apparatus shown in Figure 3.21. The
sample consisted of packed glass
beads with mean diameter 180 µm.
Top: Wetting loops, with dashed line
indicating primary drying. Bottom:
Drying loops. The arrows indicate the
direction of movement.
Notice that pressure p is given as
equivalent height of a water column,
i.e., as matric head. Saturation S
equals the ratio θ/φ of water content
and porosity. Compared to the
representation in Figure 3.19, the
curves are rotated by 90◦. [Figure
combined from figures 2 and 3 of Topp
and Miller [1966].]

head before imbibition is initiated again. Various of these so-called scanning

loops are shown.
Next, we consider the drying or desaturation cycles that start from differ-

ent locations on the imbibition branch and approach the secondary drainage
branch. Apparently, the wetting and drying loops are different and resemble
in shape the respective main branches that also limit them.

What is the reason for the different shapes of the hysteresis loops? The
initial preparation of the system was such that water filled the entire pore
space. Through drainage and re-wetting a very complicated configuration
of the water phase evolves. As long as both, the water- and the air-phase
are connected, the curvature of their interface is the same everywhere and
determined by the matric head. As is illustrated in Figure 3.20, this condition
can be satisfied by many different configurations each of which is associated
with a different water content. Moving the system through a succession of
states along equilibrium paths, we thus cannot expect it to return to the same
configuration by merely re-establishing the initial matric head. Also from
Figure 3.20 we expect that the drainage branches reflect the pore volume
associated with bottle-necks while, vice versa, imbibition branches reflect the
cavities.

We mention in closing that the experiments could also be started from
a completely air-saturated (dry) state. This would lead to the primary

imbibition branch and to corresponding scanning branches. Such experiments
are difficult, however, because the associated equilibration times are much
longer. As will be shown below, this is due to the greatly reduced hydraulic
conductivity at low water saturations.
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Parameterizations Traditionally, the soil water characteristic θw(ψm) is
parameterized instead of the soil water capacity Cw(ψm). Its parameter-
ization has a lengthy history. Over long stretches, it was driven by the
desire to relate θw(ψm) to properties of the porous material, or at least
to estimate it from more easily observable quantities. The prime quantity
θw(ψm) was aimed at is the pore-size distribution that would be used for
predicting other processes like chemical sorption or microbial activity. So
far, this endeavor has not been successful because the pore-size distribution
is only one part of the microscopic basis of θw(ψm). The other one is the
connectivity between different pore-size classes, i.e., the topology of the pore
space. Indeed, numerical simulations demonstrated that the two can be
varied in a wide range while still leading to the same soil water characteristic
[Vogel 2000]. While one can imagine to deduce both relations simultaneously
from comprehensive measurements of θw(ψm) including various hysteresis
loops, this is experimentally cumbersome and the direct imaging with x-
ray microtomography will be preferred [Okabe and Blunt 2007; Costanza-
Robinson et al. 2008].

Also the lesser goal, estimating θw(ψm) from more easily observable quan-
tities, could only be reached in part. Arya and Paris [1981] estimated it
from grain-size distributions, which is found to be useful for coarse-grained,
unconsolidated media [Fredlund et al. 2002]. This method does not work for
the more typical fine-textured, aggregated soils, however. For them, a statis-
tical approach was followed with the premiss that soil hydraulic properties
depend in a reasonably strong way on soil texture, density, content of organic
matter, and possibly further soil bulk properties. Various regression relations,
so-called pedotransfer functions, were then proposed [Vereecken et al. 1989;
Cornelis et al. 2001; Wösten et al. 2001]. While several of them are useful, for
instance for constructing some simulation scenarios, they hardly ever yield
the accuracy required for representing flow, and possibly transport, at a
particular site.

Given this state of affairs, we will follow a pragmatic line by accepting
θw(ψm) as purely empirical macroscopic description which contains some
indications on the underlying microscopic quantities – metric and topology
of pore space –, but which does not allow to disentangle them quantitatively.
We will in the following look into some common parameterizations of single
hysteresis branches of θw(ψm). Current approaches for representing the full
hysteresis use these same parameterizations and only adjust the parameters
between upon a transition from one branch to another.

It is convenient to expressed the parameterizations in terms of water sat-
uration and matric head. The water saturation is thereby defined as

Θ :=
θ − θr
θs − θr

, (3.40)

where θr and θs are the residual and the saturated water content, respectively,
and where the subscript w was dropped. Notice that these connotations of θr
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and θs are strictly applicable only in the case of the primary drainage branch.
In all other cases, they just represent the lower and upper end of the range
of water contents. The matric head

hm :=
ψm
ρwg

=
pw − p0
ρwg

(3.41)

was already defined by (3.19)–(3.20). Here, p0 is the pressure in the air
phase which is constant in the Richards regime. Recall hm < 0 for bound
water.

There exists a whole swath of parameterizations and we will only consider
three of them: (i) the Brooks-Corey parameterization which is characterized
by a sharp air-entry value and a correspondingly discontinuous soil water
capacity Cw(ψm), (ii) the van Genuchten parameterization which is very
smooth throughout, most popular and available in all simulation codes, and
(iii) the modified van Genuchten parameterization which allows a smooth
transition between the previous two and which amends an issue of the original
van Genuchten formulation for media with a wide pore-size distribution.
Besides these parameterizations with fixed shapes, more flexible ones are
gaining popularity [Prunty and Casey 2002; Pedroso et al. 2009].

Brooks-Corey Parameterization Introduced by Brooks and Corey [1966],
this parameterization assumes a power-law distribution for the equivalent
pore radii with a finite upper limit that corresponds to a maximum pore-size.
This leads to a sharp air-entry value h0 – the value required to empty the
largest pore, thereby allowing air to enter the porous medium –, and to the
formulation (Figure 3.23)

Θ(hm) =

{
[hm/h0]

−λ ;hm < h0 ,

1 ;hm ≥ h0 ,
(3.42)

where h0 < 0 acts as a the scaling parameter. The exponent λ > 0 describes
the distribution of the equivalent pore radii. For Θ < 1, (3.42) may be
inverted, yielding

hm(Θ) = h0Θ
−1/λ . (3.43)

Van Genuchten Parameterization While the Brooks-Corey parameteriza-
tion appears attractive for describing a bundle of capillaries, it has two major
drawbacks: (i) the soil water capacity dhθ, which is a crucial parameter in
(6.3), is discontinuous at hm = h0 and (ii) recalling the averaging inherent
in the REV, one might question the sharp air-entry value. Both issues are
resolved by the van Genuchten [1980] parameterization

Θ(hm) =
[
1 + [αhm]n

]−m
(3.44)

with parameters α < 0, n > 1, and m > 0 or, in the often used simplified
form,

Θ(hm) =
[
1 + [αhm]n

]−1+1/n
(3.45)
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Figure 3.23. Brooks-Corey (black), van Genuchten (magenta), and modified
van Genuchten (cyan) parameterizations of the soil water characteristic Θ(hm)
in semi-log (left) and linear (right) representations. The dashed magenta line
corresponds to (3.44) and the solid one to the simplified version (3.45). Parameters
are chosen such that curves approach each other for hm → −∞. Specifically, 1/α =
h0 = −1 m for all models, n = λ+1 for the simplified form (3.45) and n = 3[λ+1]
withmn = λ for the full form (3.44). For modified van Genuchten parameterization,
he = h0 = −1 m with the other parameters equal to the full form.

with m = 1 − 1/n (Figure 3.23). We recognize α as scaling parameter for
the matric head with 1/α analogous to the air entry value. Notice, however,
that air-entry is not sharp anymore and the very notion looses its meaning
for small values of n. For αhm ≫ 1, (3.44)–(3.45) approach a power function
with exponent −mn and −[n−1], respectively. Comparison with (3.42) shows
that the two parameterizations approach each other for αhm ≫ 1 and for the
parameter associations

1

α
= h0 and {mn = λ or n− 1 = λ} . (3.46)

Further looking into the parameters of (3.44) shows that n determines the
sharpness of the air-entry and mn the distribution of equivalent pore radii
(magenta curves in Figure 3.23). These two get linked together in the
simplified formulation (3.45). Finally, inverting (3.44)–(3.45) yields

hm(Θ) = α−1
[
Θ−1/m − 1

]1/n
(3.47)

and
hm(Θ) = α−1

[
Θ−n/[n−1] − 1

]1/n
, (3.48)

respectively.

Modified Van Genuchten Parameterization An issue with the original van
Genuchten parameterization is its shape near hm = 0 and in particular the
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permissible range for n. Requiring the soil water capacity to be continuous
at hm = 0, which certainly is a physical prerequisite, Luckner et al. [1989]
found n > 1. For Cw(ψm) to be smooth at hm = 0, they found n > 2 but
also noted that many fine-textured soils were best described by 1 < n <
2. As it turns out, the full van Genuchten parameterization (3.44) readily
solves this apparent contradiction because it separates the parameterization
of the air-entry region, parameter n, from that of the equivalent pore-size
distribution at large, parameter m. This is illustrated by the dashed line in
Figure 3.23.

Ippisch et al. [2006] chose a more radical solution and modified the param-
eterizations (3.44)–(3.45) such that a sharp air-entry occurs as it is found in
the Brooks-Corey formulation. They introduce an additional parameter he,
the air-entry head, cut Θ(hm) at that point, and scale it linearly such that
Θ(0) = 1. This leads to

Θ(hm) =





ΘvG(hm)

ΘvG(he)
;hm < he ,

1 ;hm ≥ he ,

(3.49)

where ΘvG(hm) is one of (3.44)–(3.45) and again hm < 0 (cyan curves in
Figure 3.23). This modification obviously reintroduces the difficulty of the
Brooks-Corey parameterization that the soil water capacity is discontinuous
at he. A solution to this, equally applicable to the Brooks-Corey parame-
terization itself, is a heuristic regularization in a small environment of this
point, i.e., a smoothing of the sharp cusp.

Comments We recall that parameterizations are only objective to the ex-
tent to which they refer to an appropriate REV. In particular, they are based
on the assumption that all microscopic quantities are in equilibrium at the
scale of the REV.

For simplicity, the parameterizations have been defined for the entire
range of water contents. However, it is important to realize that they are
physically meaningful only to the extent that the quantity they describe
is well-defined. For the soil water characteristic considered here and for
the hydraulic conductivity in the following Section, this typically implies
that both the water and the air phase are continuous and that in addition
the air phase is much more mobile than the water phase. This is the so-
called degenerate multiphase or Richards regime that will be introduced in
Section 6.1.

3.4.2
Conductivity

The hydraulic conductivity relates two vector quantities and is thus in general
a second order tensor. While its directional nature has been addressed in a
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Figure 3.24. Pressure-conductivity relation corresponding to Figure 3.22. Left:
Wetting Cycles. Right: Drying Cycles. Inset shows primary drainage and main
imbibition curves. [Figure combined from figures 2 and 3 of Topp and Miller [1966].]

number of theoretical and numerical studies in the past, there is a paucity
of experimental data on this aspect. Almost exclusively K is presumed to
be isotropic and only the scalar K is measured, typically in a variant of the
setup shown in Figure 3.21. There, one has two controls on the flow: (i) the
pressure difference ∆p0w between the inlet and the outlet end which drives the
water flow qw and (ii) the height h of the sample above the reference plane
which determines the matric potential ψm. This allows to independently
vary ψm and its gradient ∂xψm. These two quantities are measured with the
two pressure transducers P1 and P2. Relating ∂xψm to the flow qw, which
is obtained from the pressure drop across a calibrated capillary, yields the
hydraulic conductivity K = −qw/[A∂xψm], where A is the cross-sectional
area of the sample tube.

As we found previously, (3.30), the conductivity of a medium saturated
with a single fluid is a conglomerate of the medium’s permeability and of
the fluid’s dynamic viscosity. How does K then change in the presence
of a second fluid and is it a unique function of matric potential ψm or
of fluid fraction θ? We first convince ourselves that K(ψm) is not unique
by looking at Figure 3.20 and envisaging flow perpendicular to the drawing
plane. Experimental evidence supports this (Figure 3.24).

Whether K(θ) is a unique function is difficult to answer intuitively. How-
ever, experimental evidence reveals that this is indeed the case to a fair degree
of accuracy (Figure 3.25). Evidently, the conductivity varies over several
orders of magnitude even for rather moderate variations of θ. There are
three main causes for this: With decreasing saturation (i) the cross-sectional
area decreases, (ii) the water phase is restricted to every smaller pores, and
(iii) the microscopic potential gradient decreases because the path within the
water phase between any two points becomes larger.

Parameterizations According to (2.38) and Buckingham’s conjecture, the
hydraulic conductivity K(θ) is proportional to θ and to the mean cross-
sectional area ℓ2 of the flow channels, and inversely proportional to the
dynamic viscosity. The constant of proportionality generally varies with θ
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Figure 3.25. Saturation-conductivity relation corresponding to Figures 3.22–
3.24. Left: Wetting Cycles. Right: Drying Cycles. Notice that the cycles practically
overlay but are shifted relative to each other in order to separate them. [Figure
combined from figures 2 and 3 of Topp and Miller [1966].]

and depends on many intricate properties, among them the distribution of
ℓ2, the tortuosity of the flow channels, and their topology. Information on
these properties is available, in implicit form, from Θ(hm).

Historically, a succession of ever more refined models of the pore space
were studied. They all assumed the medium to be isotropic and deduced a
single function K(Θ) based on hm(Θ) and some additional parameters. The
starting premise is that, with (3.6),

dhm
dΘ

= − 2σwa
ρwgR2

dR

dΘ
(3.50)

yields the distribution of pore radii R of the water-filled fraction of the pore
space and that the resulting conductivity function may be calculated from
Hagen-Poiseuille’s solution (2.35). Childs and Collis-George [1950] considered
randomly connected stacks of capillary bundles, assumed the conductivity of
a single path to be determined by its smallest radius and neglected the impact
of bifurcations. Mualem and Dagan [1978] showed that this model, together
with others that make additional assumptions on the tortuosity, may be cast
into the form

K(Θ) = K0Θ
a

∫ Θ

0
[Θ− ϑ]hm(ϑ)−2 dϑ

∫ 1

0
[Θ− ϑ]hm(ϑ)−2 dϑ

, (3.51)

where the saturated conductivity K0 and a are parameters, with a often
associated with the tortuosity of the pore space.

Randomly choosing the larger or the smaller radius of a composite pore as
its effective radius yields the parameterization

K(Θ) = K0Θ
a

∫ Θ

0
hm(ϑ)−2 dϑ

∫ 1

0
hm(ϑ)−2 dϑ

, (3.52)

which was originally proposed by Burdine [1953]. Here, Θa again accounts
for the tortuosity. A further alternative for the choice of an effective radius
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was put forth by Mualem [1976] who assumed geometrically similar pores
which leads to the geometric mean of the individual radii. He then obtained
the parameterization

K(Θ) = K0Θ
a

[∫ Θ

0
hm(ϑ)−1 dϑ

∫ 1

0
hm(ϑ)−1 dϑ

]2

. (3.53)

Current practice prefers this last model and it is also implemented in most
numerical Richards solvers. It can be combined with any of the Θ(hm) models
to arrive at a coherent parameterization of the soil hydraulic properties.
Indeed, some parameterizations of Θ(hm) have been restricted purely on the
grounds that an analytic solution of the integrals in (3.53) is feasible. This is
most prominently the case with the choice m = 1−1/n for the simplified van
Genuchten parameterization (3.45) [van Genuchten 1980]. With a numerical
evaluation of (3.53), this is no more a limitation, however.

Apparently, there is considerable latitude in the formulations (3.51)–(3.53).
On the one hand, it stems from the definition of an effective pore radius. On
the other hand, we recall that experimental evidence shows only a minor
hysteresis for K(Θ), but a major one for hm(Θ). There is no provision in
(3.51)–(3.53) to account for this, even though different hysteresis branches
lead to quite different functions hm(Θ). So far, this issue has not been
explored to any depth.

We will take a pragmatic approach to this gray area and in the follow-
ing employ the various parameterizations for studying qualitative aspects
only. To this end, it suffices to consider the Mualem-Brooks-Corey- and the
Mualem-van Genuchten-parameterization.

Mualem-Brooks-Corey Inserting (3.43) into (3.53) yields

K(Θ) = K0Θ
a+2+2/λ

K(hm) =

{
K0[hm/h0]

−2−λ[a+2] ;hm < h0 ,

K0 ;hm ≥ h0 .
(3.54)

Notice that K(hm) is a straight line for hm < h0 in a double logarithmic
representation,

log
(K(hm)

K0

)
=

[
−2− λ[a+ 2]

]
log

(hm
h0

)
. (3.55)

Mualem-van Genuchten Following van Genuchten [1980] and inserting
(3.48) into (3.53) yields

K(Θ) = K0Θ
a

[
1−

[
1−Θn/[n−1]

]1−1/n
]2

K(hm) = K0

[
1 + [αhm]n

]−a[1−1/n]

[
1− [αhm]n−1

[
1 + [αhm]n

]−1+1/n
]2

. (3.56)
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Figure 3.26. Soil hydraulic properties for two different soil textures in the
Mualem-van Genuchten (thick lines) and in the Mualem-Brooks-Corey (thin dash-
dotted lines) parameterization: soil water characteristic function θ(hm) (a) and the
hydraulic conductivity function K(θ) (b) and K(hm) (c). The parameters used
are adapted from van Dam et al. [1992] and are given in Table 3.1.

For αhm ≫ 1, K(hm) again approaches a straight line in a double logarithmic
representation,

log
(K(hm)

K0

)
≈ 2 log

(
1− 1

n

)
+
[
a− n[a+ 2]

]
log(αhm) . (3.57)

Example: Typical Soil Hydraulic Properties Soils differ greatly in their com-
position of primary particles – with sizes ranging from a few millimeters for
coarse sand to less than a micrometer for fine clay – and this is reflected in
their hydraulic properties. In Table 3.1, values for the Mualem-van Genuchten
parameterization of two typical soil materials reported by van Dam et al. [1992]
are listed. The corresponding functions are shown in Figure 3.26 together with
the Mualem-Brooks-Corey parameterization obtained with (3.46).

Table 3.1. Mualem-van Genuchten parameters for hydraulic properties θ(hm),
K(θ), and K(hm) shown in Figure 3.26. The parameters have been adapted from
[van Dam et al. 1992] who fitted them to measured data. The last column is the
slope κ = a−n[a+2] of K(hm) in a double logarithmic plot for αhm ≫ 1 as given
by (3.57). It is identical to the slope of K(hm) in the Mualem-Brooks-Corey model
(3.55).

θr θs α n a K0 κ
[m−1] [m s−1]

sand 0.03 0.32 −2.3 4.17 −1.1 2.2·10−5 −4.9
silt 0.01 0.41 −0.7 1.30 0.0 1.0·10−5 −2.6
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The soil water characteristic function reveals that, as expected, in the silt,
the fine-textured medium, the air-entry value 1/α is higher than in sand. It
also shows a much broader pore size distribution, i.e., θ changes over a range
of hm ∝ 1/r that is several orders of magnitude larger. For sand, θ ranges
between θr and θs for hm roughly in the interval −2 . . . − 0.1 m. With (3.6),
this corresponds to structures of the pore space in the range 7 . . . 150 µm. In
contrast, about 50% of the pore volume of the fine-textured medium is connected
through pores with radii smaller than 0.7 µm.

The saturated conductivity K0 of the coarse-textured sand is higher than that
of the silt because (i) K ∝ θℓ2, (ii) θ at saturation is roughly the same for the
two media, and (iii) the pore radii of the sand are significantly larger. As the
media become unsaturated, the conductivity representations K(θ) and K(hm)
reflect the simultaneous influence of the cross-sectional area on the one hand and
of the pore radii on the other.

In the sand, K(θ) decreases rather gradually, by about an order of magnitude
down to θ ≈ 0.1. As can be deduced from the soil water characteristic, θ and ℓ
contribute roughly equally to this decrease. For θ < 0.1, K(θ) drops dramatically
because water is then only conducted by rapidly thinning films. The situation
is quite different for the silt with its much broader pore size distribution. With
the simplified van Genuchten parameterization (3.45), K(θ) drops by an order
of magnitude with θ only decreasing slightly from saturation. This reflects the
rapid decrease of the mean pore radius of the water-filled space with just slightly
decreasing θ as it is apparent from the soil water characteristic function. Ippisch
et al. [2006] pointed out that such a rapid decrease of K(θ) near saturation is not
expected in real soils, since such fine-textured media would not contain any pores
of the required size at all. They identified this as an artifact of the simplified van
Genuchten parameterization for parameters n < 2. This issue can be resolved
by using a form that allows the suppression of arbitrarily large pores. This is
indeed achieved by all the other parameterization presented above.

Returning to the general behavior of K(θ) in the differently textured mate-
rials, notice that for a given value of θ, the conductivity of the silt is always
smaller than that of the sand. Vice versa, for a given conductivity the water
content of the silt is higher.

The behavior of K(hm) is very different from that of K(θ) since now the
conductivity is considered as a function of the largest radius of the water-filled
pore space. Hence, we essentially look at the cross-sectional area for a given
radius. For the sand, θ decreases much more rapidly with decreasing radius
than for the silt. Consequently, the same is true for the conductivity. We thus
recognize that, in contrast to K(θ), the K(hm) curves of two differently textured
porous media generally cross each other. This will turn out to be a crucial aspect
of water flow in the vadose zone.

Concluding Remark Notice that the two parameterizations of the conductivity
are markedly different mainly near saturation because of their very different
distribution of the largest pores which are also most effective in conducting
water. This difference is then perpetuated also into the strongly unsaturated
range since, as (3.53) shows, the contribution from a particular class of pore-
sizes is scaled by the effect of the entire ensemble of pores. Recall, however, that
the underlying assumption of a Richards regime does not permit us to approach
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Figure 3.27.
Hydraulic conductivity functions K(θ) as shown in
Figure 3.26 but with the Mualem-van Genuchten
parameterization multiplied with a factor such that
the two parameterization yield the same value at
Θ = 0.5.
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the saturated range with this type of material properties. As a consequence, K0

is a useful parameter for specifying a parameterization. Other than that it is
of little practical significance for unsaturated media. In particular, measuring
the saturated conductivity as it would be done for a groundwater study, e.g.,
with a falling head permeameter, and using this value to constrain estimates
of the unsaturated conductivity K(θ) is a vain attempt which in general leads
vast overestimations. Conversely, extrapolating some measurements of K(θ)
to a state of near-saturation in order to estimate, for instance, the time to
flooding during an intense storm, is equally useless and will lead to a severe
underestimation. Reasons for both are (i) the limited applicability of Richards
equation as mentioned above and (ii) the ubiquitous macrostructures in soils,
e.g., cracks and wormholes, whose geometry is hardly related to the smaller-
scale texture represented by the conductivity function, which are never active
in the Richards regime, but can conduct very large fluxes once activated by
flooding.

As a consequence, parameterizations of K that are obtained from or used
for real situations are never related through K0 but through K(θ0), where
θ0 < φ is a water content at which the Richards approximation is well-valid
and large-scale structures of the pore space are negligible. Figure 3.27 shows
K(θ) from Figure 3.26b with the Mualem-van Genuchten parameterization scaled
accordingly.

Comment on Anisotropic Media Most experiments for measuring the
hydraulic conductivity impose a constant gradient along the axis of some
cylindrical sample and measure the resulting fluid flow. Unless the porous
medium is indeed isotropic or at least one of its main axes is aligned with
the cylinder axis, such a measurement does not provide a correct value for
the conductivity component along the axis. The reason for this is that in the
general case the anisotropy of K will lead to flow components orthogonal to
the sample walls. Since this flow is impeded, a corresponding gradient of the
hydraulic potential will be generated which in turn modifies the flow along
the axis, again through the anisotropy of K. Denoting the axis of the sample
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by z and the two orthogonal directions by x and y, a quick calculation shows
that the measurement yields

K ′
zz = Kzz −

K2
xzKyy − 2KxyKxzKyz +KxxK

2
yz

KxxKyy −K2
xy

, (3.58)

where Kij is the true ij-component of K. Clearly, the measured value K ′
zz

only equals the true one if all off-diagonal elements vanish.

3.4.3
Flux Law

The empirical flux law for a single fluid was introduced in Section 3.3.5
as Darcy’s law (3.30). The situation becomes much more difficult when
more than one fluid is present. Here, Buckingham’s conjecture is typically
invoked which states that Darcy’s law remains valid and the only modification
required is to write K as a function of θ [Buckingham 1907]. Hence, for
fluid i,

ji = −Ki(θi)∇ψi , (3.59)

which is called the Buckingham-Darcy law in soil physics and hydrology and
the generalized Kozeny-Carman law in petroleum industry [Kozeny 1927].

This law is remarkable for two reasons: (i) It states that the volume
fraction of fluid i is the sole factor that modifies the conductivity. This
is corroborated by experiments. (ii) It states that the flux in fluid i only
depends on the hydraulic gradient in the same fluid. From Onsager’s theorem,
we might instead expect a flux law of the form

ji = −
∑

l

Kil(θi, θl)∇ψl , (3.60)

where summation is over all phases l. This issue has not yet been explored,
neither theoretically nor experimentally.

3.4.4
Compressibility

Porous media are generally compressible, many of them quite strongly as for
instance most soils. In the following, we only consider weakly compressible
media and think of water-saturated sandstone as a generic example. The
compressibility of these media – water and porous sandstone – are so small
that greatly simplifying assumptions are justifiable. In particular, we assume
that the configuration of grains does not change with pressure p which implies
that the load on the grain contacts is large compared to the pressure change.
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Then, θ and ρ are simple functions of p and the storage term of (3.37) may
be written as

∂t[θ(p)ρ(p)] =
[
θ
dρ

dp
+ ρ

dθ

dp

]
∂tp = ρ

[
θκwater

p + [1− θ]κmatrix
p

]

︸ ︷︷ ︸
storage coefficient S

∂tp

= ρS∂tp , (3.61)

where the compressibility κp has been defined in (2.10) and S is the volu-

metric storage coefficient. Since the compressibilities are constant to a very
good approximation, S is also constant.

Calculating the effect of compressibility on the storage term is straight-
forward. This is not the case for the flux term, however, since a large
compressibility of the matrix constituents leads to a qualitative change of the
pore space geometry. However, for the case of weakly compressible media like
sandstones and sandy soils, simplifying approximations are permissible which
make the problem tractable. Since we will find below, that the corresponding
additional terms are negligible, the somewhat lengthy derivation is only given
as the following parenthetical comment.

Detail: Conductivity of Weakly Compressible Media Write the flux term as
∇· [ρj] = −∇·

[
ρK[∇p−ρg]

]
, where p replaces ψm in (3.37) – we consider water-

saturated media – and, for simplicity, the medium is isotropic. Then

∇ ·
[
ρK[∇p− ρg]

]
= ρK

[
∇ · [∇p− ρg] +

∇[ρK]

ρK
· [∇p− ρg]

]
(3.62)

with
∇[ρK]

ρK
=

[1
ρ

dρ

dp
+

1

K

dK

dp

]
∇p =

[
κwater
p +

1

K

dK

dp

]
∇p . (3.63)

For the relative change ofK with pressure we find, withK = k/µ (3.32),

1

K

dK

dp
=

1

µ−1

dµ−1

dp
+

1

k

dk

dp
. (3.64)

For liquids, µ is practically independent of p. Hence, it suffices to calculate
the second term. We invoke the following deformation model which is only
justifiable for weakly compressible media: grains deform isotropically except at
their contacts where only the area shrinks (Figure 3.28). Then, the water phase
remains geometrically similar with changing pressure and, since k is proportional
to the square of the mean pore diameter ℓ, we obtain

1

k

dk

dp
= −2

ℓ

dℓ

dp
=

2

3
κmatrix
p . (3.65)

Here, the sign for the first equality indicates that the permeability increases with
decreasing grain diameter, and the second equality follows from V ∝ ℓ3 together
with κp = − 1

V
dV
dp

. Inserting everything into (3.63) yields

∇[ρK]

ρK
=

[
κwater
p +

2

3
κmatrix
p

]
∇p . (3.66)
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grain

water

Figure 3.28.
In a simple model of weakly compressible media,
the grains shrink isotropically with increasing
pressure (dashed lines) except at the contact
regions between grains where only the contact
area decreases. Notice that shrinking is grossly
exaggerated in this sketch and also porosity is
rendered too large.

With this, a quick analysis of scales shows that for weakly compressible media as
we consider them here, the second term in parenthesis of (3.62) is many orders
of magnitude smaller than the first one. To a very good approximation, we may
thus write for the flux term

∇ · [ρj] = −∇ ·
[
ρK[∇p− ρg]

]
= −ρK∇ · [∇p− ρg] , (3.67)

where ρ and K are now constant.

Example: Sandstone Aquifer Consider a typical formation with porosity φ =
0.1 and compressibility κmatrix

p ≈ 10−10 Pa−1. The compressibility of sand grains
is somewhat lower, about 3 · 10−11 Pa−1, with the higher value of the matrix
reflecting the reduced contact area between the grains.

Storage Coefficient With 5 ·10−10 Pa−1 for the compressibility of water, the
storage coefficient becomes S ≈ 1.4 · 10−10 Pa−1. Reducing the pressure in this
formation by 105 Pa thus releases some 14 grams of water per cubic meter of
aquifer, or some 140 ppm of the stored mass.

Conductivity With (3.65) and assuming µ as constant, the relative change
of K is about 10−9 Pa−1. To set this in proportion, we employ the hydrostatic
pressure gradient dzp = ρg and find a relative increase of K with depth due
to the compressibility of water and matrix of some 10−5 m−1, which is quite
negligible, indeed.

Notice that the treatment of the influence of compressibility on the storage
term ∂t[ρθ] was quite different from that on the flux term: While both are
exceedingly small – for the example of the sandstone S ≈ 1.4 · 10−10 Pa−1,
dpK/K ≈ 10−9 Pa−1, and dpρ/ρ ≈ 5 · 10−10 Pa−1 – the storage coefficient
was retained in the formulation while the flux was approximated by its
incompressible part. The justification, and necessity, for this is that with
S = 0 the character of the dynamics changes qualitatively in that flow is
always stationary, hence a pressure fluctuation would transverse the flow
domain with infinite velocity. We will elaborate on this in Section 5.1.
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Exercises

3.1 Capillary Rise Deduce (3.6) by (i) minimization of energy and (ii) balancing
the pressure jump across the meniscus with the hydrostatic pressure in the liquid
column.

3.2 Closed Capillary Consider a cylindrical capillary with length L and circular
cross-section with radius R. Let it be closed at one end. How high does water rise
if the material is perfectly water-wet and if air can be described as an ideal gas?
Does this height depend on temperature?

3.3 Corrugated Capillary Consider the situation depicted in Figure 3.14 and
discuss the change of the equilibrium points D and I upon change of the water
table.

3.4† Dynamics of Capillary Rise Consider a cylindrical capillary with circular
cross-section and radius R that is open at both ends and much longer than the
maximum capillary rise of water. Envisage the capillary to be hold vertically and,
at time t = 0, its lower end to being placed such that it just penetrates the surface
of a flat water table. A meniscus will then rise and eventually reach height h above
the water table. For a perfectly wettable capillary, h is given by (3.6).

1. Qualitatively discuss the movement of the water within and outside of the
capillary. Short of actually calculating the dynamics notice that it will be
governed by a certain time scale. Explain why this is the case and express it
(qualitatively) as a function of the system variables R, σ,. . . .

2. Making reasonable assumptions deduce a differential equation for the move-
ment of the meniscus and solve it. [The second part is greatly facilitated by
using Mathematica or similar.]

3. Discuss the impact of (i) a non-zero wetting angle and (ii) a modulation
of diameter. [Do the second part only qualitatively. The problem is best
approached by considering the pressure at the lower end of the capillary,
within the capillary on the one hand and far away but at the same depth
beneath the water table on the other.]

3.5 Water Drop on a Hair Qualitatively describe the shape of a water droplet
on a water-wet hair, i.e., on a thin cylinder.

3.6† Air Bubble Pouring water from some height into a glas, bubbles form,
migrate to the surface and remain there for quite some time before they eventually
blopp. Explain the life cycle of such a bubble and in particular its stability at the
water-air interface!

3.7† A Special Tea Treat yourself to a black tea with about 1/3 of milk. Add
some cinnamon and pepper for good taste and a small piece of butter for the
Tibetan touch. Make sure that the cup is not completely filled initially. After the
butter has melted, pour in more hot water from some height such that bubbles
form. Observe the form and the movement of the bubbles and of the butter drops.
Explain!
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Figure 3.29.
Sketch for Exercise 3.8. Two spherical, water-wet
grains of sand are fixed in space with some water
extended between them. Since the grains are water-
wet, they are covered by a film of water.

3.8 Two Grains with Water Consider Figure 3.29 and assume that the two grains
are fixed in space. Discuss the shape of the air-water interface and explain if it is
consistent with the Young-Laplace equation (3.2)? What force acts on one of the
grains and what movement will it perform when it is free to move?

3.9 Cohesion of Sand Walking along a sandy beach, you notice that at a certain
distance from the water, there extends a strip where you can walk easily without
sinking in. Nearer to the water as well as farther away from it, this is not the case
anymore and walking is difficult. Explain! [As an aside, the famous Daytona beach
race in Florida takes much of its fascination from this effect. Obviously, leaving the
optimal track with a fast car has spectacular consequences.]

3.10† Spilled Water Take a flat glass surface in your kitchen, wipe it clean and
dry, and pour some water on it. Describe and explain the evolution and the final
state of the spilled water. Then take a dry sponge cloth and lay it on the glass
such that it covers a small part of the spilled water. Again, describe and explain
the evolution and the final state of the spilled water.

You may want to play along the following lines:

1. Modify the glass’ surfaces properties by cleaning it with a detergent, wiping it
with some oily cloth, or painting some oily pattern on a previously detergent-
cleaned surface. Watch the contact line move across the boundary between
different surface properties as you continue to add water.

2. Add a second water spill and continue adding water until the two distributions
touch. Be attentive to the moment of contact.

3. Continuously add the water as a fine spray, to the horizontal glass surface and
also to the kitchen window. (The latter leads to a new field, self-organized
criticality, described for instance by Jensen [1998].)

3.11 Divergence Show that divergence and integration may be interchanged in
(3.21).

3.12 Units of Conductivity Darcy’s law may be written in terms of the hydraulic
potential, jw = −K∇ψw, or in terms of the hydraulic head, jw = −K∇hw. For
simplicity, the same symbol is often used for the hydraulic conductivity K. What
are its units in the two formulations?

3.13 Conductivity Consider a uniform and isotropic porous medium with per-
meability k = 10−10 m2. (i) What is its hydraulic conductivity at 10◦C and at
20◦C? (ii) Let the medium be completely dry and consider air flow. Under what
conditions can this be described by a conductivity in analogy to the hydraulic one?
What is its value at 10◦C? (iii) If the same medium were scaled up by a factor of 2,
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i.e., all lengths are stretched by a factor of 2, how do the answers to the previous
questions change?

3.14† “Conductivity Function” of Capillary Consider a vertical, perfectly water-
wet capillary with radius R. Assume a constant film flow in analogy to Exercise 2.3
and calculate the relation between film thickness d and water flux jw := q/[πR2],
where q is the flow.

Film flow in a capillary may be used as the most simple model for water flow in
an unsaturated medium. Calculate and plot the relation between saturation Θ and
conductivity K. Discuss.

3.15† Hydraulic Properties of a Bundle of Capillaries Consider a bundle of
parallel capillaries with circular cross-sections. Assume the soil water characteristic
θ(ψm) for this bundle to be given by the Brooks-Corey parameterization (3.42).
Calculate (i) n(r) [m−2], the number of capillaries per unit cross-sectional area
whose radius is smaller than r, and (ii) the hydraulic conductivity function K(θ).
Discuss the applicability of this result to porous media.

3.16 REV and Fractal Media Sketch and discuss the porosity of the following
media as a function of characteristic length ℓ of an isotropic averaging volume:
(i) densest packing of uniform spheres with radius r, (ii) densest packing of two
sorts of uniform spheres, one with radius r1, the other one with radius r2, where
r1 ≪ r2, (iii) a quasi-fractal distribution of mass with lower cutoff ℓ1 and upper
cutoff ℓ2.

3.17† Heating by Water Flow Consider a vertical, 1 m long column uniformly
filled with quartz sand. The column’s porosity is 0.3 and the hydraulic conductivity
Kw = 10−7 ms−1. It is water-saturated and the water table is held constant at
the column’s upper end. At the lower end, water flows out freely. The column is
thermally isolated and initially at T = 10◦C as is the inflowing water. Assume that
the water equilibrates thermally with the column as it flows through. Estimate the
rate of temperature increase of the outflowing water.

3.18† Kinetic vs Potential Energy Calculate the kinetic energy of the flowing
water in Exercise 3.17. To what height could the water be lifted with this en-
ergy? Repeat the calculation for the case of a storm flow event which leads to an
infiltration of 20 mmh−1.

3.19 Hysteresis Consider the hysteretic soil water characteristic shown by Fig-
ure 3.22 on page 60. Take an arbitrary point on the main drainage branch and
notice that for the scanning imbibition branch starting from there, the soil water
capacity Cw = ∂θ/∂ψm is much smaller than on the main drainage branch at the
same point. Explain!
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Solutes in Porous Media

A solution is a homogeneous mixture of two or more substances which form
a single phase. While there exist solid solutions, they are not of interest here
and we only consider fluid solutions, gaseous or liquid ones. Typically, the
mass of the solute in a solution is a small fraction of the mass of the solvent.
A solution is a fluid, solute and solvent are its components. Referring to
solution instead of fluid indicates a focus that is more on chemical aspects
than on physical ones.

Solute transport consists of two aspects: movement with the fluid and
within it. The former originates from the fluid’s flow which in turn is
determined by the fluid’s physical properties, by the geometry and physico-
chemical properties of the bounding solid, and, in multiphase systems, by
the properties of the further fluids. Movement within the fluid results from
the thermal motion which leads to molecular diffusion. The two aspects of
transport are referred to as convection and diffusion, respectively. While such
a separation is straightforward in simple flow domains like capillaries, it is
neither feasible nor desirable in larger porous formations where the flow field
is typical exceedingly complicated. The effect of small-scale spatial variability
of the flow velocity on large-scale solute transport is then only described
statistically. The distinction between the resulting so-called dispersion and
the explicitly represented convection, which may still vary at larger scales,
is reminiscent of, and closely related to, the distinction between structure
and texture of a porous medium as discussed in Section 3.3.2. Determining
an optimal scale for the separation between convection and dispersion, and
quantifying the latter, is the major challenge in studying the physics of solute
transport.

4.1

Transport at the Pore-Scale

We consider a porous medium that is completely saturated with water and
look into transport at increasingly larger scales. Starting at molecular dif-
fusion in a pure fluid, we step up to transport with the laminar flow in

77
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Figure 4.1.
Two-dimensional Brownian motion of
15 particles which all started at the
origin at time t = 0. The axes are
scaled with the standard deviation of the
asymptotic probability density function,
which is obtained from (4.2). Hence,
x′ = x/

√
2Dmt and y′ in analogy. The

locations of the particles at the end of
the path, after 3,000 random steps, are
marked by a red dot.
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a capillary, continue with mixing in pore junctions, and finally consider the
experimental evidence for dispersion in porous media and formations.

As a preliminary, notice that there is a characteristic difference between
these processes. Molecular diffusion is always active, with spreading essen-
tially a function of time, and inherently isotropic, possibly restricted by phase
boundaries. In contrast, the other processes are a direct consequence of fluid
flow in the porous medium, with spreading basically a function of travel
distance, and mean velocity.

4.1.1
Molecular Diffusion

Thermal energy causes an irregular motion of fluid molecules which depends
on the mean distance ℓ between molecules, on the collision cross-section σ,
and on the distribution of the velocity v. The distance ℓ is proportional
to ρ1/3, σ is proportional to the cross-sectional area of the molecule, and v
is restricted by the principle of the equipartition of energy which demands
〈v2〉 = 3kT/m, with velocity v, Boltzmann constant k, temperature T ,
and mass m of the molecule, or indeed of any particle of interest [Landau
and Lifschitz 1984, § 29]. Clearly, thermal motion will also affect dissolved
substances and small floating particles. Collisions with the fluid molecules
will force them into very irregular trajectories (Figure 4.1). These were first
reported by Brown [1828] who studied pollen grains in water. However, an
explanation for the erratic movement in the still water had to await the
seminal work of Einstein [1905] which subsequently became a cornerstone for
the atomic concept of matter [Renn 2005].

To focus on the essentials, we consider a gas where the molecules move
freely between collisions and we study the movement of some floating particle.
The macroscopic motion of the gas shall be negligible. We only consider
one component of the motion, along the x-axis. At t = 0, the particle is
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located at x = 0. After collision i, it moves by distance ∆xi during time
∆τi before it collides again. We call these the space and the time increment,
respectively, and we notice that both are random variables. Provided the
gas is at rest and temperature, pressure, and composition are constant, the
statistical properties of the increments will also be constant both in space
and time. Furthermore, the expectation value of ∆x vanishes, i.e., 〈∆x〉 = 0.
Finally, we may assume successive increments to be statistically independent
due to the irregularity of thermal motion and to the large number of gas
particles. This is the prerequisite for the CLT, the central limit theorem
(A.24). It ascertains that the position of the particle after a large number
n of collisions becomes a Gaussian pdf with expectation 0, since 〈∆x〉 = 0,
and with the variance equal to n times the variance of the spatial increment.
Hence, time and variance of the position become

tn =

n∑

i=1

∆τi =: n∆τ and σ2
n =

n∑

i=1

〈∆x2i 〉 =: n∆x2 , (4.1)

respectively, where the bar indicates the average in time. For sufficiently large
values of n, the time averages approaches the averages over a correspondingly
large ensemble. Hence, ∆τ → 〈∆τ〉, the mean time between collisions, and
∆x2 → 〈∆x2〉, the variance of the free path. This leads to

σ2
n = n〈∆x2〉 = tn

〈∆x2〉
〈∆τ〉 =: 2Dmtn , (4.2)

where the diffusion coefficient Dm is defined following Einstein [1905]. Notice
that Dm is a macroscopic parameter that depends on properties of the gas
and of the diffusing particle but not on time.

With (4.2), we finally obtain for the location of the diffusing particle that
passed through (x, t) = (0, 0) the pdf

p(x; t) =
1√

4πDmt
exp

(
− x2

4Dmt

)
(4.3)

and, in d dimensions, where the components of the motion are independent
because of the principle of the equipartition,

p(x; t) = [4πDmt]
−d/2 exp

(
− x · x
4Dmt

)
. (4.4)

Up to now, we studied the most simple case where we could work with
well-defined increments between collisions. The situation is more complicated
for diffusion in liquids where there is a continuous interaction due to the
much higher density. However, the crucial tool is the CLT and thus the
existence of a time increment ∆τ such that the respective space increments
∆x are statistically independent. Again due to the irregularity of thermal
motion, this prerequisite can be ascertained also for liquids. Ideally, the
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diffusion coefficient Dm is calculated according to (4.2), even for complicated
interactions. Alternatively, it may be determined experimentally.

We notice that the approach outlined here can be applied to all phenomena
that may be decomposed into a sum of statistically independent increments,
even to non-physical processes like for instance to stock markets. As a nod to
the original observer this entire class of phenomena is referred to as Brownian
motion.

Brownian Motion and Molecular Diffusion Molecular diffusion was de-
scribed well before its fundamental nature was established. In analogy to
earlier work by Fourier on heat conduction, Fick [1855] postulated that the
negative gradient of the concentration C was the driving force of the diffusive
mass flux js (mass per unit area and unit time). He further proposed a linear
relation between flux and driving force,

js = −Dm∇C , (4.5)

which is now referred to as Fick’s flux law or as Fick’s first law. The constant
of proportionality, Dm, is the coefficient of molecular diffusion. Combining
this with the conservation of mass,

∂tC +∇ · js = 0 , (4.6)

he arrived at the diffusion equation

∂tC −Dm∇2C = 0 (4.7)

which is sometimes referred to as Fick’s second law. Direct inspection re-
veals that (4.4) is the solution of (4.7) for an unbounded space with initial
concentration C(x; 0) = δ(x).

Apparently, there exists a close relation between concentration distribu-
tions Cδ(x; t) that result fom an initially sharp pulse

Cδ(x; 0) = m0δ(x) , (4.8)

where m0 is the total solute mass, and the pdf p(x; t|0; 0) for the transition
0 → x of a particle between times 0 and t. Indeed, expressing concentration
and mass by numbers of molecules, the concentration distribution after time
t > 0 is found as Cδ(x; t) = m0p(x; t|0; 0), hence

p(x; t|0; 0) = Cδ(x; t)

m0
. (4.9)

For a uniform fluid and a stationary flow field, the transition probability only
depends on differences in space and time but no more on absolute locations.
Hence, p(x1; t1|x0; t0) = p(x1 − x0; t1 − t0|0; 0) which may be abbreviated as
p(x; t). We call this the travel distance pdf.
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4.1.2
Taylor-Aris Dispersion

Consider a cylindrical tube with stationary flow. The velocity field is given
by (2.33), the law of Hagen-Poiseuille, which we write as

vx(r) = 2v

[
1−

[ r
r0

]2]
(4.10)

by using the average velocity (2.35). Transport of solutes in this flow is
by two mechanisms, convection with the flow field and molecular diffusion
within the fluid. During the short time interval ∆t, the average movement
of a particle is

∆xconv = v∆t (4.11)

by convection and, using (4.2),

∆xdiff =
√
2Dm∆t (4.12)

by diffusion. Obviously, the detailed movement of a single particle is quite
complicated as diffusion leads to transitions between flow lines together with
the associated changes in convection velocity. To simplify matters, we intro-
duce two time scales. The longitudinal time scale

τℓ :=
2Dm

v2
(4.13)

is characteristic for the transition from diffusion- to convection-dominated
longitudinal transport in that ∆xconv(τℓ) = ∆xdiff(τℓ). The transverse time

scale

τt :=
2r20
Dm

(4.14)

gives the characteristic time for a solute particle to traverse the cross-section
by molecular diffusion. Using these two times, we define the dimensionless
quantity

pe :=

√
τt
τℓ

=
r0v

Dm
(4.15)

which is the microscopic Peclet number. Transport is dominated by con-
vection if pe ≫ 1, hence τt ≫ τℓ. This means that there exists a time
interval for which the trajectory of a solute particle may be described by a
slightly perturbed streamline. Notice that all radial features of the initial
concentration distribution disappear on a time scale of τt.

We consider an initial concentration distribution which is radially uni-
form and highly localized axially, i.e., C(r, x; 0) = m0δ(x)/[πr

2
0], and, for

convection-dominated transport, distinguish three transport regimes (Fig-
ures 4.2–4.3):
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Figure 4.2. Taylor-Aris dispersion with pe = 106. At time t = 0, all particles
are uniformly distributed over the cross-section at x = 0. Their positions along
the tube are shown for three different times: t = 10−3τt, where the influence of
Brownian motion is small (top), t = τt for the complicated transitional regime
(middle), and t = 103τt, where the particles have traversed the laminar flow field
many times (bottom). The black parabola in the top frame marks the intersection
of the cutting plane with the paraboloid (4.16), where all particles would be located
if Brownian motion was negligible. The irregular lines show the first half of some
particular trajectory. The color of a particle indicates its distance from the cutting
plane along the axis. The probability distribution of the particles along the axis is
shown in Figure 4.3.

Short-Time Limit For τℓ ≪ t ≪ τt diffusion may be neglected and the
concentration can be approximated by the thin surface given by

x(r; t) = v(r)t = 2vt

[
1−

[ r
r0

]2]
. (4.16)

Intermediate Times For t ≈ τt the situation becomes rather complicated
since diffusion leads to strong but still incomplete mixing.

Long-Time Limit For t ≫ τt, mixing is complete and we may estimate
the concentration distribution with the CLT in analogy to the treatment of
Brownian motion. To this end, consider the increment ∆x for time intervals
τ . Denote the mean velocity of a solute particle along its trajectory by

vτ :=
1

τ

∫ τ

0

v
(
r(τ ′)

)
dτ ′ , (4.17)

where r(τ) is the radial distance from the cylinder’s axis. Notice that this is
a complicated function: It describes Brownian motion in a circular area, and



4.1 Transport at the Pore-Scale 83

0 0.001 0.002

0

500

p
x
(x
)

0.6 0.8 1.0 1.2 1.4 1.6

0

2

p
x
(x
)

980 1000 1020

0

0.05

0.10

p
x
(x
)

x/τtv

t = 10−3τt

t = τt

t = 103τt

Figure 4.3.
Probability distribution func-
tion px(x) for particles along
the axis at the times shown in
Figure 4.2. Without molecular
diffusion, the distribution in the
top frame would be uniform in
the interval [0, 2vt] (red curve).
Diffusion is most manifest for
particles with extreme velocities,
e.g., at the low end, where
diffusion brings particles from
near the wall (v ≈ 0) to regions
with higher velocities and
thereby leads to the observed
peak. At intermediate times
t ≈ τt, the distribution is
already nearly Gaussian with
only a little bit of asymmetry.
The red curves for the lower
two graphs are Gaussians that
have been fitted to the data.
Notice how the relative spread
of the distribution decreases
with increasing time.

we only know it statistically. The same is then true for v(r(τ)), of course.
Hence, vτ and ∆x = τvτ must be considered as random variables. Next, we
calculate the expectation of ∆x for the ensemble of particles as

〈∆x〉 = τ〈vτ 〉 = τv , (4.18)

where the last equality reflects the fact that diffusion samples the cross-
sectional area uniformly. If the initial distribution of particles is not uniform,
this is only correct after an initial relaxation time of order τt during which
the deviations diffuse away. Finally, we estimate the form of the variance of
∆x as

var(∆x) = τ2var(vτ ) ∝ τ2v2 , (4.19)

where the proportionality arises from v(r) ∝ v. The constant of proportion-
ality depends on τ but approaches a constant value as τ increases. We choose
τ = τt, define the effective dispersion coefficient

Deff :=
var(∆x)

2τt
∝ v2r20

Dm
= Dm pe2 (4.20)
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in analogy to (4.2), and find, by the CLT, for t ≫ τt the travel distance
pdf

p(x; t) =
1√

4πDefft
exp

(
− [x− vt]2

4Defft

)
. (4.21)

This represents a Gaussian pulse which moves with constant velocity v (con-
vection) and whose variance increases proportionally to t (dispersion). Com-
paring (4.21) with (4.3), we recognize that dispersion is formally identical to
molecular diffusion. This is expected since both result from the CLT. Notice
however, that dispersion results from the spatial variability of the flow field
whereas diffusion originates in thermal motion.

The process discussed so far – transport in a cylindrical capillary with
laminar flow in the limit of high Peclet numbers – is referred to as Taylor

dispersion. In his original work, Taylor [1953] also gave the value for the
missing constant of proportionality and wrote (4.20) as Deff = v2r20/[48Dm].
Aris [1956] extended this to the general case of arbitrary Peclet number
and arbitrary cross-section, the so-called Taylor-Aris dispersion, and ob-
tained

Deff = Dm + α
v2r20
Dm

= Dm

[
1 + α pe2

]
, (4.22)

where α is a dimensionless constant that depends on shape and choice for
the characteristic extent r0 of the cross-sectional area.

The formal analogy between Taylor-Aris dispersion and molecular diffusion
can also be extended to the flux law. We formulate it as the sum of the
convective flux vC that results from the transport of solutes with the mean
flow and of the dispersive flux −Deff∂xC, hence

js = vC −Deff∂xC . (4.23)

Inserting this into the one-dimensional form of the mass balance (4.6) then
yields

∂tC + v∂xC −Deff∂xxC = 0 , (4.24)

a one-dimensional instance of the convection-dispersion equation. One finds
by inspection that (4.21) is a solution of (4.24) for the case of an unbounded
medium with initial condition C(x; 0) = δ(x), and the discussion of the
relation between concentration and probability density applies again.

Apparent and Effective Transport Parameters The two limiting regimes
of short and long times – the near- and the far-field as we will call them later
– lead to characteristically different evolutions for the statistical moments of
the travel distance pdf.

In the far-field, the travel distance pdf is given by the Gaussian function
(4.21) from which we directly read the first two moments

〈x(t)〉 = vefft and var(x(t)) = 2Defft , (4.25)
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where v is replaced by veff in favor of a uniform notation. Notice that the mo-
ments can be easily calculated, e.g., from an appropriate tracer experiment,
and may thus be used to obtain the effective transport parameters as

veff = dt〈x(t)〉 and Deff =
1

2
dtvar(x(t)) . (4.26)

This is the so-called method of moments. We notice in passing that the
definitions

vglobeff =
〈x(t)〉
t

and Dglob
eff =

var(x(t))

2t
(4.27)

would work as well and, in the far-field of Taylor-Aris dispersion, would
obviously produce the same numbers as (4.26) since both 〈x(t)〉 and var(x(t))
are linear homogeneous functions. If this is no more the case, i.e., if the
underlying process is no more an effective convection-dispersion, we may still
define parameters v and D according to either (4.26) or (4.27). However,
we will then call them apparent local and global, respectively, since they are
merely an alternative description of the first two statistical moments of the
travel distance pdf. They must not be interpreted as objective transport
parameters. This is discussed further in the following.

The near-field of Taylor-Aris dispersion is characterized by the constant
velocity along each particle’s trajectory. Let gv(v) be the pdf of the velocity
in an orthogonal cross-section of the capillary. Recall that the capillary is
cylindrical, but not necessarily circular, and that the flow is laminar. Hence
gv(v) and v are both constant along the axis and x(t) = vt. Thus

〈x(t)〉 = 〈v〉t and var(x(t)) = var(v)t2 = α〈v〉2t2 (4.28)

where α := var(v/〈v〉) is some constant that depends only on the geometry
of the flow domain. The moments of v then become

〈v〉 =
∫

Ω

vgv(v) dv and var(v) =

∫

Ω

[v − 〈v〉]2gv(v) dv , (4.29)

where Ω is the capillary’s cross-section. Comparing (4.28) with (4.25), we
let veff = 〈v〉 and recognize that the two regimes, the near- and the far-field,
are indistinguishable when only the first moments are considered. However,
the second moments evolve differently, proportionally to t in the far-field and
proportionally to t2 in the near-field. We will encounter this general behavior
over and over again, also at larger scales, and employ it for the operational
definition

near-field stochastic convection process (SC) var(x(t)) ∝ t2

far-field convection-dispersion process (CD) var(x(t)) ∝ t

For the case of a circular cross-section, the velocity is given by Hagen-
Poiseuille’s law as v(r) = 2v[1− [r/r0]

2] and (4.28) yields

〈x(t)〉 = vt and var(x(t)) =
1

3
v2t2 . (4.30)
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Figure 4.4.
Temporal evolution of apparent parameters vapp
(black) and Dapp (cyan) estimated from distri-
bution of 106 particles in Taylor-Aris disper-
sion as shown in Figure 4.2. For comparison,
the global apparent dispersion coefficient Dglob

app

(thick dashed magenta) and the approximations
forDapp in the limit of short-times (thin dashed)
are shown. dimensionless time t/τt

vapp/v

Dglob
app /Deff
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Calculating the apparent dispersion coefficient with (4.26) and (4.27) yields

Dapp =
1

3
v2t and Dglob

app =
1

6
v2t , (4.31)

respectively. The two values are by a factor of two different. More impor-
tantly – and in contrast to the far-field – they are not constant in time, hence
are not inherent transport parameters of the capillary.

The evolution of the apparent parameters for the transition from the near-
to the far-field based on the numerical simulation of Taylor-Aris dispersion
is shown in Figure 4.4. Apparently, the estimate of Dapp is still rather noisy,
despite the large number of particles and the good temporal resolution. In
practical applications, for instance in a tracer experiment at the field scale,
concentration or flux measurements often come with large errors which makes
estimates of Dapp rather noisy and may even lead to negative values at some
points. Such data motivate the use of the more robust Dglob

app instead of Dapp

even though Figure 4.4 illustrates that we may expect significant differences
between the two.

4.1.3
Dispersion in Pore-Space

Consider a network of flow channels that are interconnected at discrete junc-
tions. Within a flow channel, transport is a Taylor-Aris process that is
generalized such that it includes cross-sections that vary along the axis. On
top of the dispersion within each channel, a qualitatively new mixing process
then comes into play with the junctions. Depending on the details of the
flow within a junction, mixing ranges from purely diffusive to dominantly
convective (Figure 4.5). For a uniform network of flow channels, we again
expect a convection-dispersion process for the far-field. Interestingly, we
will find that the two extremes of local mixing in the junctions lead to
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ℓ

r0

Figure 4.5.
Mixing in junction of pore network ranges from
purely diffusive (upper) to dominantly convective
(lower), depending on details of the flow. The
efficiency of diffusive mixing in the junction depends
on the contact time, hence on the velocity. In
contrast, convective mixing is constant as long as
the flow stays laminar.

characteristically different dependencies of Deff on the microscopic Peclet
number pe, hence on the mean velocity. To this end, we will again follow
a qualitative line analogous to the one used for understanding Taylor-Aris
dispersion. Again, it will provide us with the correct relations up to some
constant factor.

Diffusive Mixing Let ℓ be the characteristic length of the junction in the
direction of the mean flow and let r0 be the characteristic radius perpendic-
ular to it. The time available for diffusive mixing is then of order ℓ/v, where
v is the mean velocity in the junction. The fraction κ of the flow that gets
mixed is then of order

κ =
2Dmt

πr20
=

2Dmℓ

πr20v
= α

ℓ

r0

1

pe
, (4.32)

where pe = r0v/Dm is the microscopic Peclet number introduced in (4.15)
and constant α = 2/π for a circular cross-section and some other value for
another shape.

Next consider the characteristic distance Λ between junctions and notice
that 1/κ is number of junctions that have to be transversed for complete
mixing. Hence the distance Λr0pe/[αℓ] has to be covered which leads to the
characteristic mixing time

tmix =
Λ

α

r0
ℓ

pe

v
=

Λ

α

r20
ℓDm

= const . (4.33)

At this point, we invoke (4.28) which states that for a stochastic convection
process var(x(τ)) ∝ v2τ2. Setting τ = tmix and using the CLT then yields
for t≫ tmix

var(x(t)) =
t

tmix
var(x(tmix)) = α′tmixv

2t (4.34)
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where α′ is a new constant and, with (4.26), further to

Deff = α′′ Λ

ℓ

r20
Dm

v2 or
Deff

Dm
= α′′ Λ

ℓ
pe2 , (4.35)

where α′′ is yet another constant. Comparing this with (4.22), we arrive
at the important insight that purely diffusive mixing in an interconnected
network of flow channels leads to essentially the same transport regime as
Taylor-Aris dispersion in a single capillary.

Convective Mixing Consider a junction where a fraction κ of the entering
flow is redirected from one flow channel to another as sketched in Figure 4.5.
As long as the flow is laminar the shape of the stream lines is independent of
the mean velocity and κ is a constant that only depends on the geometry of
the flow domain. In the following we neglect the effect of molecular diffusion
on mixing in the junction. Proceeding along the same line as before, we
obtain Λ/κ for the distance after which the flow in a particular channel is
completely mixed with that of its environment. Here, Λ is again the distance
between junctions. The corresponding time then is

tmix =
Λ

κv
=

Λr0
κDmpe

. (4.36)

Notice that now, in contrast to the purely diffusive mixing, the mixing length
is constant while the mixing time depends inversely on the mean velocity.
With (4.34) and (4.26) we finally obtain

Deff = βΛv or
Deff

Dm
= β

Λ

r0
pe , (4.37)

where β is a constant that also includes κ. Notice that the second expression
is only useful to put Deff into perspective to the molecular process: diffusion
has no role in this mixing process. Correspondingly, the dependence on r0 is
artificial and merely gives the reference for the Peclet number.

Apparently, the linear dependence of Deff on v indicates a dispersion
process that is fundamentally different from Taylor-Aris. It thus gets a new
name and is call hydromechanic dispersion. The constant of proportionality
between the two quantities is the dispersivity λ, hence

Deff = λv . (4.38)

It has the dimension of a length and gives the characteristic extent of the
relevant mixing structures.

4.2

Transport in Porous Media

We migrate from a description at the pore space to a continuum description
at the scale of the porous medium as a whole by starting out along the lines of
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Section 3.3. As a first step, we will invoke appropriate REVs implicitly, define
concentrations as the relevant state variables, and formulate the conservation
of mass, thereby introducing the macroscopic solute flux. Before the next step
– coming up with an empirical flux law – we recall the discussion of Taylor-
Aris dispersion in Section 4.1.2. It revealed that only the asymptotic regimes
in the near- and in the far-field lead to simple formulations. Intermediate
regimes strongly depend on details of the transport process. This contrasts
with fluid flow, where we have the luxury of the unique flux law (3.33). The
fundamental reason for this difference is that it is immaterial where some fluid
element is coming from, all consist of the same fluid. This is quite different for
solute transport. Depending on their origins, fluid elements carry different
solute masses. The mixing with adjacent fluid elements – molecular diffusion
in Taylor-Aris dispersion, mixing at pore junctions in porous geometries –
determines the characteristic time or distance over which the initial mass
remains in the fluid element, hence the “memory” of the process, or the
transition from the near- to the far-field. We notice that this general situation
occurs in all transport processes, for instance also in heat transport. In
view of these difficulties, relations between concentration and solute flux that
are independent of the specific regime will be considered before formulating
the empirical flux law and the dynamics of solute transport. Finally, we
look into popular parameterizations of the ensuing material properties, in
particular the effective dispersion tensor Deff , and into some experimental
evidence.

4.2.1
State Variables

The state of a porous medium with respect to solute transport is described
completely by the spatial distribution of the solute concentration. Let Cµw
be the microscopic concentration, the concentration in the water phase at
the pore-scale. Consider a volume V of the porous medium and denote the
region occupied by the water phase with Vw (Figure 3.15 on page 47). The
solute mass in V then is

∫

Vw

Cµw dV = ‖Vw‖〈Cµw〉w , (4.39)

which evidently is a macroscopic quantity. Referring this mass to a macro-
scopic volume produces the desired concentration. Since there are two useful
volumes, ‖V ‖ and ‖Vw‖, we obtain two concentrations: the total concentra-

tion

Ct :=
‖Vw‖
‖V ‖ 〈Cµw〉w = θ〈Cµw〉w , (4.40)

where θ is the volumetric water content, and the concentration in the water

phase,
Cw := 〈Cµw〉w . (4.41)
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We notice that the quantities Cw and Ct are well-defined if, and only if,
volume V is an REV simultaneously for the pore-space, for the water con-
tent, and for the solute concentration. This in particular implies that the
microscopic quantities θµ and Cµw are in equilibrium with respect to the
macroscopic state given by θ and Cw.

Apparently, Cw and Ct are related to each other by

Ct := θCw . (4.42)

This is only true, however, if the solute is present exclusively in the water
phase. In the general case, solute molecules may adsorb at the soil matrix
or they may transfer between possible other phases, most importantly a
gaseous phase or another immiscible liquid. Then, the total concentration
becomes

Ct =
∑

i

θiCi , (4.43)

where θi is the volume fraction of phase i and Ci the solute concentration per
unit volume of phase i. For a complete description, a set of equations has to
be supplied together with (4.43) in order to describe the exchange between
the various phases.

We mention that Cw and Ct as defined in (4.40) and (4.41) are sometimes
referred to as resident concentrations and contrasted to the so-called flux
concentration Cf := js/jw, where js and jw are the mass flux of solute and
the volume flux of water, respectively [e.g., Kreft and Zuber 1978]. Resident
concentrations are obtained when a porous medium is sampled, whereas the
flux concentration would be measured in the outflow from the porous medium.
We will not entertain the notion of a flux concentration, however, and always
operate directly with the corresponding fluxes.

4.2.2
Mass Balance

The conservation of solute mass is formulated in complete analogy to the
conservation of water mass in Section 3.3.4. Let jµs = vµCµw − Dµ

m∇Cµw be
the solute mass flux at the pore-scale. The first term on the right accounts for
convection with the local velocity vµ(x), a function which is highly variable in
space. The second term represents molecular diffusion, for which we already
notice that the coefficient Dµ

m will be smaller near a boundary than within
the fluid. With this, the conservation of solute mass for the macroscopic
volume V with water phase Vw becomes

∂t

∫

Vw

Cµw dV = −
∫

∂Vw

jµs · dA = −
∫

Vw

∇ · [vµCµw −Dµ
m∇Cµw] dV , (4.44)

where Gauss’ theorem was invoked for the second equality. Choosing V
as a fixed volume, the divergence may be pulled out of the integral. Further
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choosing V as an REV with respect to water content θ, hence ‖Vw‖/‖V ‖ = θ,
and invoking the mean value theorem leads to

∂t[θCw] +∇ · [θ〈vµCµw〉w]−∇ · [θ〈Dµ
m∇Cµw〉w] = 0 , (4.45)

where Cw := 〈Cµw〉w is the average concentration in the water phase of
volume V .

We first look into the second term, whose main aspect is 〈vµCµw〉w, a
complicated correlation between microscopic velocity and concentration. To
this end, decompose the velocity vµ(x) = v + v′(x) into constant mean
v = 〈vµ〉w and fluctuation v′(x) with 〈v′〉w = 0 (Reynolds decomposition),
and similarly the concentration, Cµw = Cw +C ′

w. With this, the second term
in (4.45) becomes

∇ · [θ〈vµCµw〉w] = ∇ · [ θvCw︸ ︷︷ ︸
convection

+ θ〈v′C ′
w〉w︸ ︷︷ ︸

hydromechanic

dispersion

] . (4.46)

We easily recognize the term θvCw as the macroscopic convective flux, i.e.,
the volume flux θv of water with concentration Cw or, alternatively, the
total concentration θCw that moves with velocity v. The second term,
the covariance θ〈v′C ′

w〉w between the microscopic fluctuations of velocity
and concentration, apparently represents hydromechanic dispersion. This
covariance is difficult to express in terms of macroscopic quantities, as we may
expect already from the discussion of Taylor-Aris dispersion, where different
representations for the near- and for the far-field were introduced, and from
studying dispersion in the pore-space, where an undetermined dependence
of dispersion on the Peclet number, i.e., on the mean flow velocity, was
found. Since progress at this point invariably involves assumptions about
the geometry of the pore-space and about the covariance of the microscopic
velocity, we will only return to this issue with the heuristic formulation of
material properties based on experimental evidence.

Next, we consider the third term of (4.45) and easily associate it with
molecular diffusion. We may transform it into a macroscopically useful form
by noticing that (i) the microscopic concentration Cµw and the microscopic
flux jµs are in equilibrium with the corresponding macroscopic quantities,
i.e., changing the macroscopic quantities leads, at the time scale of interest, to
an instantaneous change of the corresponding microscopic quantities, (ii) the
transport problem considered here is linear, and (iii) Dµ

m may depend in
a complicated way on location x but is otherwise constant. With this, we
may write 〈Dµ

m∇Cµw〉w = Dm〈d(x)c(x)〉w∇Cw where d and c are complicated
functions that describe the microscopic variation of the molecular diffusion
coefficient and of the concentration gradient, respectively. Howsoever com-
plicated these functions may be, they depend only on the geometry of the
water phase at the pore-scale. For the water-saturated situation we consider
here, their spatial average is thus a constant that may be absorbed into
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an effective value Ddiff
eff of the molecular diffusion coefficient for the porous

medium. Hence, the third term in (4.45) may be written as

∇ · [θ〈Dµ
m∇Cµw〉w] = ∇ · [θDdiff

eff ∇Cw] . (4.47)

Inserting (4.46)–(4.47) into (4.45) finally yields for the macroscopic formu-
lation of the conservation of mass

∂t[θCw] +∇ · [θvCw] +∇ · [θ〈v′C ′
w〉w − θDdiff

eff ∇Cw] = 0 . (4.48)

4.2.3
Empirical Flux Law

With (4.48) and the general formulation ∂tCt +∇ · js for the conservation of
solute mass, the empirical flux law becomes

js = θvCw + θ〈v′C ′
w〉w − θDdiff

eff ∇Cw . (4.49)

The correlation term 〈v′C ′
w〉w makes this relation rather unwieldy. However,

using the same argument as above for the diffusion term 〈Dµ
m∇Cµw〉w, it may

be written as 〈v′(x)c(x)〉wCw, where c(x) is again a complicated function,
different from the one used before, that describes the spatial distribution of
the concentration at the pore-scale. With this, we may deduce the general
relation that the solute mass flux js is a linear function of the spatial dis-
tribution of the macroscopic concentration in the water phase, Cw(x). To
emphasize the latter aspect: js is not a function of the total concentration Ct
(see Exercise 4.1). Hence we may write the macroscopic empirical flux law
as

js = θVCw , (4.50)

where V is a linear operator that acts on the spatial coordinate of the
macroscopic concentration in the water phase. For some special cases, the
relation between js and Cw can be readily calculated.

A trivial case is for negligible velocity, i.e., for Peclet number Pe :=
vℓ/Ddiff

eff ≪ 1, where v and ℓ are characteristic velocity and size of the
transport domain, respectively. Then js = −θDdiff

eff ∇Cw.
For convection-dominated transport with vℓ/Ddiff

eff ≫ 1, we first consider
the near-field, approximate it by parallel stream-tubes with constant veloc-
ities within each tube, and neglect molecular diffusion. Solute pulses in
different stream-tubes are thus independent and dispersion within a stream-
tube is negligible (Figure 4.6). The empirical flux law for the near-field may
then be written as

js = θv(x⊥)Cw , (4.51)

where x⊥ is the location perpendicular to the direction of the flow. The
manifestations of this regime will be elaborated in Section 7.1.2.
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Figure 4.6.
Parallel stream-tubes as an approximation to trans-
port over short distances. The velocity vi in each
tube i is constant and dispersion within a tube
is neglected. At time t = 0, the solute pulse is
located at x = 0. It is dispersed according to the
distribution of velocities for t > 0.

For convection-dominated transport in the far-field of a macroscopically
uniform porous medium, we again expect the solute flux to consist of two
components – convection and dispersion – with the empirical flux law

js = θvCw − θDeff∇Cw , (4.52)

where Deff denotes the effective hydrodynamic dispersion tensor. The explicit
derivation of the second term, −θDeff∇Cw, has been the focus of many studies
for porous media, among them Bear [1961] and Scheidegger [1961], but also
for the formally similar transport in turbulent flow [e.g., Shraiman and Siggia

2000; Blackman and Field 2003].

4.2.4
Dynamics

For the far-field in a macroscopically uniform porous medium (4.48) be-
comes

∂t[θCw] +∇ · [θvCw]−∇ · [θDeff∇Cw] = 0 , (4.53)

which is the convection-dispersion equation (CDE) in its general form where
θ and v may be functions of space and time and Deff is in general a function
of θ and v.

Some comments are in order, here. (i) In these lecture notes, the subscript
inDeff or Deff refers to the fact that in the far-field, dispersion is formally very
similar to molecular diffusion even though the underlying mechanisms are
quite different. In other literature, one may find the notionDeff = θDw, hence
“effective” there refers to the implicit incorporation of the water content θ
and Dw refers to the dispersion coefficient. As a mnemonic, “v and Deff are
at the same level”, i.e., they both get multiplied by θ when used in a transport
equation. (ii) The formulation (4.53) represents the transport of solute that
exists exclusively in the water phase, a so-called conservative solute. (iii) At
the scale of current interest, at the transition from the pore-scale to the
continuum of a macroscopically uniform medium, the convection-dispersion
equation is a very good description, even though it only applies at the far-
field. The reason for this is that the far-field, at the scale of interest for most
soil physical issues, is rather near, say a few tens of grains corresponding to
a few millimeters. Molecular diffusion at these scales is rather fast, a typical
diffusion coefficient of Dm = 10−10 m2s−1 leads to typical times of a few
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hours, which is very short for most, but not all, processes of interest. However,
the issues discussed here are generic and not restricted to the transition from
the pore-scale and they become dominant in natural porous formation, soil
or aquifers, which typically exhibit heterogeneities at many scales.

4.2.5
Material Properties

The first step for solving a transport problem, e.g., for the far-field as de-
scribed by (4.53), is always to solve the underlying flow problem. This
may be as simple as stating a constant flux jw for stationary flow in a
saturated uniform medium or as complicated as calculating a multiphase
flow field, for a specific time, in a heterogeneous medium with transient
forcing. The solution of the flow problem yields the water flux jw and the
volumetric water content θ, both for the flow domain and for the time domain
of interest. The material properties with respect to transport relate these
macroscopic flow quantities to macroscopic transport quantities, for instance
to the effective velocity v and the effective dispersion tensor Deff in the far-
field approximation (4.53).

Predicting effective transport properties from “first principles”, from sta-
tistical properties of the pore-space geometry and the corresponding fluid
flow, is not yet feasible because these two aspects are not yet understood
quantitatively. The main reason for this is the pore-space geometry of natural
porous materials, which is much more complicated than what is handled by
current theoretical approaches. Coming next to the desire of first-principles
insight so far are numerical simulations of flow and transport processes that
operate on geometries that have been determined with appropriate micro-
tomography instruments.

For the time being, until some deeper understanding emanates, we will
follow a different, experiment-based approach. We will do this only after
looking into some of the popular parameterizations of effective transport
properties.

Effective Velocity Obtaining the effective velocity appears straightforward
at first sight,

v =
jw

θ
(4.54)

from (3.31), and we will mostly use exactly this equality. It is important to
notice, however, that in general not all of the water phase will contribute
uniformly to solute transport, as has been assumed for (4.49). An important
instance of this is the interaction between surface charges of the porous matrix
and ionic solutes. This may either lead to the exclusion of solute molecules
from the immediate neighborhood of the matrix surface, thereby to a lower
effective water content, and thus to a higher velocity than predicted by (4.54).
The converse effect is observed when solute molecule are attracted to the
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matrix surface. Another cause, often in association with the action of surface
charges, is filtration in very fine textured media where large molecules, ions
with large hydration shells, or large particles like viruses cannot enter fine
pores. In all these cases, the discrepancy arises from the volume fraction
relevant for flow being different from that for transport.

A still more interesting situation arises if different parts of the water phase
exhibit vastly different equilibration times with respect to transport. This
is for instance the case for a granular medium where the grains are porous
themselves or for interstitial water that is typical for unsaturated states. For
such situations (4.54) is the correct formulation for sufficiently long times
but it may be quite wrong for shorter times. Such systems will be studied in
greater detail in Section 7.1.5.

Molecular Diffusion Independent of any flow, molecular diffusion is al-
ways present as a dispersion processes. In contrast to diffusion in a pure
fluid, spreading in a porous medium is limited, however, which leads to a
reduction of the effective diffusion coefficient. A popular parameterization
are the Millington-Quirk models [Millington 1959; Millington and Quirk

1961]
Ddiff

eff

Dm
=
θ7/3

φ2
and

Ddiff
eff

Dm
=

θ

φ2/3
, (4.55)

where φ is the porosity and θ the volumetric water content. Notice that in
the original publications, expressions for θDeff as used in (4.49) are given.
Hence they differ by the factor θ from (4.55). Further notice that, while the
first model is used more often, Jin and Jury [1996] report that the second
one leads to a better agreement with experimental results. We emphasis that
(i) all these studies are aimed at diffusion of gases in porous media and that
the results are just transposed to the case of solute diffusion in the liquid
phase and (ii) there exist a number of further parameterizations all with
rather weak experimental support.

Hydrodynamic Dispersion For a natural porous medium, the pure disper-
sion regimes – molecular diffusion, diffusive mixing, and convective mixing
(hydromechanic dispersion) – are hardly ever found and we usually encounter
a convolute of all three of them. For any particular medium, the relative im-
portance of the different regimes will obviously depend on the mean velocity
since mixing in individual junctions will shift towards diffusive mixing as
the velocity decreases and hence the time for interaction increases. In the
unsaturated case, we further expect a strong dependence of dispersion on the
water content since interstitial water, which is separated from the main flow
by narrow films, will lead to a broadening of the velocity distribution.

Before looking into the more difficult issues, we notice that the dispersion
coefficient is a tensor since it relates two vector quantities to each other, the
concentration gradient ∇C and the dispersive solute flux jdisps . It reduces
to a scalar only in a one-dimensional setting. Intuitively, one may expect
Deff to be symmetric with one major axis in the direction of the mean flow,
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the longitudinal component, and the other two perpendicular, the transverse
components. In an isotropic medium, the two transverse components are
equal because of symmetry. A number of theoretical studies, most promi-
nently Bear [1961] and Scheidegger [1961], demonstrated that for the case of
pure hydromechanic dispersion in an isotropic medium, the ij-component of
Deff may indeed be written as

Dij = [λℓ − λt]
vivj
|v| + λt|v|δij , (4.56)

where λℓ and λt are the longitudinal and transverse dispersivity, respectively,
v is the mean velocity with components vi and vj in i- and j-direction,
respectively, and δij is Kronecker’s delta. Notice that (4.38) is retrieved as
a special case for the longitudinal dispersion. Bear [1972] conjectured that
this relation may be extended to arbitrary values of the Peclet number by
multiplying the right hand side with some function that depends on pe and
on the mean geometry of the flow channels.

Experimental Evidence Literally hundreds of experiments have been per-
formed to investigate Deff(pe) and the research is ongoing, particularly with
respect to multi-scale media. The common trait of these experiments is
to (i) apply a tracer, (ii) monitor its transport, and (iii) deduce effective
properties from these measurements. Details of course vary greatly.

Tracers These range from simple salts like CaCl2 or CaBr2 with the hy-
drated Cl− and Br− ion as tracers, through dyes like brilliant blue, to
instrument-specific probes like gadolinium(III) compounds for MRI (mag-
netic resonance imaging), and further to more exotic substances like quantum
dots or DNA markers. Such tracers are applied as highly localized impulses,
lines, sheets, or steps and they enter the porous medium either with the water
flux or are deposited as an initial concentration.

Monitoring In earlier times, monitoring was mostly as breakthrough curves
at the lower end of some lab column or at some point instrument [Pfannkuch
1963], occasionally also by sampling the medium a few times. Modern ap-
proaches aim at high-resolution measurements, simultaneously in space and
time, which became feasible with the availability of a range of tomographic
instruments, from X-ray to MRI, neutron imaging, or positron emission
tomography [Manz et al. 1999; Kandhai et al. 2002].

An example of such a method is PLIF (planar laser-induced fluorescence)
with index-matched solids and fluids [Stöhr 2003; Stöhr et al. 2003]. In this
approach, a porous medium is constructed with transparent grains – glass or
plexiglass beads – and the fluid is chosen such that it has exactly the same
refractive index as the solid. Such a medium is optically uniform and light
passes through it with minimal deflection. Hence, an optical tracer, e.g.,
some fluorescent substance, can be scanned by a laser sheet that illuminates
subsequent slices of the medium. Recording the emitted light with a high-
resolution camera yields quantitative three-dimensional tracer distributions
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Figure 4.7.
Concentration distribution of a dye tracer (Nile Red)
measured with PLIF in a 0.6 mm thick vertical cross-
section through a uniform isotropic porous medium.
The fluid phase (silicone oil) during this experiment
was immobile. At time t = 0, the tracer was injected
with a syringe and formed a plume of some 5 mm
diameter. We expect the concentration Cw in the
fluid phase to vary smoothly in space since molecular
diffusion rapidly equilibrates local differences. The
concentration measured with PLIF corresponds to Ct,
however, since it measures the intensity of fluores-
cent light emanating from a specific volume of porous
medium. Since an individual pixel is much smaller
than an REV, Ct at this resolution is a spatially highly
variable quantity and reflects the grains within the thin
visible slice. (Adapted from Figure 8.1 of Stöhr [2003])

with a sub-millimeter spatial resolution and a repetition interval of a few
seconds. An illustration of the result, for pure molecular diffusion in a porous
medium, is shown in Figure 4.7.

Deducing effective properties A still popular approach for estimating trans-
port properties is the method of moments, a particular form of which was
introduced with (4.26)–(4.27). It is typically replaced by fitting analytic
solutions of the particular transport problem if the data are not complete,
e.g., if only part of the breakthrough has been measured. Increasingly,
comprehensive numerical inversions are run where details of the experiments
can be accounted for that are not accessible to the more traditional methods,
i.e., by explicitly accounting for known structures or complicated hydraulic
regimes.

Experimental Results While several of the modern experimental variants
are capable to yield information on the full dispersion tensor, the majority
of the investigations so far focused on the longitudinal component Dℓ only.
Results are often expressed in terms of the microscopic Peclet number pe =
r0v/Dm, which was introduce with (4.15).

Experimental as well as numerical studies at the lab scale indicate that
Deff(pe) varies smoothly between the regime of very low values of pe, where
essentially molecular diffusion prevails, through the range of intermediate
values where Deff is often parameterized as proportional to peα with 1 <
α < 2 where both diffusive and convective mixing are relevant, and intimately
intermingled, to the final region of very large values, but still laminar flow,
where hydromechanic dispersion prevails. Detailed experiments indicate,
however, that even for the highest range of Peclet numbers, dispersion does
not become purely hydromechanic. There appear to be at least two reasons
for this discrepancy: As a first reason, high-resolution experiments show that
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Figure 4.8.
Transport of dye tracer (Nile
Red) through uniform porous
medium with constant flow
as seen in a vertical cross-
section obtained with PLIF.
At time t = 0, the tracer
was injected as a plume of
some 5 mm diameter. Notice
that (i) longitudinal dispersion
is significantly larger than
transversal and (ii) a weak but
long tail forms. The former is
already predicted by the tensor
(4.56), at least qualitatively,
while the latter will only be
understood with Section 7.1.5.
(Adapted from Figure 8.22 of
Stöhr [2003])
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a tracer pulse develops a weak but rather long tail on its way through the
porous medium as is illustrated in Figure 4.8. This is explained by tracer
particles that diffuse into less mobile regions, which are present in every
porous medium, at least as interstitial water next to the grain contacts. As
we will see in Section 7.1.5, this tail is expected to disappear eventually, on a
time scale that corresponds to the exchange time of the immobile region, and
the pulse will approach the expected Gaussian shape. Correspondingly, the
true value ofDeff will be larger than that estimated from the main pulse alone
and it will be reached on a time scale that is large compared to the time scale
on which the main pulse, without the tail, evolves into a Gaussian.

A second reason for the deviation from pure hydromechanic mixing is the
fact that molecular diffusion is very efficient over short distances. Hence even
where convective mixing prevails, diffusion across streamlines will increase
the mixing and lead to a stronger dependence on pe. This is illustrated in
Figure 4.9 which summarizes experimental results from lab scale experiments.
Apparently, they may be described by the heuristic power function

Deff/Dm = γ peα . (4.57)
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Figure 4.9.
Experimentally de-
termined relation
between longitudinal
dispersion coefficient
and Peclet number for
unconsolidated porous
media. The dashed line
is the heuristic function
(4.57) with γ = 0.8 and
α = 1.17. (“This work”
is Stöhr [2003]. The
figure was adapted from
his Figure 8.11.)

There are propositions to describe Deff as a sum of contributions from the
individual dispersion processes as Deff = γ0Dm+γ1pe+γ2pe

2+γ3pe log(pe),
where the last term stems from dispersion in the boundary layer adjacent to
the solid. We notice that such a model presumes that the individual processes
are independent, at least statistically.

Exercises

4.1 Driver for Macroscopic Solute Flux Consider a one-dimensional situation
where θ is piecewise constant but jumps at some point and let the water jw be
constant. Consider two configurations, (i) Cw = const and (ii) Ct = θCw = const,
calculate the divergence ∂xjs for purely convective transport, hence js = θvCw,
and discuss the result. [You may want to extend this to other cases with a known
explicit flux law, i.e., pure diffusion, near-field, and far-field.]
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Groundwater Flow

Groundwater encompasses the part of subsurface water that fills the pore
space completely. Formations that carry groundwater are separated into
aquifers, high permeability hydraulic conductors, and aquicludes, low per-
meability hydraulic isolators. There is no sharp boundary between aquifer
and aquiclude and sometimes even an intermediary formation is introduced,
the aquitard, whose permeability is intermediary between the two.

At a typical site, we find multi-story sequences of aquifers and aquicludes.
They originate from contrasting depositional regimes, for instance due to the
cycles of ice ages in the past million years, and often have been transformed
by various geologic processes. The Upper Rhein valley is an example of such
a structure (Figure 5.1). Its tectonic environment is a Graben between Black
Forest and Vosges which sank at a rate of 0.2. . . 0.9 mm y−1 for the past few
million years and continues to do so today. Rhein river continuously filled the
deepening Graben with sediment the texture of which varied greatly between
glacial and interglacial periods. Coarse textured material like gravel and sand
lead to aquifers while very fine textured material, mostly clay, evolved into
aquicludes. Part of these layers were eroded again after deposition which
led to windows, lenses, and partial layers. Later, differential sinking of the
Graben caused the formations to tilt and fracture, with large blocks slipping
past each other. All these processes contributed to the rather complicated
but typical architecture of this site.

The topmost parts of the subsurface typically belong to the soil water zone
where the pore space is filled with temporally and spatially varying fractions
of water and air. This is often referred to as vadose or unsaturated zone. Its
thickness varies greatly, from practically 0 in swamps to hundreds of meters
in arid regions. This zone is typically followed by the topmost aquifer, the
so-called phreatic aquifer. It is unconfined, which means that the water table
is free to move. The water table is define as the depth where ψm = 0, hence
the pressure in the water phase equals that of the atmosphere. The transition
between the vadose zone and the unconfined aquifer is the capillary fringe,
i.e., the zone where the matric potential is negative, ψm < 0, but the pore
space is already saturated with water, θ = φ (Figure 5.2). The position of the
water table may be read from a piezometer which is a tube that is open to
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Figure 5.1.
Sketch of a multi-story valley
aquifer as it may develop in a
tectonic Graben like the Rhein
valley. The groundwater
stories (blue) are separated by
aquicludes (brown) which may
be punctured by windows.
Height is exaggerated.

gravel-sand
sediments

river

bedrock

confined aquifer

unconfined aquifer
vadose zone

Figure 5.2.
Sketch of two-story groundwater system with piezome-
ters indicating water table of unconfined aquifer and
piezometric head (blue line) of confined aquifer. The
light blue region between the vadose zone and the
unconfined aquifer indicates the capillary fringe.

vadose zone

confined

aquifer 1

aquiclude

aquiclude
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the atmosphere on one end and to the aquifer that is measured on the other.
Notice that the capillary fringe is not captured by this instrument.

A confined aquifer is bounded by two aquicludes. Its thickness thus does
not change and it has no free water table. A piezometer shows a water level
that is above the lower end of the upper bounding aquiclude. This water
level corresponds to the so-called piezometric head which we easily associate
with the water potential and with the hydraulic head introduced with (3.20).
Notice that the piezometric head may be above ground level, in which case
one may drill a well from which water will flow freely. Such artesian wells are
found in many regions for instance in the Great Plains of North America, in
the Paris basin, and in the Great Artesian Basin of Australia.

5.1

Dynamics of Flow in Confined Aquifer

We consider a consolidated and confined aquifer. The dynamics of water flow
may be formulated by inserting (3.61) and (3.67) into (3.37) which yields the
groundwater equation

S∂tp−∇ ·
[
K[∇p− ρg]

]
= −γ , (5.1)
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where γ is the volume extraction rate, i.e., the volume of water extracted
per unit volume of aquifer and unit time. The extraction term accounts for
pumping wells, leaking pipes and the like.

We first consider the simple case of a uniform isotropic medium and
furthermore neglect gravity. With this, (5.1) simplifies to the diffusion equa-
tion

∂tp−Dp∇2p = − γ

S
, Dp :=

K

S
(5.2)

for the hydraulic pressure (see Section 4.1.1 for details on diffusion). Here,
Dp [L

2T−1] is the pressure diffusion coefficient which describes the spreading
of an initially localized pressure fluctuation with time.

The fact, that pressure in groundwater obeys a diffusion equation may at
first sight astonish. After all, we obtain a wave equation for the pressure in
a free fluid, a lake or the atmosphere. However, in porous media, with slow
flow described by Stokes’ equation (2.27), dissipation is so large that kinetic
energy cannot build up. Hence, energy cannot oscillate between kinetic and
potential form, which is the prerequisite for a wave.

5.1.1
Stationary Flow

Introducing dimensionless variables through the relaxation time τ of the
aquifer and the characteristic length ℓ together with the corresponding dif-
ferential operators – see (2.21) –, we write (5.1) as

1

τ
∂t′p−

K

ℓ2S
∇′ ·

[
K
′[∇′p− ℓρg]

]
= − γ

S
, (5.3)

where K = KK
′ with |K′| of order 1. Hence, we define the relaxation time of

the aquifer as

τ :=
ℓ2S

K
=

ℓ2

Dp
. (5.4)

Notice that for an external forcing on a time scale t ≫ τ , the flow becomes
stationary and (5.1) may be simplified to

∇ ·
[
K[∇p− ρg]

]
= γ . (5.5)

Example: A Typical Sandstone Aquifer In the example on page 73, we found
the storage coefficient S = 1.4 · 10−10 Pa−1. Assuming an isotropic permeability
k = 10−11 m2, which is a rather high value, and a flow domain of interest of
5 km, we find 55 m2s−1 for the coefficient of pressure diffusion and 5.3 days for
the relaxation time. The approximation of stationary flow – or, equivalently, of
incompressible media – is thus permissible if the time scale of external forcing
is much larger than a few days. Notice that τ becomes much larger in less
permeable or in more compressible formations and that it increases quadratically
with the extent of the flow domain.
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For isotropic and uniform media, (5.5) reduces to the Poisson equation

∇2p =
γ

K
(5.6)

and further to the Laplace equation

∇2p = 0 (5.7)

for a negligible extraction rate.

5.1.2
Large Aquifers

By their nature, aquifers are much more extended horizontally than vertically.
While a three-dimensional representation is necessary for local studies, for in-
stance near a pumping well or some contamination source, a two-dimensional
representation suffices for most regional studies. An example is the High
Plains aquifer in the USA which extends from 97◦W to 105◦W and from
32◦N to 43◦N between South Dakota and Texas and covers an area of some
200′000 km2. However, its thickness does not exceed 100 m for most of the
region although there are patches that are up to 400 m thick. The flow
domain is thus essentially two-dimensional and so is the flow field. Also with
less extreme ratios between horizontal and vertical dimensions, one often finds
that the vertical component of the driving force – the deviation−∂zp+ρg from
hydrostatic equilibrium – is negligible compared to the horizontal component
−∇hp, where ∇h = {∂x, ∂y} in Cartesian coordinates. Isosurfaces of the
water potential are then vertical and (5.1) may be reduced to

Sℓ∂tp− T∇2
hp = −Γ , (5.8)

where Sℓ, T, and Γ are the vertical integrals over the aquifer’s depth ℓ
of S, K, and γ, respectively. In the uniform medium considered here and
assuming that ℓ is constant, this just corresponds to a multiplication of all
the parameters with ℓ. The quantity T is called the transmissivity.

We mention that ℓ in general varies in space and thus turns the medium
into a heterogeneous one, even if it is uniform in a three-dimensional descrip-
tion.

5.2

Stationary Flow in Uniform Aquifer

A wide selection of solutions for different dimensions, boundary conditions,
and initial conditions is available for the Laplace as well as for the Poisson
equation. To some extent this is also the case for the more general form
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Figure 5.3.
Saturated thickness of
the High Plains aquifer.
[Figure 4 from McGuire
and Fischer [1999].]

(5.1). They originate not only from the groundwater literature but also
from electrostatic and heat flow problems [e.g., Bear 1972; Carslaw and

Jaeger 1990]. Furthermore, since the equations are linear, they are readily
solved directly by using Green’s functions, integral transforms, and finally
the principle of superposition.

5.2.1
Pumping Well in Regional Flow

We consider a horizontal unbounded aquifer of constant thickness and uni-
form isotropic properties. From a fully penetrating pumping well located at
x = 0 water is extracted at the constant specific rate γ (volume of water per
unit time and unit length of well screen). This leads to the two-dimensional
problem

K∇2
hp = γδ(x) , lim

|x|→∞
∇hp = A , p(r0) = p0 , (5.9)
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Figure 5.4.
Sketch for calculating the pressure field of a single
pumping well with radius r0. The red region is
excluded for the later calculation of the stream
function (Figure 5.5) such that ∇ · jw = 0 is
satisfied in the remainder.

r0 r

jw

x

y

where A is the hydraulic gradient far from the pumping well, the so-called
regional hydraulic gradient, and p0 is the pressure at the boundary of the
pumping well at distance r0 from the origin.

This problem is solved most easily by decomposing it into two parts:
uniform regional flow that satisfies

K∇2
hp = 0 , ∇hp = A , p(0) = 0 (5.10)

and flow towards a pumping well described by

K∇2
hp = γδ(x) , lim

|x|→∞
∇hp = 0 , p(r0) = p0 . (5.11)

Clearly, (5.9) is solved by the sum of solutions of (5.10) and (5.11), which is
an example of the principle of superposition for solutions of linear differential
equations.

Uniform Regional Flow The solution of the Laplace equation (5.10) is
p(x) = A · x.
Flow towards Single Pumping Well The second problem, (5.11), may be
approached by noticing that the flow through each circle around the pumping
well equals γ. Together with the radial symmetry we then obtain for arbitrary
radius r

γ = −2πrjw = 2πrK∂rp , (5.12)

where Darcy’s law was used for the second equality (Figure 5.4). Integration
from the well radius r0 to r then yields

p(r) = p0 +
γ

2πK
log

( r
r0

)
, (5.13)

where p0 is the pressure at r0. Notice that this solution has the pressure
increasing very slowly, but without bounds as r goes to infinity. This is a con-
sequence of our abstraction of reality: we did not account for recharge through
the vertically bounding aquicludes or through some horizontal boundary,
e.g., a river, which in reality would eventually supplement the water that
is pumped from the aquifer. Still, (5.12) is a reasonable approximation for
distances that are not too large.
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Figure 5.5.
Isobars (black lines) and stream function
(white lines) for a single pumping well
(blue dot) in an otherwise uniform
regional flow from the left to the
right. The capture region of the well
is represented by green hues and the
stagnation point, where the velocity
vanishes, by the black dot. Notice that
the jump in the streamfunction at y = 0
for x > 0 (red line) equals the flux that
is extracted by the pumping well.
Parameters are chosen to roughly corre-
spond to the case study in Section 5.6.
Specifically: K = 10−3 ms−1, A = 10−2,
γ = 0.0032 m3s−1.

Adding the two solutions finally yields for the solution of (5.9) in Cartesian
coordinates

p(x, y) = p0 −Ax+
γ

2πK
log

( r
r0

)
, (5.14)

where the hydraulic gradient is assumed to be anti-parallel to the x-axis and
r =

√
x2 + y2. The corresponding flux field may be visualized by the stream

function (Section A.1.4 in the appendix). To this end, we calculate the water
flux from Darcy’s law,

jw(x, y) =
{
AK − γx

2πr2
,− γy

2πr2

}
. (5.15)

The stream function ϕ is obtained by integrating dϕ = −jwy
dx + jwx

dy.
Recalling that it is only properly defined in regions where ∇ · jw = 0 we
choose a region of interest that excludes the pumping well proper and a
small region around the positive x-axis (red area in Figure 5.4). We finally
choose ϕ(−∞, 0) = 0 as reference for the stream function to obtain (Fig-
ure 5.5)

ϕ(x, y) =

∫ y

0

jwx
(−∞, η) dη −

∫ x

−∞

jwy
(ξ, y) dξ

= AKy − γ

2π
arctan

(y
x

)
+ γ

[
H(y)− 1

2

]
, (5.16)

where Heaviside’s unit step function H(y) compensates the discontinuity of
arctan(y/x) at y = 0 for negative values of x.

Looking at our solution for the pumping well in a uniform regional flow, we
find that the capture zone of the pumping well extends to infinity. Recalling
that the flow between two stream lines ϕ(x, y) = q1 and ϕ(x, y) = q2 equals
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q1 − q2 and using that the flow field far away from the well is not disturbed,
we obtain for the width ℓ of the capture zone far away from well

ℓ =
γ

AK
. (5.17)

Finally, we calculate the stagnation point, the location where the flux van-
ishes, from solving (5.15) for jwx

= 0 and obtain

xs =
γ

2πAK
=

ℓ

2π
. (5.18)

We notice in passing that the capture zone is of particular importance for
the quality of the groundwater pumped from a well since all contaminants
that are resident in this zone or released into it will eventually end up in the
extracted water.

5.2.2
Dipole Pumping in Regional Flow

By far the most common pumping wells are single extraction wells, or galleries
of them, for water production. However, for the remediation of contaminated
groundwater, dipole or eventually multi-pole pumping is more practical.
In such an arrangement, water is extracted from the aquifer, treated in
order to remove the contaminants, and returned to the aquifer at another
location. Pressure and flow fields of such set-ups can be easily composed
from the solutions derived in the previous example by using the principle of
superposition and (5.13) as a Green’s function for a single pumping well. In
this way, we write the pressure field that results from an extraction well at
(−x0, 0) and a recharge well at (x0, 0) as

p(x, y) = −Ax+
γ

2πK

[
log

(√[x+ x0]2 + y2

r0

)
− log

(√[x− x0]2 + y2

r0

)]
.

(5.19)
The corresponding stream function is

ϕ(x, y) = AKy − γ

2π

[
arctan

( y

x+ x0

)
− arctan

( y

x− x0

)]
. (5.20)

The orientation of the dipole with respect to the regional flow allows for
quite different operations (Figure 5.6). An orientation with the extraction
well upstream and the recharge well downstream would be most appropriate
for treating water from a diffuse contamination source that is located way
upstream within the capture zone of the extraction well. The converse orien-
tation would be most useful for treating water from a contamination source
located between the two wells. Notice that there exist closed streamlines in
the second case which ideally would encircle the source region.
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Figure 5.6. Isobars (black lines) and stream functions (white lines) for two
configurations of dipole pumping in a uniform regional flow from left to right with
extraction (blue dot) upstream and recharge (red dot) downstream or vice versa.
Notice that in contrast to Figure 5.5, color shading now represents pressure. The
red line again indicates a jump of the stream function by γ. Parameters are identical
to those for Figure 5.5.

5.3

Stationary Flow in Heterogeneous Aquifer

As discussed in Section 3.1.2, geologic formations are typically heterogeneous
at many scales. As a consequence, all macroscopic material properties, in
particular S, θ, and K, become functions of space. We only consider the
most simple case here and assume stationary flow, incompressible media,
and negligible extraction. Instead of the hydraulic potential ψw, we will
use the hydraulic head hw defined by (3.20). This turns Darcy’s law into
jw = −K

∗(x)∇hw, where
K
∗ = ρgK (5.21)

with dimension [LT−1] is still called the hydraulic conductivity. Indeed, we
will drop the superscript in favor of a more parsimonious notation. The
dimension of K is always clear from the context anyway. Notice, however,
that the numerical values of K and K

∗ differ by some four orders of magnitude.
With this convention, (5.5) becomes

∇ ·
[
K(x)∇hw

]
= 0 . (5.22)

We emphasize that (5.22) implies boundary conditions that vary slowly with
respect to the relaxation time (5.4).

With the exception of some special cases, (5.22) cannot be solved exactly
and we have to get by either with numerical solutions or with analytical
approximations. Since analytical approximations are based on rather strong
assumptions like macroscopic uniformity and finite correlation length of K(x)
we will generally employ numerical solvers in the following.
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Figure 5.7. Histograms of permeability k (left) and of log10(k) (right) at the
Borden site [Woodbury and Sudicky 1991]. The range is chosen from the minimal
to the maximal value measured. (Data courtesy of E. A. Sudicky)

5.3.1
A Field Study: The Borden Site

There are only a few sites for which a sufficient number of high quality mea-
surements are available such that a faithful two- or even three-dimensional
representation of the hydraulic structure can be constructed. The reason
for this is the high cost for the individual measurement and the “curse of
dimensions”: 103 measurements, for instance, provide an excellent descrip-
tion for a one-dimensional structure, but they are quite insufficient for a
three-dimensional representation. One of the sites with detailed information
is at the Canadian Forces base near Borden, Ontario. The sandy aquifer
underlying it is today considered as a rather uniform formation. It was used
as the test bed for many experimental, numerical, and theoretical approaches
to subsurface flow and transport.

Hydraulic Structure The hydraulic conductivity field was sampled with a
total of 32 cores that were extracted from two orthogonal vertical transects
from the depth interval of about 2.5. . . 4.5 m below ground. The cores were
separated by 1 m in the horizontal and after extraction were cut into 0.05 m
slices. Theses samples were dried and repacked to a porosity of 0.34 before
the hydraulic conductivity was measured using a falling head procedure (see
Exercise 5.1 for this method). The histogram of permeability k calculated
from a total of 1188 conductivity measurements from two orthogonal vertical
transects is shown in Figure 5.7 together with the histogram of log10(k).
The distribution is rather broad and in particular includes some very low
values as is apparent from log10(k). They correspond to thin lenses of
silty fine-grained sand. The spatial distribution of k in the two transects
is represented in Figure 5.8. A geostatistical analysis of log(k) under the
premise of stationarity yields for the correlation lengths in transect AA’ 5.1 m
horizontally and 0.21 m vertically. The corresponding values for transect
BB’ are 8.3 m and 0.34 m [Woodbury and Sudicky 1991]. The differences
between the two transects, which are statistically significant, illustrate the
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Figure 5.8. Spatial distribution of permeability k in two orthogonal vertical
transects at the Borden site [Sudicky 1986]. The dashed lines indicate the
intersection of the transects. The histogram of the distribution is shown in
Figure 5.7. (Data courtesy of E. A. Sudicky)

difficulty in obtaining a reliable three-dimensional representation of the sub-
surface.

We notice that the measured fields are not stationary. Transect AA’ has
a considerably higher permeability in the left half than in the right one and
there is a region with particularly high permeability in the lower left part.
Looking at transect BB’, one may hypothesize that this high-permeability
zone corresponds to an extended layer that dips gently in AA’-direction. This
site serves as a further example for the hierarchical heterogeneity of geologic
formations and indicates that statistical properties like the correlation lengths
given above are of local significance, at best.

Stationary Flow The measured permeability field is an essential prerequi-
site for solving (5.22) for the hydraulic head hw. With Darcy’s law, this in
turn yields the flow field jw. Attempting to get such a solution, we encounter
three major obstacles: (i) the permeability field is only known in two tran-
sects, not in three dimensions, (ii) the boundary conditions are not known,
and (iii) only one component of the permeability tensor has been measured.
Such limitations are typical for most real applications and demand sometimes
severe modeling assumptions which hopefully preserve the character of the
solution but almost certainly destroys quantitative details.

To get an impression of the flow field, we assume two-dimensional sta-
tionary flow in the vertical transect AA’ (Figure 5.8). The flow is driven
by a constant horizontal hydraulic gradient and the region is assumed to
be bounded by impermeable layers above and below. Finally, permeability
is assumed to be isotropic. Figure 5.9 shows the result of the numerical
simulation of this model.

As expected, the flow field is not uniform: The high-permeability region
in the lower part of the flow domain carries a larger fraction of the flow. In
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Figure 5.9. Simulated two-dimensional flow at the Borden site assuming
impermeable upper and lower boundaries and a constant regional hydraulic gradient
leading to a head difference between the left and right boundary of 1 m. The colors
and the nearly vertical contour lines represent the hydraulic head. The flow field
is indicated by arrows whose length and thickness are proportional to jw at their
tail point and by a few stream lines. Notice that the vertical axis is exaggerated,
hence streamlines and lines of constant potential do not appear to be orthogonal
even though they are in reality.

contrast, the hydraulic head is rather uniform vertically and is dominated by
the horizontal gradient. This result nicely illustrates the previously discussed
approximation of horizontal flow in large aquifers with hydraulic conductivity
replaced by its vertical integral, the transmissivity T. Such an approximation
corresponds to vertical isoplanes of hw with the mean conductivity between
two sufficiently near planes equal to the arithmetic mean of K. In the
lower part of Figure 5.9, the vertically averaged hydraulic head of the real
transect (black solid curve) is plotted together with the hydraulic head of the
corresponding vertically uniform medium (red dashed line). The two curves
are hardly distinguishable, thus reinforcing the hydraulic equivalence of the
heterogeneous and of the corresponding vertically uniform transect.

Finally, we compare the actual hydraulic gradient with the regional one,
which is represented by the dashed black line in the lower part of Figure 5.9.
As expected, the higher permeability of the left half of the transect leads
to an average hydraulic gradient that is smaller than the regional one and
conversely in the right half.

We emphasize again that due to the severe assumptions concerning the
hydraulic structure (two-dimensional) and the boundary conditions, the flow
field obtained in this simulation is only a rough model of the true flow field
at the Borden site.
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5.4

Simulated Single-Scale Media

To circumvent the experimental limitations, we consider simulated hydraulic
structures which may be of almost arbitrary size and resolution. Specifically,
we consider stationary flow through a thin horizontal aquifer of constant
thickness whose conductivity field is stationary, isotropic, and characterized
by a single scale. In order to minimize the effort for calculating and analyzing
the flow field, we are content with a two-dimensional representation. Our
aim is to study, for a given spatial structure, the impact of an increasing
magnitude of the hydraulic variability.

5.4.1
Hydraulic Structure

As a guide to the construction of the medium, we imagine an unconsolidated
sandy formation where the relative grain size distribution is the same at
everywhere but where the mean grain size r varies in space isotropically and
with a characteristic scale. Notice that a consequence of this is a constant
porosity. However, since r is a characteristic scale for the pore space, the
hydraulic conductivity varies proportionally to r2. Such a model might be
considered as the most simple representation of an aquifer that originated
from some large flood plain.

We represent K(x) as a realization of some weakly stationary random
function which is characterized by its probability distribution and by its
autocovariance function. We choose K(x) to be distributed lognormally,
hence Y = log(K) is distributed normally with mean µY and variance σ2

Y ,
and the autocovariance function to be isotropic and Gaussian with correlation
length ℓY . The magnitude of the spatial variability is thus given by the
variance σ2

Y . A realization with the prescribed spatial properties is gener-
ated with the Fourier method based on the Wiener-Khinchin theorem (see
Appendix on page 301f). It is then transformed linearly such that it has the
desired mean and variance. An issue that arises immediately concerns the
mean which could be chosen such that the arithmetic mean of K or of log(K)
remains constant as the variance changes, or, alternatively, that the mean
flow through the medium remains invariant. We chose log10(K) to remain
constant, which is easy to guarantee. Three fields were then generated such
the variance of log10(K) increases by a factor of 5. The resulting distribution
of log10(K) is shown in Figure 5.10. Notice that already in the field with the
smallest variance, the range of K is about an order of magnitude larger than
in the AA’-transect at the Borden site. In the field with the largest variance,
K covers a range of 14 orders of magnitude. Some further parameters are
given in Table 5.1.

The realization generated originally was a periodic square with side length
204.7 m, 2048 nodes with a distance of 0.1 m. For the simulations, a region
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Figure 5.10.
Probability distribution functions of
log10(K) used for the simulations.
Some parameters of the distributions
are given in Table 5.1.
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of 102.3 m×51.1 m was cut from the center in order to avoid artifacts from
periodic structures. A small section of such a field is shown in Figure 5.11.
As expected, log(K(x)) is very smooth since it is a realization of a Gaussian
random function which are almost always infinitely continuously differen-
tiable. Further notice that for this type of random field, extreme values (red
and blue) are always isolated whereas average values (green) form continuous
regions. This may be a reasonable structure for some natural formations like
a sand bedding, for instance. Others, most prominently crack networks, will
show different characteristics, however.

Table 5.1. Some parameters of the hydraulic conductivity distributions used in
the simulations. K is given in m s−1. For comparison, the variance of log10(K) in
the Borden AA’-transect is 0.07.

parameter field 1 field 2 field 3

correlation length ℓY [m] 1.0

arithmetic mean of log10(K) −4
variance of log10(K) 0.15 0.75 3.77

arithmetic mean of K 1.4 · 10−4 6.3 · 10−4 3.4 · 10−1

geometric mean of K 6.3 · 10−4 1.2 · 10−5 2.3 · 10−8

lowest value of K 4.4 · 10−6 9.6 · 10−8 1.8 · 10−11

highest value of K 2.6 · 10−3 1.5 · 10−1 1.2 · 10+3
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5.4.2
Simulation of Stationary Flow

We assume the flow to be driven from east to west by a constant average
hydraulic gradient. As already found in previous sections, prescribing the
exact boundary conditions for a heterogeneous structure is difficult unless
they are implied by the setting of the flow domain, i.e., by real imper-
meable layers which naturally lead to no-flow boundaries or by constant
level hydraulic reservoirs like rivers and lakes which lead to constant head
boundaries. For numerical studies, on the other hand, we are free to choose
the boundary conditions with the sole condition that they do not significantly
influence the flow features of interest. Two avenues are typically chosen:
(i) the flow domain is fully periodic, which essentially removes all boundaries
but may introduce unwanted symmetries, or (ii) a sufficiently small section
is cut from a larger domain such that details of the boundaries are not
significant anymore. In the following, we choose the second avenue, prescribe
constant hydraulic heads across the east and west boundaries to obtain an
average hydraulic gradient of about 0.01, and prescribe the north and south
boundaries as impermeable. Finally, we cut a 51.1 m×25.5 m section from
the center of the simulated domain for further inspection.

Figure 5.12 shows the hydraulic heads and the flow fields for the three
conductivity fields characterized in Table 5.1. We notice, as expected, that
with increasing magnitude of the conductivity field, (i) the hydraulic head
begins to deviate from its mean value which is a plane surface defined by
the average hydraulic gradient and (ii) the range of local fluxes increases
strongly. More interestingly, we find that with increasing variability the flow
becomes ever more localized in a few stream channels. While water fluxes
higher than average occur in some 42% of the area in the field with the lowest
variability, this reduces to some 23% in the high-variability field (Table 5.2).
Correspondingly, the fluxes in these regions are relatively higher: some 5%
of the area in the high-variability field carry a water flux that is by more
than a factor of 5 larger than the average while in the low-variability field,
such high fluxes do not exist at all. At the other end, in some 17% of the
area in the high-variability field, water fluxes are more than two orders of

Table 5.2. Some characteristics of the flow fields shown in Figure 5.12. The
effective hydraulic conductivityKeff is obtained from (5.24). The spatially averaged
flux is jw.

parameter field 1 field 2 field 3

area fraction with jw/jw > 1 0.42 0.34 0.23
area fraction with jw/jw < 10−2 0.00 0.00 0.17
area fraction with jw/jw > 5 0.00 0.01 0.05
log10(Keff) −4.00 −3.99 −3.92
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Figure 5.12. Flow in macroscopically uniform media with different degrees of
small-scale heterogeneity expressed by the variance of log10(K) with is 0.15 (top),
0.75 (middle), and 3.77 (bottom) for K given in m s−1. Some further parameters of
the conductivity fields are given in Table 5.1. The left column shows the hydraulic
head hw [m] and the right column shows log10(jw) with jw [m s−1] the absolute
value of the water flux. Equidistant stream lines are shown in black. Notice that
the color scale is the same for the hydraulic head in all three cases, but that it is
different for the flux fields.

magnitude lower than the average, hence some 17% of the water can safely
be denoted as immobile. Again, such immobile water does not exist in the
low-variability field. Of particular interest is the spatial arrangement of low-
and high-flux zones. As Figure 5.13 shows, low-flux regions tend to form
isolated and rather isotropic patches. In contrast, high-flux regions occur as
narrow, elongated channels roughly oriented along the mean flow direction.
As we will find later, this has important implications for the transport of
dissolved substances.

5.4.3
Effective Hydraulic Conductivity

Often, the details of the flow field are not of interest and an approximate
coarse-grained description suffices. Since the dynamics of the water flow is
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Figure 5.13.
High-flux regions with jw > 5jw
(blue) and low-flux regions with jw <
10−2jw (red) for the simulations with
var(log10(K)) of 0.75 (top) and 3.77
(bottom). The flow fields are shown
in Figure 5.12. There exist no high- or
low-flux regions with the given bounds
for the field with var(log10(K)) = 0.15.

linear and flow is assumed to be stationary, we expect to recover Darcy’s
law also at the correspondingly larger scale. Recall (5.4), however, which
shows that stationarity becomes an ever more restricting requirement because
equilibration time increases quadratically with scale.

At the new macroscopic scale, which is large compared to the scale of the
microscopic heterogeneities, we write Darcy’s law as

jw = −Keff∇hw , (5.23)

where Keff is a new material property, called the effective hydraulic con-

ductivity . Recall that “macroscopic” and “microscopic” do not refer to a
particular size but rather indicate the scale of our current interest and a scale
that we wish to absorb into appropriate material properties, respectively.
Typical choices for soil physics are 0.1 m for the microscale, the size of
typical soil samples to be analyzed in the lab, and 10. . . 1’000 m for the
macroscale. Clearly, Keff will depend on the microscopic conductivity K,
which in turn depends on the fluid’s viscosity and on the form of the pore
space as represented in the permeability. In addition, Keff will also depend
on the spatial structure of K(x). A large effort went into the definition of
Keff and into its calculation from K(x) [Renard and de Marsily 1997]. In
the following, we will illuminate only a few issues that are pertinent to our
numerical example.

Coming back to (5.23), we notice that jw and hw are macroscopic quantities
different from the microscopic quantities jµw and hµw represented for instance in

Figure 5.12. It is natural to define jw = j
µ
w and hw = hµw as spatial averages

over the respective microscopic quantities. This allows us to calculate the
effective hydraulic conductivity for the flow fields shown in Figure 5.12. To
simplify matters, we recall that both, the microscopic conductivity and its
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spatial distribution were assumed to be isotropic. Hence, we also expect Keff

to be isotropic and define it as

Keff := − jwx

dxhw
, (5.24)

where dxhw is the macroscopic hydraulic gradient that is given by the bound-
ary conditions. The simulations of the three conductivity fields all yielded a
value for Keff of about 10−4 ms−1 (Table 5.2).

Interestingly, we find log10(Keff) ≈ log10(K(x)), which is a rather simple
rule for calculating the effective hydraulic conductivity from the microscopic
conductivity field K(x). Indeed, this relation is not accidental. Expanding
the divergence in (5.22) and dividing by K yields

∇2hµw +∇Y µ · ∇hµw = 0 , (5.25)

where Y µ = log(K) and the superscript µ indicates microscopic quantities.
Assuming ∇Y µ and ∇hµw to be uncorrelated, spatial averaging of (5.25) leads
to

∇2hµw +∇Y µ · ∇hµw = 0 . (5.26)

If the spatial averaging is done over an REV with constant shape, averaging
and differentiation may be exchanged which finally produces

∇2hw +∇Y µ · ∇hw = 0 , (5.27)

where hw is now a macroscopic quantity. This shows that two macroscopically
uniform fields will have the same effective hydraulic properties provided that
the arithmetic mean of their (microscopic) log(K)-fields are identical. This
implies that (i) with increasing heterogeneity, i.e., with increasing variance of
K, the mean hydraulic conductivity K must increase in order to retain the
same effective properties and (ii) the autocorrelation function is immaterial
for the effective hydraulic properties.

The crucial assumption in deducing (5.27) is that ∇Y µ and ∇hµw are
uncorrelated. However, our result

Keff = exp
(
log(K(x))

)
(5.28)

can also be deduced rigorously for the case of macroscopically uniform flow
in an isotropic, two-dimensional, and lognormal conductivity field with finite
correlation length [Renard and de Marsily 1997, eq. (33)].

Indeed, (5.28) is one of the few exact results from studying effective prop-
erties. Most other results are either conjectures or low-order approximations,
typically low-order in σ2

log(K). The most important conjecture, in hydrology

referred to as Matheron’s conjecture, states that (5.28) is a special case of
the d-dimensional relation

Keff = exp
(
log(K)

)
exp

(
σ2
log(K)

[1
2
− 1

d

])
. (5.29)
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Figure 5.14.
Range of water content in vadose zone (red) and uncon-
fined aquifer (blue). In this example, the surface zone is
decoupled from the aquifer. Water content in the surface
zone changes according to rainfall and evapotranspiration
(see Chapter 6). The groundwater table varies with the
regional flow. The water content between the two regions
is determined by the hydraulic conductivity and by the
mean groundwater recharge rate.

This has been found to be valid in a number of empirical, mostly numerical,
studies. There exist a number of further conjectures that in particular
account for anisotropy of the conductivity field. However, even for the case
of macroscopically uniform flow in a stationary conductivity field with a
finite scale, there currently exists no unified method to calculate the effective
hydraulic conductivity from a few characterizing quantities of the microscopic
conductivity field. The situation becomes even more complicated for non-
uniform flow, most importantly near pumping wells, and for hierarchical
media where the scale of the microscopic conductivity field is no more small
compared to the macroscopic scale. In such cases, the detailed representation
of the conductivity field and the numerical solution of the flow equations is
required.

5.5
Dynamics of Flow in Unconfined Aquifer

In general, an unconfined aquifer is strongly coupled with the vadose zone
and the two cannot be separated. Comprehensive understanding of such a
coupled system thus has to await Chapter 6. However, for the special case
of a very deep vadose zone the unconfined aquifer may be considered as an
entity of its own. This situation is illustrated in Figure 5.14. The thickness
required for a vadose zone to qualify as “deep” depends on its soil hydraulic
properties and on the statistics of the atmospheric forcing. This will only
become clearer in Section 6.3.5.

We first notice that compressibility can be neglected in an unconfined
aquifer as it is typically rather shallow with correspondingly low pressures.
Hence, the flow can be described with the stationary approximation (5.5).
However, the situation is much more complicated than for a confined aquifer
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Figure 5.15.
Definition sketch for flow in unconfined aquifer
with groundwater table ζ(xh). Notice that
here xh is a horizontal vector.
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because now the upper boundary is moving since the water table itself adjusts
to a changing pressure, not just the piezometric head.

We approach the problem in its most simple form and consider a shallow
unconfined aquifer in a horizontally extended uniform geologic formation
that is bound by a horizontal aquiclude at depth z = 0. The hydraulic
conductivity K shall be such that one of its major axes is parallel to the
vertical axis. We denote the depth of the water table by ζ(xh) < 0, with the
vertical axis pointing downwards (Figure 5.15).

The conservation of volume may be written as ∂tθ + ∇ · j = −γ, where
γ is the volume extraction rate. We separate all quantities of interest into
their horizontal and vertical components, hence x = (xh, z), j = (jh, jz), and
∇ = (∇h, ∂z). Integrating over the depth of the aquifer then yields for the
conservation of volume

∂t

∫ 0

ζ(xh,t)

θe dz +∇h ·
∫ 0

ζ(xh,t)

jh dz

︸ ︷︷ ︸
=:q

= jz(ζ(xh, t))−
∫ 0

ζ(xh,t)

γ dz

︸ ︷︷ ︸
=:−Γ

, (5.30)

where θe in the first term accounts for the fact that the pore space above the
groundwater table is not completely empty (see Figure 5.14) and where the
flux through the upper boundary, the groundwater recharge from the vadose
zone, is summarized into the extraction rate. Notice that the bound water
above the water table remains constant in time and thus need not be included
in (5.30). Since the formation is uniform, θe thus constant, we obtain

−θe∂tζ +∇h · q = −Γ , (5.31)

where the arguments of ζ have been dropped for clarity.

Next, we invoke Darcy’s law for the horizontal flow q. Since a major axis
of K is parallel to z, K may also be separated into a horizontal part Kh and
the vertical component Kz. The horizontal flux then becomes jh = −Kh∇hp,
hence

q = −
∫ 0

ζ

Kh∇hp dz . (5.32)

For a uniform medium, Kh is constant. We further assume that the ver-
tical velocity is negligible compared to the horizontal one, hence assume
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hydrostatic equilibrium. This is the Dupuit assumption. Then, (5.32) yields

q = −Kh

∫ 0

ζ

∇hp dz = −ρgKh
∫ 0

ζ

∇h[z − ζ(xh, t)] dz = ρgKhζ∇hζ

=
1

2
ρgKh∇hζ

2 . (5.33)

Inserting this in (5.31), we finally obtain for the dynamics of water flow in
an unconfined aquifer

−θe∂tζ +
ρg

2
∇h ·

[
Kh∇hζ

2
]
= −Γ . (5.34)

We notice that in contrast to the groundwater equation (5.1), water flow
now obeys a nonlinear equation. A very similar situation will be encountered
for flow in the vadose zone except that there the nonlinearity is very much
stronger.

We comment that sometimes the second to the last term in (5.33) is written
with the horizontal transmissivity as ρgTh∇hζ and further

−θe∂tζ + ρg∇h ·
[
Th∇hζ

]
= −Γ (5.35)

instead of (5.34). Obviously, this formulation is deceiving: the dynamics
appears to be linear while in fact it is nonlinear because Th is proportional
to ζ.

5.6

Case Study: Groundwater in Rhein-Neckar Region

Up to now, we have considered artificially constructed media or, in the case of
the Borden site, rather well-defined situations. Most problems are much more
involved, however, because the subsurface architecture is highly irregular,
water flow is forced by a multitude of processes, and, most importantly, the
underlying database is notoriously thin.

As an illustrative example, we choose the densely populated and heavily in-
dustrialized Rhein-Neckar region located in Germany at 49◦N 8◦E. Dominant
consumers of water are the cities of Mannheim and Ludwigshafen in the urban
sector and the large BASF plant in the industrial sector. The hydrogeology
of the region is characterized by multistory sedimentary aquifers as sketched
in Figure 5.1. The topmost of these aquifers contains literally hundreds of
wells, both for pumping and for observation. Surface features include the
Rhein river, two ancient meanders, and several gravel pit lakes. Hence the
natural setting as well as the human impact on the water resources are rather
complicated but typical for many other sites.
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Figure 5.16. Schematic of hydrogeologic architecture and water flow. The
aquifers mainly consist of sand and gravel (light gray) while the aquitards are
made up of clay and silt (dark gray). There exist a few “windows” in the topmost
aquitard (medium gray). They are composed of fine sand and silt and are thus much
more permeable. The thickness of the hydrogeologic units varies considerably; the
range is given in parenthesis. Notice that the vertical scale is greatly exaggerated:
horizontal distances are of order 10 km. The components of the water flows are
given in units of 103 m3d−1. They are aggregated from the numerical simulation
which yields spatially resolved flows. [Redrawn after Wollschläger 2003]

Wollschläger [2003] studied groundwater flow in a 10 by 16 km subregion
in great detail and built a corresponding numerical model. She focused on
the two topmost aquifers which are the major suppliers of groundwater. Her
findings form the basis for this section.

Prerequisites for a groundwater model are (i) the hydraulic structure of the
subsurface, in particular porosity φ(x) and conductivity K(x), and (ii) the
external forcing of the flow, i.e., boundary conditions and extraction rates.
As we will also find for our case, these data are hardly ever available at a
resolution and quality required for a faithful groundwater model. Almost
invariably, the model must be calibrated, i.e., the parameter fields are ad-
justed, within the range permitted by the hydrogeologic constraints, such
that an optimal agreement between modeled and measured quantities is
obtained. Such quantities are typically hydraulic heads at the locations of
the observation wells.

5.6.1
Groundwater Model

A rough schematic of pertinent hydrogeologic formations is shown in Fig-
ure 5.16. The topmost unconfined aquifer 1 is separated from the deeper
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Figure 5.17. Absolute positions of the lower boundaries of (A) aquifer 1, (B)
aquitard 1, and (C) aquifer 2 in meters above sea level. [From Wollschläger 2003]

aquifer 2 by the leaky aquitard 1, where “leaky” here means that the clay-
silt formation is punctured by more permeable sand-silt windows which link
the two aquifers. Still the links are sufficiently weak to make aquifer 2
confined.

Water flow in aquifer 1 is driven by groundwater recharge from precip-
itation, by flow from adjacent regions, by exchange with Rhein river, and
by pumping. Anticipating the results of the simulation, the major effect
of pumping is actually indirect in that water from aquifer 1 is sucked into
aquifer 2 because of the large groundwater abstraction there.

Hydrogeologic Model The subsurface architecture is of course much more
complicated than indicated by Figure 5.16. It formed through complicated
tectonic and sedimentary processes that started some 45 million years ago.
Sedimentation was determined by climate, which changed drastically through
the cycle of ice ages, and by the course of the river which meandered through-
out the valley. With a high water flow and the river nearby coarse sand
and gravel material was sedimented whereas with low water flow and great
distance to the river fine silt and clay layers were generated. Ongoing tectonic
movements include the sinking of the Graben with 0.2. . . 0.9 mmy−1 which
is the origin of the sedimentation. The Graben sinks somewhat faster in
the East. This leads to a corresponding dipping of the originally horizontal
sedimentary layers. Figure 5.17 gives a more detailed representation of the
subsurface structure. It reveals that the large-scale features were modified by
a number of smaller-scale processes like local meandering and flooding. For
instance, the bottom of aquifer 1, (A), hints at a broad river valley with insu-
lar elements. A still closer view, as it is provided by core drillings, yields even
more details of the intricate multiscale structure (Figure 5.18). Apparently,
the various aquifers and aquitards are not uniform entities but represent
aggregated abstractions. Taking aquitard 1 as an example (Figure 5.19), we
indeed find a highly variable thickness that ranges between some 40 m and
less than 5 m, and a variable facies composition.
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Figure 5.18. Hydrogeologic cross-section through part of Rhein valley located
in the lower third of Figure 5.17. The stratigraphy obtained from the core drillings
reveals the substructure of the large hydrogeologic units. OGWL corresponds to
aquifer 1 in Figure 5.16, OZH to aquitard 1, and MGWL to aquifer 2. [Extracted
from cross-section Q3 of HGK 1999]

Figure 5.19. Thickness of aquitard 1 (A) and distribution of facies (B). The
black areas show some gravel pit lakes. [From Wollschläger 2003]

Once the shape of the various hydrogeologic units is known, their hydraulic
properties are desired. These depend on the material, specifically its texture
and mineral composition, and on its alteration since the time of deposition,
in particular its consolidation by the increasing load of overlaying material.
Again expected, the hydraulic properties vary significantly within any hydro-
geologic unit and estimates based on the facies alone are very imprecise. More
accurate values are obtained from pumping tests, more than 500 of which
have been performed in the Rhein-Neckar region. Based on their results,
maps of storage coefficient S and hydraulic conductivity K are constructed
and collected into hydrogeologic maps [HGK 1999]. The ranges of these fields
for the three topmost hydrogeologic units are given in Table 5.3. Looking
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at the values, first notice that they are given in units of m−1 and m s−1,
respectively. This corresponds to writing (5.1) in terms of hydraulic head
h = p/[ρwg] instead of p. Next, we realize that the storage coefficient of
aquifer 1 is some 5 orders of magnitude larger than that of aquifer 2. This
reflects the difference between an unconfined and a confined aquifer. Finally,
the conductivity of the aquitard is some 6 orders of magnitude lower than
that of the aquifers, except for the “windows” where the ratio is only some
3 orders of magnitude. Obviously, the location and the exact value for the
conductivity of these “windows” is crucial for a faithful description of the
coupling between the two aquifers.

External Forcing Water flow is forced by a multitude of processes which
are, naturally, most diverse for the topmost aquifer. They include (i) horizon-
tal fluxes across the vertical boundaries from parts of the aquifer beyond the
domain of interest, (ii) groundwater recharge from infiltrating precipitation,
(iii) exchange with surface waters like rivers and lakes, and (iv) water ab-
straction wells. Mathematically, these forcings enter the model as boundary
conditions for the groundwater equation (5.1) and as extraction term γ,
respectively. Hence, their accurate representation is a prerequisite for reliable
simulations.

All the forcings are very difficult to quantify, although for quite different
reasons: (i) Fluxes across vertical boundaries clearly depend on the dynamics
beyond our region of interest and are thus a priori unknown. A practical
remedy is to measure the hydraulic head along the boundary – fluxes are next
to impossible to measure – and to prescribe them as boundary condition in
the solution of (5.1). (ii) Precipitation is comparatively simple to measure
and data are available at reasonable spatial resolution from weather services.
However, a significant fraction of the precipitation does not contribute to
groundwater recharge but runs off from the surface, directly evaporates from
the soil, or transpires through plants. This fraction depends in a complicated
way on many factors including soil type and vegetation, actual weather and
its history over the past week to months, surface morphology, and depth of
groundwater table. Figure 5.20 shows the estimated mean annual recharge
for the Rhein-Neckar region. Low and even negative recharge rates are found

Table 5.3. Ranges for storage coefficient S∗ = ρwgS and hydraulic conductivity
K∗ = ρwgK of topmost hydrogeologic units in Rhein-Neckar region. In addition,
the coefficient Dp of pressure diffusion is given for which we assume that K and S
are strongly correlated. [From HGK 1999; Wollschläger 2003]

storage coefficient S∗ conductivity K∗ Dp = K/S
[m−1] [10−3 ms−1] [m2s−1]

aquifer 1 0.09. . . 0.21 0.7. . . 1.4 0.007. . . 0.008
aquitard 1 0.000001. . . 0.001
aquifer 2 10−6. . . 10−5 0.1. . . 0.3 30. . . 100
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Figure 5.20.
Estimated mean annual ground-
water recharge in Rhein-Neckar
region. Notice that recharge is
very different from precipitation
which is rather uniform across this
region. [From Wollschläger 2003]
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in the Eastern, dominantly urban part, where precipitation is collected by
the sewer system, in the wetlands of the old Rhein bayou, and around the
gravel pit lakes. Positive recharge results from the elevated terraces with
a dominantly rural character. (iii) Quantifying the exchange with surface
waters may at first appear to be rather simple since the hydraulic conductivity
is obtained easily. However, the water bodies are typically separated from
the groundwater by a fine-textured sediment layer whose properties are little
known, but expected to be highly variable in space. (iv) Also the extraction
rate at the various production wells would appear to be well-known. While
this is indeed the case, the major difficulty is that these data tend to be
considered as sensitive information by the operators, industrial complexes
and water producers.

5.6.2
Model Calibration

Ideally, the hydraulic parameter fields S(x) and K(x) of a groundwater model
are specified based on maps which delineate the hydrogeologic units and a
set of pumping tests which provide the values of S and K for these units.
Obviously, the situation is much more complicated in reality: We already
found with Figure 5.18 that such units are not uniform and discussed the
multiscale heterogeneity of the subsurface in Chapter 3 above. This is further
exacerbated by the high cost of an individual measurement which requires
at least one and typically several wells. Consequently, the parameter fields
are notoriously ill-defined and simulations based solely on them are typically
unable to capture the hydraulic dynamics quantitatively.
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Figure 5.21. Measured hydraulic heads in aquifers 1 (left) and 2 (right). Large-
scale depressions result from the strong abstraction of groundwater either directly
or, as in the case of the “Maudacher depression”, indirectly through the link with
another aquifer. [From Wollschläger 2003]

In general, there is much more information available than the hydroge-
ologic maps, however. These are in particular the hydraulic heads which
are monitored routinely at a number of observation wells, or the levels of
lakes and rivers. Figure 5.21 shows an example of such data: contour lines
interpolated from measured hydraulic heads in aquifers 1 and 2 in the Rhein-
Neckar region. In order to use such data, a groundwater model must be
available in the first place. It will obviously be based on the a priori available
hydrogeologic data. Elements of such a model for the two topmost aquifers of
the Rhein-Neckar region are shown in Figure 5.22. Here, we only look at the
case of stationary flow as it is for instance of interest for sustainability studies.
Simulating the flow thus entails solving (5.5) with prescribed conductivity and
extraction fields K(x) and γ(x), respectively, and to drive it with constant
boundary conditions. This was done with a model based on a finite differences
discretization (Appendix B).

Calibrating a groundwater model means that K(x), and possibly γ(x), are
adjusted such that (i) they stay within the permissible range determined by
the hydrogeologic information and by the production data and that (ii) simu-
lated hydraulic heads at the observation points are in optimal agreement with
the measurements. A comparison between simulated and measured hydraulic
heads after calibration of the model is shown in Figure 5.23.

Calibration is an essential step in the development of a groundwater model.
It corresponds to the optimal integration of all the available information
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Figure 5.22. Representations of aquifer 1 (left) and 2 (right) in numerical
groundwater model. The gray lines indicate the finite differences grid on which the
groundwater equation is discretized. This particular model aimed at studying the
coupling between gravel pit lakes and groundwater. To this end the grid was refined
in the center to increase the resolution there. Boundary conditions for the flow are
either a prescribed hydraulic head (blue) or a vanishing flow. Abstraction wells or
fields of them are shown as red areas. For aquifer 1, the locations of river courses,
lakes, and of the old bayou which acts as a drain are indicated. [From Wollschläger
2003]

about the specific region and the flow through it into a model of a prescribed
form, here given by the stationary groundwater equation (5.5). In the wider
field of geosciences, this integration is referred to as data assimilation and
there exist several highly sophisticated methods to accomplish it.

Notice that calibration must not be confused with validation, which at-
tempts to ascertain that the simulated flow indeed represents the real one:
Since all the available information has been used for the calibration, there is
none left for the validation. This is a very general difficulty and there exist a
number of approaches. These include: (i) jack-knifing , exclusion of a subset
of the measurements from the calibration set and using it to judge the quality
of the model, (ii) χ2-statistics, where the deviation between simulated and
measured values (hydraulic heads,. . . ), relative to the measurement uncer-
tainty, quantifies the correctness of the model, and (iii) use of information
which is completely independent of the calibration process, for instance the
distribution of tracers like artificial solutes from tracer tests, geochemical
indicators, isotopes, or temperature. Whatever is done for validation, the
information gained there will again be used to improve the model, that is
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Figure 5.23.
Calibration results of ground-
water model for Rhein-
Neckar region. A total of
110 observation points were
used and the variance σ2 of the
deviation between measured and
simulated hydraulic head was
0.31 m2. [From Wollschläger
2003]

to calibrate it further. This leads to a continuous evolution towards an ever
more reliable model. Changes between such iteration can actually be quite
dramatic. For instance, the conductivities of aquifer 1 given in Table 5.3 are
by about a factor of 2 higher than in the previous hydrogeologic map that
dates from 1987.

5.6.3
Simulation

Groundwater flow in the Rhein-Neckar region, as calculated with the cali-
brated groundwater model, is shown in Figure 5.24. The streamlines reveal
a quite complicated three-dimensional flow with flow directions in the two
aquifers often quite different, in some subregions even opposite. Generally,
water flow is from the upper aquifer 1 to the lower aquifer 2 where most of
the water is abstracted. This transfer occurs mostly through the hydraulic
windows in the intermediate aquitard where the thickness is small and the
material contains a high fraction of fine sand. Such conditions prevail in the
northern part of the region west of the Rhein river (Figure 5.19). There, the
streamlines indicate that water infiltrates from the river into aquifer 1, travels
westward to the extended hydraulic window where it sinks into aquifer 2 and
travels back east to the gallery of pumping wells.

An aggregated perspective of the groundwater flow in the Rhein-Neckar
region was already given as a lookahead in Figure 5.16. It reveals that all the
water that enters aquifer 2 is abstracted and that some 27% of this water was
transferred across the aquitard. Rhein river is a net source of groundwater.
This is mainly so in the northern part of the region whereas in the southern
part it is a net sink, as can be gathered from Figure 5.24.

Finally, we notice that the time scale of the water movement ranges be-
tween a few decades for infiltration from Rhein river and more than a century
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Figure 5.24. Simulation of stationary groundwater flow in Rhein-Neckar region.
Blue lines are contours of the hydraulic head in aquifer 1 given as height [m] above
sea level. The arrowed lines represent selected streamlines in aquifer 1 (red) and 2
(cyan). The distance between the arrows corresponds to a travel time of 5 years.
Notice that all of the streamlines start in aquifer 1. [From Wollschläger 2003]

for the water coming from the eastern boundary. From the perspective of
water quality, this implies that groundwater that is currently pumped reflects
the environmental quality some fifty years back, at least for non-adsorbed
chemicals like nitrate and pesticides.

Exercises

5.1 Falling Head Permeameter Consider a vertical, homogeneous, water-saturated
soil column of length ℓ with water ponding to height h0, i.e., the water table is at
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height h0 above the upper end of the soil column. At time t = 0, the column is
allowed to drain freely by removing the blocking at the lower end. Calculate the
height of the water table as a function of time, h(t), and deduce the hydraulic
conductivity from corresponding measurements. [Such an instrument is called a
falling head permeameter.]

5.2 Flow through Layered Column Consider a 1 m long vertical column that is
water-saturated with a constant water table at the upper end and free outflow at the
lower end. It is composed of uniform sand (Kw = 10−4 ms−1) with a 0.1 m thick
layer of uniform silt (Kw = 10−6 ms−1) in the middle. Calculate the pressure p(z)
in the water phase in (dynamic) equilibrium and the flux. How do these quantities
change if the silt layer is not in the middle?

5.3 Permeability and Characteristic Pore Size Given the data in Table 5.3 on
page 125, calculate the permeability of the hydrogeologic units and the correspond-
ing equivalent pore diameters.

5.4 Zone of Disturbance Given the data in Table 5.3 on page 125 for aquifers 1
and 2, calculate the characteristic radius of the zone influenced by pressure fluctu-
ations resulting from groundwater abstraction with a diurnal variation.
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Soil Water Flow

Water flow in soils, in the vadose zone, is characteristically different from flow
in aquifers in that (i) the water is bound, consequently the flow predominantly
vertical, (ii) the flow involves variable fractions of the pore space, and (iii) it
is strongly coupled with the atmosphere through rainfall and evapotranspira-
tion, which leads to stochastic fluctuations of the water content. As we will
find, the depth interval over which these fluctuations are dissipated decreases
with increasing frequency. Hence, the time scale of the water flow increases
rapidly with distance from the soil surface.

In reality, not only the water content of soils is highly variable but the soils
themselves. This results most importantly from shrinking and swelling during
drying and wetting cycles or from corresponding changes in the wettability.
We will not consider these sometimes dramatic modifications here and assume
a rigid and perfectly wettable porous medium. This is a reasonable approx-
imation for all soils at some distance from the ground surface and for soils
with low contents of clay and organic matter throughout the profile.

6.1
Dynamics of Soil Water

Water flow in soils is a priori a multiphase process since a change in water
content induces a complementary change in air content. However, since air
is much more mobile than water – µa/µw = 0.0136 at 10◦C – the water
phase decouples from the air phase when the latter becomes continuous and
its volume fraction θa exceeds a critical value. In this so called degenerate

multiphase regime the conductivity for the air phase is much higher than
that for the water phase (Figure 6.1). Any change of θa, induced by a
corresponding change of θw, is thus easily accommodated by gradients of
pa that are much smaller than those of pw. The only manifestation of the
second phase in this regime is the variable saturation and the ensuing change
of the material properties.

The critical air content θcrita , where the air and the water phase decouple,
may actually be quite high, on the order of 0.1. This is because the residual

133
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Figure 6.1.
Flow regimes in soils. Far from
groundwater, water content θw is
typically small enough that the air
phase is continuous through large
conduits: gradients of pa are negligible
compared to those of pw. The two
phases are decoupled leading to a
degenerate multiphase regime (A).
Nearer to groundwater, or with strong
infiltration fronts, θw increases such
that the air phase remains continuous
but air content θa is so small that
gradients of pa are no longer negligible.
The two phases become strongly
coupled in this continuous multiphase
regime (B). With θw increasing even
further – in the capillary fringe or above
intermediate low-conductivity layers –
the air phase becomes discontinuous
(residual) with air bubbles typically
blocking large openings. In this
discontinuous multiphase regime (C),
air flow is no more continuous.
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air content θresa – the air volume that is not connected to the atmosphere – is
usually already quite large (see Figure 3.22 on page 60). For θcrita > θa > θresa ,
the continuous multiphase regime which often occurs in a rather small range
of θa that is only a few 0.01 wide, air and water phase become strongly coupled
and the Buckingham-Darcy flux law (3.59) is no more applicable.

Finally, there is the discontinuous multiphase regime with θa < θresa which
always reigns in the capillary fringe but may also occur above and within low-
permeability soil layers. In this regime, the conductivity for the air phase is
many orders of magnitude smaller than in continuous multiphase regime and
essentially determined by the diffusion coefficient of air in water.

We only introduced the notion of a discontinuous multiphase regime for
the wet end, where the air phase becomes discontinuous. Of course, there is
also a residual water phase at the dry end in the sense that the water phase
becomes disconnected except for the omnipresent film on the soil matrix and
some pendular rings. However, vapor diffusion is a rather fast transport path,
at least when compared to gas diffusion through water as it is relevant for
residual air. As a consequence, the effective hydraulic conductivity – total
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water flux in liquid and vapor phase per unit gradient – decreases much more
gradually at the dry end than the conductivity for air at the wet end.

6.1.1
Degenerate Multiphase Regime

We consider the air phase as arbitrarily mobile such that the pressure gradient
required to move it is negligible compared to the one required for moving the
water phase. The pressure pa in the air phase is thus constant and equal to
that of the atmosphere. The water flux is then described by the Buckingham-
Darcy law (3.59) which we write as

jw = −Kw(θw)∇ψw = −Kw(θw)[∇ψm − ρwg] , (6.1)

where ψw is the water potential (3.16) and ψm is the matric potential (3.19).
Recall that ψm equals the pressure jump across the water-air interface and is
related to the curvature of the interface by the Young-Laplace equation (3.2).
Inserting (6.1) into ∂tθw +∇ · jw = 0, the formulation of the conservation of
water volume, yields

∂tθw −∇ ·
[
Kw(θw)[∇ψm − ρwg]

]
= 0 , (6.2)

the Richards equation which was presented in a seminal paper by Richards

[1931]. For a complete formulation, (6.2) must be supplemented with de-
scriptions of the material properties, specifically with the relations θ(ψm)
and Kw(θw) that were introduced in Section 3.4.

Since at least θ(ψm) is a hysteretic relation, we end up with a rather
complicated model which is still a major hurdle for theoretical analysis as
well as for numerical simulations. The situation is much simpler for processes
that evolve on a single branch of θ(ψm). This is for instance the case for pure
infiltration and for pure evaporation. It is then convenient to incorporate
θ(ψm) directly into (6.2). Obviously, there are two ways to do this.

ψ-Form of Richards Equation Inserting θ(ψm), which is a unique function
on an individual branch, directly into (6.2) yields

Cw(ψm)∂tψm −∇ ·
[
Kw(ψm)[∇ψm − ρwg]

]
= 0 , (6.3)

where Cw is the soil water capacity function introduced in (3.38) and Kw(ψm)
is short for Kw(θ(ψm)). It is this form of the Richards equation that is solved
by most current numerical codes.

θ-Form of Richards Equation Alternatively, one might invert a branch of
θ(ψm). Away from saturation, this is possible in most cases since the indi-
vidual branches are typically strictly monotonic. Then, a few manipulations
lead to

∂tθw +Vw(θw) · ∇θw︸ ︷︷ ︸
advection

−∇ ·
[
Dw(θw)∇θw

]
︸ ︷︷ ︸

dispersion

= 0 (6.4)
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with

Vw(θw) := ρw
dKw
dθw

g , Dw(θw) :=
dψm
dθw

Kw(θw) . (6.5)

This may be interpreted as a nonlinear advection-dispersion equation for
the water content with advection velocity Vw(θw) and soil water diffusiv-
ity Dw(θw). Examples for Vw(θw) and Dw(θw) in a one-dimensional soil are
shown in Figure 6.17 on page 161.

The formulation (6.4)–(6.5) is attractive for some theoretical analyses be-
cause it can be approached with the Boltzmann transform [e.g., Philip 1957a].
It has a major drawback, however: in heterogeneous media, θw is in general
discontinuous while ψm is continuous. The latter is a direct consequence
of the flux law (6.1), since a discontinuity of ψm leads to a diverging water
flux. Since different materials have different θw(ψm)-relations, θw cannot be
continuous in general. Because of this difficulty, the θ-form of the Richards
equation is hardly ever used for realistic situations which typically involve
heterogeneous formations.

6.1.2
Continuous Multiphase Regime

Consider the simultaneous flow of water and air in the regime where both
phases are continuous. This means that any two points in the same phase
can be connected by a path within that phase. Further assume for simplicity
that also the air phase is incompressible. While this is not entirely justifiable
in general, it is reasonable here since we only consider small pressure fluctua-
tions. Finally, to keep the notion simple, we focus on a uniform medium and
one-dimensional horizontal flow, thereby neglecting gravity.

The flux of each phase is assumed to be described by the Buckingham-
Darcy law (3.59) with the potential defined according to (3.16). Since flow is
horizontal the gravity term drops out and the potential for phase i becomes
ψi = pi − p0, where pi is the pressure. We choose the ambient air pressure
as reference p0. The flux laws then become

ja = −Ka(θa)∂xψa

jw = −Kw(θw)[∂xψm + ∂xψa] , (6.6)

where ψw was written as

ψw = [pw − pa] + [pa − p0] = ψm + ψa (6.7)

with the matric potential ψm defined in (3.19). In the literature, ψm is
sometimes called the static capillary potential and ψm + ψa the dynamic

capillary potential.
Notice the asymmetry in the flux laws (6.6). It stems from the fact that

ψm is referred to the pressure in the air phase, which may vary in space and
time, while ψa is referred to p0. The reason for this is that a path to the
reference pressure exists in the air phase, but not in the water phase.
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Example: Horizontal Air Flow Consider a thin horizontal slab of uniform
porous material with water content θw < φ. In equilibrium, the water will be
distributed such that ψm is constant everywhere. Now impose a horizontal air
flow through this medium by applying the pressure gradient ∂xpa = ∂xψa in the
air phase.

Assume that the water phase in the medium is not connected to any outside
reservoir. Then, water cannot flow, jw = 0, and (6.6) requires ∂xψm = −∂xψa

for equilibrium. Hence a gradient in the matric potential will develop such
that ∂xψw = 0 or, with (6.7), pw = const. Obviously, this is what we expect
since water will flow due to a gradient in the (microscopic) pressure. Since ψm

changes with x also the water content will change according to the soil water
characteristic θw(ψm): water content will increase towards the outlet. We notice
in passing that in reality, the situation is somewhat more involved in that water
will evaporate and be transported by the air stream with the evaporation rate
determined by the difference between ψm and the chemical potential of vapor in
the air phase, which is a function of humidity. Adjusting the humidity such that
the corresponding potential equals the mean value of ψm, water will condense
at the air inlet and evaporate at the air outlet thus inducing a small flux in the
water phase.

With the flux laws (6.6), we may now formulate the conservation of fluid
volumes as

∂tθa − ∂x[Ka(θa)∂xψa] = 0

∂tθw − ∂x
[
Kw(θw)[∂xψm + ∂xψa]

]
= 0

∂tθa + ∂tθw = 0 , (6.8)

where the last equation states that there are only two fluids to fill the pore
space. These coupled nonlinear partial differential equations have to be solved
for describing the simultaneous flow of water and air in soil.

As a first step to better understand the dynamics, we substitute ∂xψa from
(6.6) to arrive at a modification of Buckingham’s conjecture, namely

jw = −Kw(θw)∂xψm +
Kw(θw)

Ka(θa)
ja . (6.9)

In addition to the flux −Kw(θw)∂xψm which corresponds to the degenerate
case, (6.1), there appears a contribution from the air flux, weighted by the
ratio of conductivities of the two phases. To assess its importance, consider
the typical situation in soils where the air flux occurs in response to a transient
water flux that changes θw. Clearly, the air flux is at most equal to the water
flux, typically much smaller, and with opposite sign. We thus look at the
ratio Kw/Ka and, recalling (2.38), write it as

Kw(θw)

Ka(θa)
=
αw
αa

[ℓw
ℓa

]2 µa
µw

θw
θa

. (6.10)

Notice that (i) αwℓ
2
wθw may be interpreted as the permeability of the water-

filled pore space, (ii) the characteristic length ℓw of this fraction is a rapidly
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decreases function of θw since the water phase tends to occupy smaller pores
with stronger capillary forces, and (iii) the geometry parameter αw does not
depend strongly on θw as long as the pore geometry does not change strongly
with size. The analogous statements are valid for αaℓ

2
aθa as permeability of

the air-filled pore space. The two permeabilities, expressed as functions of
the respective phase saturations, will have the same value for full saturation,
θw = φ and θa = φ, respectively. Their decrease will be characteristically
different, however, with a much stronger initial decrease for the water phase.
The reason for this is that water retreats from the largest pores whereas air
retreats from the smallest ones.

With the above understanding, we assume for the individual terms of
(6.10) that αw/αa is of order 1, [ℓw/ℓa]

2 is typically much smaller than 1,
and µa/µw ≈ 0.01 (0.0136 at 10◦C). However, the ratio θw/θa between the
volume fractions becomes arbitrarily large as θa decreases. Still, as long as θa
is larger than a few percent, the ratio Kw/Ka is much smaller than 1 and the
modification to Buckingham’s conjecture is small. Clearly, near saturation
it begins to dominate the water flux and the traditional Buckingham-Darcy
law becomes useless.

We notice that the modification to Buckingham’s conjecture accounts for
the pressure gradient required to move the air phase following a changing
water phase. To make this explicit, write ∂xja = −∂tθa = ∂tθw from the
conservation of air volume and (6.8), integrate it from x to infinity where
ja = 0, and obtain

ja(x) = −∂t
∫ ∞

x

θw dx′ . (6.11)

Inserting this back into (6.9) yields

jw(x) = −Kw(θw)∂xψm − Kw(θw)

Ka(θa)
∂t

∫ ∞

x

θw dx′ . (6.12)

We finally notice that (6.11) may also be inserted back into the second
equation of (6.8) to define a modified matric potential that depends on ∂tθw.
The additional term is sometimes referred to as the dynamic matric potential

and is contrasted to the static matric potential (3.19) that corresponds to the
pressure jump across the water-air interface.

6.1.3
Discontinuous Multiphase Regime

When the air content drops below a critical value, the continuity of the air
phase is lost and a residual air phase forms. These air bubbles are completely
enclosed by the water phase, either by bulk water or by water films that are
adsorbed to the matrix. They typically occur in large cavities or pores.
Air may leave such an isolated region through various processes, either as
bubbles or by dissolution and subsequent diffusion. Bubbles form and leave
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the isolated region suddenly when the capillary pressure pw − pa increases
such that the interfacial radius becomes smaller than the largest radius of
the blocking pore space, hence, when the air-entry pressure is exceeded.
Dissolution occurs if the mole fraction κi of dissolved gaseous component i
is less than the corresponding partial pressure pai = Kiκi in the isolated
air phase, where Ki is the Henry constant for component i. This process
thus leads to a characteristic shift of concentrations in the air- and in the
water-phase.

As a consequence of bubble formation and dissolution, the air pressure in
different isolated regions is generally different and formulations of the form
(6.8) are quite useless. Instead, the pore-scale processes of bubble formation
and dissolution must be averaged, a problem that has yet to be solved.

6.2

Stationary Flow

In the following, we only consider degenerate multiphase flow and refer to
it as the Richards regime. The relevant material properties for rigid porous
media are the soil water characteristic and the hydraulic conductivity that
were already introduced and discussed in Section 3.4.

We first study the stationary flow of water in the vadose zone (i) as a
limiting case for the more realistic transient flow and (ii) as an approximation
at greater depths where higher frequency components are dissipated away.
In a stationary system, all time derivatives vanish and the Richards equation
(6.3) reduces to

−K(ψm)[∇ψm − ρwg] = jw , (6.13)

i.e., to the statement that the Buckingham-Darcy flux (6.1) is constant in
time. This problem is still hard to solve in general, since for heterogeneous
media, jw varies in space.

6.2.1
Uniform Soil

Consider a uniform and isotropic soil with a constant water table at depth
z = 0 and vertical, constant water flux in the vadose zone. This leads to a
one-dimensional problem which allows to greatly simplify (6.13).

We choose the z-axis to point downwards – hence z < 0 above the water
table – use hm instead of ψm, and obtain the ordinary differential equa-
tion

−K(hm)[dzhm − 1] = j0w, (6.14)

where j0w is constant. This may be transformed into

dzhm = 1− j0w
K(hm)

. (6.15)
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General Case The general form hm(z) for stationary flow may be deduced
by recalling that K(hm) decreases monotonically, and rapidly, as hm becomes
more negative. Starting at the water table, at z = 0 and hm = 0, we
distinguish four regimes:

• No flow With j0w = 0, the result is trivial, hm = z, and independent
of the hydraulic conductivity function.

• Constant infiltration with 0 < j0w < K(0) The slope of hm(z) at
z = 0 is positive but less than 1. Hence, hm becomes more negative as
z becomes more negative above the water table and K(hm) decreases.
As j0w/K(hm) approaches 1, the slope decreases to 0 and hm approaches
a constant given by K(hm) = j0w. In this limit of constant hm, gravity
is the only driving force of the flow which is consequently referred to
as gravity flow.

• Constant infiltration with j0w ≥ K(0) The slope at z = 0 is 0 or
negative, hence hm increases as z decreases, the medium remains sat-
urated, and K remains constant. Again, (6.15) can be solved trivially
and yields the linear function hm(z) = [1 − j0w/K(0)]z, which is in
analogy to groundwater flow.

• Constant evaporation with j0w < 0 The slope of hm(z) at z = 0 is
larger than 1, K(hm) thus decreases rapidly. As a consequence, the
slope increases ever more and eventually leads to a constant value of
z, the maximum height to which the flux j0w can be maintained by
evaporation.

Exemplary Case A separation of variables in (6.15) leads to

∫ hm

0

dh′m
1− j0w/K(h′m)

=

∫ z

0

dz′ = z . (6.16)

This integral cannot be evaluated analytically for the Mualem-van Genuchten
parameterization, however. Hence, we choose the similar but simpler form

K(hm) =
K0

1 + [βhm]m
, β < 0, m > 1 (6.17)

which yields
hm
1− ξ

2F1

(
1,

1

m
, 1 +

1

m
,
[βhm]mξ

1− ξ

)
= z , (6.18)

where 2F1 is the hypergeometric function and ξ := j0w/K0. This turns
into more familiar functions for specific values of m, e.g., for m = 2, into
(Figure 6.2)

1√
ξ[ξ − 1]

arctan
( √

ξ√
ξ − 1

βhm

)
= −βz . (6.19)
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Figure 6.2.
Dimensionless matric head βhm as
function of dimensionless height
βz above constant water table
for constant infiltration (blue)
and constant evaporation (red)
as given by (6.20) and (6.22),
respectively. Each curve is labeled
with the dimensionless flux ξ =
j0w/K0. The deeper shade of
blue indicates the approximate
domain of gravity flow obtained by
choosing

√
ξ[1− ξ]βz = 2 for the

argument of tanh in (6.20).

Infiltration With the water flux in the direction of the vertical axis, hence
ξ > 0, and tan(

√
−ξ) = i tanh(

√
ξ), (6.19) transforms into

βhm(z) =

√
1− ξ

ξ
tanh

(√
ξ[1− ξ]βz

)
, 0 ≤ ξ ≤ 1, β < 0 . (6.20)

For the regime of gravity flow – infiltration far above the water table, hence
ξ > 0 and z → −∞ –, the matric head approaches the constant value

h∞m (ξ) =
1

β

√
1− ξ

ξ
. (6.21)

As we noticed above, the existence of gravity flow does not depend on
the details of the parameterization of K(hm) but only on the fact that K
decreases with more negative hm.

Evaporation For evaporation, where ξ < 0, (6.19) transforms into

βhm(z) =

√
ξ − 1

ξ
tan

(
−
√
ξ[ξ − 1]βz

)
, −1 ≤ ξ < 0, β < 0 . (6.22)

As expected from the general discussion, a stationary evaporation flux from
a constant water table can only be maintained to the maximal height

z∞(ξ) =
π

2β
√
ξ[ξ − 1]

(6.23)

which is proportional to β−1, which in turn is proportional to the largest
pore radius of the porous medium, and approximately proportional to the
inverse of the dimensionless flux ξ. This result, which again hinges only
on the sufficiently rapid decay of K(hm) not on its details, has important
consequences for many natural phenomena.
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Figure 6.3.
Salt precipitation
in arid mountain
valleys near
Qinghai Hu, China.
Water from the
infrequent rain
events accumulates
in the valley bottom
from where it
evaporates.

Example: Natural Vegetation Vegetation transpires water – evaporates it
through leaves – in order to maintain the transport of nutrients from roots
to leaves. For grasslands or forests, the corresponding flux is on the order of
1 mmd−1. In humid regions with frequent rainfall, this water is extracted from
the rooted part of the vadose zone which in turn is replenished by precipitation.
In more arid regions, rainfall is highly intermittent with high precipitation rates
for very short times that are separated by extended dry periods. Such a regime
favors groundwater recharge and vegetation has to recover the water from deeper
layers. As (6.23) shows, this is possible through capillary rise, but only to
some maximal height. This also explains the change in vegetation cover when
groundwater levels change permanently, e.g., because of new extraction wells or
because of water import from other region for irrigation.

Example: Salinization Upon evaporation, the salt load of the water is left near
the soil surface and increases the concentration of the remaining soil solution. In
humid regions, it is diluted and transported back to greater depths by frequent
rainfall. In arid regions, however, concentrations may increase to levels that are
not tolerable by vegetation and salt may actually precipitate to form a solid
crust (Figure 6.3).

Salinization is the most challenging issue in irrigation agriculture, particularly
in regions with a net water deficit. Irrigation water is either produced in situ

from an underlying aquifer or it is imported from other catchments. In both
cases, the salt carried by the water that is lost to evaporation remains in the
soil’s surface layer and accumulates there unless it is moved to deeper layers by
regular flushing, which requires additional water. Optimal management aims at
moving the salt beyond the root zone with the minimal amount of water.

A particularly severe problem occurs in irrigated regions with large water
imports: As a result of the additional seepage, the water table rises and, with
(6.23), the evaporation increases. This accelerates the salinization, sometimes
dramatically. As a countermeasure, the water table must be lowered artificially
with the water either being transported to some waste areas, like the Gobi and
the Taklamakan deserts in China’s Xinjiang province, or back into some river,
as is done for instance in the North China Plain.
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Figure 6.4.
Maximum evaporation flux j∞w that
can be sustained through a layer of
thickness ℓ for different materials.
Calculated with (6.23) for parameters
chosen such the conductivity function
becomes asymptotically identical
to that of the materials shown in
Figure 6.6. The horizontal dotted
line represents the mean global
evapotranspiration rate is some
1.3 mmd−1.

Example: Maximal Capillary Rise of Typical Soil Materials Instead of using
(6.23), which is limited m = 2, we extend the integral in (6.16) to −∞. This
yields the maximum height z∞(ξ) to which the dimensionless evaporative flux ξ
can be maintained by a water table as

z∞(ξ) = − 1

β

π/m

sin(π/m)

[1 + ξ]
1
m

−1

ξ
1
m

, β < 0 . (6.24)

Next, we choose the parameters of the conductivity function (6.17) such
that it approaches the Mualem-van Genuchten function (3.56) asymptotically.
Comparison with (3.57) shows that this is accomplished in the limit αhm ≫ 1
with α = β, a[n− 1] + 2n = m, and with K0 in (6.17) larger than that in (3.57)
by the factor [1−1/n]−2. Inserting the values from Table 3.1 leads to Figure 6.4.
It shows that both soils are easily able to sustain very high evaporation fluxes,
well beyond peak values of some 40 mmd−1 as they can occur in hot and dry
climates, provided that the soil layer is shallower than about one meter. In such
wet environments, the evaporation flux is not limited by the soil, but by the
available energy for the evaporation of the water and by the relative humidity of
the air. As the soil layers get thicker, the maximum evaporation rate drops very
rapidly, particularly in the sand. Indeed, the mean global evapotranspiration rate
of some 1.3 mmd−1 (Figure 1.1) can be sustained by the sand through of soil
layer of just a little more than one meter. In contrast, the silt allows to maintain
this flux through layers of up to some 80 m thickness. This corresponds with
the experience that fine textured materials are more susceptible to salinization,
while on the other hand a layer of very coarse material, so-called mulching,
dramatically reduces evaporative losses in your home garden, and the coarse
Saharan sand protects the groundwater that originated in the ice ages from
evaporation.



144 6 Soil Water Flow

6.2.2
Layered Soil

Consider a soil that is composed of uniform, isotropic, and horizontal layers
and assume a stationary, uniform, and vertical flow. For stable flow, this
again reduces to the one-dimensional problem (6.14).

Boundaries The water flux is continuous across the boundary between two
layers. As a consequence, the water potential ψw is continuous and with it
also the matric potential ψm and the matric head hm. On the other hand,
the soil water characteristic θ(ψm) is in general different for the two layers,
hence θ is in general discontinuous.

Equating the water fluxes (6.14) on both sides of the interface leads to

K−(θ−)

K+(θ+)
=

dzh
+
m − 1

dzh
−
m − 1

, (6.25)

where the superscripts − and + indicate the values above and below the
interface, respectively. Since the conductivity will in general be different
in the two layers, the matric head will in general have a kink, i.e., hm is
continuous, but its derivative is not.

Effective Conductivity For one-dimensional flow perpendicular to the lay-
ers, the effective conductivity is obtained from writing the Buckingham-Darcy
law (6.14) as

− 1

jw

dhw
dz

=
1

K(z)
, (6.26)

with the hydraulic head hw = hm− z. Integrating from z0 to z1 and dividing
by z1 − z0 yields

− 1

jw

hw(z1)− hw(z0)

z1 − z0
=

1

z1 − z0

∫ z1

z0

dz

K(z)
=:

1

Keff
(6.27)

or, for two layers with thicknesses ℓ1 and ℓ2 and constant conductivities K1

and K2, respectively,
ℓ1 + ℓ2
Keff

=
ℓ1
K1

+
ℓ2
K2

. (6.28)

These results are expected, of course: defining the specific hydraulic resis-
tance R := 1/K we recognize that the effective resistance equals the mean
resistance along the flow path.

Two-Layer Soils A number of natural soils may be approximated as two-
layer systems. Examples are sedimentary environments where large braided
rivers created thick deposits of gravels and coarse sands during melting phases
of past ice ages. With the greatly reduced flow of the subsequent warm
phase, the erosional power of the rivers decreased and deposits consisted of
finer grained material that ranges from fine sand all the way to clay. The
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Figure 6.5.
Typical two-layer soil, here on the alluvial fan of Neckar
river near Heidelberg, Germany. The top layer, down to
some 1.5 m, consists of a loamy sand and the bottom
layer of stones and gravel in a coarse sand matrix. The
transition between the two main layers is very sharp,
just a few centimeters.
Apparently, the main layers are not uniform themselves
but consist of sub-layers. The top unit may be differenti-
ated into (i) the plough layer down to about 0.2 m which
is darker because of the higher organic matter content,
(ii) a lighter colored horizon down to some 0.8 m which
has a slightly higher sand content, (iii) a marble textured
transition layer down to 1.2 m where iron and manganese
were dissolved during times of high water saturation and
ensuing low redox potentials in some places (whitish),
transported, and precipitated at places with high redox
potential (brownish), and finally (iv) a dark colored layer
with a significantly increased clay content right above
the sand-gravel unit. Also this last visible unit exhibits
multiple layers of fine and coarse material.
The top layer was frozen at the time when the picture
was taken, thence the different appearance. The differ-
ently colored units on the scales are 0.1 m long.

transition between corresponding layers is often rather sharp (Figure 6.5).
Two-layer structures are typically also found in anthropogenically modified
soils. Most prominent are plough layers where the pore structure is com-
pletely different from the underlying parent material due to frequent mixing
and higher organic matter content from decaying roots.

The key to understanding stationary flow is the non-linear ordinary dif-
ferential equation (6.14) which formulates that the Buckingham-Darcy flux
is constant. Although the analytic approximations we employed for the
uniform soil could be extended to two-layer soils, this gets clumsy. We thus
choose to transit to numerical solutions which offer a much greater flexibility.
Such a solution involves (i) integrating (6.15) numerically to obtain hm(z)
and (ii) calculating θ(z) and K(θ) from the respective material properties.
Since the integration is done numerically, we may also use more complicated
representations of K(hm), for instance the Mualem-van Genuchten parame-
terization. Such flexibility comes at the price of a much less general result,
however. While analytical solutions are valid for entire classes of parameter
functions and yield classes of solutions, thereby facilitating deeper insight,
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Figure 6.6. Mualem-van Genuchten parameterizations of the soil hydraulic
properties used for Figures 6.7–6.12. Parameter values are given in Table 6.1. The
conductivity functions intersect at h×

m = −0.730 m and k× ≈ 1.01 · 10−6 m s−1.
Notice the linear scale used for hm.

every change in a parameter’s value necessitates a new numerical solution.
Still, when it comes to specific results, we realize that also the very evaluation
of an analytic solution requires often highly specialized numerical methods.
More fundamental, analytic solutions become outright impossible already for
moderately complicated problems.

In the following, we choose two materials, call them sand and silt, and
construct the more complicated architectures from them. Let their hydraulic
properties be described by the Mualem-van Genuchten model (3.44) and
(3.56) with parameters given in Table 6.1 and illustrated in Figure 6.6. As
we found earlier – Figure 3.26 on page 68 –, for small values of the matric
head hm, i.e., near saturation, the conductivity of the sand is much larger
than that of the silt but then drops quickly as hm becomes more negative. The
two conductivity functions intersect at h×m = −0.730 m. This corresponds to
a water content θ of 0.083 in the sand and of 0.378 in the silt.

Consider two stacked horizontal layers of sand and silt, each 1 m thick.
The effective conductivity of this formation at water saturation is obtained
from (6.28) as Keff

0 = 1.818 · 10−5 ms−1. This will be the reference value for
the water flux since it is the maximum flux that can be sustained without

Table 6.1. Mualem-van Genuchten parameters for the soil hydraulic properties
shown in Figure 6.6 and used for Figures 6.7–6.12. For both materials, θr = 0 and
a = 1/2 is chosen.

θs α [m−1] n K0 [m s−1]
sand 0.3 −2.0 4.00 10 · 10−5

silt 0.4 −0.5 1.33 1 · 10−5
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Figure 6.7. Matric head, water content, and hydraulic conductivity for
stationary infiltration and evaporation in two-layer profile. Corresponding curves
have the same dash pattern. Numbers in the leftmost graph indicate the relative
flux jw/K

eff
0 , where Keff

0 = 1.818 · 10−5 ms−1 (65.5 mmh−1). Notice (i) the curves
of static equilibrium (cyan) which separate infiltration from evaporation regimes
and (ii) the flux for which K is continuous across the layer interface (magenta)
which separates the regimes where sand is a better/worse conductor than silt. Also
notice the differences in the axis between the leftmost plot and Figure 6.2.

ponding. Finally, we choose the origin of the downward pointing z-axis at
the constant water table at the lower end, 2 m below the soil surface.

Static Equilibrium With jw = 0 in (6.15) dzhm = 1, hence hm(z) = z
independent of the material properties. The water content profile θ(z) is then
equal to the soil water characteristic θ(hm) as is illustrated by the cyan curve
in Figure 6.7. For this case, the hydraulic variables may be calculated directly
from the parameterizations of θ(hm) andK(hm) or estimated from Figure 6.6.
Values for some interesting depths are given in Table 6.2. We notice that for
the chosen parameters and layer dimensions, the matric head at the interface
is lower than h×m, the intersection of the conductivity functions. Hence, for
static equilibrium the conductivity of the sand near the interface is lower
than that of the silt.

Table 6.2. Values for some hydraulic variables in two-layer soil, sand and silt,
at static equilibrium for a water table at z = 0, hence with hm = z. Each of the
layers is 1 m thick.

silt sand
z = −2 m z = −1 m z = −2 m z = −1 m

θ 0.337 0.368 0.005 0.036
K [m s−1] 2.29 · 10−7 6.88 · 10−7 1.06 · 10−10 6.83 · 10−8
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Figure 6.8.
Sketch for shape of hm(z) near an interface. In
the green region, the two components of jw can
compensate each other such that jw = const during
the transition between the two gravity flow regimes.
In the red region, K and −dzhm both change in the
same direction, jw thus cannot remain constant as
required. The transitions indicated by the dashed
lines are thus not permissible. z

hm

K ↓
−dzhm ↑

K ↑
−dzhm ↑

The further discussion must distinguish between the two possible configu-
rations, silt on top of sand and vice versa.

Silt Overlying Sand For infiltration jw > 0 and, with (6.14), dzhm < 1. As
a consequence, throughout the profile hm is higher than in static equilibrium
and with it also θ and K (Figure 6.7). For the flux jw/K

eff
0 ≈ 0.056, hm at

the interface equals h×m. Then, by definition, the conductivities on both sides
of the interface become equal and, with (6.25), dzhm is continuous. Notice
though that θ remains discontinuous at the interface.

For higher infiltration fluxes, sand turns into a better conductor than the
overlying silt. This is reflected in hm(z) which in the silt decreases towards
the interface. If on the other hand the flux is lower, such that silt is the
better conductor, then the matric head increases towards the interface. It
is instructive to study these shapes in more detail. First consider the curve
for jw/K

eff
0 = 0.3 in Figure 6.7. At sufficient distances from the interface,

hm(z) becomes constant in both layers as expected for the regime of gravity
flow. The transition from the constant matric head in the silt to the lower
value in the sand creates a region where dzhm < 0. Why does this transition
occur entirely within the upper layer? With dzhm < 0 the driving force of
the water flux is stronger than in the gravity flow regime. Since the flux is
constant – we consider stationary flow – the conductivity must be smaller in
the transition region than in the gravity flow region. Hence also hm must
be lower. These two conditions can only be satisfied in the upper layer
(Figure 6.8). Similarly for a lower flux, for instance jw/K

eff
0 = 0.03. The

silt is now a better conductor than sand, hence dzhm > 0 in the transition
region. The driving force in this zone is thus smaller than in the gravity
flow regime, hence K must be larger. Again, this can only be satisfied in the
upper layer.

For evaporation jw < 0, hence dzhm > 1 and hm is lower than in static
equilibrium in the entire profile. Consequently, θ and K are everywhere
smaller than for jw = 0. As already found for the uniform medium in
Figure 6.2, dzhm has to increase very rapidly with increasing evaporative
flux in order to compensate for the rapidly decreasing conductivity. This
effect is strongest in the sand layer which has a much lower conductivity near
the interface than the silt. Indeed, the driest point in this two-layer soil is
always the upper end of the sand. Still, this soil can sustain a maximum
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Figure 6.9. Same as Figure 6.7 but for interchanged layers, sand on top of silt.

evaporative flux jw/K
eff
0 ≈ −0.004 which corresponds to some 0.26 mm h−1.

It can thus easily cover the water demand of any vegetation, even if it is
shallow-rooted. On the other hand, in an arid climate it would become
saline in a short time due to the high evaporative loss. We notice in passing
that such an evaporative flux consumes some 0.18 kWm−2 which reduces
the sensible heat flux and thus leads to a strong cooling of the surface.
Obviously, all these values are highly dependent on the thickness of the sand
layer. Just changing the water table by one meter, which happens easily
under irrigated land, would change the maximum evaporative flux by 1. . . 2
orders of magnitude, depending the direction of the change, with obvious
consequences for vegetation and salinization.

Sand Overlying Silt The phenomenology of this layering is quite different
from the previous one: The top layer is generally very dry, even for rather
high infiltration fluxes, whereas the bottom layer is always nearly saturated
(Figure 6.9).

For an infiltration flux that exceeds 1.7 mm h−1 (jw/K
eff
0 = 0.026), the silt

layer becomes limiting to the flow while for lower fluxes, the sand is limiting.
This is nicely indicated by the shape of hm(z) which is characteristically
different from that in Figure 6.7. The separation between the two regimes is
at a smaller flux than for the reverse layering because the transition to the
regime of gravity flow is wider for the silt than for the sand. Again, hm(z)
can be understood qualitatively by considering the two components of the
flux, K(hm) and dzhm − 1, and their transition between the gravity flow
regimes in the two layers.

For evaporation, the sand layer is the major obstacle. Indeed, hm in the silt
layer does not change significantly between no flux and maximum evaporative
flux because the conductivity in the silt is at least an order of magnitude
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Figure 6.10.
Schematic action of an inclined
protective capillary barrier for a
waste disposal site, for high and
medium rainfall intensities and
for evaporative regime.
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higher than in the sand. Hence, hm(z) in the sand has the same shape as
found in Figure 6.2 for a uniform medium above a water table. Further notice
that the maximum evaporative flux in this configuration is much smaller
than for the previous one, just jw/K

eff
0 = −6.8 · 10−6 corresponding to a

maximum loss of some 3.9 mm y−1. Even in a rather arid region, this loss
can be compensated by rainfall, the groundwater would thus be conserved.
Compare this with the loss of some 2.3 m y−1 that results from the reverse
layering to appreciate the importance of the nonlinear dynamics. We recall
in passing that in groundwater with its essentially linear dynamics the order
of layers does not influence the overall flow.

Example: Capillary Barrier Two-layer structures are not only common in
nature but they are also implemented in many engineering structures. An
example of this is an inclined coarse-grained layer that is overlaid by a fine-
grained layer. Such a setting may for instance be used to protect a waste disposal
site from percolating water is sketched in Figure 6.10. Here a sandy loam overlays
a coarse sand with the two forming a so-called capillary barrier. It is followed
by a clay layer which blocks water due to its inherently low conductivity, even
when fully saturated. Typically, the top layer carries some grass vegetation to
counteract surface erosion and to further evaporation.

For high rainfall intensities, the conductivity of the top layer becomes limiting
and the surplus generates surface runoff. The infiltrating water leads to a
practically complete saturation of the sandy loam such that the matric head
at the interface to the coarse sand increases such that the coarse layer becomes
conductive. Due to its very high conductivity, usually a few orders of magnitude
higher than that of the top layer, it can easily maintain the downhill flux of
the percolating water. The clay layer prevents the breakthrough into the waste
deposit and enforces the downhill flow.

For medium and low fluxes, the sandy loam is a much better conductor than
the coarse sand and the water flows downhill above the interface. Of course,
the water accumulates downhill and, if the barrier is too long, will eventually
saturate the top layer and penetrate into the coarse sand. Here, it is again
carried away very efficiently, however.

A further function of the coarse sand is as barrier against capillary rise during
evaporation periods. Since it can sustain only exceedingly small upward fluxes,
the underlying clay remains wet which prevents desiccation cracks. All the
evaporating water stems from the top layer and increases its capacity for the
next rainfall event.
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6.2.3
Heterogeneous Soil

As a final approximation to natural architectures, consider a soil that consists
of irregularly shaped layers (Figure 6.11). Let each of the layers be uniform
and consist of one of the materials sand or silt studied above. We restrict our
study to a two-dimensional structure since three-dimensional simulations are
very expensive due to “the curse of dimensions”, their results are difficult to
represent, and they lead to the qualitatively same results for the essentially
single-phase flow we consider here. We furthermore assume periodic vertical
boundaries, i.e., water that leaves through one boundary enters through the
other. To accommodate these boundaries, also the heterogeneity has been
generated with such a periodicity. Such periodic boundary conditions are im-
portant in heterogenous architectures to prevent artifacts from impermeable
boundaries. Finally, we again impose a constant water table at z = 0 and
choose the soil surface at z = −2 m.

Notice in passing that along with an increasing complexity of the archi-
tecture goes the requirement for more powerful tools. Stationary flow can be
studied analytically in uniform media while one-dimensional layered media
already require numerical methods. These may be rather simple ones like
Runge-Kutta integration for coding yourself [Press et al. 2002] or generic tools
like Mathematica and GNU Octave for quickly obtaining accurate solutions.
In contrast, heterogeneous media require a full-blown numerical Richards
solver.

Infiltration We envisage a long-lasting constant rain and prescribe a uni-
form and constant infiltration flux through the upper boundary. The matric
head at the surface will then in general not be constant but will adjust itself
such that the impressed flux is maintained.

Low Infiltration Flux Consider the flux j0w = 1.16 · 10−8 ms−1 (1 mmd−1)
which corresponds to a very weak precipitation as it is typical for fall-out
from fog. For a gravity flow regime in a uniform sand, this would lead to
the matric head hm = −1.21 m and the saturation Θ = 0.068. In the silt
on the other hand the corresponding values would be hm = −7.56 m and
Θ = 0.62. Notice however, that with the soil surface 2 m above the water
table and with infiltration, hm ≥ −2 m at the surface. Hence, the silt will
be far from the regime of gravity flow and can easily sustain the imposed
infiltration flux without the need to increase Θ appreciably. In contrast, for
the sand gravity flow is a reasonable approximation near the surface and, in
order to sustain the flux, Θ has to increase by more than a factor of 4 from
its static equilibrium value of 0.016.

Inspection of the data shows that the average matric head in the top 0.5 m
of the heterogeneous soil shown is 〈hm〉 = −1.55 m (Figure 6.11). For this
value, the conductivity of the silt is more than two orders of magnitude
higher than that of the sand. This is also manifest in the streamlines which
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Figure 6.11. Matric head hm [m] (middle) and water saturation Θ = θ/θs
(bottom) for a heterogeneous soil composed of irregular sand and silt layers (top)
for the infiltration flux j0w = 1.16 · 10−8 m s−1 (1 mm d−1). White lines in the
lower two graphs represent the boundary between the materials, dashed lines are
equidistant streamlines. Vertical boundaries are periodic.
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tend to eschew the sand layers in the top part of the profile. With the
matric head increasing towards the water table, the conductivity of the sand
increases more rapidly than that of the silt. At z = 1.27 m, the mean
matric head equals −0.73 m, the value where the conductivities of the two
materials match. For greater depths, sand is a better conductor. This is
again corroborated by the streamlines.

We further notice from Figure 6.11 that the matric head is rather constant
in horizontal planes. This is akin to the predominantly vertical isolines ofhm
in groundwater flow, e.g., Figure 5.9 on page 112. An exception to this
is the horizontally extended sand layer at the surface where the imposed
uniform flux at the boundary, in conjunction with the greatly differing con-
ductivities of the materials, leads to strongly nonuniform hydraulic gradients.
At greater depths, these are attenuated because the flux-field adjusts and
becomes nonuniform. As mentioned earlier, the smoothness is a consequence
of Buckingham-Darcy’s law which enforces hm to be continuous.

In contrast, the water saturation Θ is discontinuous across all interfaces
between different materials, as already found for the one-dimensional lay-
ered medium. This qualitative difference has some important implications:
(i) Measurements of the water content reveal much about the arrangement
of different materials. This is for instance exploited for the exploration of
subsurface structures with ground-penetrating radar. This method maps
the dielectric structure of the subsurface which is dominated by the water
content. (ii) The water content at any particular time yields only very limited
information on the dynamics of the water phase and on the current state of
the site. To extract this, the matric potential would be a more useful variable
which, alas, is much more difficult to monitor.

High Infiltration Flux Consider the infiltration flux j0w = 5.55 · 10−6 ms−1

(20 mmh−1) which corresponds to a heavy rain shower (Figure 6.12). For a
uniform sand in the regime of gravity flow, this would lead to hm = −0.577 m
and Θ = 0.466. The corresponding values for silt are hm = −0.032 m and
Θ = 0.999. Hence, a uniform silt would be all but saturated to maintain the
water flux which is about half of the its saturated conductivity. In contrast,
the conductivity of the sand for hm = −0.032 m would be by a factor of 30
larger than that of the silt. In the heterogeneous medium, the flow adjusts
to this as is again reflected in the streamlines which tend to bypass the silt.
Inspection of the data in the top 0.5 m of the heterogeneous medium yields
an average value for the matric head in the sand of −0.22 m, considerably
higher than expected for a uniform medium. Correspondingly, the average
matric head in the silt is lower, −0.17 m instead of the −0.032 m expected
for a uniform medium.

Finally, we notice that the silt is almost uniformly saturated throughout
the entire profile. Inspection of the data actually yields Θ in the range
0.934. . . 0.976. In contrast, characteristic saturation profiles develop in the
sand layers which are determined on the one hand by the non-uniform flow
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Figure 6.12. Water saturation Θ in the soil of Figure 6.11 for the high
infiltration flux j0w = 5.56 · 10−6 m s−1 (20 mm h−1). Notice the different color
scale.

from the region above and on the other by the ponding back from the less
permeable silt layer below.

Evaporation A prime physical issue with evaporation is the appropriate
boundary condition. Focussing on evaporation from some soil surface, we
notice that two conditions must be met: (i) the energy for evaporating the
water, some 2.5 MJkg−1, must be provided and (ii) the water must actually
be removed by the atmosphere. The energy comes to a large part from
solar radiation and to a typically smaller part through heat flow from the
ground. Removal of water is by diffusion through a thin soil-atmosphere
layer which is just a few millimeters thick and then through mostly turbulent
transport in the atmosphere. Apparently, the situation is quite complicated
with two compartments, soil and atmosphere, and two processes, water and
heat, closely linked.

For a heterogeneous medium and with a focus on water flow within the soil,
a reasonable approximation to the physical boundary condition is a uniform
matric head at the soil surface which represents the dry atmosphere that
drives evaporation. We prescribe in the following a uniform and constant
matric head at the upper boundary, h0m = −6 m (Figure 6.13). This value
corresponds to a relative humidity of 99.95%, as may be calculated with
(8.15) on page 247, hence to a very wet atmosphere. When interpreting
this value, we must be aware that in reality, this would not be the humidity
in the atmosphere, say a few meters above the soil surface. It corresponds
to the humidity at the lower end of the very thin soil-atmosphere interface.
More typical values for a moderately dry atmosphere is a relative humidity
of 50% which corresponds to a matric head of some −9.6 · 103 m. This
discrepancy reflects the slow diffusive transport of water vapor through the
interface.
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Figure 6.13. Matric head hm [m] (top) and water saturation Θ = θ/θs (bottom)
for stationary evaporation from the soil shown in Figure 6.11. At the upper
boundary, hm = −6 m which leads to the average flux 〈j0w〉 = −3.55 · 10−8 ms−1

(−3.06 mmd−1).

As already found in the one-dimensional study, the sand layer at the surface
is a very effective evaporation barrier. Indeed, its conductivity for hm = −6 m
is some seven orders of magnitude lower than that of the silt. This leads to
a very steep gradient right at the surface with the prescribed value of hm =
−6 m barely visible in the upper frame of Figure 6.13. This steep gradient
does not penetrate far into the sand layer, however, such that only a very
small flux can be maintained. This is corroborated by the few streamlines
that traverse this layer.

Further focussing on the streamlines, we find that water rises uniformly
out of the water table, as expected. A strong redistribution then occurs in the
silt layer between 1.1 and 1.7 m above the water table. This indicates that
the sand layer immediately below, between 0.9 and 1.1 m above the water
table, is not a hydraulic obstacle, yet. However, sand higher than about
1.5 m above the water table is next to impenetrable and almost all of the
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Figure 6.14.
The pattern of precipitated
salt highlights the surface area
through which most of the
evaporation flux is lost. Image
near Qitedaban, 4960 m asl,
Xinjiang Autonomous Region,
China.

rising water passes through two narrow ports some 0.2 m below the surface.
This general behavior – uniform rise to intermediate heights, redistribution
well below the soil surface, and eventual evaporation from the fine-textured
materials – is the characteristic of evaporation from heterogeneous media.
The details, of course, depend strongly on the specific architecture, including
its hydraulic properties.

Looking more quantitatively, inspection of the data yields an average
evaporative flux of 3.55 · 10−8 ms−1 (3.06 mmd−1), a value that may in
nature be expected for a warm spring day. The range of the evaporative flux
across the surface is [0.25 . . . 7.9] · 10−8 ms−1. Such highly localized regions
where evaporation from the surface occurs often become manifest through the
precipitated salt and may then be observed in the field Figure 6.14.

6.2.4
Effective Dynamics

We may ask if all the small-scale details of the vadose zone need to be
represented in order to obtain a faithful model for the flow of water or if an
appropriately chosen “coarse-grained” description would also reproduce the
pertinent phenomena. We already touched upon this issue for groundwater
flow in Section 5.4.3. There, it sufficed to focus on the value of the hydraulic
conductivity since there was no reason to question the representation of the
essentially linear dynamics described by (5.1). The situation in the vadose
zone is quite different since it is not obvious that simple averaging leads to
useful representations of the highly non-linear dynamics.

As a first step, we need to illuminate the applicability of Richards equation
(6.2). We recall that it rest upon three pillars, (i) the existence of an REV
for the state variables θ and hm, which implies the equilibrium between
microscopic and corresponding macroscopic properties at the scale of the
REV, (ii) the conservation of mass, and (iii) an empirical flux law where the
macroscopic water flux is an instantaneous function of the gradient of the
gradient of the macroscopic water potential. While the full problem has not
been solved yet, not even for stationary flow, some results are available for
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special cases. In particular, Neuweiler and Eichel [2006] demonstrated that
for vertical water flux in a soil with periodic thin horizontal layers, an effective
representation in the general form of Richards’ equation remains valid. For
the case of dominating capillary forces, where |∇hm| ≫ 1, they furthermore
found that the effective soil water characteristic is the arithmetic mean of
its microscopic analogon and that the effective conductivity function is the
corresponding harmonic mean, hence

θ(hm)eff =
〈
θµ(hµm)

〉
and K(hm)eff =

〈
Kµ(hµm)−1

〉−1
, (6.29)

where the superscript µ indicates a microscopic quantity and hµm = hm to a
first order approximation. The latter is expected as a consequence of the local
equilibrium requirement and of the fact that −∇hm is a local driving force
for the water flux. For the case where capillary forces are not dominating,
Neuweiler and Eichel [2006] found that a generalization of Richards equa-
tion still represents the macroscopic dynamics. The required generalization
allows different conductivity functions for capillarity and gravity as drivers
of the water flux. While this hints at the eventual deterioration of Richards’
equation, Neuweiler and Eichel [2006] found that (6.29) remains a useful
approximation even if capillarity is not dominating gravity greatly.

The general situation in soils is considerably more difficult than what
was covered above. Most importantly, soils typically consist of only a few
dominating layers between the soil surface and the groundwater. In addition,
gradients are often very high, particularly near the surface through the strong
atmospheric forcing, and they change on rather short time scales which
accentuate the local equilibrium requirement. In the following, we look into
some of these issues for the still idealized situation of stationary flow but
for the “nature-inspired” architecture studied in the previous section. To
this end we interpret the simulation results in the context of an effective
one-dimensional representation that is obtained by horizontally averaging
the corresponding two-dimensional quantities.

Infiltration The averaged matric head 〈hm〉 has a very similar shape as in
a uniform medium (Figure 6.15). There is a regime of approximate gravity
flow at sufficient distance from the water table and dz〈hm〉 ≈ 1 near the water
table, as indicated by the dashed line. The only significant deviation from this
simple shape occurs for the low infiltration flux near the surface. It results
from the adjustment of the uniform infiltration flow to the heterogeneous
hydraulic structure.

A sharp contrast to the regular behavior of 〈hm〉 is the wildly fluctuating
average volumetric water content 〈θ〉. This is a manifestation of the predom-
inantly horizontal layering and of the discontinuous nature of θ. We can thus
easily identify the zones of dominant sand layers: the dry depth intervals.
The fluctuation of 〈θ〉 already hints at the difficulty to use it as a variable
in a coarse-grained description, in an effective soil water characteristic or as
independent variable for the conductivity function.
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Figure 6.15. Average and effective quantities for a one-dimensional representa-
tion of the heterogeneous layers of Figure 6.11 for low (magenta) and high (cyan)
infiltration flux. Matric head 〈hm〉 and volumetric water content 〈θ〉 are shown as
horizontally averaged quantities (arithmetic mean). Conductivities are calculated
from the two-dimensional fields with (6.30) (thin dotted lines), with (6.31) (thin
dashed lines), and with (6.32) (thin solid lines), where averaging is again in the
horizontal. Effective conductivities obtained from (6.33) are shown as thick lines
with bands one standard deviation wide indicating the uncertainty. Sections of the
curves with a very large uncertainty are not shown.

Of prime interest is the effective hydraulic conductivity and how to esti-
mate it from the detailed two-dimensional information. We consider three
candidate models, (i) continuous vertical stream-tubes,

Keff =
〈
K
〉
, (6.30)

(ii) a perfectly layered medium with flow perpendicular to the layers,

Keff =
[
〈K−1〉

]−1
, (6.31)

and (iii) the macroscopically uniform heterogeneous medium studied in Sec-
tion 5.4 for which (5.4) yields the geometric mean

Keff = exp
(〈
log(K)

〉)
. (6.32)

In all these expressions, K refers to the conductivity in the “fine-grained”
(two-dimensional) representation and 〈·〉 indicates arithmetic averaging in
horizontal direction. Clearly, the assumptions of neither of these models are
satisfied so they will offer rough estimates at best.

In the next step, we define the “true” effective hydraulic conductivity by
postulating the one-dimensional form of the Buckingham-Darcy law (6.1) as
j0w = −Keff [dz〈hm〉−1], where j0w is the infiltration flux imposed at the upper
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boundary. Assuming the expression in brackets does not vanish, this leads
to

Keff = − j0w
dz〈hm〉 − 1

. (6.33)

This expression has the advantage that it provides an implicitly flux-weighted
estimate. Obviously, it becomes increasingly uncertain as dz〈hm〉 approaches
1 which is the case as the flux decreases and as the water table is approached.
We notice that such a definition is only reasonable because 〈hm〉 is a rather
smooth function. Still, the objectivity of this definition would have to be
ascertained. On the other hand, if an effective description exists at all,
then (6.33) may be expected to yield the correct value for the effective
parameter. Finally, it should be realized that all three approaches require the
solution of the fine-grained problem. They are thus only useful to study the
relation between fine-grained and coarse-grained formulations and to assess
the feasibility of the latter.

For the high-flow regime with a high water saturation, (6.31)–(6.33) all
yield reasonably similar estimates for Keff(z) even though the values differ
by up to a factor of 4. The model of parallel tubes is clearly inferior and
generally leads to a significant overestimation.

For the low-flow regime with its widely varying water content, the esti-
mates differ quite significantly, often by more than an order of magnitude.
They converge, as expected, at depths where one material forms a continuous
layer since then the range of conductivities is much smaller.

Evaporation For infiltration, the heterogeneous model (6.32) and the one
with horizontal layers, (6.31), were found to bracket the true conductivity,
with (6.32) generally leading to a rather strong underestimation. In contrast,
the stream-tubes model was found to be quite far off. These findings should
not be generalized, however. They hinge on the specific structure of the fine-
grained representation as well as on the specific forcing. This is demonstrated
by the evaporation regime (Figure 6.16).

With evaporation, the matric head decreases very rapidly towards the
surface. With this, the ratio between the hydraulic conductivity in the
silt and the one in the sand increases very strongly. Consequently, the
models (6.30)–(6.32), which weigh positive and negative deviations from the
mean differently, yield estimates that differ by several orders of magnitude.
Furthermore, the best estimates in the top 0.2 m are produced by the stream-
tubes model, which fared worst in the infiltration regime. Looking at the
streamlines in Figure 6.13 reveals the reason for this. The flow is strongly
focused into the silt and the arithmetic averaging gives very little weight to
the exceedingly low conductivity values of the sand. Overall however, for
depths beyond the top 0.2 m, the heterogeneous model (6.32) again provides
the most reliable values among the direct estimators.
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Figure 6.16. Same as Figure 6.15 but for evaporative flow shown in Figure 6.13.
Notice the different scales.

6.3

Transient Flow

Water flow is predominantly driven by rainfall, evaporation from the soil
surface, and root water uptake by plants. This is often referred to as at-

mospheric forcing. In passing, we recall that the soil-atmosphere system
is strongly coupled and the atmosphere is driven by the soil as well, both
through the evaporating water and the raising sensible heat (Figures 1.1–
1.2). Accordingly, in a more comprehensive perspective, the two systems are
considered together. Here, we are only interested in vadose zone flow and
thus assume either the water flux or the matric potential to be given at the
upper boundary as a function of time. A further though often less prominent
driver of water flow in the vadose zone is a fluctuating water table of an
underlying phreatic aquifer.

Atmospheric forcing leads to a highly irregular dynamics through its suc-
cession of rainfall events that are separated by evapotranspiration periods.
Obviously, the characteristics of this forcing, in particular the average net flux
and the degree of intermittency, depends on the climate region. As a first step
to understanding such regimes, we study individual infiltration and drainage
events which will be found to exhibit distinctly different features. This may
be understood qualitatively through the Richards equation formulated in the
θ-form (6.4)–(6.5) for a uniform porous medium. For the one-dimensional
case, it may be written as

∂tθ + Vw(θ)∂zθ︸ ︷︷ ︸
advection

− ∂z
[
Dw(θ)∂zθ

]
︸ ︷︷ ︸

dispersion

= 0 (6.34)
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Figure 6.17. Soil water velocity Vw(θ) [m s−1] and diffusivity Dw(θ) [m2s−1],
defined by (6.5), together with soil water dispersivity λw(θ) := Dw(θ)/Vw(θ) [m],
for the Mualem-van Genuchten parameterization of the two materials sand and silt
considered above. Parameter values are given in Table 6.1.

with

Vw(θ) :=
∂Kw

∂θ
, Dw(θ) :=

∂hm
∂θ

Kw(θ) , (6.35)

where Kw is expressed in units of m s−1. As mentioned before, this equation
describes the movement of water as a superposition of advection and disper-
sion. A macroscopic volume of water with water content θ hence moves with
velocity Vw(θ). This may be seen by dropping the dispersion term for the
time being and considering the trajectory of that volume, the path zθ(t) on
which θ is constant, hence dθ = 0. Inserting θ(z(t), t) leads to

dθ =

[
∂zθ

dz

dt
+ ∂tθ

]
dt , (6.36)

which vanishes only if dz
dt = Vw(θ). Conversely dropping the advection term in

(6.34), we recognize that the term ∂z[Dw∂zθ] is analogous to the dispersion
term introduced with (4.53). Hence, dispersion spreads θ it over a larger
volume of soil, with the spreading rate described by the diffusivity Dw, in
much the same way as molecular diffusion spreads dissolved substances. Since
the corresponding parameter functions vary over a wide range (Figure 6.17),
transient water flow is a highly nonlinear phenomenon.

To recognize the manifestation of this nonlinearity, we consider some nonuni-
form distribution of the water content at time t. In a region with a higher
value of θ, the velocity is higher and the water will overtake the water in the
region ahead if θ is smaller there. Advection thus leads to self-sharpening
fronts and, conversely, to tails that are spread out even further (Figure 6.18).
While advection alone would thus create a shock – a moving discontinuity
in θ – dispersion smooths the front. We may suspect that for a constant
infiltration flux, these counteracting effects lead to a constant shape of the
advancing front since they are balancing each other locally. Indeed, this was
proved by Philip [1957b] for the long-time limit.
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Figure 6.18.
Sketch for effect of pure advection with θ-dependent velocity
on shape of infiltrating pulse. z
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Of course, dispersion also leads to a further spreading of the tail. Com-
pared to that caused by the nonlinear advection, this effect is negligible,
however. Focussing again on the advancing front and recalling Section 4.1.3,
we may introduce the length scale

λw(θ) :=
Dw(θ)

Vw(θ)
(6.37)

to characterize the typical extent of the front. In analogy to 4.38, we call this
quantity the dispersivity. For transport distances smaller than λ, dispersion
dominates advection and vice versa. As illustrated in the rightmost graph of
Figure 6.17, λw(θ) ranges between 0.1 and 0.7 m for the sand and between
some 0.3 m and practically infinity for the silt. Since advection and dispersion
counteract each other in a progressing front, we expect some 0.1 m for the
width of an infiltration front in the sand for a wide range of θ. On the
other hand, the corresponding width in the silt will depend strongly on θ
and it will be very much wider. Considering the tail, we first notice that
both, advection and dispersion, act in the same way, namely as spreading.
Hence, a lower bound for the spreading of the tail is obtained from the
advective term alone. To this end, we consider two points with infinitesimal
separation dz, define the steepness s = dz/dθ of the tail, and find s(t) =
s(0) + t dVw(θ)/dθ. Thus, dVw(θ)/dθ is a lower bound for the rate of change
of the tail’s steepness.

The above qualitative discussion is corroborated by numerical simulations
of a single infiltration pulse into dry uniform soil that will be discussed in
Section 6.3.3 below. Before looking into the combined action of infiltration
and drainage, we will study the partial processes individually.

6.3.1
Infiltration

We continue to consider the sand and the silt soil with Mualem-van Genuchten
parameters given in Table 6.1, with a horizontal surface, horizontal layers,
and a constant water table at depth z = 0. For times t < 0, the water phase
is in static equilibrium with the water table, i.e., jw = 0 in the entire profile
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Figure 6.19. Infiltration into uniform sand (left) and silt (right). For t < 0, the
water phase is in static equilibrium with the constant water table at 4 m depth. At
t = 0, a constant infiltration with j0w = 5.56 · 10−6 ms−1 (20 mmh−1) sets in. The
profiles are shown for t = 0, 2, 4, . . . h with those for t = 10 h drawn in magenta.

and hm = z. Finally assuming a uniform infiltration flux, a one-dimensional
representation suffices. As a passing remark, notice that there are situations
in which the flow turns three-dimensional in spite of the fact that all the
above conditions are satisfied. We will study such processes in Section 6.5
below.

Uniform Soil Let the groundwater table be 4 m below the soil surface
where, for t < 0, hm = −4 m. For t ≥ 0, the water flux through the upper
boundary is set to j0w = 5.56 · 10−6 ms−1 (Figure 6.19). This corresponds
to 20 mmh−1, a heavy rainfall. For the sand, jw is by a factor of about 20
smaller than the saturated conductivity K0. For the silt, the corresponding
factor is less than 2. In the regime of gravity flow, far behind the infiltration
front and far above the water table, the matric head hm adjusts such that
K(hm) = jw. For the sand, this leads to hm = −0.58 m and to θ = 0.14,
with the latter calculated with the van Genuchten parameterization. The
corresponding values for the silt are hm = −0.032 m and θ = 0.40.

In the sand, the influence of the water table is essentially limited to the
lowest 1.5 m. Towards the soil surface, the initial water content is below 0.01.
As expected, the infiltration front quickly develops its invariant shape and
advances with a constant velocity which is determined by the infiltrating flux
and by the required increase ∆θ of the water content. Only considering the
gravity flow regime, which is an excellent approximation behind the front,
and neglecting the initial water content yields ∆θ = 0.14 which leads to the
velocity j0w/∆θ = 0.14 mh−1. For t = 10 h – the profiles distinguished in
Figure 6.19 – this gives for the front an estimated depth of 1.4 m, which is
in reasonable agreement with the simulation. The somewhat deeper advance
of the numerically simulated front originates from the initial water content
which leads to a slightly higher velocity. We further notice that also the width
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of the front is of the order estimated from the dispersivity (Figure 6.17) and
that this width increases as expected towards the water table as θ increases.
As a conclusion, given the hydraulic properties, constant infiltration into a
deep profile of a uniform, coarse-textured soil can be predicted quite easily
without recourse to numerical simulations.

Conceptually, the situation is similar for the silt. However, since this
material has a much finer texture and a correspondingly broader distribution
of pore-sizes, the influence of the water table extends over the entire profile.
The infiltrating front is thus in constant transition and does not attain an
invariant shape. We notice that the front advances considerably faster in the
silt than in the sand. At first, this may appear counter-intuitive, since sand
at this flux is a better conductor. However, the speed of the infiltration front
is not determined by the conductivity which, in an unsaturated medium,
will adjust itself such that the flux can be maintained. The velocity is
determined by ∆θ and this is clearly smaller in the silt. As a passing
remark, the speed of the infiltration front does not necessarily equal the speed
with which chemicals that are dissolved in the infiltrating water would be
transported. Solute transport hinges on the question whether the infiltrating
water bypasses or extrudes the resident water. Richards’ equation, as a
continuum model that does not contain the pertinent details of the pore
space anymore, is useless for answering this question. Experimental evidence
actually shows that in nature, the whole spectrum from almost complete
bypassing to complete extrusion occurs. This aspect will be studied in more
detail in Section 7.1.5.

Two-Layer Soil We revisit the two arrangements of layered soils from
Section 6.2.2 but now with thicker layers which allows us to separated the
impact of the layer interface from that of the water table. At time t = 0, the
water phase is again in static equilibrium with the water table at z = 0. We
consider two infiltration regimes (Figure 6.20), a low flux of 1.818·10−7 ms−1

(0.65 mmh−1) and a high flux of 5.56 · 10−6 ms−1 (20 mmh−1).

The low flux is two orders of magnitude below the effective saturated
conductivity of the two-layer medium. For gravity flow, this leads to hm =
−2.26 m in the silt and to −0.896 m in the sand. Hence, silt for this flux is a
better conductor than sand. Conversely, the high flux is near the saturated
conductivity of the silt and sand is the better conductor. This is manifest
in the form of the matric head at the interface between the two materials as
already discussed for the stationary infiltration in Section 6.2.2.

Considering the evolution of the infiltration fronts, we first notice that in
the sand, the dispersivity λw as shown in Figure 6.17 is small, on the order
of 0.1 m, and does not vary much in the relevant range of θ between 0.04 and
0.14. This leads to rather sharp fronts for the low as well as for the high flux
regime. We further notice that these fronts develop in the sand whether it is
the upper or the lower layer. This is not astonishing for the upper layer since
here the water flux at the upper boundary instantaneously jumps from 0 to
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Figure 6.20. Infiltration into layered soil – sand over silt (top) and silt over
sand (bottom) – with a constant water table at z = 5 m. For t < 0, the water phase
is in static equilibrium. Constant infiltration starts at t = 0 with 1.818 ·10−7 ms−1

(left) and 5.56 · 10−6 ms−1 (right) corresponding to 0.65 mmh−1 and 20 mmh−1.
Profiles are shown for t = 0, 1, 2, . . . d and for t = 0, 2, 4, . . . h, respectively.

j0w at t = 0. If sand is the lower layer, however, the water flux at its upper
boundary may increase very gradually, as illustrated in the lower left graph
of Figure 6.20. Still, given a sufficient layer thickness, a pronounced front
develops. This demonstrates that the shape of a fully developed infiltration
front is determined only by (i) the water flux, (ii) the hydraulic properties
of the material, and (iii) the water content ahead of the front. In contrast,
the details of how the eventual flux is attained, are irrelevant. The distance
required for the front to develop is essentially the product of the front velocity
in the sand and the time over which the flux at the upper boundary increases
to its final value.

In the silt, on the other hand, λw is much larger than in the sand, for
θ = 0.27 considerably larger than 1 m, and it furthermore varies by about an
order of magnitude for θ between 0.27 and 0.40. Consequently, an infiltration
front develops for the high flux, but not for the low flux, for which the layer
thickness is too small.
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Figure 6.21. Drainage of sand (top) and silt (bottom) after the constant
infiltration flux j0w = 5.56 · 10−6 ms−1 (20 mmh−1) ended abruptly at t = 0.
Profiles of θ, hm, and jw are shown at t = 0, 1 h, 4 h, 16 h, 64 h,. . . ,683 d. Notice
the rapidly increasing time increment: the magenta lines correspond to some 43
days. Water flux is estimated from the numerical solution as jw = −K(θ)[dzhm −
1]. Near the hydraulic equilibrium dzhm = 1 this estimate becomes uncertain and
is not plotted.

6.3.2
Drainage

We turn to the process complementary to infiltration, drainage, and consider
a soil that is in dynamic equilibrium with the infiltration flux j0w > 0 for
t < 0. At t = 0, the infiltration stops abruptly and the soil drains under
the influence of gravity, eventually reaching hydrostatic equilibrium with the
constant water table at z = 0. We again consider the uniform soils sand
and silt with parameters given in Table 6.1 and use a soil thickness of 4 m
(Figure 6.21).

For t < 0, gravity flow is prevalent throughout most of the soil profile.
With the interruption of flux, the transition occurs from hm ≈ hgravm to
the hydrostatic equilibrium hm = z. Apparently, and maybe somewhat
unexpectedly, the silt drains very much faster than the sand. While after just
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one hour the water flux has dropped significantly throughout the entire profile
in the silt, it remains practically unchanged in the sand for depths beyond
some 1.2 m below the soil surface. Even in the silt, however, the transition
to the static equilibrium is an exceedingly slow process. As we read from
the hm-profiles, it takes some 43 days for the silt to reach equilibrium while
the sand is quite far away even after 2 years. The essential reason for this is
that there are practically no pores in the sand that can retain water beyond
about hm = −2 m (see Figure 6.6). In the 4 m deep profile we consider here,
this leads to a very low equilibrium water content in the upper 2 m, hence
to a very low hydraulic conductivity. Since for drainage the gradient of the
hydraulic head is limited to −1 ≤ ∂zhw ≤ 0, the drainage flux decreases very
rapidly with θ. In addition, a much larger volume of water has to drain from
the sand than from the silt.

We conclude from the very slow transition to the static equilibrium that
in natural environments the vadose zone becomes rapidly decoupled from an
underlying water table once a critical depth is exceeded. This critical depth
depends on the soil water characteristic, specifically on the size of the smallest
pores fraction, and on the typical time between rainfall events.

6.3.3
Infiltration Event

Turning towards more realistic scenarios, we consider a finite infiltration
event, i.e., a constant infiltration for some limited time followed by drainage.
Since we already know from the previous section that drainage is a very
slow process, hence expect a very long tail for the pulse of water that will
eventually propagate into the soil. We therefore look at a deep soil profile,
choose a depth of 8 m, and furthermore assume that the water table is so
deep that it does not affect the observed profile. This brings up the question
of the appropriate initial condition. We take a rather pragmatic approach
and, throughout the observed profile, choose a constant matric head h0m such
that a very small water content results.

Again employing the sand and the silt with parameters from Table 6.1
we realize that choosing the same initial condition for both material is not
possible. Choosing h0m too high, say h0m = −4 m, turns the sand very dry –
θ = 0.0006 and K(θ) = 1.5 · 10−13 ms−1 –, but the silt remains rather wet
and conductive, θ = 0.35 and K(θ) = 5.4 · 10−8 ms−1. Choosing a value of
h0m that has the silt more dry, say h0m = −18 m, turns the sand so dry and
the conductivity so low that the numerical simulation gets very hard. We
thus choose, somewhat arbitrarily, h0m = −4 m for the sand and h0m = −18 m
for the silt.

As infiltration event, we consider a constant infiltration for 6 h during
which 50 mm of water is applied to both soils. After the event, the flux
through the upper boundary is zero (Figure 6.22). As expected, in the sand
we find a rather sharp front for θ and hm that widens only marginally as
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Figure 6.22. Propagation of an infiltration pulse – 50 mm of water within
6 hours – into uniform, initially dry soils. Initial matric head is hm = −4 m for the
sand (left) and hm = −18 m for the silt (right). The solid lines show the profiles
immediately after the end of the pulse at t = 0.25 d. For t > 0.25 d, the water
flux through the upper boundary remained zero. Notice the different scaling of the
horizontal axes for the two materials and the choice that z = 0 at the surface. The
later is in contrast to other graphs in this chapter because the natural choice for
z = 0 at the groundwater table is not possible, here.

the pulse progresses. Behind the front, hm decreases very slowly both in
space and time with a slightly stronger decrease near the soil surface. In
contrast, the shape of θ behind the front changes rapidly during the initial
stage. Looking at Figure 6.6 reveals that this originates in the transition
through the strongly nonlinear part of the soil water characteristic. While
θ(z) decreases rather rapidly for large values of θ, it becomes approximately
constant for sufficiently low values due to the sheer steep increase of Vw(θ).
In the silt, on the other hand, the self-sharpening of the front is hardly
perceptible due to the overwhelming effect of dispersivity λw which increases
strongly as θ decreases.

We notice in passing that simulating an infiltrating pulse calls for a rep-
resentation of hysteresis since water content increases ahead of the front and
decreases behind it. Hence a typical point in the soil profile would first
move up the main wetting branch and then descend on some scanning drying
branch. Since the hysteresis of K(θ) is negligible, while that of θ(hm) is
pronounced, the switching of the branches would not affect Vw(θ) but Dw(θ)
would initially be larger on the drying branch. For the stable flow we consider
in this section, the effect of hysteresis is thus only quantitative. As we will
find in Section 6.5.2, however, hysteresis becomes a dominating aspect for
unstable flow.
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6.3.4
Evapotranspiration

In most environments, the dominant path for the loss of water from the
vadose zone is transpiration and evaporation. Transpiration refers to water
uptake by plant roots, transport through the plant tissue to the leafs, and
evaporation from there. Evaporation on the other hand refers to direct
vapor loss from the soil surface. Since the two processes are difficult to
separate in nature, they are often aggregated into one, which is then called
evapotranspiration. Such a separation is simple in a numerical simulation,
however, and we consider in the following a water flux that leaves the soil
either through evaporation or through transpiration.

Evaporation Again consider the uniform sand and the silt with a constant
water table at z = 0 and constant infiltration flux j0w = 5.56 · 10−6 ms−1.
At t = 0, the infiltration stops abruptly and switches to an evaporation with
j0w = −1.39·10−8 ms−1, corresponding to−1.2 mmd−1 (Figure 6.23).

First consider the sand and notice that in addition to the drainage already
observed in the previous section, a drying front develops in a thin surface
layer where the matric head drops very rapidly. Indeed, by day 4, hm at the
surface already reaches −20 m, a prescribed lower bound which is imposed to
prevent a run-away to −∞. The evaporation flux cannot be maintained after
day 4. The situation is very different for the silt. The profile equilibrates
rapidly, within some 10 days, and the required evaporation flux is sustained
easily by a minimal drop of hm relative to its static equilibrium value, from
−4.0 m to −4.3 m.

Transpiration To describe water uptake by plant roots, the Richards equa-
tion (6.2) must be enhanced by the volume extraction term γw which de-
scribes the volume of water that is extracted per unit volume of soil per unit
time. The dimension of γw is thus T−1. The enhanced Richards equation
then becomes

∂tθ −∇ ·
[
Kw(θ)[∇hm − ẑ]

]
= −γw , (6.38)

where ẑ is the unit downward pointing vector. The inconspicuous extraction
term γw actually hides a crucial and involved aspect, namely the distribution
of plant roots, their physiologically determined activity, and their growth and
decay. While a correct description of these aspects is crucial for modeling
the coupling between soil, vegetation, and atmosphere, a most simple model
suffices for our current interest. We first assume that the plant roots are
able to take up all the water required by the prescribed flux j0w and that the
distribution of roots does not change in time. Following Šimu̇nek et al. [1994],
we then assume that the roots’ activity only depends on the matric potential
in the surrounding soil. Hence, the problem reduces to describing how the
extraction of the total transpiration flux j0w is distributed in the soil. This
is assumed to be proportional to the product f(x)α(hm), where f(x) is the
density function of the root distribution and α(hm) is the activity function
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Figure 6.23. Evaporation (top) and transpiration (bottom) from uniform sand
(left) and silt (right) with constant water table at z = 4 m. At t = 0, the water flux
through the upper boundary jumps from 5.56 · 10−6 ms−1 (20 mmh−1) to −1.39 ·
10−8 ms−1 (−1.2 mmd−1). Profiles of θ and hm are shown for t = 0, 2 d, 4 d,. . . ,
18 d. Notice that, in contrast to Figure 6.21, time increments are constant.

of the roots. The function α(hm) accounts for the fact that water uptake is
only possible within a certain range of hm which depends on the plant species.
Most plant roots require oxygen for an optimal functioning hence there is an
upper bound for hm. On the other hand, if hm in the soil is too low, uptake
is impaired by the limited ability of the plant to reduce its potential and
the resulting decrease, or even reversion, of the hydraulic gradient. Further
dependencies are often incorporated into α, for instance a dependence on j0w
which would account for the resistance of the plant tissue to the water flux
and the corresponding increase of the potential in the root.

Denoting the flow domain of interest by Ω and the area of its interface with
the atmosphere with A, the extraction term may then be written as

γw(x) =
f(x)α

(
hm(x)

)
∫
Ω
f(x′)α

(
hm(x′)

)
dx′

j0wA . (6.39)
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which, as required, yields
∫
Ω
γw(x

′) dx′ = j0wA. For the following simulations,
we consider a one-dimensional situation and use for f(z) and α(hm) the
piece-wise linear representations shown in Figure 6.24.

We consider the same situation as above for evaporation with the sole
difference that the flux j0w = −1.39 · 10−8 ms−1 (−1.2 mmd−1) is not
extracted at the surface any more but throughout the root zone. Profiles
of θ and hm are shown in the lower part of Figure 6.23.

For the silt, the differences between pure evaporation and pure transpira-
tion are hardly perceptible. The water content, and with it the conductivity,
is so high that very small deviations from static equilibrium suffice to main-
tain the required flux, wherever in the profile it is extracted.

For the sand, however, the situation is different. Since the water need
not raise to the surface anymore, but only to the root zone, the flux j0w
can be maintained much longer and hm only drops below −20 m by day
18. This illustrates how a deep root zone acts as a buffer that can supply
vegetation with water through prolonged periods of drought even in coarse-
textured soils. It also illustrates that soil beneath vegetation is typically
much dryer than under a bare surface. This fact usually escapes superficial
observation because vegetation does tend to make the top few millimeters
slightly wetter as it better retains water vapor, which then condenses during
cooler nights.

6.3.5
Natural Atmospheric Forcing

The forcing of the vadose zone by the atmosphere consists of sporadic rain
events that are separated by extended dry periods where evapotranspiration
prevails. While this general pattern is found almost everywhere, the amounts
of water involved in the different processes varies greatly with climate zone,
as does the duration of the infiltration and evaporation periods. In tropical
regions, a diurnal cycle predominates with heavy showers in the early after-
noon while in monsoon regions the annual cycle is dominant with a rainy
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season of few months duration and rather dry weather for the remainder
of the year. Intermediate between these extreme are the humid climates
where rain showers occur throughout the year with irregular intensities and
temporal separations but with some clustering of events with durations on
the order of weeks. A more intermittent variant of this regime is found in
semi-arid and arid regions where short rain event with durations of hours
to at most some days are separated by dry periods of many months to
several years. Combining the range of climate zones with the range of soil
types and adding in the vegetation and anthropogenic landuse – where we
notice that these factors are not independent – leads to a diverse spectrum
of phenomena.

As a generic example, we consider two uniform profiles, sand and silt, again
with a constant water table at z = 8 m, deep enough to facilitate the separa-
tion of atmospheric forcing from the influence of the groundwater. The flow is
driven with a measured time series of natural rainfall, negligible evaporation,
and an assumed constant transpiration of −1 mmd−1 corresponding to a
perennial gras cover. The time series stems from an experimental site near
Bülach, Switzerland, and encompasses 200 d, starting in early May, 1991.
Mean precipitation during this period was 3.11 mmd−1 with a maximum
daily mean of 69 mm. For the distribution of the transpiration flux, the
simple root model shown in Figure 6.24 was employed. To initialize the soil
water state, hm is set to the value that corresponds to gravity flow with the
net infiltration flux j0w = 2.11 mmd−1. This corresponds to −1.12 m for the
sand and to −5.61 m for the silt. The simulation is then run for 40 d with a
constant precipitation of 3.11 mmd−1 until t = 0. Such an initialization into
some mean state is crucial since, depending on the forcing, the relaxation
time of the soil may be very long. Starting from static equilibrium, for
instance, the abnormal initial condition would be manifest in the sand for
several months. The evolution of θ(z) and hm(z) after initialization, for t > 0,
is shown in Figure 6.25. Profiles of θ and hm for the most intense rain event
during days 141. . . 144 are given in Figure 6.26. During this event, 109 mm
of water infiltrated into the soil.

The dynamics of the water phase in the sand is dominated by the sharp
infiltration fronts that develop from the individual rain events. Already small
isolated events, like for instance during days 4. . . 7 where a total of 8 mm of
water infiltrated, typically advance right to the water table even though the
amplitude is very small. Larger groups of small events merge and eventually
form one single pulse. An example is the period between days 76 and 95
where on average just 2.95 mmd−1 infiltrated, slightly less than the average
for the entire period, with a maximum of just 8 mmd−1. Such mergers
result from the higher velocity in regions with higher values of θ which in
turn reflects the increase of K with θ. A consequence of this is that larger
pulses, or merged groups of individual pulses propagate faster than smaller
ones. This can be seen by comparing the previous group with the one that
originated between days 21 and 52 and infiltrated at total of 201 mm with


