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Figure 6.25. Water content θ(z, t) in sand (left) and silt (right) for realistic
atmospheric forcing derived from a measured rainfall time series (top) and an
assumed constant evapotranspiration flux of −1 mmd−1. The root model from
Figure 6.24 was used and a constant water table at z = 8 m was assumed. The
black contour lines indicate regions with water saturations where Θ = 0.75, 0.8,
0.85, 0.9, and 0.95. Notice the different color scales for the two graphs.
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Figure 6.26. Profiles of θ and hm in the sand (left) and silt (right) for the most
intense rain event during days 141. . . 144. Precipitation rates for these days were
8, 16, 69, and 16 mm, respectively. No rain occurred on day 145.
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Figure 6.27.
Statistical distribution of θ during the
entire period shown in Figure 6.25
for sand and silt. Minimum and
maximum are given by dotted lines,
median by solid lines, and first
and third quartile by dashed lines.
Magenta lines represent θ in static
equilibrium.
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an average flux of 6.48 mmd−1 with a maximum of 34 mmd−1. The initial
stage of this second group, between days 21 and 30, also nicely illustrates how
smaller pulses are overtaken by successively larger ones. This effect becomes
particularly clear in Figure 6.26 which focuses on the strongest rain event in
this series. In the silt, the phenomenology is basically similar to that in the
sand. However, the infiltration fronts are rather unincisive due to the high
soil water dispersivity and the associated very rapid spreading.

Regions of high water saturation and their fluctuations are of particular
importance for various soil functions like the aeration of plant roots and the
redox potential with the associated chemical reactions and microbiological
transformations. Prominent chemical reactions are for instance the reduction
and mobilization of iron and manganese and the related release of toxins
like arsenic. Important microbiological transformations that are bound to
anaerobic environments include denitrification and methanogenesis with the
associated emission of the greenhouse gases N2O and CH4. Regions with
high water saturations are indicated by the black contour lines in Figure 6.25.
We notice that in the sand, these regions are limited to a thin layer within
some 0.5 m of the water table and that they are hardly affected by the
infiltration flux. In the silt, on the other hand, high-saturation regions
depend strongly on the infiltration flux. They extend several meters above
the water table and actually reach right to the surface during phases of heavy
precipitation.

Finally, we consider the statistical distribution of θ(z) (Figure 6.27). For
both soils, 50% of the values fall within a rather narrow band around the
median value. Since time is sampled uniformly, this also translates into θ
being approximately equal to the mean value during half of the time. Again
for both soils, excursions to lower water contents are much smaller than to
higher values which apparently reflects the relatively seldom heavy showers.
The minimum values reached in the profile are higher or, near the water
table, equal to those corresponding to static equilibrium. This first of all
is a manifestation of the net infiltration regime. Such a regime does not
guarantee θ ≥ θstatic, however. Forcing shallower profiles with the same time
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series actually produces values of θ that are smaller than θstatic, particularly
in the silt. A further prerequisite is that the time scale on which the system
relaxes to static equilibrium after an infiltration event is longer than the
time between events. In a deep profile, the water content near the surface is
lower on average, hence it must be increased stronger to sustain any given
infiltration flux. Consequently, more water is stored, drainage and root water
uptake can thus be sustained longer than in a shallower profile.

6.4
Inverse Estimation of Hydraulic Properties

Thus far, we considered the evolution of a known system from a given initial
state under a prescribed external forcing. Mathematically, this corresponded
to solving a partial differential equation with given parameters, initial and
boundary conditions. This is the so called forward problem.

A major difficulty with natural porous media are the required hydraulic
properties θ(hm) and K(θ) which are very difficult to determine. There exist
various experimental methods in the lab (Figure 3.21) as well as in the field
to measure θ(hm) and K(θ) rather directly. However, these are invariably
difficult and error-prone. An alternative approach is to monitor the water
flow in response to an appropriate external forcing and to deduce θ(hm) and
K(θ) from this. This is the so called inverse problem where, mathematically,
PDE, initial and boundary conditions, and the solution are given while the
parameters of the PDE are to be found.

As a specific example, consider some hydraulic experiment where the water
content θmeas

i is measured at location x at times {ti, i = 1, . . . , n}. Next,
consider a parameterization p of the hydraulic properties. For instance,
this may be the Mualem-van Genuchten parameterization (3.45) and (3.56)
with p = {θr, θs, α, n,K0, a}, assuming the soil is uniform. Finally, let
θmod(ti;p) be the volumetric water content simulated for location x and
time ti. Now, solving the inverse problem consists of choosing p such that
measured and simulated values are in optimal agreement. Often, this is
achieved by minimizing the cost function

χ2(p) :=

n∑

i=1

[θmeas
i − θmod(ti;p)

σi

]2
, (6.40)

where σi is the uncertainty of the θmeas
i . A standard procedure for such a

minimization is the Levenberg-Marquardt algorithm described in Section B.2
in the Appendix.

One can show that the cost function (6.40) is optimal for the case where
θmeas
i are statistically independent with the error described by a Gaussian



176 6 Soil Water Flow

distribution with mean 0 and variance σ2
i . Then, at the minimum, χ2 is a

random variable with χ2-distribution, thence the name, with

〈χ2
min〉 = n−m and var(χ2

min) = 2[n−m] , (6.41)

where n and m are the dimensions of the data array θmeas and of the
parameter array p, respectively.

Obviously the concept can be generalized easily to accommodate any
assortment of data, for instance θi, hmi

, and jwi
for any set of generalized

locations xi, typically locations in time and space. Denote the corresponding
array with d and let C the associated covariance matrix with Cij = 〈[di −
〈di〉][dj − 〈dj〉]〉. Also, the parameter vector may be augmented to allow
for multiple materials. Finally, let M(x;p) denote the simulation results
for locations x and parameter array p. The generalized form of (6.40) then
becomes

χ2(p) =
[
d−M(x;p)

]T
C
−1

[
d−M(x;p)

]
(6.42)

and may again be minimized with the Levenberg-Marquardt algorithm. Be-
fore discussing a number of important issues involved in the solution of an
inverse problem, we look into two examples.

Example: Multi-Step Outflow Method Based on previous work by Zachmann
et al. [1981] who considerer draining soil columns, Kool et al. [1985] and Parker
et al. [1985] suggested to perform one-step outflow experiments for determining
θ(hm) and K(θ). The experiment started with a fully water-saturated soil
column. At time 0, the matric head hm at the lower end was reduced to some
value hm < 0 and time series of the resulting outflow of water were recorded.
Toorman et al. [1992] demonstrated that in addition measuring a time series of
the matric head somewhere within the soil colum greatly improved the accuracy
of the estimated parameters. Only with this modification the method became
useful for a wider range of soils. As a next improvement, Eching et al. [1994]
and van Dam et al. [1994] suggested to reduce the matric head in several smaller
steps instead of a single large one and demonstrated that the results were reliable
without additional instruments in the soil column. This so called multi-step
outflow method has since become the standard for estimating θ(hm) and K(θ).
A typical setup is shown and explained in Figure 6.28.

Results from a multi-step outflow run with a sand column of 0.1 m height
are shown in Figure 6.29. The experiment starts from an initially saturated soil
column and a correspondingly positive pressure pw at the lower end. This is
subsequently reduced in discrete steps down to a value that corresponds to a
matric head of −0.3 m. In response, water flows out of the column. With each
step, the water flow qw(t) increase rapidly and tails off ever more slowly. Clearly,
the rapid increase stems from the region next to the lower boundary which reacts
quickly to a change of the pressure. In contrast, the tailing is determined by
the equilibration of the entire soil column and dominantly reflects the actual
hydraulic conductivity. As expected, this tailing becomes more pronounced as
the matric head decreases and the soil becomes drier.

After the desired minimum value of the matric head has been reached, water
is allowed to infiltrate back into the soil column be raising pw, again in discrete
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Figure 6.28. Typical setup for multi-step outflow experiment. The soil sample
is restrained by two plates to prevent swelling. The upper plate is permeable to
air and allows the air pressure within the soil sample to remain at pa. The lower
restraint consists of a thin membrane (red) with very small pores on top of a
coarse-grained porous plate. The membrane prevents air from the soil sample to
enter the vacuum system and a plate provides the mechanical support. The pressure
in the porous plate is measured by sensor ps1. Since the hydraulic resistance of
the membrane is much larger than that of the plate, ps1 essentially measures pw.
The signal from ps1 is used to control pw, the external forcing, through valves
v1 and v2. They connect to two pressure reservoirs, ambient air with pa and the
vacuum container with p2 ≪ pa. The outflow is calculated from the height of the
water table in the burette which is measured by the differential pressure sensor dsp.
As additional quantity, the matric head at some location within the soil sample is
measured with pressure sensor ps2.

steps. Recalling the hysteresis of the soil water characteristic shown in Fig-
ure 3.22 (page 60), we expect that this infiltration follows a path that is different
from that of the previous drainage even if the forcing is identical. Indeed, the
peaks of the water flow are considerably smaller than those on the drainage
branch. Necessarily, we thus require a parameterization of the hydraulic proper-
ties that includes hysteresis. A simple extension of the Mualem-van Genuchten
parameterization (3.45) and (3.56) was proposed by Kool and Parker [1987] who
assumed that the scaling parameter α depends on the hysteresis branch while
all the other parameters are independent. A motivation for such an assumption
may be deduced from Figure 3.20 (page 58) which indicates that the drainage
branch is determined by the distribution of bottle-necks while the imbibition
branch depends on the cavities. The implication then is that the distribution
of volumes associated with the bottle-necks and cavities are related to each
other by a simple scaling of the corresponding pore sizes. This scaling is given
by α. Indeed, αhm is the quantity that occurs in the Mualem-van Genuchten
parameterization and [αhm]−1 may be interpreted as the dimensionless pore-size
thus leading to the above implication.

Once the experimental data are available and the general form of the pa-
rameterization is presumed, the corresponding parameters p may be estimated.
Provided that the measurements are independent, (6.42) reduces to
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Figure 6.29. Typical result of a multi-step outflow experiment for a coarse-
textured sand with grain sizes between 0.25 and 0.63 mm. Symbols show the
measured matric head hm 2 cm below the upper plate (top) and the cumulative
outflow Qw (bottom) in response to the external forcing by the matric head at the
lower plate (blue line). Results from inversions using the entire dataset (black),
the drainage only (red), and part of the drainage (green) are drawn as lines. The
corresponding parameters are given in Table 6.3.

χ2(p) =

nQ∑

i=1

[Qmeas
wi

−Qmod
w (ti;p)]

2

σ2
Qi

+

nh∑

i=1

[hmeas
mi

− hmod
m (ti;p)]

2

σ2
hi

, (6.43)

where nQ and nh are the number of measurements of cumulative outflow and of
matric head, respectively. Inversion of the data was done with the code esphim

by T. Zurmühl. In the following, we consider three subsets of data and their
inversions: the complete drainage-imbibition, drainage only, and the dry part of
drainage. The resulting parameters are given in Table 6.3 and the corresponding
functions are shown in Figure 6.30.

As a preliminary, we notice that the plateau of Qw that follows the transient
phase after each step reflects the soil water characteristic θ(hm). Indeed, with the
outflow vanished, hm is constant within the soil column – varying only by some
centimeters with the height above the lower plate, here by a maximum of 0.1 m
– and the cumulative outflow is proportional to θs − θ. On the other hand, the
transient phase is determined by the amount of water that has to leave the soil
column, i.e., by the soil water capacity, and by the hydraulic conductivity that
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Figure 6.30. Mualem-van Genuchten parameterization with parameter values
(Table 6.3) obtained from different subsets of the experiment shown in Figure 6.29.
The black curves are from the inversion of a full drainage-imbibition run with dashes
indicating imbibition. The red line is for a non-hysteretic formulation inverted from
the drainage data alone and the green line is the same model but only for the dry
part of drainage. The gray lines show extrapolations of the parameterization into
regions not covered by data.

determines the maximal flux. The time scale of the transient phase may thus be
expected to be set by the inverse of the soil water diffusivity Dw = Kw/Cw that
was defined previously by (6.35).

After these preliminaries, consider the inversion of the entire data set, the
black line in Figure 6.29. Apparently, the model is unable to describe the data
correctly since already the plateaus of Qw(t) are not captured correctly. Hence,
the parameterization of θ(hm) cannot be accurate. Notice that, depending on
the matric head, the model produces both, under- and over-predictions for the
soil water capacity. Looking at simulated matric head, we also notice rather
large deviations from the measurements, mostly in the form of a longer tail.
This hints at too small a value of the hydraulic conductivity.

Table 6.3. Optimal values of Mualem-van Genuchten parameters for hydraulic
properties θ(hm) and K(θ) shown in Figure 6.30 and obtained from inverting the
data from Figure 6.29. Notice that the parameters θr and θs cannot both be
estimated from a multi-step outflow experiment alone, only their difference. The
negative sign of α reflects the convention that hm < 0 for bound water.

data used θs − θr αd αw n a K0

for inversion [m−1] [m−1] [m s−1]

drainage & imbib. 0.263 −6.33 −9.34 5.32 0.86 1.05·10−4

drainage only 0.279 −6.18 4.77 2.10 5.98·10−4

part of drainage 0.241 −6.04 6.38 1.44 7.08·10−4
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Next, we look at the inversion of the outflow data alone, the red curve in
Figure 6.29, to see if the problem is with the parameterization of the hysteresis.
Clearly the agreement between with the data is much better now, with the matric
reproduced almost perfectly. Apparently, the parameterization of the hysteresis
is indeed too restrictive. However, the outflow is still not represented accurately.
This indicates that the van Genuchten parameterization is not flexible enough
for this soil material.

Excluding the wet part of the drainage curve from the inversion, the green
curve in Figure 6.29, finally leads to a satisfactory approximation of the measured
matric head and of the cumulative outflow. However, the price for this success
is a rather small domain of validity.

Finally, we look at the parameters and at the curves shown in Figure 6.30.
We first notice that the conductivity K0 at saturation is comparable for the two
inversions based on outflow data alone but that it differs by a factor of 6 to
7 from the value obtained for the complete inversion. However, as Figure 6.30
reveals, the discrepancy quickly vanishes as hm becomes more negative. Looking
at θ(hm), we find that the three inversions yield curves that are quite similar
for intermediate values of hm but that they deviate significantly towards more
extreme values. We notice that both, θ(hm) and K(hm), become uncertain
as the range of actually measured values is left. This is of course typical and
well-known for all extrapolations.

The outcome of the inversion exercise with the data from Figure 6.29 is
characteristic. It clearly demonstrates the constraints imposed on the solution
of an inverse problem by parameterizations with insufficient flexibility. While
this issue has been clearly identified its solution is still an active field research.
The current most promising approaches indeed favor the more flexible parame-
terizations offered by spline approximations. With all the uncertainties imposed
by an unsuitable parameterization, we realize that the difference between the
drainage branch and the imbibition branch is very much larger than the differ-
ences between the various inversions. Looking at the outflow data in Figure 6.29,
we find that the model actually underestimates the hysteresis. From this, we
conclude that neglecting hysteresis in describing water flow through natural soils,
at least through coarse-textured ones as studied here, will lead to much worse
misrepresentations than those which result from the different inversions.

In closing, we notice the minimum pressure pw at the lower plate as a fun-
damental limitation of the multi-step outflow suction method described so far.
Since pw cannot be lower than the vapor pressure pvapw = O(1 kPa), the lowest po-
tential ψm = pw−pa available is about −100 kJm−3. (Recall that energy density
is dimensionally equal to pressure and normal air pressure is 100 kPa.) Actually,
practical limitations set in much earlier and measurements with pw < 80 kPa
are already difficult and the method is mostly applied for ψm > −20 kJm−3.
What typically happens is that water degasses below the lower plate and thereby
feigns a higher outflow rate and, through the reduced contact area, a lower
hydraulic conductivity. An attempt to circumvent this limitation was the multi-
step outflow pressure method where the setup is modified such that pw ≫ pvapw

and air pressure pa in the sample is increased instead. Then, ψm = pw − pa can
be set to arbitrarily low values. Compared to nature, where pa is always very
near to the ambient air pressure, the water phase in a pressure experiment may
be in a different state: For low values of ψm, pw is still well above the vapor
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Figure 6.31. Conceptual setup for evaporation experiment. Air whose chemical
potential is controlled with a Peltier cooler passes over a soil sample. The head
space above the sample is well-mixed by a small fan and pressure and temperature
are measured by sensors ps and ts, respectively. Air flow qa is measured with
the differential pressure sensor dps as the pressure drop across the calibrated
capillary. Water flow is calculated from qa and the measured difference of the
vapor concentrations in cells A and B. The TDR (time-domain reflectometry) probe
provides additional information on the water content in soil sample. The real
setup is considerably more complicated than shown here. There are for instance
duplicate Peltier coolers with automatic de-icing and additional gadgets for the
periodic online-calibration of the gas analyzer. The entire system is computer-
controlled. [Diploma thesis of K. Schneider, 2005]

pressure of the bulk phase whereas in nature it would be below. Hence, the
significance of pressure measurements is questionable.

Example: Evaporation Method Evaporating water from the soil surface in-
stead of sucking it out from the bottom offers the full range of ψm under near-
natural conditions. Indeed, Kelvin’s equation shows that the water potential in
the air phase can be made arbitrarily negative by reducing relative humidity.
This equation, introduced and discussed on page 247, relates the ratio between
the partial pressure pv of water in the vapor phase and the vapor pressure at
temperature T to the chemical potential ψm, which is identical to the matric
potential used so far. It may be written as

pv(ψm)

pv(0)
= exp

(mwψm

ρwRT

)
, (6.44)

where mw and ρw are molar mass and density of water, respectively, and R =
8.3144 Jmol−1K−1 is the universal gas constant.

A conceptual setup of an evaporation experiment is shown in Figure 6.31.
The first step is the conditioning of the incoming air. This is accomplished
with controlled Peltier coolers which freeze out the water vapor at a prescribed
temperature. The lower this temperature, the lower the vapor pressure in the
cooler. This determines the total amount of water in the air and with it, after
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warming back to room temperature, the relative humidity and finally, with
(6.44), the potential ψm. This conditioned air is then conducted through the
thoroughly mixed head space above the soil sample where it takes up water. The
uptake is determined by measuring the difference of the water concentrations
between inflow and outflow. Since these concentrations are in general very
small, an accurate instrument is required, as for instance a differential infrared
spectrometer. Together with the volume flow of air, which is obtained from the
pressure drop across a calibrated capillary, the water flow out of the soil sample
can be calculated. Finally, the hydraulic properties are again obtained by invert-
ing these measurements for a prescribed form of the parameterization.

While the evaporation method makes the full range of ψm accessible, it does
have a few drawbacks and fundamental limitations. The major drawback is the
time it takes to run such an experiment. While the evaporation rate is initially
only limited by the air flow through the head space, the hydraulic conductivity
of the soil sample becomes the major bottle-neck at later times. As can be
gathered from Figure 6.4, this is particularly severe for coarse-textured materials.
More fundamental limitations arise from salt accumulation at the surface which
modifies the hydraulic properties and from the evolution of cracks already in
samples with moderate clay contents. While both effects clearly also occur in
natural surface soils, and could there be considered as part of their effective
hydraulic properties, this is no longer true for samples that originate from
greater depths. Finally, we notice that modeling is much more demanding for
an evaporation experiment than for a suction experiment since, certainly in the
dry range, the vapor flux in the soil sample must be taken into account.

While inversion is an attractive approach to estimate hydraulic properties it
also raises a number of important issues, most of which are active research
fields. Here, we will only touch upon a few of them.

An important practical aspect is the required computational effort. In-
variably, an inverse problem is much harder to solve than the corresponding
forward problem. It starts from an initial parameter array p0 and then
follows a certain path through parameter space to the final optimal array
popt. The number of steps on that path and the cost of each step depend on
the algorithm, but they involve at least one solution of the forward problem
for each step and often as many as n + 1, where n is the dimension of p.
As an indication, a reasonably well-conditioned inverse problem with a good
initial guess may demand O(102n) runs of the forward problem, while an
ill-conditioned problem can require well over 105n runs.

Inverse problems are notorious for having multiple solutions either be-
cause of noisy data or, more serious, because the experimental design does
not allow to identify all the parameters. Here, we will only be concerned
with algorithmic consequences and discuss further implications below. The
difficult thing with multiple solutions is to know whether the problem at hand
indeed has this deficiency. A simple approach would be to map the χ2-surface
for the entire physically admissible parameter space. The costs for this are
exorbitant, however, even for moderately complicated models and moderately
large dimensions of p. A more practical, albeit not completely save, approach
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is to use different starting points p0 and to check if they yield different
optimal parameters popt. Once the inverse problem of interest is found to
possess multiple solutions and the experimental design cannot be modified
to remove the ambiguities, then special algorithms are used which can find
the global minimum. Examples are simulated annealing [Press et al. 2002]
and genetic algorithms [Levine 1996]. These globally optimizing methods
are invariably very expensive and should be considered as a last resort for
otherwise intractable problems.

Once the optimal parameters have been obtained, the natural question to
arise is: Is the model able to fit the data and if so, what is the probability
for the goodness of the fit? The first step in addressing this question is to
look at the residual, in the notation of (6.42) at d−M(x;popt), and to check
if there occur characteristic structures that could indicate deviations of the
data from the model predictions. A more quantitative approach is to compare
the actual value of χ2

min with its expectation and variance as given in (6.41).
To actually calculate the probability for the goodness of the fit, rather strong
assumptions are required, in particular that the data errors indeed follow a
Gaussian distribution. Then, the probability P (χ2

min) can be calculated from
the χ2-distribution with n−m degrees of freedom. As an aside, we comment
that while the estimated parameters are not very sensitive to the distribution
of measurements errors the explicit statistical quantities are.

Given an appropriate model, we want to know the accuracy of the esti-
mated parameters and the correlation between them. For the highly non-
linear problems considered here, this is a difficult question that can only be
addressed adequately with Monte Carlo simulations, which are much more
expensive than solving the inverse problem. A much cheaper alternative is
available if the distribution of the data errors is Gaussian. Then, one can
show [e.g., Press et al. 2002] that also the parameters popt follow a Gaussian
distribution and that its covariance matrix C equals a

−1, where a is the
curvature of the χ2-surface at popt. The elements of a are

aij =
1

2

∂2χ2

∂pi∂pj
. (6.45)

Hence, the variance of parameter pi, under the premiss that all the other
parameters are fixed at their optimal value, is

var(pi) = Cii (6.46)

and the coefficient of correlation between parameters pi and pj is

ρij =
Cij√
CiiCjj

. (6.47)

Some algorithms automatically yield the matrix a because it is also required
for the optimization. This is in particular the case for the popular Levenberg-
Marquardt algorithm. If this is not the case, it can easily be estimated from a
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finite differences approximation of (6.45). We reemphasize that these handy
results are only correct to the extent that (i) the model is a correct description
of the data and (ii) the distribution of the data errors is Gaussian.

Very often in soil physics, and in the environmental sciences at large,
we are not in the lucky position to have a correct model at hand. More
typical is the case where the model is a more or less crude approximation
of some complicated process. While the statistical tests will immediately
signal the failure of the model, we may still wish to continue and use the
model. An example of such a failure is shown in Figure 6.29 where the
modeled tails of the outflow peaks are consistently longer than the measured
ones. Parameters obtained in such case are “effective” in the sense that
all inadequacies of the model – dynamics, parameterizations, initial and
boundary conditions – are folded into the parameters. Such results must be
used with utmost care: Processes similar to those considered for the inversion
may be represented approximately correctly by such a combination of an
inadequate model and optimally matched parameters. However, it may fail
completely if the parameters are used in a different context. Bayer et al.

[2005] demonstrated for instance that a multi-step outflow experiment with
a weakly heterogeneous soil column could be inverted rather satisfactorily
with the (wrong) assumption that the soil was uniform. However, when the
column was turned upside down and the multi-step outflow experiment was
repeated, to model was not able to predict the data.

We mention in closing that the forward and the inverse problem may
be understood as special cases of a more general problem formulation. To
this end, we recognize that {PDE, parameters, initial conditions, boundary

conditions, solution} is a redundant set of information about a particular
process at a particular site. The general problem consists of deducing the
redundant subset from any given complete and nonredundant subset. The
important question as to what experimental design is optimal, or at least
sufficient, for the identification of a given set of parameters of a given type
of model has not yet been addressed to any depth, however.

6.5
Preferential Flow

From a phenomenological perspective, preferential flow refers to nonuniform
movement of water and in particular to the more rapid flow in some subre-
gions of the soil. In this sense, flow in heterogeneous formations as illustrated
in Figures 6.11–6.13 is already called preferential. There, water is gated by
less permeable layers and funneled through more permeable regions. For
inclined and cross-bedded layers this may lead to a strong focusing of the
flow to narrow channels. Indeed, the term funnel flow was coined as an
example of preferential flow [Kung 1990a,b]. An extreme example of funnel
flow is the capillary barrier sketched in Figure 6.10.
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Natural soils are almost always nonuniform. Preferential flow in the above
sense may thus be expected as the rule rather than as the exception [Flury
et al. 1994], the definition is thus not very useful. A more fruitful approach is
to consider the dominant flow processes and to distinguish matrix flow , which
is dominated by capillary forces and described by the Richards equation (6.2),
from preferential flow that is dominated by other forces. Examples include
flow through large and continuous voids, so called macropore flow, instabili-
ties that lead to fingered flow, and flow in incompletely wetted soils.

6.5.1
Macropore Flow

Large continuous voids – desiccation cracks, wormholes, old root channels –
are common in the surface layer of most soils as illustrated by Figure 3.6.
For voids with radii approaching or even exceeding the capillary length given
by (3.9), some 2.7 mm for water in a perfectly wettable soil, gravity becomes
the dominating force, flow velocities increase rapidly, and the Navier-Stokes
equation has to be used instead of the Buckingham-Darcy flux law. A further,
no less fundamental issue is the existence of an REV which is typically
impeded by the highly anisotropic shape of the voids and the large extent in
at least one direction.

Already for pores with diameters well below the capillary length, a diffi-
culty arises: With the high velocity and correspondingly short transit times
the assumption of a local hydraulic equilibrium between the macropore and
the surrounding finer-textured matrix is no more warranted. As a conse-
quence, Richards’ equation cannot represent the dynamics anymore even if
Stokes flow is still a reasonable approximation. For detailed studies of such
processes, one has to abandon the continuum approach and to take recourse
in pore-scale representations.

Macropore flow has been identified as the culprit behind contaminations
of groundwater with pesticides and other agrochemicals which are typically
decomposed or at least retained in the biologically active top soil layers.
Corresponding observations in drainage water were the first indirect reports
on macropore flow [Lawes et al. 1882]. Despite the intensive study ever
since, understanding of the phenomenon remains qualitative and heuristic
representations mark the state of the art.

6.5.2
Flow Instabilities

Displacement of a high-viscosity fluid with an invading low-viscosity fluid
has been studied for a long time [Saffman and Taylor 1958; Homsy 1987].
The respective infiltration front was found to be unstable and to disintegrate
into fingers giving rise to beautiful patterns. An apparently similar, albeit
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Figure 6.32. Flow instability induced at transition from fine-textured sand
(dark top layer) to coarse-textured sand observed with light transmission in a Hele-
Shaw cell with a thickness of 3 mm. The sand is initially dry then a uniform and
constant infiltration flux is imposed. The image on the right is normalized and
calibrated and shows the water saturation. [Image courtesy of F. Rezanezhad]

in detail quite different phenomenon occurs in soils when water infiltrates
an initially dry, water-wet, coarse-textured medium (Figure 6.32). Notice
in particular that for pure fluids, instability occurs with the “more fluid”
invading the “less fluid” while in porous media there are other factors, in
particular wettability and permeability of the matrix, which modify the
behavior such that also a water front invading dry soil may become unstable.
Looking at Figure 6.32, the significance of fingered flow for groundwater
recharge and for the transport of solutes through the soil are apparent:
(i) A larger fraction of the infiltrating water reaches a depth where it is
no longer susceptible to evaporation, hence groundwater recharge increases.
(ii) Dissolved substances that enter the soil with the water traverse the
biologically active top layers more rapidly, hence there is less time for the
immobilization or decomposition of contaminants, and consequently a higher
risk of groundwater contamination. (iii) Solutes that reside outside of the
flow channels first have to diffuse into them before they get eluted, thus
have a considerably higher residence time. Consequently, flow instabilities
have been studied extensively, both experimentally [Glass and Nicholl 1996;
DiCarlo 2004] and theoretically [Eliassi and Glass 2001].

The first striking feature of unstable flow in porous media is that these
so-called viscous fingers remain rather stable in the presence of the capillary
forces exerted by the dry surroundings. This is in stark contrast to fingers
in pure fluids, without a porous matrix, where interfacial tension leads to
a rapid coarsening of the finger pattern [Sharon et al. 2003]. The crucial
ingredients for understanding this are (i) the observed saturation overshoot
in the tip of the finger – notice the deeper blue of the finger tips in the right
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Figure 6.33.
Evolution of hydraulic states during passage of
finger tip. At location x0, where the center of
the tip passes through, (θ, ψm) moves from the
initial very dry state through the maximum
(θtip, ψtip

m ) towards (θcore, ψcore
m ). During the

same time, the state at x1 evolves monotoni-
cally towards (θfringe, ψcore

m ). As the states at
x0 and x1 approach the same potential ψcore

m

on different hysteresis loops, the radial water
flux ceases even though the water contents are
quite different. This prevents further rapid
radial growth of the finger and stabilizes it.
There is still a gradient between x1 and x2,
however, and the finger continues to expand.
This is severely hindered by the low conduc-
tivity in this dryer range and by the limited
supply of water.

image of Figure 6.32 – and (ii) the hysteresis of the soil-water characteristic
as shown for instance in Figure 3.22.

We start out with the fact of saturation overshoot and consider the change
of the hydraulic state (θ, ψm) at three locations – x0 on the centerline, x1 at
the outer limit of the core, and x2 in the fringe – during the passage of the
finger tip (Figure 6.33). Initially, the soil is dry hence ψm strongly negative
and θ very small. With the tip approaching x0, both θ and ψm increase
there and move along the imbibition branch of the soil water characteristic.
They reach maximal values θtip and ψtip

m , respectively, with the center of the
tip passing over x0. Then, water content decreases as is evident qualitatively
from Figure 6.32 and was measured in detail by DiCarlo [2004]. This decrease
brings the state on the desorption branch of the soil water characteristic. On
this, (θ, ψm) approaches the metastable state (θcore, ψcore

m ), whose time-scale
for change is very much longer than the one for reaching it.

Why does such a metastable state exist? The answer lies in the evolution
of the hydraulic state at location x1, at the outer limit of the core. As
the tip passes by, water infiltrates radially, driven by the large hydraulic
gradient. Consequently, (θ, ψm) moves up the imbibition branch and ap-
proaches (θcore, ψcore

m ) monotonically. With the matric potential at x0 and
x1 approaching the same value, ψcore

m , the radial gradient decreases and with
it the corresponding flux: the finger becomes stabilized.

On a time-scale that is much longer than that of the fingers creation, it
continues to expand. This is caused by the large radial gradient in the fringe
of the finger, between x1 and x2. However, with the water content already low
at x1 and further decreasing in the fringe, hydraulic conductivity decreases
very rapidly and with it the radial flux.
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Figure 6.34.
Microscopic view of
water-air interface
(upper row) and
pressure (lower row)
for infiltration into an
initially dry, water-wet
medium with different
fluxes: (A) static
equilibrium (red lines)
and low flux (blue
lines) and (B) very
high flux. The matric
potential ψm = pw − pa
across the interface is
related to the mean
curvature (Young-
Laplace). Notice that
the slope of p(x) is
related to the flux and
to the viscosity of the
fluid. Hence it is steeper
for water than for air.
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The crucial question then is: What causes the saturation overshoot in
the finger tip? To answer this, we consider the infiltration front from the
microscopic perspective illustrated in Figure 6.34.

First consider the regime sketched in frame A of Figure 6.34. In static
equilibrium, with the fluids at rest, the pressure is constant within both
phases and discontinuous at their interface. The pressure jump, the matric
potential ψm = pw−pa defined in (3.19), is determined by the mean curvature
as described by the Young-Laplace equation (3.2). Slowly increasing the
pressure gradient in the situation shown in Figure 6.34 at first only leads
to a readjustment of the interface but not to a water flux: the interface is
“pinned”. Further increase leads to a sudden jump of one of the interfaces
across the large void and the subsequent rapid invasion of smaller pores
ahead until the accumulated pressure is released. This is an instance of
the previously encountered Haines jump. With the gradient sufficiently high,
many temporally overlapping jumps occur at different locations and give
rise to a continuous flux. Increasing the gradient further will lead to a
proportional increase of the flux as described by the Buckingham-Darcy law.
This leads to the flow regime that we considered in most of this chapter so
far. Let us call it the Richards-regime.

For the phenomena just described, except maybe for the rapid advance
during a jump, the interface evolves through quasi-equilibrium states because
the time-scale for its adjustment is much shorter than that of the flow. The
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reason for this is that for slow flow in porous media, interfacial forces are
much stronger than viscous forces. The ratio between these two forces is
characterized by the capillary number

Ca =
µv

σ
. (6.48)

This may be motivated by considering interfacial and viscous forces at a
characteristic length ℓ smaller than the capillary length ℓc defined by (3.9).
We find with (2.11) that the viscous force scales like µ[v/ℓ]ℓ2 and with
(3.1) that the interfacial force scales like σℓ. The ratio of the two yields
(6.48). Inserting values for water and assuming the rather high velocity of
1 mms−1 yields Ca ≈ 10−5. Hence, the interfacial forces are some five orders
of magnitude larger than the viscous forces.

Next, we consider frame B of Figure 6.34 which represents a much higher
water flux. The velocity here is so high that the water-air interface moves
faster than the water-solid interface, despite the fact that water is the wetting
fluid (notice Exercise 6.8). As a consequence, the mean curvature of the
water-air interface becomes positive. Hence, keeping in mind the very small
value of the capillary number, pressure builds up in the water phase such
that the matric potential ψm becomes positive. As an aside, we notice that
this is another instance where ψm does not reflect pore size and wettability
alone, as is the case for static equilibrium, but that it contains a dynamic
component. This is often highlighted by calling ψm the dynamic capillary

pressure. This name is indeed used for all deviations from the static value,
irrespective of the origin, which is at times a bit disturbing. We already
encountered another example of dynamic capillary pressure in the discussion
of (6.7), the water potential that arises with continuous multiphase flow.
Notice that these two cases are fundamentally independent of each other. A
common feature of all situations where a dynamic component of ψm becomes
significant is that the relation between θ and ψm, as it is given by the soil
water characteristic, breaks down because the latter is a relation for static
equilibrium. As a consequence, also Richards’ equation breaks down since it
is based on quasi-static equilibrium states.

Weitz et al. [1987] performed an ingenious experiment to reveal the de-
pendence of ψm on velocity. They chose two immiscible liquids with the
same viscosity, filled a porous column with one of the fluids and displaced
it with the other. They recorded the pressure drop across the column as
the interface passed through (Figure 6.35). They found that, depending
on the flow velocity, the pressure jump across the interface, i.e., the matric
potential ψm, was positive, zero, or negative, in accordance with the sketch
in Figure 6.34.

We may expect that a higher value of ψm also leads to a higher value
of the saturation, hence to the observed saturation overshoot in the finger
tip. The question then arises: Why does the saturation, and presumably
also the matric potential, decrease behind the tip? The additional pressure



190 6 Soil Water Flow

Figure 6.35.
Measured pressure drop across porous
column as interface between two immiscible
fluids with same viscosity passes through.
The dyne is the unit of force in the cgs
system and equals 10−5 N. (Figure 1 from
Weitz et al. [1987])

Figure 6.36.
Saturation overshoot during the invasion of
water with different fluxes into an initially
dry porous column. Fluxes are given in
cmmin−1. (Figure 5 from DiCarlo [2004])

is required to overcome the “entrance resistance” posed by the slow wetting
of the wetting. Behind the tip, no such resistance is present anymore, the
medium is already wet. DiCarlo [2004], working with light-transmission in
a narrow colum that corresponds to a one-dimensional system, showed that
saturation overshoot is strongest for intermediate fluxes (Figure 6.36). This
is readily understood: For very low fluxes, flow is essentially in the Richards
regime where wetting of the solid surface is fast compared to the speed of
the advancing front. Hence not overshoot is generated. Conversely, for very
high fluxes the medium is completely saturated already and no overshoot can
occur even if the matric potential is positive.

Everything considered so far works beautifully without gravity. What is
its impact then? Nothing really essential for the generation and stabilization
of viscous fingers. However, it provides a uniform driving force for the flow
such that ψm far behind the tip remains constant. We may thus assemble
the puzzle of viscous fingers in soils: Water flow in the core of the finger is
pure gravity flow. In sufficiently coarse-textured media, the corresponding
velocities are so high that the speed of wetting of the solid surface at the
front becomes limiting. As a consequence water piles up behind the front.
From this a hydrostatic pressure results as the surplus water is not hold by
capillarity anymore. The pressure increases such that the entrance resistance
caused by the slow wetting speed is overcome. The piled-up water, the
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Figure 6.37. Fingered flow in medium with heterogeneous layer at depth
interval between 0.56 and 1.05 m sandwiched between two uniform layers. The
sole difference between the materials is that the fine-grained fraction was removed
before the uniform layers were built up. At the time the image was taken, the flow
pattern was still evolving. Eventually, the number of fingers in the lower uniform
layer was about the same as in the upper one. The lower end of the cell is closed.
A single outlet, the black dot at the lower left corner, allows the water to leave the
cell. The outlet in the right corner is closed as may also be deduced from the shape
of the water table. Figure 6.32 shows the early stage of the flow pattern with all
the flow fingers still in the first uniform layer. [Images courtesy of F. Rezanezhad]

saturation overshoot in the finger’s tip, stabilizes the radial growth of the
finger through the hysteresis of the soil water characteristic.

Apparently, a prerequisite for flow fingers is a porous medium with large
pores, a correspondingly high permeability, and a very steep hydraulic con-
ductivity function. This is typically encountered in coarse-grained granular
media (sands) with a rather uniform grain-size distribution. The impact of
a wide grain-size distribution is illustrated by Figure 6.37

which shows fingered flow in a layered medium. The middle layer, in the
depth interval between 0.56 and 1.05 m, has a grain-size distribution in the
range from 0.25 to 1.25 mm. The same material, but previously sieved such
that the grains are larger than 0.63 mm, was used to build the adjacent layers.
The narrower grain-size distribution of the sieved material also facilitated the
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building of more uniform layers. In contrast, the middle layer is more hetero-
geneous with thin fine-grained filaments separating coarser-grained regions.
This is a consequence of the inevitable sorting that results from pouring of
granular media with a wide grain-size distribution.

Starting out with a dry medium, a constant water flux is imposed at the
surface and leads to flow fingers as already found above. Eventually, such a
finger hits the finer-grained layer. Since its permeability is much smaller, the
finger widens, its velocity decreases and with it also the capillary number Ca.
In this experiment, the drop in Ca was sufficient to break down the finger
and to initiate a regular infiltration into the middle layer. However, as this
infiltration front reaches the underlying uniform layer, the conditions again
become favorable for flow fingers and they appear again.

Exercises

6.1 Capillary Bundles Choose parameters for the Brooks-Corey and for the van
Genuchten parameterization of the soil water characteristic. Under the premise
that the porous medium consists of parallel and circular capillaries, calculate and
draw the resulting (i) pore size distribution and (ii) hydraulic conductivity func-
tion.

6.2 Stationary Flow, Uniform Soil Consider two uniform soils with different
texture, e.g., the sand and silt used in this chapter, with a constant water table
at a certain depth. Sketch matric head hm and water content θ for the dynamic
equilibrium during constant infiltration and constant evaporation.

6.3 Stationary Flow, Layered Soil Consider two uniform layers and a constant
infiltration flux such that both layers remain unsaturated and that the top layer is
the better hydraulic conductor than the bottom layer. What does “better hydraulic
conductor” mean for an unsaturated medium? Sketch and explain hm(z) and θ(z)
across the interface.

6.4 Mulching Gardeners and farmers mulch the soil, i.e., they cover it with straw
or bark residues. Similarly, ancient cultures in semi-arid regions, in Yemen for
instance, covered their fields with coarse sand. What is or was their motiva-
tion?

6.5 Infiltration into Sand and Silt Consider the two materials described in Ta-
ble 6.1 on page 146. Assume for simplicity that initially, they are both completely
dry, i.e., θ = 0 for t < 0. What is the propagation velocity of the front that results
from the infiltration flux j0w = 5 · 10−6 ms−1?

6.6† Maximum Infiltration (Green-Ampt Problem) Consider a very gently sloping
site such that any excess water from a heavy rainfall runs off, but infiltration can still
be described in a one-dimensional approximation. Assume the soil to be uniform
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and the water content to be constant, θ < θs for times t < 0. Let a heavy rainfall
start at t = 0 and assume that it is so heavy that runoff sets in immediately.
Approximate this by hm = 0 at the soil surface. As a passing remark, hm > 0
in reality since the runoff will lead to a sheet of water with a certain thickness ℓ.
However, ℓ will be small, a few millimeters at most, lest erosion sets in and destroys
the entire setting. Calculate, as a function of time t, (i) the depth of the infiltration
front and (ii) infiltration flux.
Hint: Recall that the infiltration front is self-sharpening and approaches a constant
shape after some transition time. Choose a point on that front – half height, 90%
height,. . . – and refer to the corresponding matric head as hf

m. Use it to define
the driving force. It will turn out to be a parameter that has to be fitted based on
experimental data.

6.7 Multi-Step Outflow Figure 6.29 indicates that the matric head measured by
the tensiometer in the soil column continues to decrease for some time after the
head at the lower boundary already raises again. Explain!

6.8 Capillary Number and Advance of Viscous Finger With the introduction of
the capillary number in (6.48) it was argued that interfacial forces between water
and air in a porous medium are orders of magnitudes larger than viscous forces.
Nevertheless, in explaining frame B of Figure 6.34 it was stated that the wetting
of the matrix, which would appear to be an interfacial phenomenon, is slower
than the advance of the air-water interface, which is a viscous phenomenon. How
come?
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Solute Transport

Solutes are a prime issue for the usability of subsurface water, hence also for
the availability of freshwater. As pointed out in Chapter 1, water is an almost
universal solvent and we typically find a broad spectrum of chemicals in
subsurface water. A notorious examples is nitrate, NO−

3 , which stems mostly
from fertilizers. It is found to exceed the EU drinking water limit of 50 mg/l
in about 15% of the pumping wells in the EU [European Environment Agency

2010] with a reported average value of some 15 mg/l in the groundwaters of
Western and Central European States [European Environment Agency 2007].
In addition, pesticides, again mostly from agricultural sources, and a spread
of organics from industrial sources as well as from transportation are found
in a large fraction of wells, although mostly below legal limits.

Inputs of chemicals into the soil solution are many. Of global significance
are (i) wet and dry deposition from the atmosphere, e.g., for nitrogen and
sulfur compounds, (ii) application as agrochemicals, most importantly of
nitrogen, phosphorous, and potassium salts as fertilizers but also of or-
ganic compounds for pest control, and (iii) natural biogeochemical processes
that transform minerals as well as soil organic matter. These extended, so
called diffuse sources are distinguished from the more localized point and line
sources. Examples for the latter are waste disposal sites, industrial areas, and
leaky tanks or sewage pipes.

We notice that solutes are not the only agents to affect the quality of sub-
surface water. Particularly near the soil surface, around waste water pipes,
or beneath open dumps, there typically exists a wide range of bacteria and
viruses, which are often more dangerous than most solutes. However, they
are filtered out after rather short transport distances through soils.

Transport of solutes through the subsurface – moving from one location
to another – in general involves to classes of processes, (i) transport proper
and (ii) interactions with themselves other constituents.

Transport proper refers to the displacement of the solute body with the
mean flow of water (convection) and to spreading within the water phase
(dispersion). Clearly, a prerequisite for describing convection is a correct
solution of the flow problem, which was addressed in Chapters 5 and 6.
Dispersion is an even more difficult process since it not only depends on the

195
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local mean flow field, but also on its variations in space and time (Chapter 4).
At the smallest scale, such variations arise from the porous structure. At
increasingly larger scales, the hierarchical architecture of natural porous
formations as presented in Section 3.1 lead to increasingly larger variations.
Finally, transient flow causes temporal variations that typically lead to a
strong dispersion of solute distributions. Phenomenologically, dispersion has
two effects: it increases the passage time of a pulse and it lowers the maximum
concentration. For the case of a toxic contaminant for instance, this leads to
a longer exposure time but also to a lower maximum concentration.

Interactions encompass a wide spectrum of physicochemical and biological
processes, sometimes also referred to as biogeochemistry. They range from
the preferred location of ionic species near charged surfaces to the precip-
itation of a mineral phase, from the formation of new compounds between
dissolved species to microbial transformations. With respect to transport,
interactions may be separated into two groups, (i) sorption and (ii) transfor-
mation. Sorption encompasses absorption by some other phase or adsorption
at some interface. It affects transport by changing the concentration in the
water phase and, often more importantly, by changing the effective transport
velocity. Adsorption at the solid matrix may reduce it by many orders of mag-
nitude, for instance for heavy metals in soils with average to high pH-values.
On the other hand, adsorption at colloids may increase the velocity, relative
to that of water, because the larger particles move through larger voids where
velocities are higher. This was for instance reported for plutonium [Kersting

et al. 1999]. Transformations also affect the solute concentration by changing
its total mass, sometimes permanently. A particularly simple example is
radioactive day. More complicated transformations involve the solute and
some agent that is localized in the porous medium. These include specific
reaction sites at mineral surfaces and bacteria. An example for the latter
is microbial denitrification, where NO−

3 is transformed through a number
of steps to N2O and N2, both of which eventually leave the soil as gases
[Gruber and Galloway 2008]. Still more complicated, from the perspective of
solute transport, are transformations where reactants from different sources
start to interact as their respective plumes begin to overlap as is the case
in many applications of enhanced natural attenuation approaches to soil and
groundwater remediation. The actual mixing of the different plumes is a key
aspect for the efficiency of the overall process.

It should be mentioned that, depending on the chemical species and the
specific environment, transport mechanisms besides dissolution and trans-
port in water may become dominant. Important pathways are soil erosion,
e.g., for phosphorous transport into surface waters, and burrowing animals
or ploughing for the mixing of strongly adsorbing chemicals like lead and
cadmium. We are not considering these processes here, however.

In this chapter, we focus on solute transport proper, on the movement
of a conservative tracer, the famous “dyed water molecules”. Such a tracer
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is an abstraction that allows us to exclude all biogeochemical interactions.
Approximations to such a solute are a number of water isotopes like 3HOH
and H2

16O, anions like Cl− and Br−, and even some dyes like Fluorescene
and Brilliant Blue. As always, there is some fine print to the abstraction of a
conservative solute when it comes to real systems. Water molecules can pass
across phase boundaries, for instance, or they may and typically do adsorb
at mineral surfaces. All this may not happen in exactly the same way neither
to the conservative tracer nor to the solute of eventual interest. We do not
bother with these higher-order aspects here, however.

As a final introductory comment, notice that while transport with the
restriction of a conservative tracer will turn out to be linear, i.e., independent
of concentration, whenever the concentration is so low that it does not affect
fluid density, this is still a much more difficult issue than fluid flow. First
of all, the solution of the flow problem is a mandatory prerequisite. The
main reason, however, is that describing solute transport requires correct
trajectories of the flow field, which are global properties. In contrast, for flow
the gradient of the water potential suffices, which is a local property.

7.1
Transport with Stationary Groundwater Flow

The water content in groundwater is invariant in time. Together with a
stationary flow field, solute transport becomes a simple process which closely
resembles the situation studied in Section 4.2. This is often a quite reasonable
approximation for aquifers as well as for deeper soil layers.

In the following, we will first look into some generic relations that are
solely based on the conservation of solute mass. Next, transport in the
asymptotic regimes, the near- and the far-field, will be studied in essentially
uniform media before a framework is introduced, transfer functions, that
facilitates the study of general linear transport processes. Finally, the role of
heterogeneity in solute transport is scrutinized.

7.1.1
Generic Relations

Transport almost always involves different regimes between the near- and the
far-field. This makes it hard to obtain general formulations for the dynamics
and for solutions of transport problems. However, some general relations
may be deduced from a formulation of the conservation of solute mass alone.
To simplify the following discussion, we focus on a one-dimensional situation.
Let x denote the spatial coordinate in the direction of the mean flow.
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Figure 7.1.
Relation between total concentration Ct

and solute flux js for a solute-pulse input.
As shown by (7.4), the shaded areas
correspond to the same solute mass. distance

time
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Relation between Total Concentration and Flux The conservation of
mass in a one-dimensional situation may be written as

∂tCt + ∂xjs = 0 . (7.1)

Integrating with respect to time from 0 to t then yields

Ct(x; t) = Ct(x; 0)− ∂x

∫ t

0

js(τ ;x) dτ . (7.2)

Alternatively integrating with respect to space from 0 to x produces

js(t;x) = js(t; 0)− ∂t

∫ x

0

Ct(ξ; t) dξ . (7.3)

Next, consider the special case of the solute-pulse input jδs (t; 0) = m0δ(t)
into a soil that is initially free of tracer, hence Ct(x; 0) = 0. Integrating (7.3)
from 0 to t then yields (Figure 7.1)

∫ t

0

jδs (τ ;x) dτ =

∫ t

0

jδs (τ ; 0) dτ

︸ ︷︷ ︸
m0 for t>0

−
∫ x

0

Cδt (ξ; t) dξ =

∫ ∞

x

Cδt (ξ; t) dξ , (7.4)

where the superscript δ serves as a reminder of the special case.
Relations (7.2)–(7.4) come in handy when a change of perspective from

the concentration- to the flux-view is desired. Indeed, we will find that this
is sometimes an elegant way to solve apparently difficult problems.

Probability Density Functions for Travel Distance and Travel Time Ex-
pressing solute mass by number of molecules and invoking the law of large
numbers, we find for the travel distance pdf

px(x; t) =
Cδt (x; t)

m0
, (7.5)

where px(x; t) is shorthand for the transition pdf px(x; t|0; 0) and Cδt (x; t)
is the distribution of the total concentration that evolved from the initial
concentration Cδt (x; 0) = m0δ(x) after time t.
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In analogy, the travel time pdf is introduced by considering a medium
where the initial tracer concentration vanishes, hence Ct(x; 0) = 0, and total
mass m0 per unit area is injected across the input plane at x = 0 by the
solute flux jδs (t; 0) = m0δ(t). At location x, this leads to the flux jδs (t;x),
which is often referred to as the breakthrough curve. Again expressing mass
by number of molecules and invoking the law of large numbers, we obtain
the travel time pdf

pt(t;x) =
jδs (t;x)

m0
. (7.6)

We notice that an extension of (7.5)–(7.6) to more dimensions is straight-
forward even though the resulting formulation for (7.6) will be a bit clumsy
since different possible flow directions have to be accounted for.

Using (7.5)–(7.6) in conjunction with (7.2)–(7.3) readily yields the rela-
tions

px(x; t) = −∂x
∫ t

0

pt(τ ;x) dτ and pt(t;x) = −∂t
∫ x

0

px(ξ; t) dξ (7.7)

between the two pdfs.

As will be demonstrated later, in Section 7.1.4, for stationary flow, and at
most linearly interacting solutes, transport in an arbitrary medium is com-
pletely described by the two pdfs px and pt. It is thus convenient to use them
instead of concentrations and fluxes. In addition, it is sometimes useful to
work with the corresponding cdfs (cumulative distribution functions)

Px(x; t) :=

∫ x

−∞

px(ξ; t) dξ and Pt(t;x) :=

∫ t

0

pt(τ ;x) dτ (7.8)

instead of the pdfs.

Remarks The concentration Ct(x) for fixed time t is a useful quantity
because the corresponding integral

∫ x
0
Ct(ξ) dξ represents the solute mass

contained in the depth interval [0, x]. In contrast, Ct(t), for fixed location x,
is hardly ever useful since its interpretation depends on the water flux and
on the solute transport process. Hence, x is a true variable while we may
think of t more of as a parameter. To distinguish the two roles, the variables
are separated by a semicolon.

Similarly, the solute flux js(t) through fixed location x is useful since the

integral
∫ t
0
js(τ) dτ gives the solute mass that has passed location x during

time interval [0, t]. In contrast, js(x) for fixed t is of limited value. Hence,
the roles of t and x are reversed with respect to those in the concentration
perspective.

Concentration Ct(x; t) and flux js(t;x) are complementary representations
of a transport phenomenon, one focusing on space the other one on time
(Figure 7.1). They are complementary in the sense that if one is given, either
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theoretically or measured with sufficient spatial and temporal resolution, the
other follows immediately from (7.2) and (7.3), respectively.

While the previous assertion is rather obvious, a question of more practical
interest is: Given Ct(x; t0) at a certain fixed time t0, e.g., from sampling a
tracer experiment, could we calculate the flux at time t0 or the concentration
Ct(x; t1) at some later time t1? The answer is no, because we would also
need to know ∂tCt(x; t0). The analogous question about the flux – js(t;x0)
given at some location x0 and a projection to some other location wanted –
clearly also has a negative answer. This situation only changes if the flux law
(4.50) is known or postulated.

The two quantities Ct(x; t) and js(t;x) correspond to two natural mea-
suring strategies: obtaining Ct(x; t0) from soil coring at a fixed time t0 and
js(t;x0) from outflow measurements at a fixed location x0. There exist a
number of other methods whose results can only be interpreted after ap-
propriate assumptions on the form of the flux law are made. Examples are
time series of Cw(x0; ti) at fixed location x0 for times ti, i = 1, . . . , n, as
they are obtained from sampling the soil solution with suction cups or from
TDR-measurements (time-domain reflectometry).

7.1.2
Near-Field: Stochastic Convection (SC)

For sufficiently short transport distances, we envisage the flow field to be
represented by an ensemble of parallel stream-tubes (Figure 4.6 on page 93).
Neglecting hydrodynamic dispersion within the tubes, particles move with a
constant velocity with the ensemble described by the pdf gv(v) of the flow
field. In analogy to the short-time limit (4.16) of the Taylor-Aris dispersion,
the travel distance pdf of a particle then becomes δ(x − vt) and its travel
time pdf δ(t−x/v). The ensemble of particles is thus described by the travel
distance pdf

px(x; t) =

∫ ∞

0

δ(x− vt)gv(v) dv =
1

t
gv

(x
t

)
(7.9)

and the travel time pdf

pt(t;x) =

∫ ∞

0

δ(t− x/v)gv(v) dv =
x

t2
gv

(x
t

)
. (7.10)

The two pdfs evolve in a rather simple way. Consider (x0, t0) and (x, t)
such that v = x/t = x0/t0 and look at the spatial distribution of particles
as it changes with time. Since the velocity of each particle is constant, their
order remains the same. Thus, for any fixed value of v, the same number
of particles has traveled farther than vt. Hence, the cumulative distribution
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function Px(x; t) depends only on v, that is on the ratio x/t and multiplying
both arguments with the same factor t0/t leaves it invariant,

Px(x; t) = Px

(
x
t0
t
; t0

)
. (7.11)

In analogy, by multiplying with x0/x we also obtain

Pt(t;x) = Pt

(
t
x0
x
;x0

)
. (7.12)

Recalling that p⋄(⋄) = ∂⋄P⋄(⋄), with ⋄ ∈ {x, t}, these scaling relations may
also be expressed as

px(x; t) =
t0
t
px

(
x
t0
t
; t0

)
and pt(t;x) =

x0
x
pt

(
t
x0
x
;x0

)
, (7.13)

respectively. This demonstrates that in the SC-limit, concentration distribu-
tions or breakthrough curves are just stretched in space and time with the
amplitudes scalled such that mass is conserved.

7.1.3
Far-Field: Convection-Dispersion (CD)

Inserting the flux law (4.52) into (7.1) yields for the far-field in a one-
dimensional uniform medium with constant water content and stationary
flow the convection-dispersion equation (CDE)

∂tCw + v∂xCw −D∂xxCw = 0 , (7.14)

where we dropped the subscript of Deff and used that θ, v, and D are
all constant. First notice that the solute flux js = θvCw − θD∂xCw also
satisfies (7.14). This may be verified by direct substitution. Hence, we also
have

∂tjs + v∂xjs −D∂xxjs = 0 . (7.15)

Furthermore, with (7.5)–(7.6), also the travel distance pdf px and the travel
time pdf pt satisfy the CDE. Hence

∂tpx + v∂xpx −D∂xxpx = 0 , (7.16)

and
∂tpt + v∂xpt −D∂xxpt = 0 . (7.17)

Before proceeding with solutions of the CDE, we scrutinze the meaning
of (7.14) and (7.16) in greater detail, with the gained insight being readily
transferable to (7.15) and (7.17). First look at (7.14) which describes the
evolution of some initial concentration distribution Ct(x; 0) with time. This
initial distribution may have an arbitrary shape and (7.14) merely states
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that it is translated with constant velocity v and smeared in a diffusion-like
manner determined by the coefficient D. Hence, it describes the movement
of an ensemble of solute particles. In contrast, (7.16) describes the evolution
of the pdf px(x; t|0; 0) for the transition 0 → x during time t, i.e., of the
function that describes the evolution of concentration distributions. While
the initial condition for (7.14), the concentration at time 0, may be arbitrary,
it is fixed for (7.16) as px(x; 0|0; 0) = δ(x) since a particle cannot move in
no time. However, as the available transit time t increases, a particle can
move to increasingly greater distances and its location becomes increasingly
uncertain. This is described by px(x; t|0; 0) being translated with constant
velocity v and being smeared in a diffusion-like manner determined by the
coefficient D. Despite their formal similarity, equations (7.14) and (7.16)
hence have quite a different meaning. We mention that an equation for the
transition probability is referred to as a Fokker-Planck equation.

Travel Distance PDF To calculate an explicit solution for the CDE
(7.14) consider a one-dimensional, unbounded, initially tracer-free medium
to which, at time t = 0 a unit solute mass is added at x = 0. The solution of
this problem clearly also solves the Fokker-Planck equation (7.16), hence we
denote it with px. The problem may then be formulated as

∂tpx + v∂xpx −D∂xxpx = δ(x)δ(t)

px(x; t) = 0, t < 0

lim
|x|→∞

px(x; t) = 0 , (7.18)

where the source term δ(x)δ(t) describes the solute or probability input.
Before proceeding, we notice that, given our insight into the underlying
processes, the easiest way to get the solution of this problem would be to guess
it – a translated Gaussian – and to verify it by inserting it back. However,
since this approach will not work for more complicated processes, we explore
the formal approach already for this simple situation.

We choose to employ integral transforms for solving this partial differential
equation. Using (A.71), first transform the problem into the Laplace space
conjugate to time t and arrive at

sp̂x + v∂xp̂x −D∂xxp̂x = δ(x)

lim
|x|→∞

p̂x(x; s) = 0 , (7.19)

where p̂x(x; s) is the Laplace transform of px(x; t) with respect to t, (A.77)
was used for transforming ∂tpx, and (A.74) for δ(t). Notice that the initial
condition, the second equation in (7.18), is directly included in the transform
of ∂tpx. This is a linear, essentially ordinary differential equation for p̂x(x)
with parameter s and could be solved already at this point. However, we
proceed one step further and, using (A.109), transform the problem into the
Fourier space conjugate to x to obtain

s˜̂px + ivk ˜̂px +Dk2 ˜̂px = 1 , (7.20)
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where ˜̂px(k; s) is the Fourier-Laplace transform and i is the imaginary unit.
Notice that in analogy to the Laplace transform which directly absorbed
the initial condition, the Fourier transform absorbs the boundary condition.
Hence, we end up with an algebraic equation that is readily solved and
yields

˜̂px(k; s) =
1

s+ ivk +Dk2
. (7.21)

The solution is not useful in this space, however, and we need to transform
it back, again step by step. First employing (LT.4) from Section A.3.5 to
invert the Laplace transform with respect to s produces

p̃x(k; t) = exp(−kt[Dk + iv]) . (7.22)

This solution, still in Fourier space, is already useful for calculating the
evolution of the spatial moments. Indeed the n-th spatial moment may be
calculated as

〈xn(t)〉 = in
∂n

∂kn
p̃x(k; t)

∣∣∣
k=0

, (7.23)

which may be quickly verified by inserting definition (A.109) of the Fourier
transform and comparing the result with definition (A.19) of the moments.
For expectation and variance of the travel distance, this yields

〈x(t)〉 = vt and var
(
x(t)

)
= 2Dt , (7.24)

where var(x) = 〈x2〉 − 〈x〉2. Notice that var(x) ∝ t as expected for a
CD-process. Solving (7.24) for the transport parameters again leads to the
method of moments for estimating the parameters, which was introduced
with (4.26)–(4.27).

Staying with the travel distance moments, recall definition (4.15) of the
microscopic Peclet number, pe = r0v/Dm, and define the macroscopic Peclet

number in analogy as

Pe =
〈x〉v
D

=
2〈x〉2
var(x)

, (7.25)

where 〈x〉 is chosen as pertinent length, and the parameters v andD are taken
from (7.24). Notice that the two definitions are only formally similar but
that their significance is quite different. The microscopic Peclet number pe
is a constant that characterizes the fundamental processes together with the
porous medium. In contrast, the macroscopic Peclet number Pe is a heuristic
characterization of the transport phenomenon. Furthermore, it is not a
constant but increases linearly with transport distance, testifying to the fact
that transport in the far-field becomes increasingly convection-dominated.
Still, we may employ it to obtain an order of magnitude estimate for the
characteristic mixing length λ. Defining λ to be the mean transport distance
for Pe = 1, we obtain from (7.25)

λ =
D

v
=

var(x)

2〈x〉 . (7.26)
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Figure 7.2.
Dimensionless travel distance pdf (7.28)
for different values of Pe. Distance x is
along the direction of the mean flow which
is typically horizontal in aquifers and
vertical in soils. Notice: Pe is a convolute
of effective transport parameters v and
D and, with 〈x〉 = vt, of travel time.
For a fixed medium, Pe ∝ t. In the
dimensionless representation shown here,
the pdf becomes more localized with time.
This is a consequence of 〈x〉 increasing
proportional to time while the spreading
increases only proportional to

√
t.
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We recognize λ as the dispersivity that was already introduced with (4.38).
Notice that for a uniform medium with stationary flow, λ is a constant since v
and D are constant. Experimentally, λ may be estimated from the right-hand
side of (7.26) with the required moments gained from a corresponding tracer
experiment. We will find later, in Section 7.1.6, that λ is proportional to the
characteristic length of the underlying hydraulic structure that causes the
relevant spatial variations of the flow field.

To finally obtain the result in real space, the inverse Fourier transform
with respect to k is applied to (7.22). As expected, this yields a Gaussian
with mean vt and variance 2Dt,

px(x; t) =
1

2
√
πDt

exp
(
− [x− vt]2

4Dt

)
. (7.27)

It is sometimes useful to have (7.27) in dimensionless form. This is readily
found by a transformation of variables. Introducing the dimensionless dis-
tance ξ = x/[vt], we write for the probability of finding a particle within
interval dx of x as

px(x; t) dx = px(vtξ; t) vtdξ . (7.28)

Using (7.27) with definition (7.25) of the Peclet number and 〈x〉 = vt then
yields (Figure 7.2)

pξ(ξ; Pe) =

√
Pe

4π
exp

(
−Pe

4
[ξ − 1]2

)
. (7.29)

Travel Time PDF As a preliminary remark, we recall that Ct(x; t) and
js(t;x) are complementary descriptions of transport phenomenon and the
same is true for the corresponding pdfs px(x; t) and pt(t;x). Hence, pt(t;x)
does not just equal (7.27) interpreted as a function of t; this would be a severe
conceptual error.
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Instead of repeating the previous calculations to arrive at the travel time
pdf pt, we choose the alternative route of employing (7.7) and arrive at

pt(t;x) =
x+ vt

4
√
πDt3

exp
(
− [t− x/v]2

4Dt/v2

)
. (7.30)

For the far-field, the CLT requires pt to be a Gaussian which is not satisfied
by (7.30), however. Indeed, (7.18) does not include a provision that it should
only be applicable in the far-field. Consequently, the pdfs (7.27) and (7.30)
formally also yield descriptions of the near-field. From a physical perspective,
this is nonsense, however! We know from the previous discussion of Taylor-
Aris and of hydrodynamic dispersion that the coefficient D is an effective
quantity that only develops as the solute is transported. For short transport
distances, the value of D would be much smaller, right at the source actually
equal to the molecular diffusion coefficient, and that it increases, at first
linearly in the near-field, to asymptotically reach its final value in the far-
field. We notice in passing that this same argument also applies to the
travel distance pdf although there – (7.27) and (7.29) – we are not forced to
appreciate the issue because the pdf already is Gaussian. Still, near the source
and as long as the ensemble of solute particles has not uniformly sampled the
flow field, the value of D will be smaller than later in the far-field.

As a consequence of the above discussion, we only consider the asymptotic
limit of (7.30) – for large transport distances – as travel time pdf for the CD
process. For large distances, and correspondingly large times, pt(t;x) as given
by (7.30) becomes sharply peaked around t = x/v. The asymptotic limit is
thus found by replacing t with x/v everywhere except in the numerator of
the exponential. This yields

pt(t;x) =

√
v3

4πDx
exp

(
− [t− x/v]2

4Dx/v3

)
, (7.31)

which is a Gaussian with mean and variance given by

〈t(x)〉 = x

v
and var

(
t(x)

)
=

2Dx

v3
, (7.32)

respectively. This again allows the determination of effective parameters v
and D from temporal moments – measured in an appropriate tracer experi-
ment – by the method of moments.

The dimensionless form of (7.31),

pτ (τ) =

√
Pe

4π
exp

(
−Pe

4
[τ − 1]2

)
, (7.33)

is obtained in analogy to (7.28)–(7.29) by introducing the dimensionless travel
time τ = vt/x (Figure 7.3).
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Figure 7.3.
Dimensionless travel time pdf (7.33) for
different values of the Peclet number. In
analogy to Figure 7.2, Pe for a fixed medium
now is proportional to travel distance x
and pτ (τ) becomes more localized with
increasing x. Thin lines are dimensionless
representations of (7.30).
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Identification of Transport Regimes Spreading of a solute distribution
in the near-field is much faster than in the far-field: the variance of the
corresponding pdf is proportional to is strongly affected by the t2 or x2 in
the SC-limit versus proportional to t and x in the CD-limit. Identification
of the transport regime is thus of prime importance. This might sound like
a trivial task: just determine the mixing length ℓ and judge if the travel
distance is large compared to it, hence if Pe ≫ 1. Finding ℓ is not a simple
matter, however, since it depends on the extent of hydraulic structures and
on their hydraulic conductivity. Both of which are difficult, and expensive,
to determine. Hence, one often performs a tracer experiment to address the
issue directly.

Given an experiment with a highly localized initial tracer distribution what
measurements should then be performed to identify the transport regime? A
first step would be to determine the tracer distribution Ct(x; t1) after some
time t1. If this distribution is not Gaussian, then the pulse has not yet
reached the far-field. If it is Gaussian, further measurements are required
because, as can be deduced from (7.9), for an arbitrary Ct(x; t1) there exists a
velocity pdf gv(v) such that an SC-process lead to exactly this concentration
distribution. Obviously, we need to measure Ct(x; t2), at some later time
t2 > t1 in order to distinguish between SC and CD. The quantity to look for
is the time-dependence of var(x) which is quadratic for SC and linear for CD
(Figure 7.4). The analogous argument also holds if the solute flux js(t;x1)
is measured at some depth x1. Again, to identify the regime, fluxes must be
measured at least at two depths.

As a practical issue, it should be noted that measured concentrations
and fluxes in a real experiment always exhibit quite a large uncertainty
that results from the sampling procedure itself and, often more importantly,
from the heterogeneity of the aquifer or soil. Hence, it is usually next to
impossible to determine if a given distribution is Gaussian or not. This
situation automatically demands two measuring depths or times which are
separated sufficiently. Since estimation of the variance is much more robust
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Figure 7.4.
Evolution of two travel distance pdfs
that are identical at time τ = 1 with an
SC- (cyan) and a CD-process (magenta).
Parameters are such that at time τ = 1,
the pdfs equal the Gaussian (7.29) with
Pe = 300.

that estimation of the distribution function, this then also suffices for the
identification. Obviously, all this is under the premise that the domain of
interest is in fact macroscopically uniform.

7.1.4
Transfer Functions

Up to now, we only considered the transport of initially narrow solute pulses
and the respective pdfs. Solute inputs are generally of a much more compli-
cated form, however. These range from the widely separated decaying pulses
that result from the application of solid fertilizer, which is dissolved by subse-
quent rainfall, to the highly irregular flux due to the dry and wet deposition
of chemicals from the atmosphere. Fortunately, for the important class of
conservative substances, we do not have to solve the transport problem over
and over again. Instead, we invoke a central result of the theory of linear
systems which ascertains, that a stationary linear system S, which transforms
some input function h into the output function S(h), is completely defined
by the output function S(δ) which results from the narrow-pulse input δ. In
the following, this result is demonstrated for the flux of a conservative solute
and then generalized to other situations.

Solute Flux Consider the transport of a conservative solute with a constant
flow of water through a porous medium that is uniform and rigid. For
simplicity, assume everything to be one-dimensional. Let js(t;x1) be the
flux at location x1 in response to the flux js(t;x0) at location x0, where x1
is downstream of x0 with ℓ = x1 − x0. Finally let Sℓ be the operator which
describes the possibly very complicated transport process from x0 to x1 such
that js(t;x1) = Sℓ(js(t;x0)). This system is linear and stationary in space
and time,

Sℓ
(
αjs(t− t0;x)

)
= αjs(t− t0;x+ ℓ) , (7.34)

because (i) the individual molecules of a conservative solute are transported
independently (linearity) and (ii) the water flow is constant and the medium
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Figure 7.5.
Projection of solute flux
js(t;x0) through location x0
to downstream location x1 =
x0 + ℓ using transfer function
pt(t;x1 − x0) as formulated by
(7.37).
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is rigid and uniform (stationarity). The response of system Sℓ to the narrow-
pulse input δ(t) is

pt(t; ℓ) = Sℓ(δ(t)) , (7.35)

where pt(t; ℓ) is the travel time pdf for travel distance ℓ. Next, decompose
the arbitrary input flux js(t;x0) into a succession of narrow pulses as

js(t;x0) =

∫ ∞

−∞

js(τ ;x0)δ(t− τ) dτ . (7.36)

Applying Sℓ, using (7.34) and the fact that Sℓ operates on t but not on τ
inside the integral, yields for the solute flux at distance x1 = x0 + ℓ

js(t;x1) = Sℓ
(∫ ∞

−∞

js(τ ;x0)δ(t− τ) dτ
)
=

∫ ∞

−∞

js(τ ;x0)Sℓ
(
δ(t− τ)

)
dτ

=

∫ ∞

−∞

js(τ ;x0)pt(t− τ ; ℓ) dτ =: js(t;x0) ∗ pt(t;x1 − x0) , (7.37)

where ∗ is the convolution operator (Figure 7.5). This demonstrates that the
travel time pdf pt(t; ℓ) indeed provides a complete description of the transport
process: The flux at location x1 is given by the convolution of the input flux
at x0 and the pdf pt(t;x1 − x0). We may also say that (7.37) provides a
projection of the flux at x0 to downstream location x1.

As a final step, we recognize that for a causal system pt(t < 0; ℓ) = 0
because there cannot be a response prior to its cause. Thus (7.37) may also
be written as

js(t; ℓ) =

∫ t

−∞

js(τ ;x0)pt(t− τ ; ℓ) dτ . (7.38)

The interpretation of this is: During the short time interval [τ, τ + dτ ], the
number of solute molecules passing x0 is NAjs(τ ;x0) dτ/ms, where ms is the
molar mass of the solute. The probability for each of these molecules to reach
x1 at time t is determined by the transition probability density pt(t;x1|τ ;x0).
Hence, the number of molecules passing x1 at time t after they were at x0
at any time τ ≤ t is

∫ t
−∞

NAjs(τ ;x0)pt(t;x1|τ ;x0) dτ/ms. Replacing the
conditional pdf by pt(t− τ ; ℓ) and multiplying with ms/NA to get the solute
mass flux leads to (7.38).
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Using px(x − ξ; t1 − t0), the simplification of the transition probability
px(x; t1|ξ; t0) for a stationary system, we arrive in analogy at

Ct(x; t) =

∫ ∞

−∞

Ct(ξ; 0)px(x− ξ; t) dξ , (7.39)

for the total concentration at time t that results from the initial concentration
Ct(x; 0).

Generalization Transfer functions are strictly applicable only to linear and
stationary systems. This, however, includes a much larger class of processes
than just conservative solutes in uniform media. It encompasses all transport
processes where the solutes undergo at most linear interactions, for instance
linear rate-limited exchange with multiple phases. As long as the flow is
constant, this class also includes all transport regimes – near-, intermediate-,
and far-field – in arbitrarily heterogeneous formations. However, transfer
functions are in general neither useful for studying solutes with highly non-
linear interactions, e.g., heavy metals, nor for transport with nonlinear and
highly transient flow as is typical in soils near the surface where water flow
is driven by strongly fluctuating rainfall.

Some further aspects are worth noticing: (i) Whenever the transport
process can be formulated explicitly, the corresponding transfer function can
be calculated by solving the equations for a narrow-pulse input. (ii) The
transfer function – pt(t; ℓ) or px(x; t) – is an implicit description of the
transport process and is experimentally accessibly. This is true not just for a
single depth but potentially for several or even all depths. Transport may thus
be described even if the underlying process is not known or very complicated
[Roth and Jury 1993]. (iii) While transfer functions are experimentally
accessible, we notice that the time required to determine them increases
roughly proportionally to the size of the system. With typical flow velocities
on the order of 102 my−1 for aquifers and 1 my−1 for soils, this approach
becomes quickly prohibitive for large systems.

Apparently, there is nothing in (7.35)–(7.38) that limits them to solute
transport. Hence, the same line of thought is applicable to any stationary
linear system. Different disciplines just tended to give different names to the
kernel pt(t; ℓ). It is called transfer function (soil physics, electrical engineer-
ing), Green’s function (mathematics), impulse response function (mechanical
engineering), or point spread function (optics), to just name some.

7.1.5
A First Glimpse at Heterogeneity

In an attempt to capture characteristic transport features of natural soils
and aquifers, we consider a porous medium that consists of two contrasting
materials. One is highly permeable and sustains the externally forced flow of
water while the other one is so impermeable that the water phase is practically
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immobile. Examples where such a model is applicable can be found on all
scales and include transport over short distances where interstitial water is
relevant, porous carbonate pebbles in a sand matrix, and silt and clay lenses
in a sand matrix. In such media, solutes are transported with the water
flow in the mobile region while the exchange with the immobile region is
predominantly by diffusion.

A detailed description of such a two-region model would involve the ge-
ometry with the distribution of the two materials. Water flow and solute
transport in the mobile region would then be calculated together with the
diffusive exchange between and within the mobile and immobile regions.
This leads to a rather complicated formulation which calls for a numerical
solution and will be addressed in Section7.1.6. Short of this, we study a
blunt approximation where the concentration in each of the two regions
is equilibrated in the direction perpendicular to the flow. Thus there are
no lateral concentration gradients in the two regions, but the concentration
may be discontinuous at the interface between them. The two regions are
coupled by a first-order kinetics that is driven by the concentration jump.
While such an approximation cannot represent diffusive exchange precisely,
it maintains its essential feature of a linear and “soft” coupling between the
concentrations in the two regions. We further assume that, at the scale of
interest, the two materials are so thoroughly intertwined that the detailed
structure disappears after averaging over an appropriate volume. Finally,
the medium shall be macroscopically uniform with the water flux and the
total water content θ constant. This allows a one-dimensional representation,
the so-called mobile-immobile model (MIM) for solute transport [Coats and
Smith 1964; van Genuchten and Wierenga 1976].

Dynamics of the Mobile-Immobile Model Denote the volumetric water
content in the mobile region by θm and in the immobile region by θim, hence
θ = θm + θim. In analogy, let the concentration be Cm in the mobile region
and Cim in the immobile region, with total concentration Ct = θmCm +
θimCim. Next, we assume for simplicity that solute transport in the mobile
region is a convection-dispersion process, i.e., we are far from any boundary
at the scale of the local mixing length λ. The solute flux then becomes
js = θmvCm − θmD∂xCm, where v = jw/θm is the convection velocity
and D the local dispersion coefficient. Notice that for a given water flux
jw, the velocity v increases as the mobile water content decreases. Finally,
we model the exchange between the two regions by the first-order kinetics
∂tCim = −ω[Cim−Cm] with rate parameter ω. Hence, ω−1 is a characteristic
time for the exchange between the two regions. Combining all this with the
formulation (7.1) for the conservation of mass leads to

∂tCm +
θim
θm

∂tCim + v∂xCm −D∂xxCm = 0

∂tCim = −ω[Cim − Cm] . (7.40)
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In the next step, we choose a characteristic length ℓ for the domain of interest
and introduce the dimensionless variables

ξ :=
x

ℓ
and τ :=

tv

ℓ
. (7.41)

They transform (7.40) into

∂τCm + [R− 1]∂τCim + ∂ξCm − 1

Pe
∂ξξCm = 0

∂τCim = −Ω[Cim − Cm] (7.42)

and lead to the introduction of the dimensionless quantities

Pe =
vℓ

D
, R = 1 +

θim
θm

=
θ

θm
, Ω =

ωℓ

v
. (7.43)

These are the macroscopic Peclet number Pe, the retardation factor R, and
the rate parameter Ω. Notice that Ω may be interpreted as the ratio between
the mean travel time ℓ/v in the mobile region and the relaxation time ω−1

for the equilibration between mobile and immobile region.
First consider the case Ω → ∞, i.e., instantaneous equilibrium. Appar-

ently, this enforces Cm = Cim and reduces (7.42) to

R∂τCm + ∂ξCm − 1

Pe
∂ξξCm = 0 . (7.44)

We recognize the similarity with the convection-dispersion equation (7.14),
which, expressed with dimensionless variables, reads

∂τCw + ∂ξCw − 1

Pe
∂ξξCw = 0 . (7.45)

Introducing the retarded time τ ′ = τ/R transforms the two equations into
each other and demonstrates that the MIM model in the limit of an in-
stantaneous interaction, i.e., for t ≫ ω−1 reduces to a retarded convection-
dispersion model. Hence solutions of the latter are also solutions of the former
provided time is replaced by its retarded analog, τ/R or t/R. The reason for
this is simple: With an instantaneous interaction the particles are equally
distributed in the two regions. The fraction of time they spend in the mobile
region, where they are subject to transport, is only θm/[θm + θim]. Thus
they require on average more time to travel a certain distance, exactly by the
factor of R more.

Travel Time PDF We calculate the travel time pdf for the MIM-model in
analogy to (7.18)–(7.19) and consider the narrow pulse input jδs (τ ; 0) = δ(τ)
into an initially tracer-free soil. Transforming (7.42) into Laplace space then
yields

sĈm + s[R− 1]Ĉim + ∂ξĈm − 1

Pe
∂ξξĈm = 0

sĈim = −Ω[Ĉim − Ĉm] (7.46)
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and, inserting Ĉim from the second equation into the first one,

[
s+ [R− 1]

sΩ

s+Ω

]
Ĉm + ∂ξĈm − 1

Pe
∂ξξĈm = 0 . (7.47)

Notice that in dimensionless coordinates js = Cm − Pe−1∂ξCm, hence ĵs =

Ĉm − Pe−1∂ξĈm. Thus, if Ĉm satisfies (7.47) so does ĵs and, taking into
account the specified boundary flux, also the transform p̂t of the travel time
pdf. We may thus also formulate

[
s+ [R− 1]

sΩ

s+Ω

]
p̂t + ∂ξp̂t −

1

Pe
∂ξξp̂t = 0

p̂t(s; 0) = 1, p̂t(s;∞) = 0 . (7.48)

This ordinary differential equation has the solution

p̂t(s; ξ) = exp
(ξPe

2

[
1−

√
1 +

4α(s)

Pe

])
(7.49)

with

α(s) = s+ [R− 1]
sΩ

s+Ω
. (7.50)

Similar to (7.22)–(7.24), where we calculated the moments of the travel
distance in Fourier space, we now obtain the travel time moments directly in
Laplace space from

〈tn〉 = [−1]n
∂np̂t(s)

∂sn

∣∣∣
s=0

. (7.51)

This yields for the first two moments of the dimensionless travel time

〈τ〉 = Rξ and var(τ) = 2
[R2

Pe
+

R− 1

Ω

]
ξ (7.52)

or in dimensional form

〈t〉 = R
x

v
and var(t) =

2R2

v3

[
D +

R− 1

R

v2

ω

]
x . (7.53)

To interpret this, recall (i) the travel time moments of the pure convection-
dispersion given by (7.32) and (ii) the retarded time t′ = t/R introduced for
the case of instantaneous equilibrium. Apparently, the mean travel time is
independent of the rate parameter ω! Hence the expectation of the retarded
time, 〈t′〉 = 〈t/R〉 = x/v, equals that of the pure convection-dispersion.
However, the variance of the travel time depends on ω. First notice that
var(t) ∝ x, hence we may identify the MIM model as an effective convection-
dispersion process. Next, we compare var(t′) = var(t/R) = var(t)/R2 with
the corresponding expression in (7.32) and are led to define the effective
dispersion coefficient

Deff := D +
R− 1

R

v2

ω
. (7.54)
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Dispersion in this model thus stems from two independent sources: from the
hydrodynamic dispersion in the mobile region, represented by D, and from
the interaction, represented by R and ω. The latter contribution is notewor-
thy because (i) it diverges as ω → 0 and (ii) its dependence on v identifies it
as a “diffusion-like” dispersion similar to the one encountered in Taylor-Aris
dispersion. This makes perfect sense since MIM exchange indeed is “diffusion-
like”. Hence, whenever the second term in (7.54) becomes important, the
dispersivity introduced in (4.38) becomes a rather useless quantity since it is
no more constant, not even approximately. For hydrodynamic dispersion to
dominate also in the MIM model, we obviously require D ≫ [R− 1]v2/[Rω]
or, for this case using λ = D/V ,

λ≫ R− 1

R

v

ω
. (7.55)

This states that the distance traveled during the characteristic time [R −
1]/[Rω] for the equilibration of the interaction is much smaller than the
hydrodynamic mixing distance λ.

Until now, we only considered the travel time pdf in Laplace space. In-
version of (7.49) with (7.50) is not trivial. It is greatly facilitated by the
generalized convolution theorem (A.103) – as shown in (A.104)–(A.108) –
and yields

pt(τ ; ξ) = pct(τ ; ξ)A(τ) +

∫ τ

0

pct(τ
′; ξ)A(τ ′)T (τ ′, τ − τ ′)B(τ − τ ′) dτ ′ (7.56)

with

A(τ) = exp(−Ω[R− 1]τ) ,

B(τ) = exp(−Ωτ) ,

T (τ1, τ2) = Ω
√
[R− 1]τ1/τ2 I1

(
2Ω

√
[R− 1]τ1τ2

)
, (7.57)

where pct(τ ; ξ) is the travel time pdf for the mobile region – for instance
obtained from a tracer that is conservative with respect to the interaction –
and I1 is the modified Bessel function of the first kind of order 1. Although
this solution appears rather complicated we recognize some important fea-
tures. Most importantly: the travel time pdf of the interacting solute can
be expressed in terms of the pdf pct of the conservative tracer. However, in
contrast to the situation with instantaneous equilibration, the two pdfs are
not related by a simple scaling but by a more general linear transformation
whose form depends on R and Ω.

The pdf pct consists of two terms which constitute two fractions of the solute
mass, depending on whether a molecule encountered the immobile region or
not. The first term is proportional to the pdf of the conservative tracer,
hence represents the molecules that never entered the immobile region. The
amplitude of this fast fraction decreases exponentially with time, given by the
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Figure 7.6.
Conceptual space-time diagram for MIM model. To travel
distance ξ during time τ , a molecule travels to ξ during
time τ ′ (A), transits into the immobile region where
it stays for time τ − τ ′ (B), and moves back into the
mobile region and immediately crosses depth ξ. Thin
lines represent alternative paths for the transition (0, 0) →
(ξ, τ) with the same residence time τ ′ in the mobile region
(green) and with different τ ′ (blue).

τ ′ τ

A

B
ζ

factorA(t) = exp(−Ω[R−1]τ), hence the fast fraction decreases exponentially
with transport distance (see Exercise 7.5).

The second term results from molecules that encountered the immobile
region. Formally, this is written as an integral transform of pct with kernel
A(τ ′)T (τ, τ − τ ′)B(τ − τ ′) with the integration accounting for all possible
times 0 < τ ′ < τ a particular molecule spent in the mobile region. Since it is
irrelevant whether the time spent in a region is split into several intervals or
not, the complex sequence of transitions between the two regions is replaced
by a two step process (Figure 7.6): (A) the molecule travels to ξ during time
τ ′ without seeing the immobile region and (B) immediately before crossing
the monitoring plane at ξ, it transits into the immobile region and stays
there for time τ − τ ′. Upon release from the immobile region, it immediately
crosses the monitoring plane. We now look at the probabilities associated
with each of these steps. From the definition of pct , we have that pct(τ

′; ξ) dτ ′

is the probability for a molecule to travel distance ξ during time interval
[τ ′, τ ′+dτ ′], if the interaction is absent. With interaction, this probability is
reduced by the factor A(τ ′) which accounts for transitions to the immobile
region that have already occurred by time τ ′. Thus, pct(τ

′; ξ)A(τ ′) dτ ′ is
the probability for a molecule to do step A and thus to be available for a
transition to the immobile region. In analogy, the probability density for
a molecule which entered the immobile region to be still there after time
τ is B(τ). With probability 1 − B(τ) it has made the transition back to
the mobile region at earlier times. Since the total travel time to distance ξ
must be τ , and τ ′ has already passed during the first step, the probability
density for a molecule to be available for the transition to the mobile region
at the required time is B(t − τ ′). Clearly, not all the molecules that are
available for a transition, either to the immobile or to the mobile region,
will also make it. The probability density for the transitions is described by
the function T (τ ′, t − τ ′), which depends on the residence times in the two
regions. The probability for a molecule to make the transition (0, 0) → (ξ, τ)
with the residence time in the mobile region in the interval [τ ′, τ ′ + dτ ′] is
thus pct(τ

′; ξ)A(τ ′)T (τ ′, t−τ ′)B(t−τ ′) dτ ′. Integrating over all possible times
τ ′ in the mobile region yields the second term in (7.56).

The dimensionless travel time pdf (7.56) and the corresponding cdf are
illustrated in Figure 7.7 for different values of the rate parameter Ω. For
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Figure 7.7.
Travel time pdf pt(τ ; ξ) and cdf
Pt(τ ; ξ) for distance ℓ, ξ = 1, for MIM
model with different rate parameters
Ω = ωℓ/v. Notice that Ω[R − 1]
is the inverse of the characteristic
residence time of a solute molecule in
the mobile region with respect to the
exchange with the immobile region.
Peclet number and retardation factor
are fixed with Pe = vℓ/D = 300 and
R = θ/θm = 5. While pt and Pt are
mathematically equivalent, they are
related by (7.8), this is not necessarily
the case experimentally when minimal
detection limit, finite accuracy, and
temporal resolution are taken into
account. Experimental limitations
become more manifest as Ω decreases.

Ω = 0, the mobile and the immobile region are decoupled. Hence, only the
mobile region is active in the transport which is described by the convection-
dispersion equation (7.45). Expectation and variance of the travel time for
distance ξ then become 〈τ〉 = ξ and var(τ) = 2ξ/Pe, respectively. Notice that
this appears to contradict (7.53) which yields 〈τ〉 = Rξ and limΩ→0 var(τ) =
∞. This manifests the singularity that results from the increasing long and
thin tail of pt as Ω → 0.

As a preliminary to discussing the case Ω > 0, we notice that Ω = ℓω/v
is a conglomerate of rate parameter ω, flow velocity v, and travel distance ℓ.
Hence, the range of possible values reflects a range of situations in the
dimensional realm.
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For 0 < Ω ≪ 1, the two regions are very weakly coupled and the probability
for a transition between them is very small. Correspondingly, only a small
fraction of the solute mass will be transferred into the immobile region where
it will stay for a long time, however. This leads to the observed very long
tail of pt.

As Ω increases, the fast peak at τ = ξ rapidly decreases since the chance for
a molecule to pass entirely through the mobile region vanishes exponentially
with Ω. Instead, a new peak occurs at τ = Rξ, at the expected travel time,
becomes more pronounced for Ω ≫ 1, and asymptotically approaches the
Gaussian shape expected from (7.44).

We notice in passing that the singularity at Ω = 0 found above is more than
a mathematical peculiarity and has direct experimental consequences. First
consider the travel time pdf pt which, experimentally, is determined from
measuring the solute flux after travel distance ℓ. Since every instrument has
a finite detection limit, there exists a critical value of Ω below which the tail
will not be detected anymore and only the fast peak will be manifest. As a
consequence, estimates of the travel time moments will be completely wrong
– the expectation by a factor R, the variance by much more – and thus also
the deduced transport parameters. At a first glance, the problem could be
solved by measuring Pt instead of pt, since it records the mass fraction in the
remaining tail,

Pt(τ ; ξ) =

∫ τ

0

pt(τ
′; ξ) dτ ′ = 1−

∫ ∞

τ

pt(τ
′; ξ) dτ ′ = 1−

∫ ∞

τ

jδs (τ
′; ξ)

m0
dτ ′ .

(7.58)
However, the corresponding measurement is limited by the finite absolute ac-
curacy with which the solute flux can be determined. Which one of the meth-
ods is to be preferred depends on the specifications of the instruments.

Travel Distance PDF In a MIM model, the travel distance pdf px(x; t)
depends sensitively on the initial distribution of the tracer between the two re-
gions, particularly for small values of the rate parameter ω. Here, we consider
the experiment performed to obtain pt(t;x) – the flux input j(t; 0) = m0δ(t)
through the surface at x = 0 – but now look at it from the perspective of the
travel distance pdf px(x; t). The actual calculations are most efficiently done
in Laplace space by inserting (7.49) with (7.50) into the Laplace transform
of (7.2). The result is then transformed back to normal space by a numerical
Laplace inversion. In the following, we only look at graphical representations
of the solution.

Clearly, the phenomenology observed with the travel time pdf is also
manifest in the travel distance pdf (Figure 7.8). For Ω ≪ 1, most of the
solute mass is contained in the fast peak which shows the greatest travel
distance. With increasing Ω, the mass is transferred into the tail which, for
Ω ≫ 1, approaches a single peak that corresponds to equilibrium interaction.
Such a transfer becomes manifest at any one particular site, with ω fixed,
when we follow the solute pulse in time as is illustrated in Figure 7.9. For
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Figure 7.8.
Travel distance pdf px(ξ; τ) after
time τ = 1, for MIM model with
different rate parameters Ω = ωℓ/v.
Peclet number and retardation factor
are fixed and equal to the values used
in Figure 7.7 (Pe = 300 and R = 5).

times τ ≪ 1 which are much shorter than the characteristic residence time in
the mobile region, a large fraction of the solute mass has not yet encountered
the immobile region and thus travels with the mean velocity v of the mobile
region. The small fraction that traverses into the immobile region travels
much slower, eventually with v/R, and thus leads to the long tail all the way
up to the surface at ξ = 0. For times τ ≫ 1, the fast pulse disappears, the
tail detaches from the surface, and a Gaussian pulse evolves.

We notice that the apparent velocity 〈ξ〉/τ and the apparent dispersion
coefficient var(ξ)/[2τ ] are not constant as they are when we calculate them
from the moments (7.53) of pt. Instead the velocity decreases from v to v/R
and, as a quick calculation shows, the dispersion coefficient increases.

Figure 4.8 on page 98 shows an experiment that may be understood in
terms of mobile and immobile regions. Apparently, the tracer pulse leaves
behind a long and slowly moving tail as it progresses. Recalling the exper-
iment – impermeable glass beads, narrow grain size distribution, saturated
medium – one would not immediately think of immobile regions. However, as
illustrated in Figure 7.10, such immobile water may well be expected in the
narrow spaces between the grains that are not in the main flow paths. Indeed,
places within a distance ℓ of flow paths are accessible through molecular
diffusion on a time scale ℓ2/D, where D is the coefficient of diffusion. The
time scale for convective transport is ℓ/v. Equating the two yields ℓm = D/v
for the characteristic extent of the mobile region around a flow path. While
the MIM model as developed above just contains one single time scale for the
exchange, ω−1, the real system will exhibit a continuous range of exchange
times. This does not affect the qualitative behavior, however.

Generalizations We first notice that the mathematical formulation (7.40)
can be easily adapted to more general cases of immobile regions. The most
important of these is that of a solute that is adsorbed by the solid matrix. For



218 7 Solute Transport

Figure 7.9.
Travel distance pdf px(ξ; τ) for MIM
model for Ω = 0.25 after short (top)
and long (bottom) travel times.
Again, Peclet number and retardation
factor are chosen as Pe = 300 and R =
5. The value of Ω is chosen such that
τ = 1 is the characteristic residence
time in the mobile phase with respect
to the exchange. The thin horizontal
lines indicate the expectation value
〈ξ〉 for each of the distributions. The
curve for τ = 2 is shown in both
graphs for easier comparison. Notice
the different scaling of the two graphs.
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a large class of solutes, adsorption may be approximated as a linear process
such that in equilibrium

Ceq
s = KdCw (7.59)

is the concentration in the adsorbed phase where Cw is the concentration in
the water phase and Kd is the distribution coefficient. For practical reasons,
Cs is customarily measured as mass of adsorbed chemical per mass of soil
matrix. Hence, the total concentration becomes

Ct = θCw + ρbCs (7.60)

where ρb is the bulk density introduced in (3.13). Again assuming a first
order kinetics for the exchange between adsorbed (immobile) and water phase
(mobile) we obtain for the dynamics, in analogy to (7.40),

∂tCw +
ρb
θ
∂tCs + v∂xCw −D∂xxCw = 0

∂tCs = −ω[Cs −KdCw] . (7.61)
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Figure 7.10.
Sketch of immobile water in saturated, uniform,
granular media. Water flow will occur along a
network of flow paths (dark blue lines). The region
within ℓm = Dmolec/v of a flow path may be con-
sidered as mobile (light blue) whereas those beyond
act as immobile (light yellow).

The dimensionless variables (7.41) again lead to (7.42) with the sole difference
that the retardation factor is now given by

R = 1 +
ρbKd

θ
. (7.62)

Obviously, the discussions following (7.42) also apply to the new model. This
formal analogy between the mobile-immobile two-region model and linear
kinetic adsorption was first pointed out by Nkedi-Kizza et al. [1984].

For a second generalization we notice that the dimensionless form (7.45)
of the convection-dispersion equation in Laplace space may be cast into the
form (7.49) by choosing

αCD(s) = s . (7.63)

We recognize that s, the conjugate of time t, only appears in α(s) and
thus speculate that the transport process, in this case convection-dispersion,
determines the general form given by (7.49) while the interaction, here MIM,
determines the form of α(s). Indeed, Roth and Jury [1993] showed that
this is correct for a general linear flux law of the form (4.50) and a general
linear interaction model as long as the two are independent. Specifically,
they showed that in Laplace space the travel time pdf p̂t(s; ξ) of a linearly
interacting solute may be expressed in terms of the pdf p̂ct(s; ξ) for a solute
that is conservative with respect to the interaction as

p̂t(s; ξ) = p̂ct(α(s); ξ) . (7.64)

Apparently, the MIM model with an underlying convection-dispersion is a
special case. The practical significance of (7.64) is that transport of an
interacting solute may be predicated from (i) an experiment with a conser-
vative tracer and (ii) interaction parameters determined in an independent
experiment.

Critique The mobile-immobile model yields important conceptual insights
into the effect of heterogeneity on solute transport. However, it is not
particularly useful for quantitative studies and for real geologic formations.
Its fundamental deficiency is that the effective dispersion process is diffusion-
like as is testified by D ∝ v2 in (7.54). Such a behavior is not corroborated by
experimental evidence. Further issues of a more practical nature include that
(i) distinguishing only two regions and a single coupling rate is inadequate
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for many situations, (ii) relating the model parameters – the “immobile
fraction” θim or ρbKd and the effective rate constant ω – to observable
properties of the subsurface architecture is difficult and (iii) the richness
of natural architectures, including hierarchical heterogeneities, cannot be
represented.

7.1.6
Heterogeneous Media

As a preliminary, we recall the separation of the subsurface architecture
into structure and texture as introduced in Section 3.3.2. In the current
context, the structure includes those large-scale features of the formation that
need to be represented explicitly in order to arrive at a faithful description
of solute transport. In contrast, the texture includes all those small-scale
features for which a statistical representation suffices, which may thus be
incorporated into the hydrodynamic dispersion. Notice that we will often
use “microscopic” or “local” to refer to texture and “macroscopic” to refer
to structure.

Model Formulation We consider stationary flow in an aquifer whose hy-
draulic structure is given by the effective conductivity field K(x), which is
furthermore assumed to be isotropic. Given appropriate boundary conditions,
the flow field v(x) is obtained by solving (5.22) and invoking Darcy’s law
(3.30) in the form jw = −K∇hw together with v = jw/φ.

The texture of the aquifer, is irrelevant for the flow field, its contribution
is implicitly incorporated in the effective conductivity. Texture is relevant
for solute transport, however, since the small-scale velocity variations are
the cause of dispersion. In general, it is far from obvious what the optimal
parameterization for this dispersion is. For formations with a scale-gap, i.e.,
with characteristic sizes of textural features being much smaller than the
scale at which the structure is resolved, invoking the convection-dispersion
model with an effective dispersion tensor is appropriate. On the other hand,
if the texture is known to contain units that are qualitatively different from
the structure, for instance clay lenses in a sandy aquifer, the MIM model may
provide a better parameterization.

Choosing the convection-dispersion parameterization for the local disper-
sion yields

∂t[φ(x)Cw] +∇ · [φ(x)v(x)Cw]−∇ · [φ(x)Deff(x)∇Cw] = 0 (7.65)

which was already derived in (4.53) and is now written such as to emphasize
that φ, v, and Deff are spatially variable. The last step to complete the model
is the specification of Deff . We choose it as a superposition of molecular
diffusion, described by the Millington-Quirk parameterization (4.55), with
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θ = φ, and of the hydromechanic dispersion (4.56). In cartesian coordinates,
this superposition may be written as

Dij(x) = [λℓ − λt]
vi(x)vj(x)

|v(x)| +
[
λt|v(x)|+ φ1/3Dm

]
δij , (7.66)

where λℓ and λt are the longitudinal and the transverse dispersivity, respec-
tively, and Dm is the coefficient of molecular diffusion in pure water.

Two-Dimensional Single-Scale Media In general, (7.65) cannot be solved
analytically, even if the parameter fields are constant in time. Hence, we
take recourse to numerical simulations and to this end consider the two-
dimensional single-scale media already studied in Section 5.4 with flow fields
shown in Figure 5.12 on page 116.

Hydraulic Properties We recall that the hydraulic conductivity of the me-
dia used in Section 5.4 is lognormally distributed, i.e., Y = log(K/K0) is
normally distributed, and that Y is a realization of a weakly stationary ran-
dom function with isotropic Gaussian autocovariance and correlation length
ℓY = 1 m. The degree of heterogeneity is determined by the variance of Y .
Some parameters of the fields are given in Table 5.1 on page 114. The size
of the flow domain is chosen as 102.3 m× 51.1 m, some 102ℓY × 51ℓY . The
numerical solution is calculated for a spatial resolution of 0.1 m, which leads
to a grid with 1024× 512 nodes.

Water Flow The water flow is driven by a regional hydraulic gradient of
about 0.01 with the left and right boundaries each at a constant hydraulic
head. The upper and the lower boundary are impermeable. The velocity
field is calculated from jw(x) assuming a constant porosity φ = 0.25. Such
an assumption is for instance valid for a porous medium that is geometrically
similar at each location, at least in a statistical sense, with only the char-
acteristic length varying in space. This is referred to as Miller-similarity ,
due to Miller and Miller [1956] who first introduced the concept for flow
through porous media. Examples of formations for which Miller-similarity is
a reasonable approximation include sandy alluvial deposits.

Solute Transport For solute transport, Dm = 2 · 10−9 m2s−1 is chosen
as the coefficient of molecular diffusion. With the Millington-Quirk factor
φ1/3, this leads to Deff

m = 1.26 · 10−9 m2s−1. For hydromechanic dispersion,
three cases are studied, namely λℓ = 0, 0.005 m, and 0.025 m and each
with λt = λℓ/10. Notice that λℓ is chosen to be substantially smaller than
the spatial resolution of the simulation, 0.1 m, since it represents sub-scale
dispersion that originates in the texture.

Numerical Simulation The transport problem is solved by tracking a large
number of particles, 1 . . . 32 · 106, using the algorithm of Roth and Ham-

mel [1996]. Boundary conditions are such that particles are reflected at all
boundaries, except for the righthand boundary where they leave the flow
domain.
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Figure 7.11.
Normalized concentrations
for an initial point source
(red dot) and for an
initial line source (red
line) perpendicular to the
mean flow. The variance
of log10(K/K0) is 0.15 and
travel times are 8, 16, and
24 days. Dispersion is by
molecular diffusion only.
The background represents
the flow field, more
precisely log(|jw(x)|), with
red and blue indicating
low and high values,
respectively.
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Weakly Heterogeneous Medium We first concentrate on the medium
with var(log10(K/K0)) = 0.15 and study the transition between different
dispersion regimes for two initial distributions at the lefthand boundary – a
point source at y = 10 m and a line source between y = 35 m and 45 m –
and for different microscopic dispersion processes.

Molecular Diffusion For a medium that is very uniform microscopically,
molecular diffusion is the only relevant microscopic dispersion process. Ex-
ercise 7.6 shows that for the flow fields considered here, this is a good
assumption if the medium is uniform at a scale of about 5 mm. Of course
it is heterogeneous at smaller scales, where the pore space would come into
view, as well as at larger scales where the hydraulic structure is represented
explicitly. Normalized concentration distributions for short travel times are
shown in Figure 7.11.

In a uniform flow field, molecular diffusion leads to an isotropic Gaussian
transition pdf whose radius – standard deviation – for time t is [2Deff

m t]1/2.
Inserting Deff

m = 1.26 · 10−9 m2s−1 yields a radius of 0.07 m after 24 days.
Hence, the distribution covers some 14% of ℓY . Since the conductivity
field is very smooth, compare Figure 5.11 on page 114, we expect that
the size of the pulse is approximately the same in the uniform and in the
heterogeneous medium. Indeed, the distribution originating from the point
source remains highly localized and its spreading is hardly visible at the
given resolution of 0.1 m. Hence, we may envisage the particles to remain
on their initial streamline for some time. This regime is very much akin to
the near-field of Taylor-Aris dispersion discussed in Section 4.1.2. The major
differences are that (i) streamlines are contorted and (ii) the velocity on any
particular streamline is not constant. As a consequence, particle distributions
cannot be calculated from the initial velocity distribution anymore and the
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Figure 7.12.
Evolution of concentra-
tion distributions from
Figure 7.11 for 80, 160,
and 240 days.

simple stochastic-convective scaling (7.13) is no longer valid. However, for
sufficiently short times – certainly for travel distances smaller than ℓY –
we may expect simple stochastic-convection to yield a reasonable approxi-
mation. This is illustrated qualitatively by the concentration distributions
produced by the line source. For very much longer times and stationary
hydraulic properties, in the statistical sense, we may hypothesize that a
single particle moving along a streamline will eventually sample the velocity
field in a representative manner. Indeed, this hypothesis is the basis of the
stochastic continuum theory , a popular perturbation approach for weakly
heterogeneous media that is based on early work by Phythian [1975] and was
further developed by Gelhar and Axness [1983] and Dagan [1984].

The evolution of concentration distributions for longer times is illustrated
by Figure 7.12. We first notice that the distribution from the point source
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develops a highly anisotropic shape. To understand this, we again calculate
the radii of the isotropic distributions that would result from molecular
diffusion alone. This yields 0.13 m for t = 80 d and 0.22 m for t = 240 d,
hence a coverage of ℓY by 26 and 44%, respectively. While the width of
the pulse is of the expected size, its length is almost two orders of magni-
tudes larger. Again, the situation is very similar to Taylor-Aris dispersion:
The comparatively small transverse spreading leads to transitions between
streamlines at somewhat greater distances. This in turn changes the velocity
of a particle which spreads the distribution along the direction of the local
mean flow much faster than microscopic dispersion. A further increase in
the rate of spreading may be expected when the flow channel that contains
the pulse forks asymmetrically into two channels. This apparently has not
yet happened with the pulse studied here but it certainly will as it widens
enough to cover an entire channels.

The same evolution as for the point source is also manifest in the distribu-
tion from the line source. Its longitudinal growth is not as striking, though,
since different parts of the line have been on different streamlines right from
the start. Hence, they already encountered the full range of velocities.
However, we notice that the distribution evolves into a set of somewhat
isolated thin filaments that are aligned with the mean flow. An intuitive
explanation for this is that diffusion brings the particles into high- and low-
velocity regions with equal probability. However, longitudinal spreading is
more effective in the high-velocity regions simply because velocities and thus
also their differentials are higher.

Finally, we emphasis the fundamental importance of molecular diffusion.
While it is a slow mixing process for larger distances, it effectuates transitions
between streamlines. This in turn is the key for the more effective mixing
processes, in particular for Taylor-Aris-like dispersion, within flow channels
and for the hydromechanic dispersion that results from the macroscopic net-
work of channels. Without molecular diffusion, an initial point distribution
would obviously never spread.

Hydrodynamic Dispersion Next, we study the influence of the magnitude
of local dispersion and consider hydromechanic dispersion in addition to
molecular diffusion (Figure 7.13). This corresponds to assuming a larger
characteristic size for the features that make up the texture of the medium.
As a preliminary, we estimate the mean dispersion tensor that accounts for
the combined processes. Using (7.66), it may be approximated as

Deff
ℓ,t = φ1/3Dm + vλℓ,t , (7.67)

where the subscripts ℓ and t indicate longitudinal and transverse direction,
respectively. With the mean velocity v = 4 · 10−6 ms−1 – estimated from
the displacement of the original line source shown in Figure 7.12 – we obtain
for the effective dispersion coefficients {Deff

ℓ , Deff
t } approximately {21, 3.2} ·

10−9 m2 s−1 for λℓ = 0.005 m and {101, 11} · 10−9 m2 s−1 for λℓ = 0.025 m.
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Figure 7.13.
Normalized concentration
distribution for transport
in same velocity field as
used for Figure 7.12. The
microscopic dispersion
process is represented
by molecular diffusion
and, additionally, by
hydromechanic dispersion
with λℓ = 0.005 m
(upper) and 0.025 m
(lower), respectively.

In a corresponding uniform medium, an initial point-like distribution would
thus evolve into an anisotropic Gaussian distribution. After 160 d, its major
radii would be {0.77, 0.30} m and {1.67, 0.56} m, respectively. Clearly,
the distributions in Figure 7.13 are much broader than this due to the
macroscopic dispersion process discussed above.

What is the impact of the significantly increased microscopic dispersion?
We first recall that the onset of the macroscopic dispersion is determined by
the time scale of transverse mixing. For a mixing distance ℓ this is given
by ℓ2/[2Deff

t ]. Hence, increased spreading is expected for times that are
shorter than with pure molecular diffusion by the factor Deff

t /Dm. For λℓ =
0.005 m, this factor is 2.6, for 0.025 m it is 8.9. We thus anticipate that
the duration of the initial phase of the dispersion process decreases with
increasing microscopic heterogeneity. On the other hand, dispersion at the
macroscopic scale is dominated by the spatial structure of the velocity field
and no more by local mixing. The later phase of dispersion is thus expected
to depend only weakly on the value of Deff

t with the main impact being a
stronger smoothing with increasing local dispersion. This is corroborated
qualitatively by Figure 7.13 and it will be further supported below.

Transition Probability and Ergodicity Recall that the normalized concen-
tration distribution that results from an initial uniform concentration distri-
bution in some arbitrary region Ω may be regarded as the probability density
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for the transition from Ω to some location x by time t. Hence, px(x; t|Ω; 0) =
C(x; t)/C0, where C(x; 0) = C0 for x ∈ Ω and zero otherwise.

Consider the distribution originating from the point source at x0. It
corresponds to the travel distance pdf px(x; t|x0; 0). Recall that this pdf can
be measured with an appropriate tracer experiment. The important question
arising here is: Once px(x; t|x0; 0) is determined for a specific location x0,
what do we learn about transport in the entire flow domain? The answer to
this has several facets:

1. For a stationary system – constant flow and time-invariant transport
properties – the pdf px(x; t|x0; 0) provides a complete description of the
influence of the concentration C(x0; t) on the entire flow domain. In-
deed, following Section 7.1.4, the concentration at an arbitrary location
x may be written as C(x; t) =

∫ t
−∞

C(x0; τ)px(x; t− τ |x0; 0) dτ .

2. In a heterogeneous medium, px(x; t|x0; 0) will not describe the trans-
port from any location other than x0. Such a process would constitute
a different system with a different transition pdf. This is obvious from
the evolution of the line source in Figure 7.11, which may be regarded
as a superposition of pulses.

3. The situation is simpler in the far-field, after the initial distribution
has spread over a region that is very much larger than the correlation
length ℓY of the hydraulic structure. The concentration distributions
are decomposed into several filaments as is apparent from Figure 7.12
and Figure 7.13. However, these filaments reflect the local flow channels
and are as such independent of details of the initial distribution C(x; 0).
Hence, shifting C(x; 0) a bit would not affect the location and extent
of the filaments.

While the prediction of the concentration at any one location is impossible
without a detailed simulation, an average statistical description thus appears
feasible. To this end it is useful to introduce the notion of a macroscopically

uniform field for which the statistical moments, calculated over a sufficiently
large region, are translation-invariant. This concept is in complete formal
analogy to that of the representative elementary volume (REV) introduced
in Section 3.3.1. Indeed, we may refer to the minimal region that makes a
field macroscopically uniform as its REV.

Returning to the predictability of transport in a heterogeneous medium, we
consider a macroscopically uniform medium with stationary flow in a conduc-
tivity field with finite variance and correlation length. Invoking the central
limit theorem we may conclude that eventually, in the so-called asymp-

totic limit, the average plume is transported and dispersed according to
the convection-dispersion model with some effective value for the velocity
and for the dispersion tensor. Calculating such effective parameters for an
ensemble of hydraulic structures, and indeed also the transition from the
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near- to the far-field, is the aim of stochastic continuum theory [e.g., Dagan

1984, 1989]. It is based on the ergodicity hypothesis that is used to construct
an ensemble whose statistics – mean, distribution, and covariance function of
Y = log(K/K0) – equals the spatial statistics of the given realization. Based
on the assumption that var(Y ) is small, a perturbation solution is obtained
for the moments of the transition pdf. We again emphasize, however, that
such a theory only yields results for the ensemble and will not be able to
predict local concentrations and fluxes. Still, it has been found to successfully
describe the transport in weakly heterogeneous media as has for instance been
demonstrated by Dentz et al. [2000] for the Borden aquifer.

Apparent Transport Parameters Short of actually entering the stochastic
continuum theory, we take a heuristic look at the evolution of the spatial
moments of the particle distribution as it is provided by the numerical simu-
lations above and represented in Figures 7.11–7.13. To this end, we employ
themethod of moments and the global apparent parameters defined by (4.27).
The moments of interest here are the x-component of the center of gravity
and the variances in x- and y-direction. Mean and variance in x-direction
are obtained as

〈x〉 = 1

n

n∑

i=1

xi and var(x) =
1

n− 1

n∑

i=1

[xi − 〈x〉]2 , (7.68)

respectively, where xi is the x-component of particle i’s position. The vari-
ance in y-direction is calculated in analogy.

Before proceeding, we recall that the moments (7.68) can be calculated for
any particle distribution and likewise numbers for v and D can be obtained
from (4.26) or from (4.27). All this is independent of the underlying transport
process. However, the interpretation of the parameters v and D does depend
on the process. For instance, calculating the spreading of a distribution
with

√
2Dt requires that the underlying process is a convection-dispersion.

If this can be ascertained a priori , then the parameters are called “effec-
tive”. If this is not the case, as for instance for the macroscopic transport
parameters of a heterogeneous medium, they get the label “apparent”. This
label may be changed a posteriori , once it has been ascertained that the
parameters conform to the convection-dispersion model, i.e., D is found to
be constant.

For a macroscopically uniform medium, we anticipate that a stationary
flow field will also be macroscopically uniform, although, recalling Figure 5.12
on page 116, probably with a much larger REV than the underlying con-
ductivity field. Then, after a sufficient transport distance, the method of
moments would again yield effective parameters. The crux here is the “suf-
ficient distance”, which may be impractically large. We will find in the
following that 102ℓY is an optimistic lower limit even for the rather well-
behaved conductivity fields considered here. This is readily understood in the
framework of the MIM model discussed in Section 7.1.5, which shows that
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Figure 7.14.
Movement of particle distribution’s
center of gravity, 〈x(t)〉 and 〈y′(t)〉 =
〈y(t) − y(0)〉 (top), global apparent
velocity vappx,glob = 〈x(t)〉/t (middle),
and local apparent velocity vappx,loc =
∂t〈x(t)〉 (bottom) for the point source
(magenta) and for the line source
(cyan) shown in Figures 7.11–7.13.
Movement in y-direction is minute
and hardly visible in the graph.
The black line represents the mean
x-component of the entire velocity
field. The three curves for each source
represent the three cases of microscopic
dispersion considered above, namely,
molecular diffusion alone (solid) and
hydrodynamic dispersion with λℓ =
0.005 m (short dashes) and λℓ =
0.025 m (long dashes).
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macroscopic dispersion in a heterogeneous medium is dominated by (i) the
hydraulic contrast between different regions, in (7.54) expressed by the re-
tardation parameter R, and (ii) the mixing time, there the rate parameter ω.
A final, more practical issue is the characterization of the flow field, which
is traditionally done through the correlation length ℓy of the underlying log-
conductivity field. This is motivated by the hope that ℓy may be measurable
for natural formations. Whether or not this will become feasible eventually,
we notice that there is a large set of natural formations whose hydraulic
characteristics are not represented well by just the correlation length. This
includes undulating formations as they typically occur in aquifers that origi-
nate in ancient braided rivers.

After these preliminaries, we look into the movement of the center of
gravity and the deduced apparent velocities (Figure 7.14). First, we notice
that the center of gravity moves along a fairly straight line with minimal
deflection in y-direction. Fluctuations in x-direction, along the mean flow,
are larger and indicate that the distributions traverse high- and low-flow
regions. As a consequence, the velocities in x-direction show considerable
variation, by about ±5% for the global velocity from the line source and
about a factor of two larger for the one from the point source. The cause
for this difference in the magnitude of the fluctuations is the sampling region
of the two distributions. The line source extends over 10 m perpendicular
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to the mean flow. Hence, the particles originating there are distributed over
10ℓY and thus sample the field of x-velocities representatively. The remaining
fluctuations result from large-scale structures of the flow field and from the
still imperfect sampling. In contrast, particles from the point source initially
sample only a single point where the velocity may be much higher or much
lower than the mean. For the case we happen to look at here, the pulse
starts in a low-flow region. Its mean global velocity by t ≈ 45 d is about
1.9 · 10−6 ms−1, half of the mean velocity of the entire field. Looking at
Figure 7.11, we find that this low-flow region extends to x ≈ 7 m where a
high-flow region follows. Calculating the travel time to the transition with
the previously estimated initial mean velocity yields about 43 d, which fits
nicely with the observation in Figure 7.14.

We notice the difference in the level of fluctuations between global and
local estimates of the apparent velocity, vappx,glob and vappx,loc, respectively. This
is readily understood when we realize that the two represent completely
different averages. The global estimate reflects the mean velocity along the
entire path of all the particles. In contrast, the local estimate results from
the mean velocity at the current locations of the particles. Hence, the two
sample completely different regions. For a macroscopically uniform flow field,
the two velocity estimates will asymptotically approach each other as well
as the mean velocity 〈v〉 of the entire field, which is yet another estimate.
This is at least the case when molecular diffusion is the only microscopic
dispersion process. Indeed, diffusion is independent of the velocity field and
will spread the particle distribution indiscriminately over an ever increasing
region. Eventually, it will sample a region that is large enough to represent
the macroscopically uniform flow field.

Next, we consider the evolution of the macroscopic dispersion and describe
it, again based on (4.27), with the apparent dispersivities

λℓ :=
Dℓ

vx
=

var
(
x(t)

)

2
〈
x(t)

〉 and λt :=
Dt

vx
=

var
(
y(t)

)

2
〈
x(t)

〉 . (7.69)

Here we used that the mean flow is in x-direction and the sub- and su-
perscripts are dropped for a leaner notation (Figure 7.15). Furthermore,
the global estimate D = 1

2tvar(x(t)) was used instead of the local estimate
D = 1

2∂tvar(x(t)). The former yields more stable results, although at the
price of a slower convergence. This was already observed for the case Taylor
dispersion (Figure 4.4 on page 86). Finally, notice from the comparison with
(7.67) that we fold the contribution of molecular diffusion into the apparent
dispersivities. This may be justified because in practical situations, the two
processes cannot be separated. In addition, Dm/v is typically some orders of
magnitudes smaller than λapp.

First consider the longitudinal dispersivity calculated from the line source.
It increases approximately linearly and reaches a maximum after some 50 d,
corresponding to a travel distance of some 20 m. This is the near-field
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Figure 7.15.
Apparent global dispersivities for the
longitudinal (top) and the transverse
(bottom) direction obtained with
(7.68) for the simulations shown in
Figures 7.12–7.13 for var(log10(K)) =
0.15. Colors and dashes are the same
as in Figure 7.14. The contribution
from molecular diffusion is minute,
φ1/3Dm/v = O(10−4 m), and cannot
be represented on the scale used here.
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(stochastic convection) regime. Indeed, inserting (4.28) into (7.69) leads
to λℓ = α〈v〉t, where α = var(v/〈v〉) is a characteristic of the flow field.
In Taylor-Aris dispersion, the SC-regime ends when particles have diffused
a sufficient distance from their original streamline and thus encounter sig-
nificantly different velocities. With the type of smooth velocity field used
there, Dapp approaches its asymptotic value monotonically, as is illustrated
in Figure 4.4 on page 86. In a heterogeneous medium, the changing velocity
along the streamlines provides an additional and independent path out of
the SC-regime. It is this path that also leads to the oscillations of λappℓ .
To understand this, we first realize that the value of var(x) is dominated
by the distance between the front and the rear end of the distribution.
These in turn consist of particles that stayed in the fastest and slowest flow
channel, respectively. As long as they stay there, the pulse will continue to
spread. However, as it progresses, the probability for these channels to end
increases. Since the fastest channels tend to end in slow regions and vice
versa, the spreading of the pulse will end rather abruptly and it will actually
get compressed. This explains the maximum of λℓ(t).

The unfolding of dispersion becomes more apparent when we consider the
evolution of the point source, which we already discussed qualitatively in the
context of Figure 7.11. We may distinguish three regimes:

1. For short times, t < 30 d, dispersion is dominated by the microscopic
processes which here correspond to a convection-dispersion. This is
indicated by the constant value of λℓ. Inspection of the data reveals
that the values obtained – 7.7 ·10−4 m, 0.0055 m, and 0.024 m – indeed
conform to the expectations. Also the values of the transverse disper-
sivity are approximately constant and of the correct order, although
they fluctuate quite a bit more.
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2. For longer times, the pulse starts to oscillate both in the longitudinal
and in the transverse direction. The two are actually anti-correlated,
i.e., when the pulse expands laterally, it tends to shrink transversally,
and vice versa. This fits nicely with expectations for a movement
through narrow high-flow and wider low-flow regions. We also notice
that for the case with molecular diffusion only, the pulse is compressed
almost back to its original tiny size after each expansion. For the
cases with additional hydromechanic dispersion, this is not the case
and the minimum spreading grows continuously with time while the
amplitude of the oscillation decreases. This is readily understood since
the microscopic dispersion affects the transition between streamlines
which in turn cause the irreversible macroscopic mixing.

3. For very long times, much longer than the 240 d simulated here, we
may anticipate that λℓ approaches the same asymptotic value as does
the distribution from the line source. This follows from the fact that
eventually, both distributions will sample an REV of the velocity field.
Indeed, such an approach is hinted at for the case with the largest value
of the microscopic transverse hydromechanic dispersivity of 0.0025 m.
In a uniform medium, the pulse would have a transverse radius of 0.68 m
by t = 240 d, which is of the order of ℓY . In contrast, the apparent
dispersivity of the pulse with pure molecular diffusion is still far from
the asymptotic value and it will take a long time to get there. To also
grow to a width of 0.68 m, some 8.6 y would be required during which
time the pulse would move some 1.1 km.

Moderately Heterogeneous Medium We consider a conductivity field
that has the identical form as the one used before but now with a larger mag-
nitude of the heterogeneity, namely var(log10(K/K0)) = 0.75, corresponding
to σ2

Y = 4.0. We again study the particle distributions that result from an
initial point and line source, respectively (Figure 7.16).

Apparently, dispersion is very much stronger even though the correlation
length of the conductivity field is the same. The reason for this is that the
velocity gradients are much larger such that particles on different streamlines
drift away from each other at a higher rate. Also notice the thin filaments
which testify to the small spreading from molecular diffusion and to the
persistence of narrow flow channels.

In analogy to the case of the weakly heterogeneous medium, we summarize
the spreading of the particle distributions by the apparent global velocities
and dispersivities (Figure 7.17). We notice that, because of the stronger
dispersion, a faithful estimate of the statistical moments requires a much
larger domain than in the previous case.

As in the case of weak heterogeneity, the apparent velocity appears to
approach the mean velocity of the entire field. Deviations from this value
are larger, however, reflecting the stronger variation of the velocity field. As
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Figure 7.16.
Evolution of tracer
distributions emanating
from a point and a line
source in a medium whose
conductivity field is iden-
tical to the one used for
Figure 7.12 except for the
larger magnitude of the
heterogeneity, for which
var(log10(K/K0)) =
0.75, corresponding to
σ2
Y = 4.0. The regional

hydraulic gradient is
again 1/102.3 and
microscopic dispersion
is by molecular diffusion
only.
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expected, the differences between the different microscopic dispersion regimes
are rather moderate for the line source with is broadly sampling of the velocity
field right from the start. They become considerably larger for the point
source once the spreading of the distribution becomes significant and the
asymptotic regime has not yet been reached.

The distribution from the initial line again exhibits the initial stochastic
convective phase during which λappℓ increases roughly linearly. It ends after
some 40 d, comparable to the case of the weakly heterogeneous medium.
However, the dispersivity increases faster, because of the larger velocity
gradients, such that the maximum value attained is larger by a factor of about
5. A further difference is that the overshoot is smaller, almost negligible. This
may be explained by the larger longitudinal extent which has the particles
sample the velocity field more representatively upon lateral diffusion.
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Figure 7.17.
Apparent global velocities (top) and
dispersivities for the longitudinal
(middle) and the transverse (bottom)
direction for the simulation shown in
Figure 7.16 and for the cases with
microscopic hydrodynamic dispersion
with λℓ = 0.005 m and 0.025 m,
respectively. Colors and dashes are
the same as in Figures 7.14–7.15.
The curves are only shown for times
for which no significant fraction of
the particles has reached the outlet
end. The black line in the top graph
represents the mean x-component of
the entire velocity field.

The distribution from the initial point shows a practically negligible lon-
gitudinal dispersion for some time, until the distribution has spread suffi-
ciently in the transverse direction. After that, spreading increases rapidly as
hydromechanic dispersion sets in. In contrast to the weakly heterogeneous
case, the fluctuation of the apparent dispersivity is very small, which is again
explained by the rapid longitudinal spreading and the correspondingly better
sampling of the velocity field.

We finally comment that the statistical moments only provided a very
rough description of the actual particle distribution. For instance, we obtain
[2λappℓ vt]1/2 for the radius in longitudinal direction. With v = 4 µms−1

and t = 160 d this yields some 21 m which is a very rough representation
indeed. It obviously indicates neither the very long filaments behind and
in front of the main distribution nor the regions with practically negligible
concentration right in the middle of the plume. Depending on the particular
question at hand – think of first arrival from a nuclear depository or, in
contrast, of the final cleanup of some noxious chemical – our interest may be
in exactly such filaments, in their extent and specific localization. An example
of great current interest is the arsenic contamination of large portions of the
groundwater in Bangladesh where it is found that wells that yield clean water
may be located a very short distance, tens of meters, from wells producing
contaminated water [van Geen et al. 2003].
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Figure 7.18.
Tracer distributions
evolving from point and
line source in a medium
whose conductivity field is
identical to the one used
for Figure 7.12 except
for the magnitude of
the heterogeneity which
is var(log10(K/K0)) =
3.77, corresponding to
σ2
Y = 20. The regional

hydraulic gradient is
again 1/102.3 and
microscopic dispersion
is by molecular diffusion
only.
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From a more theoretical perspective we notice that the asymptotic limit
of the convection-dispersion regime is reached on increasingly larger spatial
scales as the magnitude of the heterogeneity increases. Hence, the REV for
an effective, macroscopically uniform medium also increases with the variance
σ2
Y and not only with the correlation length ℓY .

Strongly Heterogeneous Medium We continue to consider the same con-
ductivity field as before but with the increased variance var(log10(K/K0)) =
3.77 which corresponds to σ2

Y = 20 (Figure 7.18). Obviously, the phe-
nomenology of transport on the scale considered here has changed dramati-
cally when compared to the case of the weakly heterogeneous medium. The
disparity of the velocities between high- and low-flow regions is so large
that the latter primarily appear as stationary particle sources – if the initial
distribution puts particles in such regions – while the former become high-
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Figure 7.19.
Evolution of point
source from Figure 7.18
but with microscopic
hydromechanic dispersion
with λℓ = 0.005 m in
addition to molecular
diffusion.

speed conduits. Particles that slowly diffuse from low- to high-flow regions
are entrained and form very thin and long filaments that feed from almost
continuous sources.

Next, we consider the impact of microscopic dispersion for the example
of the point source (Figure 7.19). While the initial evolution is very similar
to the case of pure molecular diffusion the distribution virtually explodes
once transverse spreading is large enough to reach neighboring flow channels.
Again notice that the concentrations in the leading part of the pulse are very
small because of (i) the wide spreading and (ii) the slow feed into the high-flow
channels. Indeed, a single speck in Figure 7.19 corresponds to a dilution of
the original concentration by a factor of some 107. Such a dilution renders
most contamination problems irrelevant since concentrations fall below the
toxicity threshold and, at least for many organic contaminants, microbes
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become efficient decomposers, leading to the so called natural attenuation.
This may not be true for highly toxic and inorganic solutes, however. A
notorious example is plutonium that originates from nuclear tests and from
waste disposal sites [Kersting et al. 1999].

Finally, we turn to the statistical moments and apparent parameters de-
rived from there. In contrast to the previous cases, no asymptotic limit is
reached within the simulated domain which extents for some 102ℓY . While
this could be remedied by considering a much larger domain and we know
from the CLT that such a limit exists, there is little motivation for such an
approach. The main reason for this is that the resulting moments and effec-
tive parameters would be of very limited interest since the deviations between
realizations are so large that the ensemble average, which is described by the
moments, is no more representative for any individual realization.

7.1.7
Aquifers

Natural formations like aquifers and soils typically exhibit hierarchical ar-
chitectures (Section 3.1) which, we expect, give rise to hydraulic structures
whose size ℓY increases with the size ℓ of the flow domain considered. This
in turn would lead to an increase of apparent dispersivities λℓ with scale ℓ.
Indeed, Gelhar et al. [1992] found a significant relation between the reported
values of λℓ and ℓ for a number of tracer experiments, roughly λℓ = ℓ/10
(Figure 7.20). While the scatter of the data is large, some two orders of
magnitude, there is nevertheless a reasonable correlation. Interpretation of
such an assembly of data just in terms of the flow domain’s size ℓ is still a
bit daring, however, since the experiments were performed in quite differ-
ent geological environments. Their hydraulic properties, in particular σ2

Y ,
probably deviated considerably. However, the scatter of the data is so large
that it can easily accommodate the corresponding variations. Specifically,
σ2
Y , the variance of the hydraulic conductivity’s logarithm, can be expected

to not vary much more than the two orders of magnitude of the data. As a
reference, the range covered by the simulations in Section 7.1.6 represents a
factor of 25.

A further issue with the data shown in Figure 7.20 concerns the pre-
misses for their derivation. Most of them assumed a macroscopically uni-
form medium, hence a uniform velocity field with all the observed spreading
assigned to dispersion. This is one extreme end for a design decision in ana-
lyzing data from hierarchically structured formations. The other end would
be the complete representation of the hydraulic structure with dispersion
through molecular diffusion only. Clearly, the resulting values for the appar-
ent dispersion coefficient varies greatly with such a choice, roughly between
10−9 m2s−1 for a full representation of the structure and ℓv/10, where v is the
mean velocity, for a uniform medium. Indeed, Gelhar et al. [1992] reanalyzed
some of the data by accounting for some of the heterogeneity and found that
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Figure 7.20. Apparent longitudinal dispersivity estimated from field exper-
iments reported in the literature. The size of a symbol indicates the reliability
of the data. It depends on experimental setup and resolution. Arrows link
reported values with estimates after reanalysis. The dashed line connects two
values that were estimated for two measuring locations in the same experiment.
Gray lines correspond to constant values of the macroscopic Peclet numbers defined
by (7.70). (Adapted from Fig. 3 of Gelhar et al. [1992] who first introduced this
representation.)

this reduced the estimates of the effective dispersivity significantly (indicated
by the downwards-pointing arrows in Figure 7.20). On the other hand, there
exist circumstances where the effective dispersivity is underestimated, for
instance when highly localized measurements in a flow channel are used. A
few such cases have also been reanalyzed by Gelhar et al. [1992] and are
indicated by upwards-pointing arrows. Apparently, there is a considerable
methodological latitude in estimating the dispersivity for large heterogeneous
formations.

The matter is further complicated by two additional issues. The first is
that the asymptotic limit has not yet been reached in most of the experi-
ments, hence small-scale details still persist in the tracer distribution. This
is indicated by the rather small values of the macroscopic Peclet number,
which we define in analogy to (7.25) as

Pe :=
ℓv

Deff
ℓ

=
ℓ

λeffℓ
. (7.70)

The second issue is that measurements are obtained from typically point-like
instruments, observation wells or drill cores. These do not represent the
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presumed uniform medium but relate to a much higher spatial resolution.
This is indicated by the dashed line in Figure 7.20 which connects two
measurements obtained for two observation wells with roughly the same travel
distance (some 4 km) at the same site (Hanford).

A faithful representation of solute transport in natural formation still poses
formidable technological challenges in that it requires an accurate description
of the underlying hydraulic structure with a reasonable spatial resolution, say
ℓ/10 . . . ℓ/100 where ℓ is the typical transport distance. No less important is
the observation of concentrations at a scale that is commensurate with that
resolution.

Exercises

7.1† Diffusion Consider quantity f(x, t) whose evolution is governed by the
diffusion equation ∂tf −D∂xxf = 0. For simplicity assume an unbounded domain
and let f(x, 0) = f0(x). Discuss the evolution of f(x, t) from two complementary
perspectives: (i) transfer function and (ii) Fourier transform.
Applications: The function f may represent solute concentration Cw in the stag-
nant water phase of a porous medium (7.14), pressure p in a confined aquifer
(5.2), temperature T in a soil or an aquifer (8.21), or velocity v in a viscous fluid
(2.20).

7.2 Salinization Consider a uniform medium with a constant water table at depth
ℓ. Let the solute concentration in the groundwater be C0 > 0 and assume a constant
evaporative (upwards) flux jevapw . Finally assume that the corresponding veloci-
ties are so small that hydromechanic dispersion is negligible relative to molecular
diffusion. Calculate and discuss the stationary concentration profile which will
develop in this system. Neglect effects resulting from density changes and possible
precipitation as the concentration in the water phase increases.

7.3 Apparent Transport Parameters in MIM Model For the MIM model discussed
in Section 7.1.5, sketch v(〈x〉) and D(〈x〉) as they would be deduced from the travel
distance pdf px(x; t) and compare them to the corresponding parameters obtained
from the travel time pdf pt(t;x).

7.4 Modeling Transport through Glass Beads Medium as MIM Model Consider
the medium illustrated in Figure 7.10 and discuss the dependence of R and ω on
the mean flow velocity in an equivalent MIM model.

7.5 Probability for Remaining in Mobile/Immobile Phase in MIM Model At
t = 0, let the concentration be Cim = 0 in the immobile phase and Cm > 0 in the
mobile phase. Calculate the concentration of particles that remain in the mobile
phase after time t. Do the same for the complementary situation where at time
t = 0 Cm = 0 and Cim > 0 and discuss the results.
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7.6 Subscale Dispersion: Diffusion or Hydromechanic Dispersion? We assumed
for Figure 7.12 that microscopic dispersion is only due to molecular diffusion.
Calculate a characteristic scale for the textural features of the medium for this
to be a reasonable assumption.

7.7 Peclet Number in Heterogeneous Medium Adapt the microscopic Peclet
numbers defined by (4.15) to the transport simulations considered in Section 7.1.6.
Calculate its value for the three cases of microscopic dispersion considered there,
i.e., λt = {0, 0.0005, 0.0025} m.

7.8 PDF from Line and from Point Source Notice that the maximum values of
the pdfs that originate from the line and from the point source in Figure 7.12 on
page 223 are almost two orders of magnitudes different and explain this.

7.9 Apparent Velocity in Heterogeneous Media and Subscale Dispersion Discuss
the influence of microscopic dispersion on the apparent velocity of a particle dis-
tribution evolving from a point and from a line source as illustrated in Figure 7.14
on page 228.
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Soil Heat

The thermal dynamics of soils is important for a number of environmental
processes. Most prominent, certainly at larger scales, is the conversion of
incoming solar radiation into heat and the distribution of the corresponding
energy flux into various channels. These include longwave radiation, latent
heat flux resulting from evaporating water, sensible heat flux caused by
convection of air, and heat flux into the ground, all of which depend strongly
on temperature as well as on soil water content. The distribution between the
different channels has a strong impact on the microclimate. Just think of an
oasis in the hot desert, of a cool forest on a hot summer’s day, or of a steaming
hot tropical forest. Here, as well as in many other cases, the dynamics of
soil heat is closely coupled with that of soil water through the large specific
enthalpy of water’s phase transitions which is 0.333 MJkg−1 for fusion and
2.26 MJkg−1 for evaporation. An evaporation of 1 mmd−1 thus corresponds
to a cooling of the soil surface with 26.2 Wm−2 and a corresponding warming
of the atmosphere upon condensation of the vapor.

Soil temperature is also a crucial variable for a number of processes within
the soil. Examples include the activity of microbes which determines for
instance the decomposition of soil organic matter and with it the CO2- and
CH4-emissions from soils, the activity of plant roots, and the stability of soils,
particularly in cold regions. Along more exotic routes, temperature profiles
in boreholes are employed to reconstruct the paleoclimate and temperature
is used as a “tracer”, e.g., for the infiltration of warm water from a river or
of rain into permafrost soils.

The thermal dynamics of geologic formations is also of interest for a num-
ber of engineering applications. These include the construction of buildings,
roads, or pipelines in permafrost regions, the intermediate storage of heat
in groundwater or dry rock, and the design of disposal sites for nuclear or
municipal waste, both of which entail a significant generation of heat.

At vertical scales of tens of meters and beyond, the thermal dynamics of the
subsurface is dominated by heat conduction driven at the surface by the fluxes
of radiation, latent heat, and sensible heat, and from below by the geothermal
heat flow, some 0.05 Wm−2, which originates from radioactive decay and
from the cooling of the Earth’s core. As we will find, the temperature
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fluctuations induced at the surface get damped exponentially with depth
with the penetration depth increasing proportional to the square root of
the fluctuation’s period. This simple regime is modulated by the thermal
properties of the typically heterogeneous subsurface, which in turn depend
on the water content. Further modifications result from heat convection by
groundwater flow and near active geothermal zone.

In soils, and at vertical scales up to a few meters, the situation is much more
complicated due to phase transitions of water in the unsaturated soil profile.
As a consequence, the dynamics of water and thermal energy become closely
coupled. This is particularly manifest in permafrost soils but also in arid
regions where water does not evaporate right at the soil surface but at greater
depths. The situation becomes even more complicated in anthropogenically
modified environments with their modified thermal properties and artificial
heat sources, for instance near waste disposal sites.

8.1

Thermodynamics of Water

Here, we look at water per se and at water in a porous medium from a ther-
modynamic perspective. This entails the conceptual separation of the system
of interest from its environment in such a way that the system is influenced
by the environment but not vice versa. We will furthermore restrict our
consideration to equilibrium states, which implies that the relaxation times
of all relevant system parameters is much shorter than the time on which the
corresponding environmental variables change.

Experience shows that thermodynamic equilibrium states can be described
by a few conjugate macroscopic variables the product of which yields the
energy associated with the corresponding aspects of the system. In the
context of our interest here, these encompass the (i) thermal energy with
temperature T and entropy S, (ii) the mechanical energy with pressure p
and volume V , (iii) the chemical energy of the composition with chemical
potential µj and number Nj of moles of type j particles, and (iv) the in-
terfacial energy with interfacial energy σjk and area Ajk between phases j
and k. An equilibrium state is prescribed by controlling one of the conjugate
variables in each of the pertinent pairs. For every choice of control variables,
there exists a thermodynamic potential which has the properties that (i) it
is linear in the size of the system and (ii) it becomes extremal for the system
in equilibrium.

Next, we specifically look at a porous medium with water in the vapor
(v), liquid (ℓ), and solid (s) phase. The internal energy U(S, V,Nj , Ajk) is
the appropriate thermodynamic potential for the given, externally controlled,
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independent variables. As is the case for potentials in general, the differential
of U is of most interest, i.e.,

dU = T dS − p dV +
∑

j

µj dNj +
∑

j<k

σjk dAjk . (8.1)

For the system at hand, water in a porous matrix in a natural setting,
V and S are not the appropriate control variables, however, but rather p
and T . The corresponding thermodynamic potential is the Gibbs energy

G(T, p,Nj , Ajk) := U + pV − TS. Inserting (8.1) yields for its differen-
tial

dG = −S dT + V dp+
∑

j

µj dNj +
∑

j<k

σjk dAjk . (8.2)

A thermodynamic system whose variables S, V,Nj , Ajk are controlled exter-
nally will equilibrate to a state that minimizes the internal energy U . If, on
the other hand, the controlled variables are T, p,Nj , Ajk, then the system will
relax to a state that minimizes the Gibbs energy G. We will encounter further
thermodynamic potentials below, in particular the enthalpy H(S, p,Nj , Ajk)
and the Helmholtz free energy F (T, V,Nj , Ajk), all with the same property
that a system relaxes to a state that minimizes them under the condition that
the corresponding variables are fixed. These potentials can be transformed
into each other through a Legendre transform in analogy to the above tran-
sition from U to G. Hence, the appropriate description for different physical
situations can be readily obtained.

8.1.1
Free Water

Before looking into porous media, we study free water where the interfacial
energy, the last term in (8.2), is negligible compared to the other terms. The
phase diagram is characterized by two distinguished points and by three cor-
responding lines (Figure 8.1). The points are (i) the triple point at {0.01◦C,
611 Pa}, where water can exist in any of the three phases, and (ii) the
critical point at {374◦C, 22.3 MPa}, where the distinction between liquid and
vapor phase disappears. The corresponding lines are the evaporation (vapor
pressure), the melting, and the sublimation curve, respectively.

Evaporation (Vapor Pressure) Curve Consider a mass element in which
liquid (ℓ) and vapor (v) phase coexist in thermal and mechanical equilibrium
with their surroundings, i.e., temperature and pressure are constant through-
out the system. Since we consider a mass element, there is no exchange of
mass with the surroundings. Hence, the Gibbs energy G is the appropriate
thermodynamic potential for this system and its total energy is given by
G = Gℓ +Gv with differential

dG = −S dT + V dp+ µ dN . (8.3)
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Figure 8.1.
Schematic phase
diagram of free water
with evaporation
(vapor pressure)
curve (red), freezing
curve (blue), and
sublimation curve
(green). Notice that
axes are grossly out
of scale and distorted.
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With T , p, and N fixed externally, the system is still free to transfer mass
between the two phases and to thus minimize its energy such that

dG = µℓ dNℓ + µv dNv = [µℓ − µv]dNℓ = 0 , (8.4)

where the second equality results from the total number of molecules being
fixed. Hence, µℓ = µv. In equilibrium, with T and p controlled, the chemical
potentials µj of all phases in contact with each other thus are equal.

Now consider the vapor pressure curve p(T ) that describes the chemical
equilibrium between the liquid and the vapor phase. First notice with (8.3)
that µ = ∂G/∂N |T,p does not depend on N , but will in general depend on T
and p. Hence, the chemical potential µ = G/N is the Gibbs energy per mole
and depends only on T and p. This may also be postulated directly from the
linearity of the Gibbs energy with system size. Thus, with N = const,

dµ =
1

N
dG =

1

N

∂G

∂T
dT +

1

N

∂G

∂p
dp = −s dT + v dp , (8.5)

where s = S/N and v = V/N are molar entropy and volume, respectively. On
the evaporation curve, T and p are related to each other, which we express by
p(T ). In order to obtain this function, we take the derivative of the condition
for chemical equilibrium, µℓ(T, p(T )) = µv(T, p(T )), which leads to

∂µℓ
∂T

+
∂µℓ
∂p

dp

dT
=
∂µv
∂T

+
∂µv
∂p

dp

dT
(8.6)

and further, using (8.5), to the Clausius-Clapeyron equation

dp

dT
=
sℓ − sv
vℓ − vv

=
∆s

∆v
, (8.7)

where ∆s and ∆v are the specific changes of entropy and volume, respectively,
for the phase transition.
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To transform (8.7) into a more convenient form, we consider the enthalpy

H(S, p,Nj , Ajk) = U + pV with differential

dH = T dS + V dp+
∑

j

µj dNj +
∑

j<k

σjk dAjk . (8.8)

For the case considered here – constant pressure, equal chemical potentials
and constant total mass, interfacial energy negligible – ∆s may be expressed
as ∆h/T , where ∆h is the specific change of the enthalpy. Choosing N such
that a unit mass results, (8.7) becomes

dp

dT
=

Hℓv

T [ρ−1
v − ρ−1

ℓ ]
, (8.9)

where Hℓv is the enthalpy per unit mass for the phase transition. Its value
is 2.503 MJkg−1 at 273 K and 2.259 MJkg−1 at 373 K. Notice that Hℓv =
Hv −Hℓ, hence the change of sign in (8.9).

Finally we mention that p(T ) as given by (8.9) also corresponds to the
partial pressure of the water vapor in a multicomponent system, i.e., water
vapor in the air above a lake. It is thus also referred to as the vapor pressure
curve.

A popular parameterization of the vapor pressure curve is the Magnus

formula

p(T ) = a exp
( bT

T + c

)
. (8.10)

Buck [1981] gives the coefficients a = 6.1121, b = 17.502, and c = 240.97 for a
maximum relative error of 0.2% for temperature T [◦C] in the interval [−20,
+50], and he also provides further, more accurate parameterizations.

Melting Curve In complete analogy to the evaporation curve we may also
deduce the melting curve, the equilibrium between solid and liquid phase,
as

dp

dT
=

Hsℓ

T [ρ−1
ℓ − ρ−1

s ]
. (8.11)

At 273 K, Hsℓ = 0.333 MJkg−1. Notice that, in contrast to most other
substances, the melting curve of water has a negative slope as a consequence
of the lower mass density of its solid phase.

Wagner et al. [1994] give for the parameterization of the melting curve
of ice I, the one relevant for freezing in soils, in the temperature interval
[251.165 K, 273.16 K]

π = 1− a[1− ϑ−3] + b[1− ϑ−21.2] (8.12)

with the normalized quantities π = p/611.657 Pa and ϑ = T/273.16 K and
with the coefficients a = 626′000 and b = 197′135.
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8.1.2
Water in Porous Medium

In porous media, the contribution of interfaces to the internal energy U is
no longer negligible. In the following, we look at three consequences of this:
(i) the matric potential ψm already introduced with (3.19), (ii) the vapor pres-
sure above a curved surface, and (iii) the soil freezing characteristic.

Matric Potential Consider a rigid, isothermal porous medium whose pore-
space is divided between a liquid water phase (ℓ) and a gaseous phase (g) that
consists of air (a) and water vapor (v). Assume the pressure in the gaseous
phase to be constant, pg = pv+pa = const, as would for instance be the case
in soils under a wide range of conditions. The appropriate thermodynamic
potential here is the Helmholtz free energy F (T, V,Nj , Ajk) = U − TS.
Taking into account that T = const and also Vℓ + Vg = const because the
medium is rigid, the differential of F becomes

dF = −[pℓ − pg] dVℓ + [µℓ − µv]dNℓ + σℓg dAℓg , (8.13)

where we have further used that the total mass of water is constant, hence
dNv = −dNℓ. In thermodynamic equilibrium dF = 0 and further, for
material equilibrium between the phases, µℓ = µv. Hence

pℓ − pg︸ ︷︷ ︸
ψm

= σℓg
dAℓg
dVℓ

. (8.14)

We recognize that ψm = pℓ − pg is the matric potential introduced with
(3.19) when we did not yet have to distinguish between the pressure from the
air and from the water vapor. As found earlier, ψm is the energy per unit
volume of liquid water to bring it into a porous medium when only interfacial
(capillary) forces are considered. Now, (8.14) shows that this energy is indeed
invested in extending the interfacial area.

Vapor Pressure above Curved Interface We address this problem with
the Boltzmann factor exp(−∆E/[kT ]) that gives the occupation probability
for a state with energy ∆E with respect to that of a state with energy 0.
In addition, we have to factor in the degeneracy of the two states, i.e., the
number of states with the same energy. In this case – we are considering
the transition across an infinitesimally thin interface – they are equal and
proportional to the volume in the immediate neighborhood of the interface.
Hence, the factors cancel out.

We obtain ∆E for the phase transition from the matric potential ψm, the
energy required to move a unit volume of water from the vapor phase into the
liquid phase. The energy per molecule of water is thenmwψm/[ρwNA], where
mw is the molar mass of water and NA is Avogadro’s constant. For bound
water ψm < 0, hence the pressure p(ψm) of water in the vapor phase is lower
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Figure 8.2.
Chemical potential of solid (cyan),
liquid (light green), and vapor (red)
phase of free water. The dashed
parts of the curves are unstable
since the Gibbs energy is smaller
in another phase. Interfacial forces
in a porous medium reduce µℓ(T )
as ψm becomes more negative when
liquid water retreats into smaller
pores. This leads to a freezing-point
depression as well as to a boiling-
point elevation (dark cyan). Notice
that the axes are not to scale.

than p0, the vapor pressure over a flat surface. Thus we obtain the so-called
Kelvin equation [Skinner and Sambles 1972; Fisher et al. 1981]

p(ψm)

p0
=
ρv(ψm)

ρv0
= exp

(mwψm
ρwRT

)
, (8.15)

where R = NAk = 8.3144 Jmol−1K−1 is the universal gas constant and p0, a
function of T , is for instance described by (8.10). Notice that the mass density
ρv of the water vapor, the concentration of water molecules, is proportional
to p, hence (8.15) may also be read as a concentration ratio.

Soil Freezing Characteristic In a first step, we consider µ(T ) for free
water at some fixed external pressure and notice with (8.5) that ∂µ

∂T |p = −s.
Recalling that the entropy measures the disorder of a system, we realize
that ssolid < sliquid < svapor. Finally, since in a system at equilibrium with
controlled T and p, the Gibbs energy is minimal and µ = G/N , we obtain
µ(T ) for water as sketched in Figure 8.2. In such an unconstrained system
and at standard conditions, water freezes at 0◦C.

In analogy to the vapor pressure that gets reduced in porous media accord-
ing to (8.15), the freezing point also gets depressed with decreasing radius of a
pore. To understand this, we first recall that in thermodynamic equilibrium,
the chemical potential µ in coexisting phases is equal. As temperature drops
below 0◦C in a porous medium, liquid water in the largest voids will freeze. As
a consequence the liquid-ice interface will move into pores with smaller radii.
Here, µℓ, the Gibbs energy per mole, is reduced due to the attraction by the
mineral surface and by the interfacial tension σℓs between the liquid and solid
water phase. Recalling the matric potential ψm as energy per unit volume of
soil produces, for a pore with radius R, the chemical potential

µℓ(ψℓs) = µℓ0 +
mw

ρw
ψℓs = µℓ0 − 2

mw

ρw

σℓs
R

, (8.16)

where ψℓs is the matric potential obtained from the water-ice interface and
µℓ0 corresponds to free water. For the second equality, the Young-Laplace
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Figure 8.3.
Experimentally determined
soil freezing characteristic
at the Bayelva field site
on Svalbard. On the left,
enthalpy axes are drawn
for the solid-liquid and
for the liquid-vapor phase
transitions. They indicate
the required transfer of
energy to accomplish a
given change in temperature
or liquid water content.
Instruments used are a
PT-100 temperature sensor
and a nearby TDR-probe
for the liquid water content.
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equation (3.2) with the radius of interfacial curvature given by −R was used.
The interfacial tension between water and ice is reported in the range between
0.027 and 0.032 Jm−2 [Hardy 1977; Huang and Bartell 1995]. Application
of the Young-Laplace equation is warranted because we are looking at equi-
librium processes where the liquid-solid interface has sufficient time to relax
into the energetic minimum through local melting and freezing.

For ice and liquid water in thermodynamic equilibrium we expect to find
a close relation between temperature, which sets the chemical potential,
and liquid water content. Clearly, this relation will depend on the material
with more liquid water, at a given sub-freezing temperature, in fine-textured
material than in coarse textured one. This is corroborated by Figure 8.3
which shows (T, θliqw ) data measured with two nearby sensors at a permafrost
field site. First we notice that liquid water is indeed present at temperatures
well below 0◦C. Next, it is apparent that the expected relation between
temperature and liquid water content holds quite precisely once temperatures
are below about −0.5◦C. It does not hold for higher temperatures without
ice, however, despite the fact that the liquid-vapor system is also coupled by a
phase transition. Why is this? In the ice-liquid system, both phases are quite
immobile, the liquid water because it is located in narrow pores. Hence, the
time scale of water movement is sufficiently long to allow thermal equilibrium
to establish. In contrast, the liquid-vapor system has a much faster dynamics
and, in addition, the external forcing through rainfall and evaporation is much
stronger. Hence, an equilibrium can rarely establish.
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8.2

Heat Conduction in Solids

Heat conduction is akin to solute diffusion with the random transfer of
molecular kinetic energy formally corresponding to the random motion of
particles. In the simplest case – heat conduction in uniform solids and
diffusion in uniform fluids, respectively – both processes are described by
the prototypical parabolic pde ∂t ⋄ −D∇2⋄ = 0, where D is a constant dif-
fusion coefficient. Solutions of this equation are readily available for thermal
[Carslaw and Jaeger 1990] as well as for solute problems [Crank 1975] and
they are interchangeable through the associations

jh ∼ jw , T ∼ Cw , ρchT ∼ Ct . (8.17)

8.2.1
Dynamics of Conductive Heat Transfer

We consider a solid with density ρ, specific heat capacity ch, and thermal
conductivity Kh. The conservation of thermal energy may then be written
as

∂t[ρchT ] +∇ · jh = 0 , (8.18)

where jh is the heat flux, which may be described by the Fourier law

jh = −Kh∇T . (8.19)

Combination of the two leads to the heat conduction equation

∂t[ρchT ]−∇ · [Kh∇T ] = 0 , (8.20)

which, for uniform and isotropic media with time-invariant properties, may
be simplified to

∂tT −Dh∇2T = 0 , Dh =
Kh

ρch
, (8.21)

where Dh is the thermal diffusivity, i.e., the diffusion coefficient for temper-
ature. Material properties of some constituents of geologic formations are
given in Table 8.1.

Solutions of the linear pde (8.21) are readily obtained for various initial
and boundary conditions. For simplicity, we focus in the following on a
uniform medium with a flat surface at z = 0, unbounded for z > 0, and a
one-dimensional dynamics driven by temperature T0(t) at the surface. This
may be formulated as

∂tT −Dh∂zzT = 0 ,

T (z; 0) = 0 ,

T (0; t) = T0(t) ,

lim
z→∞

T (z; t) = 0 . (8.22)
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Since this problem is linear in T , the principle of superposition may be
applied and the forcing may be decomposed in a convenient way. Two
contrary approaches are the decomposition into Dirac-functions δ(t) or into
periodic functions sin(ωt − φ(ω)). The former leads to the transfer func-
tion introduced in Section 7.1.4 and is most convenient if T0(t) describes a
localized event. The latter corresponds to a Fourier-decomposition and is
detailed in Section A.5.2 in the appendix. It is most convenient for long
periodic or quasi-periodic forcings. Since both decompositions are based on
a complete set of functions, they may of course also be applied to situations
for which they are not optimal, e.g., the Fourier-decomposition to a localized
or a non-periodic forcing. The operational price to pay then is that a much
larger of significant components has to be handled which may lead to a high
computational cost.

Before embarking on solutions of (8.22), we remark that prescribing a
temperature forcing at the surface is a hard thing to do physically and that
it would be much easier experimentally to prescribe the heat flux. Indeed,
recalling the discussion in Section 7.1.1, the natural independent variable of
T (z; t) is z, not t, while it would be the other way round for jh(t; z). The
motivation to nevertheless choose the formulation (8.22) comes from typical
observational procedures where temperature sensors are installed at fixed
locations, either in air or in the ground, and T is recorded as a function of
time. The more direct approach, measuring the flux which after all generally
drives the system, is not possible since corresponding instruments are not
available, at least not for the subsurface.

Transfer Functions The first impulse for solving (8.22) with transfer func-
tions may be to decompose T0(t) into δ-functions and to then seek the solution
for T0(t) = δ(t). While this may be mathematically correct, though not
dimensionally, and a solution would be readily obtained, the symbols would
not have their intended meaning. Indeed, solving (8.22) with T0(t) = δ(t)
prescribes a flux – t is the natural variable of flux, not of temperature – and
the result also corresponds to the heat flux, despite the disguising notation.

Table 8.1. Typical values for mass density ρ, specific heat capacity ch, thermal
conductivity Kh, and thermal diffusivity Dh = Kh/[ρch] of some constituents of
soils and geologic formations.

ρ ch Kh Dh

[103 kgm−3] [103 J kg−1K−1] [Jm−1s−1K−1] [10−6 m2s−1]
air 0.00116 1.007 0.025 21.4
quartz 2.65 0.84 8.8 3.95
humus 1.4 1.9 0.25 0.094
water 1.00 4.22 0.57 0.14
ice 0.91 2.11 2.2 1.15
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As an incidental remark, jh also satisfies the temperature diffusion equation,
as differentiation of ∂tT−Dh∂zzT = 0 with respect to z readily shows.

We follow a different approach here and seek a solution to a variant of the
heat conduction problem (8.22), namely to

∂tT −Dh∂zzT = 0 ,

T (z; 0) = 0 ,

−Kh∂zT (z; t)|z=0 = e0δ(t) ,

lim
z→∞

T (z; t) = 0 , (8.23)

where a heat pulse at time t = 0 deposits the energy density e0 [Jm−2] into
the ground at its surface. In this formulation, heat flux through the surface
is zero, except for t = 0, hence the injected thermal energy will remain in
the ground and just get distributed with time. Solving (8.23), most easily
through a Laplace transform with respect to time, yields

T δ(z; t) =
e0
ρch

1√
πDht

exp
(
− z2

4Dht

)
, (8.24)

where (8.21) has been used. Integrating ρchT
δ(z; t) with respect to z over

the entire medium for t > 0 yields e0, as expected. The corresponding heat
flux is obtained from Fourier’s law as

jδh(t; z) =
e0z√

4πDht3
exp

(
− z2

4Dht

)
. (8.25)

Integrating jδh(t; z) with respect to t over all times t > 0 yields e0, again as
expected.

In complete analogy to Section 7.1.1, we may now define the transfer
functions for heat conduction, namely the travel distance pdf

pz(z; t) :=
ρch
e0

T δ(z; t) =
1√
πDht

exp
(
− z2

4Dht

)
(8.26)

for the transfer of thermal energy in space and the travel time pdf

pt(t; z) :=
1

e0
jδh(t; z) =

z√
4πDht3

exp
(
− z2

4Dht

)
(8.27)

for the corresponding transfer in time.
The travel distance pdf (8.26) is readily recognized as a Gaussian, actually

only one half of it due to the semi-infinite medium and the missing convection.
This also explains the factor of 2 between (8.26) and the far-field solution
(7.27) for solute transport. Notice that the temperature at the surface decays
proportional to 1/

√
πDht, where t is the time after the heat input.

The travel time pdf (8.27) has a more complicated form (Figure 8.4).
At first glance, it could be interpreted as a heat pulse moving through the
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Figure 8.4.
Transfer function pt(t; z), given
by (8.27), for projecting time
series of temperature or heat
flux from the surface at z =
0 to depth z as described
explicitly by (8.30). The lines
are for Dh = 2 · 10−7 m2s−1

(dashed) and 8 · 10−7 m2s−1

(solid). The values bracket the
range typically encountered in
mineral soils. The very long
tails are characteristic for a
pure diffusion process.
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ground. However, this is not the case, since this is just a spreading Gaussian
as pz reveals. Such a spreading necessarily leads to a maximum at any depth
z > 0 since there is not flux for very short times, before any energy has
reached depth z, and again a negligible flux for very large times, after the
thermal energy has spread over a large region. This maximum of the flux
occurs at time

tmax =
z2

6Dh
with pt(tmax; z) =

√
6

π

3

exp(3/2)

Dh

z2
. (8.28)

Again, tmax ∝ z2/Dh is expected for the diffusion process.
The transfer functions pz and pt allow us to project “thermal information”

from the surface to greater depths. Whether this information is temperature
or heat flux is not relevant as long as it is decomposed into a temporal suc-
cession of “energy elements” at the ground surface. Indeed there is an equiv-
alence between the corresponding initial and boundary conditions,

T (z; 0) =
e0
ρch

δ(z) ∼ jh(t; 0) = e0δ(t) . (8.29)

In the first one, the flux through the upper boundary is always 0 and the
energy e0 [Jm−2] is present initially and right at the upper boundary. In
the second case, there is no initial energy present but the quantity e0 is
supplied, again right at the surface, through the boundary flux which is then
again 0.
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We are now finally in the position to write down the solution of (8.22) for
the arbitrary surface temperature T0(t), namely

T (z; t) =

∫ t

0

T0(τ)pt(t− τ ; z) dτ (8.30)

for the temperature as a function of time t at a fixed depth z.

Periodic Solutions As detailed in the Appendix, pages 323f , the solution
of (8.22) for the periodic forcing T (0; t) = α sin(ωt) may be written as

T (z; t) = α exp(−kz) sin(ωt− kz) , k =

√
ω

2Dh
(8.31)

where k is the wave number and z0 = 1/k the penetration depth.
Apparently, the periodic excitation at the surface leads to a strongly

damped heat wave into the ground. The wave number k, which determines
the phase shift with depth and also the penetration depth, depends on the
angular frequency ω of the excitation: higher frequency fluctuations penetrate
faster – their phase velocity is vph = ω/k =

√
2Dhω – but they are also

damped away in more shallow layers. Some examples for the damping depth
k−1 are given in Table 8.2 on page 256.

We only considered forcing with a single frequency here. However, (A.127)
shows how an arbitrary forcing can be handled: The Fourier transform of the
surface temperature – T̃ (0;ω), which gives amplitude and phase of frequency
component ω – is integrated with the response to the single-frequency forcing
as kernel. The complex notation used in the appendix is readily adapted to
the real notation used here and (A.127) may be written as

T (z; t) =
1

2π

∫ ∞

−∞

α(ω) exp(−kz) sin(ωt− kz − ϕ(ω)) dω , (8.32)

where α(ω) and ϕ(ω) are the amplitude- and the phase-spectrum of T (z; t),
respectively. Notice that the dependence of k on ω has been suppressed for
notational clarity.

Comments Heat conduction is a linear process, hence the principle of su-
perposition is applicable, and has been applied above already. It is a powerful
tool to build solutions for more comprehensive problems from some building
blocks. Solutions of (8.22), with its particular initial and lower boundary
condition which are both T = 0, are optimal for describing fluctuations driven
at the ground surface. In the simplest case, they are just superimposed on
some constant temperature T 6= 0.

Other building blocks may account for heat transfer from deeper layers, for
the decay of some initial distribution of thermal energy, or for the generation
of thermal energy within the ground. Examples for transfer from deeper

layers include the geothermal flux jhgeo
, which leads to T (z) = T (0)− jgeo

h

Kh
z,
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or some other heat source below the region of interest, for instance a deposit
of nuclear waste.

The decay of an initial temperature distribution may be described in
analogy to (8.22) by

∂tT −Dh∂zzT = 0

ρchT (z; 0) = e0δ(z − z0)

T (0; t) = 0

lim
z→∞

T (z; t) = 0 . (8.33)

Carslaw and Jaeger [1990] give as a solution for this problem

T δ(z; t; z0) =
1

2
√
πDht

[
exp

(
− [z − z0]

2

4Dht

)
− exp

(
− [z + z0]

2

4Dht

)]
, (8.34)

where the second term represents a negative mirror source which compensates
the effect of the positive source at z0 such that the boundary condition
T (0; t) = 0 is satisfied. Physically, this corresponds to the loss of the thermal
energy that was input into the system at time 0 and depth z0.

Finally we realize that, while heat conduction per se is a linear process,
a heat transfer problem may become nonlinear through the boundary condi-
tions. The most prominent example of this is a radiative boundary, where
heat flux is proportional to T 4.

8.2.2
Ground Temperature as Archive for Paleoclimate

Contemplating the evolution of glaciers over the past decades and the rem-
nants of ancient moraines, we realize that our climate is not stable and
probably never was for very long periods of time. Clearly, we would want
to know the dynamics of the paleoclimate in order to better understand
the working of the climate system as such, to assess the environmental
conditions encountered by ancient cultures and to gain an appreciation of
our civilization’s impact on the current and future climate.

A first insight into the paleoclimate is offered by global and regional
temperature records. Unfortunately, direct measurements only started in
the 19th century and we are forced to use proxy information from which
temperature can be deduced. These are required to provide two pieces of
information, the temperature and the corresponding time.

Environmental Archives Classical examples of environmental archives are
old trees, sediments, and ice shields. The thickness of tree rings reflects
growing conditions with an annual resolution. These rings are dated by their
14C-concentration or, more directly and exactly, by correlation with tree-ring
lines that have been constructed from overlapping samples and date back
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Figure 8.5.
Temperatures measured in 1978 in
a deep borehole at 75.7◦W 45.4◦N
(black symbols). Estimated mean
thermal conductivity at this site
is 2.37 Wm−2K−1 and the mean
geothermal gradient (red line) is
0.014 Km−1. The deviation from
the mean temperature (magenta
symbols) indicates a regional warm-
ing in the recent past. [Data from
www.geo.lsa.umich.edu/climate.]

some 14 ky. One factor that affects the growing conditions is temperature.
However, there are others like availability of water, height and exposition,
pests, and competition with neighboring trees.

Sedimentary environments bury a fingerprint of the environment in dom-
inantly chronological order. Thereby they generate very diverse and compli-
cated archives that range from isotopic and chemical compositions to entire
organisms. Retrieving for instance the abundance and distribution of pollen
unfolds the vegetation cover of past times which in turn allows inferences on
the climate.

Special sedimentary environments are ice shields which accumulate mainly
water with traces of dust and preserve air samples in small bubbles. Infor-
mation on past temperatures are deduced from D/H- and 18O/16O-ratios.
These reflect the fractionation between light and heavy isotopes during the
evaporation of ocean water and the condensation of rain. A 420 ky record
has been obtained from the Vostok ice core [Petit et al. 1999] and a still
longer one, 800 ky, from the Dome C core [EPICA 2004]. All these archives
yield information over long stretches of time and with a very high temporal
resolution. However, the relation between the directly measured quantities
and the desired temperature is rather circumstantial.

A more direct source of information are temperature logs from deep bore-
holes (Figure 8.5). There exist thousands of such boreholes, mainly from
measurements of the global geothermal heat flux and from permafrost studies,
and several hundreds of them are suitable as temperature archives of the past
few millenia [Pollack et al. 1998].

Borehole Temperature Logs Recalling that temperature and time are
required for an archive to be useful, how is paleo-temperature recorded in a
borehole log? Apparently, surface ground temperature varies in a complicated
way with dominant diurnal and annual periodicity. Lower frequency quasi-
periodic contributions stem from decadal variations like the North Atlantic
Oscillation (NOA) or the El-Niño-Southern Oscillation (ENSO). On top of
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this there appear temperature excursions like the Little Ice Age from about
1550 to 1850 AD, the preceeding Medieval Climate Optimum from 800 to
1300 AD, theYounger Dryas, a cold period of some 1.3 ky duration that ended
some 11.6 ky ago, and finally the end of the Last Ice Age, some 14 ky ago. As
a consequence of (8.31), the different components of this complicated signal
are separated since they are damped away at different characteristic depths
k−1 =

√
2Dh/ω according to their angular frequency ω (Table 8.2).

Beyond a certain depth, the fluctuations become negligible and the tem-
perature profile is dominated by the geothermal heat flux which results from
the cooling of the Earth’s core and from radioactive decay. It amounts to
some 0.05 Wm−2 with a large spatial variation that depends on the thickness
of the crust and on the vicinity to volcanically active zones. This flux leads
to an average geothermal gradient of 0.025. . . 0.03 Km−1. It is higher, up
to 0.05 Km−1, in active regions and lower, down to 0.005 Km−1, in thick
subduction zones.

Propagation of Temperature To study the qualitative picture described
above in more detail, first recall that heat conduction is a linear process,
provided that contributions from phase transitions and movement of water
may be neglected. Hence, the geothermal gradient may be separated from
the propagation of the temperature fluctuations at the ground surface. As a
realistic example for the forcing, we choose the reconstruction of the mean
paleo-temperature for the Northern hemisphere proposed by Mann and Jones

[2003]. We refer to it as TM−J(t) (Figure 8.6). Since this reconstruction only
dates back to 200 AD, we presume that the temperature profile for earlier
times corresponded to equilibrium with the constant geothermal heat flux.
We finally notice that regional variations can be much larger than indicated
by this global estimate.

Uniform Medium As a first approximation, we consider the medium to
be thermally uniform with Dh = 2.8 · 10−6 m2s−1, corresponding to some
solid rock. Then, we convince ourselves that annual and certainly diurnal
fluctuations may be neglected despite their high amplitude of several hundred
Wm−2. Indeed, assuming an amplitude of 100 Wm−2 for the annual cycle

Table 8.2. Some values for the damping depth k−1 =
√

2Dh/ω, given by (8.31),
of phenomena with different characteristic times. Values are given for two uniform
materials with thermal diffusivity Dh = 0.5 · 10−6 m2s−1 and Dh = 3 · 10−6 m2s−1

which are representative for soil and solid rock, respectively.

phenomenon time [y] k−1
soil [m] k−1

rock [m]
diurnal cycle 0.0027 0.12 0.28
annual cycle 1 2.2 5.5
little ice age 300 39 95
last glacial maximum 17’500 296 726
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Figure 8.6. Reconstruction of mean global temperature for Northern hemi-
sphere proposed by Mann and Jones [2003]. The reference temperature T0 is
arbitrarily set equal to the temperature at the beginning of the time series. [Data
from www.ncdc.noaa.gov/paleo/pubs/mann2003/mann2003.html.]

at the surface, we find with (8.31) that it drops to the level of the geothermal
flux at some 40 m depth. For the diurnal fluctuation, assuming an amplitude
of 400 Wm−2, the same is true at about 2.5 m depth. With these premises,
the temperature anomaly is readily obtained from (8.30) as the convolution
integral

T (z; t1)− T geotherm(z) =

∫ t1

t0

TM−J(τ)pt(t1 − τ ; z) dτ , (8.35)

where t1 = 1980 y AD, the end of the Mann-Jones reconstruction. The kernel
pt(t; z) is defined by (8.27) and illustrated in Figure 8.4.

In the current contex, we may interpret the surface temperature as a
stream of information – on past climate conditions – that gets filtered as
it moves deeper into the ground (Figure 8.7). Apparently, the information
is smeared rapidly with depth. While the temperature at z = 50 m reflects
the average over the past few decades, the temperature at z = 100 m is
already influenced by the history over the past few centuries. Finally, at
z = 800 m, there only remains a very broadly averaged and quite weak signal
with the amplitude decreased by some two orders of magnitude compared
to the input. We also notice the phase shift that becomes apparent at the
greatest depth. This is understood easily as a consequence of the shift of
pt. It could also be interpreted in terms of the Fourier representation (8.32),
however. After all, (8.30) and (8.32) provide just two different descriptions
of the same phenomenon.

Clearly, T (t) is not observable, at least not on the long time scale of
interest here. That was why we were interested in the temperature profile
T (z) in the first place. The anomaly calculated with (8.30) down to 1500 m
below the surface is shown as thick line in Figure 8.8. We first notice that
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Figure 8.7. Projection of TM−J(t) shown in Figure 8.6 to greater depths by
(8.35) for a uniform medium with Dh = 2.8 · 10−6 m2s−1. The red lines represent
the kernel pt(tmax − t; z) at the particular depth z.

the strong warming since about 1850 AD is clearly reflected in the rapid
drop of ground temperature with depth and also the Little Ice Age is clearly
perceptible. However, already the Medieval Optimum is not very pronounced
and only becomes visible after amplification. This demonstrates the exquisite
measuring accuracy that is required for looking into the more distant past
with this method.

Nonuniform Medium Uniform thermal properties may be a reasonable
assumption for solid rock at greater depths. It is usually not correct for
the topmost unconsolidated layers, however. While the thermal diffusivity
of solid rocks is around 3 · 10−6 m2s−1, it is typically much lower for soils,
by a factor of about 5, and it varies with composition and water content.
Adapting (8.20) to include non-uniform thermal properties but sticking to a
one-dimensional and isotropic model yields

∂tT − 1

Ch
∂z
[
Kh(z)∂zT

]
= 0 . (8.36)

This description is still linear and could be cast into the form (8.30). However,
the kernel pt would be much more complicated and the resulting expres-
sion would be difficult to interpret. It is thus advantageous to switch to a
numerical solution at this point. Indeed, this is faster and more accurate
than the evaluation of the convolution integral already for the case of the
uniform medium. Simple problems like the one posed by (8.36) with a
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Figure 8.8.
Temperature anomaly calculated for
a thermally uniform medium with
Dh = 2.8 · 10−6 m2s−1 (thick line)
forced by ground surface temperature
of Mann-Jones reconstruction shown
in Figure 8.6. The original curve
amplified by exp(αz) with α =
0.004 m−1 (dotted line) is represented
by the thin line.

moderately variable function Dh(z) do not require specialized codes but can
be tackled by general purpose solvers. As an example, Figure 8.9 shows
a complete Mathematica code to read data on surface temperature, specify
thermal properties, numerically solve the heat conduction equation (8.36),
output the results into a datafile, and produce a corresponding graphical
representation.

To see the impact of a low-diffusivity layer, consider a medium that con-
sists of three layers – soil, sediment, solid rock – with corresponding ther-
mal capacities of {2.4, 2.6, 1.7}·106 Jm3K−1 and thermal conductivities of
{1.15, 3.90, 4.76} Jm−1s−1K−1 (Figure 8.10). The large difference between
the temperature anomalies in the uniform and in the non-uniform medium
demonstrates the importance of an accurate representation of the thermal
properties for reconstructing past temperatures from borehole logs.

Reconstruction of Ground Surface Temperature Given measurements T (z)
of the ground temperature together with information on the thermal prop-
erties Ch(z) and Kh(z), reconstruction of the history T0(t) of the ground
surface temperature is a typical inverse problem that may be approached
with methods introduced in Section B.2. While this is straightforward in
principle, the practical obstacles are significant. An obvious issue is temporal
resolution which decreases rapidly as we move into the past. The reason for
this is apparent from (8.30) – T (z) results from the convolution of T0(t) with
a kernel that rapidly widens with depth – and was already illustrated in
Figure 8.7. A further consequence of the convolution is the limited scope of
the method. This results from the uncertainty of the geothermal gradient
G which emanates from uncertainties in the thermal conductivity Kh(z).
Indeed, for stationary heat flow G = ∂zT = −jh/Kh and thus

var
(G′

G

)
= var

(K ′
h

Kh

)
, (8.37)
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(* set working directory to "dir", where the data files are located *)

SetDirectory["dir"];

(* integration bounds *)

Tmin = 200; Tmax = 1980; Zmax = 700;

(* thermal properties in units of J, m, y, and K;

smoothed by allowing 4 m depth for the transitions between layers *)

Kh = Interpolation[{{0, 36 10^6}, {46, 36 10^6},

{54, 123 10^6}, {196, 123 10^6},

{204, 150 10^6}, {Zmax,150 10^6}},

InterpolationOrder -> 1];

Ch = Interpolation[{{0, 2.4 10^6}, {46, 2.4 10^6},

{54, 2.6 10^6}, {196, 2.6 10^6},

{204, 1.7 10^6}, {Zmax, 1.7 10^6}},

InterpolationOrder -> 1];

(* geothermal gradient [K/m] (typical value for rock would be 0.014) *)

G = 0.0;

(* upper boundary: surface ground temperatures [Mann and Jones, 2003] *)

T0 = Interpolation[ReadList["mann-jones-03-N.dat", {Real,Real}]];

(* numerical solution *)

T = NDSolve[{

D[u[t, z], t]==D[Kh[z] D[u[t,z],z],z]/Ch[z], (* PDE *)

u[Tmin, z]==T0[Tmin] + G z, (* initial condition *)

Derivative[0, 1][u][t, Zmax]==G, (* lower boundary *)

u[t, 0]==T0[t]}, (* upper boundary *)

u, {t, Tmin, Tmax}, {z, 0, Zmax}] (* domain *)

(* export data *)

Export["mann-jones-03-N-z-nonunif.dat",

Table[Evaluate[{z,u[Tmax, z]}/.First[T]] - T0[Tmin], {z,0,Zmax}],"TSV"];

(* plot data *)

Plot3D[Evaluate[u[t, z]/.First[T]], {t,Tmin,Tmax}, {z,0,Zmax/2},

ViewPoint->{1.947,-3.374,0.943}, PlotPoints->100,

PlotRange->All];

(* cleanup *)

Clear[Tmin,Tmax,Zmax,Dh,G,T0,T]

Figure 8.9. Mathematica code for solving heat conduction problem with spa-
tially varying thermal diffusivity. The model is forced by the surface temperature
reconstruction of Mann and Jones [2003] for the Northern hemisphere. The cor-
responding data for the years 200. . . 1980 are read from file mann-jones-03-N.dat

which is also displayed by Figure 8.6. Some results are shown in Figure 8.10.
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Figure 8.10.
Temperature anomaly calculated for
a non-uniform medium, where Dh is
piece-wise constant (dotted line). As a
reference, the anomaly for the uniform
medium with Dh = 2.8 · 10−6 m2s−1 is
drawn as thin line.

where Kh = Kh +K ′
h is a decomposition of Kh into mean and perturbation

and analogously also for G(z). Hence, the relative uncertainty of G equals
that of Kh, provided jh is known accurately. Thus, traces of the ground
surface temperature can only be detected as long as the resulting gradient is
larger than the uncertainty of the measured thermal conductivities.

Further, and less obvious limitations are related to changing environmental
conditions. As is illustrated by Figure 8.10, T (z) responds rather strongly
to the thermal properties of the surface layers. These depend on the water
content which in turn reflects mean precipitation and mean evapotranspi-
ration. These factors strongly change with climate, vegetation cover, and
topography.

During the entire analysis so far, we presumed that heat conduction is the
only relevant process. While this is in general a very good approximation,
there are instances where convection processes become dominant. This is in
particular the case in environments with a strong groundwater flow which
in turn depends on the regional hydrology, hence again on climate and
vegetation.

Finally, we go back to the example shown in Figure 8.5. At first sight,
it is tempting to interpret the anomalies at 200 m and around 500 m in
terms of past temperature changes. As it turns out, however, they cannot
be recovered by an inversion, hence they do not result from heat conduction
that is forced at the surface. Instead, they have to be ascribed to some of
the effects discussed above, presumably to groundwater flow.

Relation between Ground Temperature and Air Temperature Once the
history of the ground surface temperature is reconstructed from measured
depth profiles, we may wish to transfer this information into other com-
partments for a comparison with other proxies like 18O or with results from
global circulation models (GCMs). As it turns out, this is no trivial task.
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In particular, the naive first idea that ground surface temperature T ground

and near-surface air temperature T air are identical is quite wrong. Reasons
for a difference between the two include the latent heat of evaporating water
or intervening layers like vegetation or snow. Such differences may actually
be quite substantial. For instance, Zhang et al. [2005] found for Canada
during the 20th century that T ground − T air ranged from −2 to +7 K and
that also the rate of change of the mean temperatures differed significantly.
What makes the transfer of information particularly difficult is the probable
change of the soil-atmosphere coupling with a changing climate. Warming in
a cool climate will for instance reduce the mean height of a snow cover as well
as the duration of the snow season. The reduced mean albedo will lead to a
more efficient warming of the ground. Similarly, an increase of precipitation
will lead to a higher water content in the soil, hence to a reduced thermal
diffusivity, to a decreased albedo, hence a stronger warming by incoming
radiation, and to an increased cooling by evapotranspiration. The net effect
of these changes is difficult to assess and depends on local details. Finally, a
changing climate typically entails a change of the vegetation, from steppe, to
gras- and bushland, to forest or vice versa, which has a strong impact on the
soil-atmosphere coupling. Similarly stronger impacts, but without associated
climate changes, arise from changing land use, for instance when forests are
turned into agricultural fields.

In a first round, all these effects make it difficult, maybe even impossible,
to reconstruct the paleo-temperature. In a second round, however, with
deeper understanding of the processes involved and probably with multiple
proxies, they also offer opportunities to understand more complex aspects
of the paleo-climate as a whole. This is indeed one of the motivations for
further detailed studies of soil physical processes.

8.3
Heat Conduction in Porous Media

Conduction of heat in an unsaturated porous medium is a very complicated
processes because (i) the constituent materials have quite different thermal
properties (Table 8.1) with the geometric configuration strongly depending on
the water content (Figure 8.11) and (ii) the macroscopic conduction of heat
is microscopically in general a complicated multiphase process with strong
convective components.

To appreciate the second aspect, consider a macroscopic volume of unsat-
urated soil at constant temperature, with the liquid and the vapor phase in
thermodynamic equilibrium. For simplicity assume T > 0◦C. Next, apply
a macroscopic temperature gradient. Changing the temperature shifts the
equilibrium between the phases, which involves the associated latent energy.
The temperature gradient then leads to a corresponding gradient of the vapor
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a b c d

Figure 8.11. Sketch for dependence of thermal conductivity on water content
in a coarse-textured porous medium. The contact between the grains is restricted
to small regions (red) and the corresponding cross-sectional area is limiting for heat
flow in a completely dry medium (a). As the water content increases, the pathways
widen considerably thereby leading to a higher conductivity (b. . .d).

pressure pv and of the matric potential ψm, the latter through the dependence
of the interfacial tension σwa on temperature. The initial gradient of pv,
together with molecular diffusion, induces a vapor flux, from warm to cold
regions, and with it a flux of latent heat. In addition, the initial gradient
of ψm leads to a flow of liquid water which, since dσwa

dT < 0 (see Section
E.2), is also from warm to cold regions. Depending on the thermal and
hydraulic conductivities in the considered volume and on its coupling with
the environment, this flow of water in the liquid and in the vapor phase may
be sustained or, if it is hindered, water accumulates at the cold end such that
a counteracting gradient develops.

From the macroscopic perspective, the various microscopic processes are no
more visible individually but become part of material properties, the effective
heat capacity and the effective thermal conductivity.

8.3.1
Effective Material Properties

We define the effective material properties of a porous medium in analogy
to the corresponding properties of a solid. In particular, the effective heat
capacity represents the change of thermal energy, both sensible and latent, in
response to a change in temperature and the effective thermal conductivity
relates to heat flux, again as sensible and as latent heat, to the forcing
temperature gradient.

We envisage soil as consisting of the phases matrix (m), liquid water (w),
possibly ice (i), and air (a). More advanced models would distinguish further
soil phases, in particular quartz minerals, organic matter, or frozen water,
all of which have quite different thermal properties (Table 8.1). Finally, we
choose liquid water at 0◦C as the reference state for thermal energy.

Effective Heat Capacity The soil heat capacity consists of two parts,
(i) the inherent heat capacity of its constituents and (ii) the contribution
from shifting the equilibrium between the phases in order to change the
temperature. The inherent heat capacity of a composite medium may be
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Figure 8.12. Liquid water content (left) and corresponding effective thermal
capacity (right) for a soil with the idealized soil freezing characteristic (8.39) with
φ = 0.4 and Tf = −2◦C for total water content θ0 = {0, 0.1, 0.2, 0.3, 0.4}. Notice
how a lower value of θ0 leads to a lower freezing temperature.

calculated as a weighted mean of its constituents, provided that contribu-
tions from interfaces may be neglected. Then, the effective volumetric heat
capacity, in [Jm−3K−1], of the soil becomes

Ch =
dH

dT
=

∑

k

θkρkck

︸ ︷︷ ︸
C∗

h

+ θaHℓv
dρv
dT︸ ︷︷ ︸

evaporation

+ ρiHsℓ
dθliqw
dT︸ ︷︷ ︸

melting

, (8.38)

where θk is the volume fraction, ρk the mass density, and ck the specific
heat capacity [J kg−1K−1] of constituent k ∈ {m,w, i, a}. The second term is
evaluated with (8.15) and the third term, which is only present for T < 0◦C,

with the soil freezing characteristic
dθliqw

dT , as it is shown in Figure 8.3.
As an illustration, consider the simplified model where the soil freezing

characteristic is described by

θliqw (T ) = φ exp
(
− T

Tf

)
(8.39)

with temperature T in ◦C and Tf a characteristic freezing temperature which
depends on soil texture. Further assume that the actual liquid water in a soil
at temperature T < 0◦C is given by min(θ0, θ

liq
w (T )), where θ0 is the water

content at T = 0◦C (Figure 8.12). This corresponds to the understanding
that liquid water preferably fills small pores as described by the soil water
characteristic θ(ψm) introduced in Section 3.4 together with the Young-
Laplace equation (3.2). Together, they yield the interfacial curvature for any
given water content, with it the corresponding pore radius, and finally, with
the chemical potential (8.16), the corresponding freezing point depression.
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While these relations were introduced for non-frozen soils, their general form
may be expected to also hold for frozen media. Indeed, Bittelli et al. [2003]
proposed a method for determining the soil water characteristic from freezing
experiments.

Notice that Ch is a macroscopically measurable quantity while the inherent
heat capacity

∑
i θiρici is directly accessible. Further notice that a similar

expression as (8.38) can be written for the apparent heat capacity of a single
water phase, i.e., outside of a porous medium and with no air. There, dρv

dT

and
dθliqw

dT both become δ-function, however, and it is more useful to explicitly
account for the corresponding phase transitions. In contrast, the transitions
are smooth in multiphase porous media and the introduction of an effective
heat capacity is appropriate.

Effective Thermal Conductivity In analogy to the effective heat capacity,
the total heat flux in an unsaturated soil also consists of two conceptually
different components, which result (i) from the inherent heat conduction by
the composite material and (ii) from the transport of latent heat in the vapor
phase and of sensible heat in the liquid phase. However, the situation is much
more complicated than with the heat capacity because now the geometric
arrangement of the various phases matters. Looking at Figure 8.11, we
realize that the inherent thermal conductivity depends on three interrelated
aspects: (i) the conductivity of the microscopic constituents, (ii) the network
of high-flow regions and in particular the cross-sectional areas of constrictions,
(iii) the microscopic temperature gradients which may strongly differ from
the macroscopic gradient.

We take two steps to approach this difficult matter. In the first step, we
express all contributions to the total heat flux in terms of −∇T , which entails
the hypothesis of local thermodynamic equilibrium, and then interpret the
respective coefficient as contribution to the total thermal conductivity. In
the second step, we will consider some heuristic parameterizations.

Generic Formulations We first separate the total heat flux into three com-
ponents, jh = j∗h+ jvh+ jwh , where j

∗
h stems from the inherent heat conduction

of the composite material, jvh from the flux of latent heat associated with
vapor diffusion, and jwh from the convection of sensible heat in the liquid
phase.

For calculating the macroscopic flux j∗h due to the inherent heat conduc-
tion, we consider the microscopic phases as if they were solid and calculate
the spatial average of the heat flux through some plane in much the same
way as is illustrated in Figure 3.17 on page 54 for the water flux. With
the microscopic flux given by 〈jµh = −Kµ

h∇Tµ, where K
µ
h is the microscopic

conductivity, this yields

j∗h = −
〈
Kµ
h∇Tµ

〉
= −Kh0

〈
κ(x)ϑ(x, θ)

〉
︸ ︷︷ ︸

=:K∗

h
(θ)

∇T , (8.40)
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where much the same argument was used as in the derivation of (4.47). In
particular, κ(x) = Kµ

h (x)/Kh0
, where Kh0

is some normalizing constant,
e.g., the geometric mean of Kµ

h , and ϑ(x, θ) relates the microscopic thermal
gradient to the macroscopic one, ∇Tµ = ϑ(x, θ)∇T , an equality which is
warranted by the linearity of the process. Apparently, the two functions
κ(x) and ϑ(x, θ), the latter a tensorial function even for a microscopically
isotropic medium, are of a complicated shape and vary on the pore-scale.
Their product represents the correlation between the local conductivity and
the local thermal gradient, with the latter tending to be smaller in highly
conductive regions. The important aspect here is that they exist in the given
form, in particular independent of T and ∇T , and thereby guarantee the
macroscopic version of Fourier’s law (8.19).

Next, we consider the contribution from the transport of latent heat in the
vapor phase. As is apparent from (8.9) together with (8.15), a temperature
gradient induces a gradient of the vapor density ρv, provided the matric
potential ψm is the same everywhere. This in turn leads to a diffusive
vapor flux jv from warmer to cooler regions. In a first approximation, we
model this flux as jv = −Ddiff

eff ∇ρv, where the effective diffusion coefficient
Ddiff

eff is parameterized by one of the Millington-Quirk models (4.55), with θ
replaced by the volumetric air content φ−θ. With ρv(T ), this may be written
as

jv = −Ddiff
eff

dρv
dT

∇T . (8.41)

Approximating water vapor as an ideal gas and recalling (8.15) for the re-
duction of vapor pressure above a curved interface, leads to

ρv =
mw

RT
p(T, ψm) =

mw

RT
exp

(mwψm
ρwRT

)
p(T ) (8.42)

with molar mass mw and with the vapor pressure curve p(T ) given by (8.9).
This emphasizes the importance of the total derivative in (8.41), which
accounts for ρv(T, p(T )).

As it turns out, (8.41) underestimates the true vapor flux for two reasons.
The first one is that the Millington-Quirk parameterization is based on the
assumption that diffusion occurs only in one phase, here in the vapor phase.
However, water may also condense on one side of a blocking liquid region and
evaporate at the other one (Figure 8.13). Transfer through the liquid is fast
because it is not the molecules who travel but only the pressure wave. The
second reason is that microscopic temperature gradients in the air phase tend
to be considerably larger than the macroscopic gradient because the thermal
conductivity of both water and solid matrix is much higher than that of air.
These two effects are accounted for by a heuristic factor F (θ, T ) > 1, the
so-called enhancement factor. With this, the flux of latent heat with the
temperature-induced vapor flux becomes

jvh = −HlvD
diff
eff F (θ, T )

dρv
dT

∇T . (8.43)
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x

T

ρv > ρv0 ρv < ρv0

Figure 8.13.
Vapor diffusion through a pendular ring
between two sand grains. In static
equilibrium (blue) the total curvature is
the same everywhere and related to ρv0 .
With an imposed vapor flux, here from left to
right, the interfacial curvatures change due to
condensation and evaporation (blue dashed
lines). This in turn creates the pressure
gradient in the liquid that drives the flow
there. The temperature profile through the
center of the pendular ring is sketched in the
lower graph.

Finally, we consider the temperature-induced convection of sensible heat
in the liquid phase. As a preliminary, we recall the Young-Laplace equation
(3.2), ψm ∝ σ/r, where r is the interfacial radius, −r corresponds to the
radius of the largest water-filled pores, and the surface tension σ decreases
with increasing temperature. Then imagine an unsaturated soil column which
initially is isothermal, with the water phase in thermodynamic equilibrium.
Hence, ψw = ψg + ψm is equal throughout the column and at every point,
the water phase occupies the region of the pore space that corresponds to
radii smaller than −r. Let then the temperature increase in some region.
As a consequence, σ decreases and the largest pores cannot bind the water
anymore.The excess water will then redistribute and move towards the colder
regions. Once that redistribution is completed, the water flow will cease
again, except if the liquid water is removed at the cold end, for instance by
freezing [e.g., Cary and Mayland 1972].

Combining (8.40) and (8.43), and interpreting the factor relating −∇T to
jh as effective thermal conductivity, finally leads to

Kh(θ, T ) = K∗
h(θ) +HlvD

diff
eff F (θ, T )

dρv
dT

. (8.44)

The generic formulations discussed so far are important for understand-
ing the underlying processes. They are not very useful operationally, how-
ever, and demand appropriate parameterizations. We will in the following
explore two conceptually different approaches, heuristic parameterizations

and process-based parameterizations. In their respective pure form, they
aggregate comprehensive datasets into a few numbers without recourse to a
deeper understanding of the associated processes or, conversely, they predict
observed quantities based on fundamental processes and a few natural con-
stants. Various such descriptions have been compiled, for instance by Farouki

[1981] with a focus on cold regions and by Peters-Lidard et al. [1998] with a
specific interest in soil-vegetation-atmosphere transfer.
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Heuristic Parameterizations The effective thermal conductivity Kh(Θ) as
a function of water saturation Θ is interpolated between its dry and its
saturated value as

Kh(Θ) = κe(Θ)[Ksat
h −Kdry

h ] +Kdry
h , (8.45)

where κe(Θ) is the dimensionless thermal conductivity function, also called
the Kersten number. Johansen [1977] proposed the parameterization

κe = max(0, 1 + α log10(Θ)) (8.46)

where α depends on soil texture, with α = 0.7 for coarse- and α = 1 for
fine-textured soils. For frozen soil, κe = Θ. The conductivity in the dry state
is described by

Kdry
h =

0.135ρb + 64.7

2700− 0.947ρb
, (8.47)

where ρb is the soil bulk density. This expresses the fact that the actual com-
position of the soil matrix has no strong effect on Kdry

h which is dominated by
the huge contrast in conductivities between air and matrix (Table 8.1). This
is different in the saturated state, where the conductivities of the phases are
comparable. Consequently, Ksat

h is expressed in terms of the conductivities
of the pure materials, Khs

and Khw
, and of their respective volume fraction

as
Ksat
h = K1−φ

hs
Kφ
hw

, (8.48)

with porosity φ andKhw
= 0.57 Wm−1K−1. The conductivity of the soil ma-

trix is sometimes further resolved into Khs
= Kq

hq
K1−q
ho

, where q is the quartz

volume fraction within the matrix, with Khq
= 7.7 Wm−1K−1, and corre-

spondingly 1 − q the fraction of other minerals, with Kho
= 3.0 Wm−1K−1

for q < 0.2 and Kho
= 2.0 Wm−1K−1 otherwise.

Apparently, this parameterization requires a minimal data input, in the
strict sense just the porosity φ and the quartz fraction q, and it could
easily be extended to include other phases along the same lines. In many
applications, the parameter α and possibly also Kho

would be fitted to
some data. Despite its simplicity, Farouki [1981] finds that this method
yields equally satisfactory results as the much more complicated process-
based de Vries parameterization described below.

Johansen’s parameterization (8.46) is not smooth, which may lead to
difficulties in some models. This is remedied by the smooth representa-
tion

κe = exp(α[1−Θα−1.33]) (8.49)

proposed by Lu et al. [2007]. For the texture-dependent parameter α they
report α = 0.96 for coarse-textured soils and α = 0.27 for fine-textured soils.
They furthermore replace (8.47) by

Kdry
h = aφ+ b , (8.50)
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where a = −0.56 and b = 0.51 were fitted to a set of soils. Comparing pre-
dicted and measured thermal conductivities for a number of soil samples, Lu
et al. [2007] found their parameterization to perform better than Johansen’s
with the root mean square error ofKh in the range of 0.04. . . 0.14 Wm−1K−1,
down from 0.07. . . 0.20 Wm−1K−1 for Johansen’s formulation.

We comment that a comparison with the de Vries parameterization in
Figure 8.14 below demonstrates that (8.49) is indeed a rather good inter-

polator between the extremes Kdry
h and Ksat

h , but that the values of α
will in general have to be fitted. Values required for Figure 8.14 are 0.08
for the sandy material and 0.18 for the silty material. Despite the very
limited predictive power of this parameterization, its simplicity and flexibility
makes it a prime choice for inversion and data assimilation procedures, where
optimal parameters are estimated from measured temperatures.

Process-Based Parameterizations As a preliminary notice that, so far, the
processes that comprise heat transfer in wet soils proved to be too complicated
to forsake heuristics completely, even on the “process-based” branch. Indeed,
if just an operational formulation is sought, the parameterization (8.49) of

Lu et al. [2007] with parameter set {Kdry
h ,Ksat

h , α}, all depending weakly on
temperature and all to be determined empirically, currently appears as the
best bet for moderate temperatures, say for T < 40◦C. Under that premise,
the following elaborations may be safely skipped even though they do provide
deeper insight into the physics of the complicated matter.

Current models start from the mean-field representation given by de Vries

[1963, 1975]. It is based on the fiction that liquid water is the continuous
phase, with the other components being isolated small inclusions. Such
models are typically formulated for an arbitrary number of phases. We
will stay in the following with the simple three-phase model that consists
of matrix, liquid water, and air. The effective thermal conductivity of the
composite medium may then be written as

Kh(θ, T ) =

∑
i θiwiKhi∑
i θiwi

, (8.51)

with phases i ∈ {m,w, a} with volume fractions θi and thermal conductivities
Khi

(T ). The coefficients wi(θ, T ) are weight functions which represent the
average temperature gradient in phase i with respect to the average temper-
ature gradient in the embedding medium. Calculating these coefficients is
the main goal in a mean-field theory. In a typical approach, small and widely
separated inclusions, usually with ellipsoidal or even spherical shapes, are
assumed to be embedded in a uniform medium. Campbell et al. [1994] pushed
this concept and envisaged some mean embedding medium with thermal
conductivity

Khf
(θ, T ) = Kha

+ α(θ, T )[Khw
−Kha

] , (8.52)

where
α(θ, T ) =

[
1 + [θ/θ0]

−q(T )
]−1

, q(T ) = q0[T/T0]
2 (8.53)
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is an empirical function which describes the transition between air and water
as embedding phase. This transition occurs at the volumetric water con-
tent θ0 with the width of the transition zone determined by parameter q0
and modified by temperature, with T0 = 273.15 K chosen as reference tem-
perature. For θ ≪ θ0, water is only present as adsorbed films and does
not affect the overall thermal conductivity Kh significantly. For θ ≈ θ0,
pendular rings are abundant and Kh depends strongly on θ. Finally, for
θ ≫ θ0, Kh still increases with θ since less conductive air is replaced by more
conductive water. However, the geometry of the network of high-flow regions
is no more affected strongly, such that Kh increases less rapidly. Assuming
ellipsoidal inclusions, Campbell et al. [1994] use for the empirical weight
functions

wi =
1

3

[
2

1 +
[Khi

Khf

− 1
]
ga

+
1

1 +
[Khi

Khf

− 1
]
[1− 2ga]

]
, (8.54)

again for phases i ∈ {m,w, a} and with the shape parameter ga determining
the form of the inclusions. The dependence of Khf

on θ and T , and of
Khi

on T , has been suppressed for clarity. The former, Khf
(θ, T ), has been

formulated already in (8.52), now we consider Khi
(T ). For the temperatures

of interest here, Khm
is constant. The conductivities of water, Khw

, and of
dry air, Khda

, may be approximated as

Khw
(T ) = −0.554 + 2.24 · 10−3[T − T0]− 9.87 · 10−6[T − T0]

2 ,

Khda
(T ) = 0.024 + 7.73 · 10−5[T − T0]− 2.6 · 10−8[T − T0]

2 , (8.55)

where T0 = 273.15 K. The situation is much more complicated for wet air,
where the diffusion of water vapor leads to the flux of latent heat. A number
of variously elaborated schemes exist for parameterizing this contribution.
Campbell et al. [1994] follow the original work of de Vries [1963] most closely
and extend it to account for temperature-dependence, in particular of the
vapor flux.

We take a slightly different approach and start from the formulation (8.43).
Looking at the individual terms, we first insert (8.42), together with param-
eterization (8.9) of the vapor pressure curve p(T ). Next, we focus on the
diffusion coefficient of water vapor in air and are going to use the second
Millington-Quirk model in its original formulation for the diffusion of an
insoluble gas and write it as Dm = Dm0

[φ− θ]2/φ2/3. As a passing comment
when comparing this with the formulation used in (4.55) on page 95, notice
that (i) the volume fraction, of the phase where diffusion is considered, is now
φ−θ and (ii) the additional factor θ, which was split off in (4.55), has now to
be included. Finally, about the diffusion coefficient, we use the approximation
given by Massman [1998] to account for the temperature dependence. With
this

Ddiff
eff (θ, T ) = Dm

[φ− θ]2

φ2/3

[ T
T0

]1.81
(8.56)
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with Dm = 21.78 · 10−6 m2s−1 and T0 = 273.15 K. Notice that invoking
the Millington-Quirk model first appears daring since it is only applicable
for insoluble gases. However, here we use it in exactly this capacity, as
a representation of transport in the vapor phase, which may have to be
augmented with an enhancement factor. Next, we approximate the latent
heat of vaporization as

Hlv(T ) =
[
2.503− 2.44 · 10−3[T − 273.15]

]
MJkg−1 . (8.57)

The last term to consider is the enhancement factor F (θ, T ), which was in-
troduced heuristically in (8.43) to account for observed water fluxes that were
much larger than predicted. This is a recurrent and still a largely unresolved
issue in all parameterizations. While some argue that once capillary flow is
represented correctly, this factor is needed no more [Shokri et al. 2009], or is
at least greatly reduced [Ho and Webb 1996], others specifically set out to
estimate it. For instance, Lu et al. [2011], based on earlier work of Cass et al.
[1984], find F to monotonically increase from 1 to about 15 with increasing
values of θ and propose

F (Θ) = α1 + α2Θ− [α1 − α4] exp
(
−[α3Θ]α5

)
(8.58)

with Θ = θ/φ, constant parameters {α1, . . . , α5}, and independent of tem-
perature as a useful description. We take a pragmatic approach and include
this factor, most importantly because it is very probable that some sort of en-
hancement is required with the above Millington-Quirk formulation.

Summarizing, the thermal conductivity of the wet air phase, which is to
be used in (8.52) and (8.54), becomes

Kha
(θ, T ) = Khda

(T ) (8.59)

+
Hlv(T )mw

R
Dm

[φ− θ]2

φ2/3

[ T
T0

]1.75
F (θ, T )

∂ log
(
p(T )

)

∂T
.

With this, we are in the position to assemble the modified de Vries pa-
rameterization for the effective thermal conductivity Kh: (8.59) and (8.55)
describe the thermal conductivities of the individual phase and (8.54) gives
the relative weights to add them up with (8.51).

A graphical representation of the effect of the heuristic enhancement factor
is given in Figure 8.14. We first look at the curves for silt and notice
that vapor diffusion alone, the gray curves, has no effect at the very dry
end, for θ < 0.02. Here, the reduction of the vapor pressure due to the
correspondingly very low matric potential ψm is so large that the amount of
water in the vapor phase is negligible. As θ increases, this reduction decreases
rapidly and leads to corresponding growth of Kh. For still larger values of
θ, this effect decreases again and has all but vanished for θ > 0.15. This is
a consequence of the Millington-Quirk factor which is proportional [φ− θ]2.
The effect of the enhancement factor F (θ) is strongest for intermediate values
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Figure 8.14.
Effective thermal conductivity in
modified de Vries parameterization for
a sandy and a silty material without
vapor diffusion (black), with pure
vapor diffusion given by (8.59) with
F (θ, t) = 1 (gray) and with the heuristic
enhancement factor F (θ) given by (8.58)
(light magenta). All curves are for 20◦C.
The heuristic parameterization (8.45)
with normalized conductivity function
(8.49) and Kh(0) and Kh(φ) taken from
the de Vries approximates the latter
rather well (dashed cyan). This requires
to fit the parameter α, however.
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of θ and thus represents the expectation that it extends the effect of vapor
transport towards larger values of θ but that it also fades away as the volume
fraction of the air phase decreases. The overall effect of the transport of latent
heat through vapor diffusion is to shift the Kh(θ) towards lower values of θ
but without affecting the extreme values of a completely dry or completely
saturated medium.

For the sand, we observe qualitatively the same features with the difference
that the effect of vapor diffusion sets in at very low values of θ, too low indeed
to be represented in the graphics. The reason for this is that for the coarse-
textured medium, the soil water characteristic at the dry end is so steep that
already a minute increase of θ brings ψm to values that are no more limiting
for the vapor pressure curve.

Next, we focus on the temperature dependence of Kh (Figure 8.15) and
notice a strong dependence for intermediary values, except for the coarse-
textured sand where vapor diffusion is already strong for dry states. Indeed,
Kh(θ), which is a monotonic function at low temperatures, develops a maxi-
mum at some intermediate value of θ. This is also expected from the physical
concept which has the mass of water vapor increase rapidly with temperature
and transport will be most efficient as long as a large fraction of the pore space
is air-filled, hence the local temperature gradients are large. Corresponding
data are for instance reported by Campbell et al. [1994].

Thermal Diffusivity The thermal diffusivityDh was introduced with (8.21)
as the ratio between conductivity Kh and capacity Ch. In the strict sense,
Dh is only useful for uniform media with stationary thermal properties, only
then can Kh and Ch be extracted from the respective differential operators.
Still, we may use Dh := Kh/Ch for a rough characterization of the thermal
dynamics (Figure 8.15).

Comments Apparently, the processes that lead to the macroscopically ob-
servable thermal material properties are very complicated at the microscopic
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Figure 8.15. Effective thermal conductivity (left) and thermal diffusivity
(right) for the materials already used for Figure 8.14, now for temperatures of
0◦C (black), 20◦C (light magenta), and 40◦C (dark magenta). For all curves, the
parameterization (8.59) with enhancement factor (8.58) was used.

scale and highly dependent on pore-scale details. This is in particular the
case for the thermal conductivity. While we appear to understand the physics
of these microscopic processes sufficiently well, this is not true for their
quantitative description in a typical natural pore space. As a consequence,
the quantitative upscaling, the prediction of macroscopic properties remains
a rather heuristic undertaking. This general situation is reminiscent of the
discussion of hydraulic material properties in Section 3.4. The situation with
thermal properties for a wide range of soils and naturally occurring conditions
is much more benign than for hydraulic properties since the range of values
is rather small, seldom spanning a factor of more than 5. Compare this to
the many orders of magnitude for hydraulic conductivity, for instance. In
addition, the underlying dynamics is a diffusion process which by its nature
is not very sensitive to the parameters. Still, the dependence of Kh and Ch
on temperature turns the process nonlinear, if only weakly.

From an operational perspective, i.e., when heat transfer is not so much
of interest per se but as part of a larger description of some environmental
system, the current best approach appears to be to (i) obtain time series of
temperature at relevant locations, (ii) choose a simplified parameterization,
probably (8.45) together with (8.46) or (8.49), and (iii) adjust the parameters
such that an optimal agreement between data and model is obtained. One
mandatory prerequisite for this is that the chosen parameterization has the
correct structural flexibility with a minimal set of parameters. In addition,
these parameters must be mutually independent such that different features
of a curve, Kh(θ, T ) for instance, are affected by only one parameter.
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8.3.2
Effective Dynamics

Inserting the effective material properties Ch(T, θ) (8.38) and Kh(T, θ) (8.44)
into the heat conduction equation (8.20) yields

∂t[ChT ]−∇ · [Kh∇T ] = rh , (8.60)

where Ch corresponds to ρch, the possible tensorial character of Kh, which
would originate in an anisotropic microscopic structure, has been neglected,
and the source rh of thermal energy has been added. Concerning the last
term, notice that the thermal energy associated with all equilibrium phase
transitions is already contained in the effective parameters, hence must be
added again through rh. However, this term is useful to account for additional
thermal input, for instance through infiltrating warm rainwater, or for non-
equilibrium phase transitions.

The material properties depend on T and θ, hence (8.60) in general demand
a numerical solution. For many situations, reasonable approximations are
feasible, however. In order to explore this, we focus on heat transport only,
neglecting the dependence on θ, and expand (8.60) as

Ch

[
1 +

T

Ch

dCh
dT︸ ︷︷ ︸
α

]
∂tT −Kh∇2T − dKh

dT
∇T · ∇T

︸ ︷︷ ︸
β

= rh . (8.61)

Apparently, the uniform heat conduction equation (8.21) may be used to
approximate (8.60) to the extent to which the terms α and β are negligible.
First consider α and notice that it will only be large phase transitions of
the entire system, i.e., for water under standard condition near 0◦C (Fig-
ure 8.12) and near 100◦C. With (8.38) and focussing at low temperatures,

α ≈ ρiHsl
d2θliqw (T )

dT 2 , where the approximation is very good due to the low
temperature-dependence of the individual materials. Inserting the values
used for Figure 8.12 shows that α < 0.2 for T < −3◦C and that the situation
would be much more favorable for the measured soil freezing characteristic
of Figure 8.3.

Next, consider β, for which a general estimation is more difficult. We
have to compare Kh∇2T with β and first notice that Kh = O(1) and, from
Figure 8.15, that for low temperatures dKh

dT = O(10−2), often very much
smaller, in particular for high water saturations. Further, |∇T |2 = O(|jh|2)
since Kh = O(1), and of course Kh∇2T = −∇ · jh. Summarizing, and
considering the vertical coordinate only, we look for conditions for which
|∂zjh| ≫ 10−2|jh|2. For soils, this can be satisfied at a certain distance from
the surface, jh decreases roughly exponentially with depth, and with at high
water saturations.
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Figure 8.16.
Notations for permafrost soils
according to van Everdingen [1998].
Permafrost is defined with respect
to the temperature T = 0◦C.
However, due to the freezing point
depression in porous media, water
is only frozen for T ≤ Tf < 0◦C.
Hence, the definitions of frozen
ground and of permafrost do not
coincide. The gray area represents
the range of temperatures in the
profile.

8.4
Permafrost Soil

By definition, permafrost encompasses terrestrial and submarine soils and
sediments that are not permanently covered by ice and whose mean annual
ground temperature is at or below 0◦C for at least two consecutive years
(Figure 8.16). They are often, but not always, associated with the presence
of ground ice.

The top layer of a permafrost site is the seasonally thawing and freezing
active layer which extends from a few centimeters depths to several meters,
depending on the site. This is the layer where most of the action takes place
and where most of the defining features of permafrost landscapes originate.
Important aspects include (i) the coupling between mechanical, thermal,
and hydraulic processes which often leads to self-organized ground patterns
[Kessler and Werner 2003], (ii) a ground that is turned into a non-trafficable
mass by the seasonal thawing and poses a severe and expensive challenge to
engineering structures [Nelson et al. 2001], and (iii) a closely coupled thermal
and hydraulic dynamics, a consequence of the soil freezing characteristic, that
leads to the stabilization of various characteristic states (Figure 8.20 on page
280 below).

The active layer is typically followed by the perennially frozen layer that
may be as deep as 1 km. It typically contains layers of solid ice with thick-
nesses up to several meters. Deeper down extends the perennially unfrozen
layer where the geothermal heat flow prevents temperatures to fall below the
freezing point.

Some 24% of the non-glaciated land surface on the Northern Hemisphere
belong to the permafrost region. About 60% of this area are less than
500 m above sea level (asl), and at correspondingly high latitudes, while
some 10% belong to the high-altitude, low-latitude permafrost. The latter is
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Figure 8.17. Distribution of permafrost and ground ice north of 30◦N. [Map
prepared by International Permafrost Association and National Snow and Ice Data
Center. Map and data available from nsidc.org/fgdc/maps.]

mostly located on the Qinghai-Xizang (Tibet) plateau, but smaller patches
are found in all major mountain ranges like the Alps and the Rocky Moun-
tains (Figure 8.17). The Southern Hemisphere contains only small permafrost
regions because land masses are either covered by ice (Antarctica) or not at
sufficiently high latitudes.

In cold regions, the thermal and hydraulic dynamics of permafrost soils
controls the fluxes of energy, water, and carbon between land surfaces and the
atmosphere. This is of particular interest on the background of the current
climate warming which is already very pronounced in the Arctic [Johannessen
et al. 2004] and is anticipated to increase dramatically in the coming decades.
This warming leads to a decay of the permafrost, thereby exposing large
quantities of organic carbon in thawing soils, particularly in Siberia and to a
lesser degree in Canada. Decomposition of the organic carbon is expected to
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contribute to a further increase of atmospheric CO2 concentrations, fueling
one of the positive feedback mechanisms of the Earth’s climate.

8.4.1
High-Latitude Permafrost

Solar radiation at high latitudes is characterized by a strong annual cycle, the
polar day and night, that is of comparable magnitude as the diurnal cycle,
sometimes even stronger. Net radiation – the difference between incoming
and outgoing radiation – is always negative during the polar night. During
the polar day, it is generally positive although the low angle of incidence
makes it strongly dependent on surface exposition.

As a typical example, we study the thermal and hydraulic dynamics at the
Bayelva site on Svalbard (Spitzbergen), an island in the North Atlantic at
the latitude of Northern Greenland. Despite the high latitude, the climate
is rather warm due to the Gulf Stream, and even during the winter months
sporadic rain events occur.

The Bayelva Site The site is located at 78◦55’N 11◦50’E on a small hill
some 30 m asl and 2 km downstream of a glacier [Roth and Boike 2001].
Continuous permafrost reaches some 100 m deep and the active layer is
about 1.4 m thick. The surface is covered by mud boils, also called unsorted

circles (Figure 8.18). In order to illuminate the function of this site we
focus on a single, fully developed mud boil and envisage a simple model for
its working. We start with the frozen state at the end of the polar night.
As the net radiation increases with the lengthening days, snow starts to
melt and first exposes the top of the mound. Water from the thawing snow
will flow downhill on the still frozen surface and accumulate in the ring of
organic matter that girdles the mound. Here it will infiltrate eventually. The
thawing front may be expected to start at the mound’s top and penetrate
quickly since the water content tends to be minimal there. In contrast, the
front will advance more slowly beneath the organic matter because (i) the
snow melts later, (ii) organic matter is a good thermal isolator, and (iii) the
infiltrating snowmelt increases the water content of the soil and thus its
thermal capacity. The timing and the different velocities of the thawing front
beneath the center of the mud boil and beneath its fringe lead to its concave
shape, which in turn causes the infiltrating melt water to accumulate under
the mound’s center. While this increases the thermal capacity somewhat,
the heat input modulation at the soil surface, mainly through the thermal
isolation by the plants and the organic matter, dominates the heat fluxes
also at greater depths. Hence the depression persists for some time while
the thawing front progresses. Before it becomes leveled out, however, the
freeze-back of the following winter sets in. Since soil with a higher water
content expands more, the mound is lifted more than the fringe region. This
is the engine behind the flow of solid matter. Surface erosion counteracts this
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Figure 8.18. Mud boils, also called unsorted circles, at Bayelva site (a), cross-
section through one of them (b), and conceptual sketch of its dynamics (c) where
the average flow of solid matter is indicated in the left part and an episodic seepage
of water in the right part. In reality, the flow of water is much more complicated
frequently changing direction and also switching between dominating liquid and
vapor flow. The diameter of a typical mud boil at this site is some 1.5 m.

process. The long-term balance between the two determines the height of
the mounds. Furthermore, erosion is the engine that drives lateral transport
away from the mounds. Some aspects of this simple model have indeed been
verified by direct observation. These are in particular the concave shape of
the thawing front by the time it reaches its maximum depth and the high
water content above the ground ice.

We notice that the flows of energy and water on the one hand and of
solid matter on the other occur at greatly different time scales. The two
processes may thus be separated and water flow may be understood, at least
qualitatively, in the context of a rigid porous medium.

Observations Figure 8.19 shows temperatures and liquid water contents
measured in a profile at the center of a mud boil for a period of about two
years. In addition, some meteorological variables and the snow height at the
site are plotted.

Net Radiation As expected for a high-latitude site, net radiation is negative
during the winter months, here roughly between September and April, and
the surface cools radiatively. During the summer months, June to August, net
radiation is positive, sometimes exceeding 200 Wm−2. The annual average
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Figure 8.19. Thermal and hydraulic dynamics observed at the Bayelva site,
averaged over 6 h periods. The line graphs show air temperature Tair, net radiative
flux jnr, snow height hsnow, and rainfall jrain. The upper contour plot shows soil
temperatures measured in a vertical profile through the center of a mud boil.
Contour lines are spaced at 2◦C (solid) and 0.2◦C (dashed), respectively. The
lower contour plot represents measured liquid water contents. Contour lines belong
to temperature, for easier comparison, and the spacing of the colors is broken to
increase the resolution for low values. White areas indicate missing data, horizontal
black lines locations of sensors.
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Figure 8.20.
Typical thermal periods at a
high-latitude permafrost site
illustrated for an excerpt of
Figure 8.19.
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was +13.4 Wm−2 for the first year, ending in September. During the second
year, average net radiation was negative, −2.4 Wm−2.

Air Temperature During the winter months, air temperatures are quite
variable at this site. They fall well below −20◦C when arctic air masses
prevail but also raise above 0◦C when warm air breaks in from the south.
Mean annual air temperatures were −4.4◦C and −5.6◦C for the first and
second year, respectively.

Ground Temperature During the winter, ground temperatures are influ-
enced by the air temperature and by the height of the isolating snow. This is
evident from comparing the month of March in 1999 and 2000. While air tem-
peratures were comparable, snow heights differed by a factor of about 2 lead-
ing to ground temperatures around −6◦C and −15◦C, respectively.

An annual cycle consists of different characteristic periods that are indi-
cated in Figure 8.20. We start with the cold period where temperatures
are well below 0◦C. Most of the soil water is frozen and the entire ground
may be considered as a solid medium. With the sun rising in late spring
and the onset of snow melt, ground temperatures rise quickly and “move
up the soil freezing characteristic” (Figure 8.3 on page 248). This warming

period is terminated by the thawing front, a macroscopic phase boundary
that separates partly frozen ground from the completely unfrozen soil during
the thawed period. The propagation of the thawing front consumes prac-
tically all the energy input from the positive net radiation. This energy is
predominantly transported by heat conduction, an assumption that will be
substantiated in the analysis below (Figure 8.21). A smaller fraction may
be transported by heat convection, either as sensible heat with infiltrating
warm rain and surface water or as latent heat with diffusing water vapor
that condenses at the cold end. As net radiation decreases again in late
summer, the thawed soil cools down to 0◦C starting from the surface. Upon
further cooling the reverse phase transition sets in, from liquid to solid. It
releases large quantities of latent heat and thereby opposes the cooling. As
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a result, the entire thawed zone equilibrates towards a temperature of 0◦C
where freezing sets in. This is indicated by the practically vertical isotherms
in Figure 8.19 and is often referred to as the closing of the zero-curtain. With
the active layer turning isothermal, heat conduction gets suppressed and
the large quantities of latent heat that need to be removed to allow further
cooling can only be transported by rather inefficient processes like diffusing
water vapor. This leads to the isothermal plateau where soil temperatures
stay near 0◦C for an extended time during which the domain “descends
down the soil freezing characteristic”. At the Bayelva site this is for up
to two months. The analogous period during the warming phase is discussed
in Exercise 8.3. Obviously, the lifetime of this plateau depends on the
amount of liquid water and on the depth of the original thawed zone. It
is eroded from above and from below, where temperatures in the air and in
the underlying perennial ice are well below the freezing point. Eventually,
the isothermal plateau disappears, giving way to the cooling period where
regular conduction removes the remaining surplus heat from the active layer.
It is transferred through the snow layer, which is a major modulating factor,
to the atmosphere.

Liquid Water Content The measurements were done with time-domain
reflectometry (TDR) where an electromagnetic pulse travels down a wave-
guide in the soil and back again. From the travel time of this pulse, the speed
of light is calculated which in turn yields the composite dielectric number εc
of the soil. Its value is strongly influenced by the volumetric content θliqw of
liquid water, for which εw ≈ 83. In contrast, ice has εi ≈ 3 and for other soil
constituents ε < 6. Roth et al. [1990] proposed a semi-empirical model for
calculating θliqw from a measurement of εc.

For temperatures below about −1◦C, the liquid water content is strongly
linked with temperature through the soil freezing characteristic. An example
obtained from the Bayelva site is shown in Figure 8.3 on page 248. Changes
of θliqw in this cold range primarily stem from phase changes and, presumably
to a lesser degree, from water movement through the vapor phase. Movement
in the liquid phase may be expected to be small since it is restricted to ever
smaller pores as temperatures decreases.

With temperatures rising beyond about −1◦C, θliqw and T become decou-
pled and movement in the liquid phase begins to dominate the dynamics of
the water phase, at least in wet locations like Bayelva. The thawing front
releases large amounts of liquid water that accumulates above the rather
impermeable front. Since the frozen ground is impermeable to liquid water,
θliqw is highest at the bottom of the active layer. Consequently, the isothermal
plateau lasts for a longer time at this depth than at others.

Analysis Simulation of the dynamics of a permafrost site is a daunting
task since a number of highly nonlinear and coupled processes are involved.
Water moves in the liquid and in the vapor phase primarily driven at the
soil surface by rainfall, snowmelt, and evaporation. Secondary drivers within
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the soil are the potential gradients that result from freezing and the water
supplied from thawing. The changing water content strongly modifies the
hydraulic properties and, to a lesser degree, also the thermal ones. Thermal

energy is transported as sensible and latent heat with the water phase and
in addition moves by conduction. Temperature directly affects the hydraulic
properties through surface tension and viscosity and indirectly through vapor
movement. Whenever ice is present in the ground, there develops a strong
coupling between the thermal and the hydraulic dynamics through the soil
freezing characteristic. Ice also modifies the soil’s transport properties, for
water in the liquid and vapor phase by blocking parts of the pore space and
for heat through the latent heat of phase change. In addition, ice strongly
affects the mechanical properties of many soils. Finally, solutes transported in
the liquid water are expelled upon freezing or evaporation and they influence
the freezing point. While all these processes may in principle be incorporated
into a numerical solver, the faithful estimation of the required large number of
effective material properties is a problem that has yet to be addressed.

Instead of attempting a detailed numerical simulation, we follow Roth and

Boike [2001] and consider a highly simplified model which provides qualitative
insight, at the cost of quantitative detail, however. Basic assumptions are:
(i) one-dimensional (vertical) conduction of heat is the dominant process,
(ii) production of latent heat is instantaneous and may be calculated from
the soil freezing characteristic and from the vapor pressure curve, respec-
tively, and (iii) the inherent thermal properties of the soil are uniform and
only depend on the mass fractions of its constituents (matrix, liquid water,
ice, air). Obviously, these assumptions do not cover convective processes
like rainfall events where warm water infiltrates and freezes or water which
evaporates diffuses and condenses. Indeed, water movement is neglected
altogether.

We start from the decompositions Ch(T ) = C∗
h + C lat

h (T ) and Kh(T ) =
K∗
h + K lat

h (T ) of the thermal material properties into an inherent part, su-
perscript ∗, and one that depends on phase transitions, superscript lat, and
decompose (8.60) into

C∗
h∂tT −K∗

h∂zzT = 0

∂t[C
lat
h T ]− ∂z[K

lat
h ∂zT ] = rexth . (8.62)

Notice that in this formulation, the source term rexth only accounts for pro-
cesses that are not yet included in the terms on the left hand side. These
are in particular convective transport, which is most of the time negligible,
and non-equilibrium phase changes with characteristic times that are small
on the internal time scale ℓ2Ch/Kh, where ℓ is a characteristic length of the
observed system. With ℓ = O(0.1 m) and Ch/Kh = D−1

d = O(106 m−2s) we
obtain τ = O(104 s), some 3 h.

Further notice that, strictly, such a decomposition is only useful for linear
processes for which the principle of superposition allows to add the individual
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Figure 8.21. Temperature measured near the surface at 0.065 m depth (red)
and projected to the bottom of the active layer at 1.25 m depth (black) to compare
with measured temperature there (blue). The optimal value for the thermal
diffusivity was found to be D∗

h = 8 · 10−7 m2 s−1. Projected and measured
temperatures were fitted at the time indicated by the diamond. The dashed
lines represent projections for a variation of D∗

h by ±20%. The deviation between
projection and data for the first about 100 days results in part from the neglected
initial condition and reflects the relaxation of the system.

solutions. However, Section 8.3.2 ascertains that, for most times at this wet
permafrost site, the first equation of (8.62) is the dominant part with the
second one being a small modification. We will thus first analyze the data
based on the first equation only, and in particular estimate the value of the
thermal diffusivity D∗

h = K∗
h/C

∗
h. In the second step, the parameters will be

used in the full equation to obtain a rough estimate of rh.

Temperature Projection We calculate the temperature at depth z from the
time series of the surface temperature T (0; t) with the convolution integral
(8.30). Neglecting a possible non-uniform initial temperature distribution,
this has two parameters, the temperature T0 at time 0 and the value of
the thermal diffusivity Dh = Kh/Ch which determines the transfer function
(8.27). Figure 8.21 shows the result of such a projection, where the surface
temperature was approximated by the measured values at z = 0.065 m
and the value of D∗

h was chosen such that an optimal agreement between
projection and measurement for z = 1.25 m was achieved for the first cold
period roughly between days 350 and 530. The optimal value of D∗

h was
found to be 8 · 10−7 m2 s−1.

The agreement between projection and measurement is excellent for the
cold period which demonstrates that during this time, heat transport at the
Bayelva site can indeed be described by an effective conduction. Projections
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to more shallow depths are not shown here but they yield comparably good
results and thereby corroborate the uniformity assumption.

As expected, the projection fails during the thawing period where a macro-
scopic phase boundary separates the two depths. Projected temperatures
are much too high because the latent heat consumed for the thawing is not
accounted for. Notably, however, projection and measurement again agree
quite reasonably during the next cold period without adjusting any of the
parameters. This indicates that (i) the thermal properties of this mud boil
are constant on the time scales considered here and (ii) the net change of
internal energy through the thawed period is negligible.

Heat Flux Given the value of D∗
h determined above, the thermal conduc-

tivity K∗
h can be calculated once the thermal capacity C∗

h is known. Using
the weighted mean from (8.38) and inserting typical values for the volume
fractions of the soil’s constituents – mineral matrix, water, and possibly ice –
yields C∗

h ≈ 2.4 · 106 Jm−3K−1 for the thawed and C∗
h ≈ 2.0 · 106 Jm−3K−1

for the frozen state. Of course, these values change with ice and water content
so we will in the following use C∗

h = [2.2 ± 0.2] · 106 Jm−3K−1 as a rough
estimate. It leads toK∗

h = [1.7±0.5] Wm−1K−1 for the thermal conductivity.
With this, the conductive heat flux is obtained from Fourier’s law (8.19) with
the finite differences approximation

jh(t; z) = −K∗
h

T (z+, t)− T (z−, t)

z+ − z−
, (8.63)

where z+ and z− are the depths of two adjacent temperature sensors and z
is chosen as [z+ + z−]/2 (Figure 8.22). Notice that this approximation only
yields estimates of jh between the temperature sensors. Hence, the field of
view shrinks.

As expected, we find negative fluxes during the cold periods, an average
of −2.6 Wm−2 for the first and −5.5 Wm−2 for the second one. The higher
loss of heat during the second cold period again reflects the snow cover that
is thinner by about a factor of 2 for much of the winter. During the warming
periods, the heat flux is positive but quite low. For the first period between
days 500 and 530, its mean is 4.4 Wm−2. This contrasts with an energy
input of 16.5 Wm−2 from net radiation. The difference is consumed by
the latent heat of the melting snow cover and by the evaporating water.
The corresponding numbers for the second warming period between days 880
and 915 are 5.7 Wm−2 for the mean heat flux and 26.6 Wm−2 for the net
radiation.

Latent Heat With C∗
h and K∗

h estimated, we may now proceed to roughly
estimate the production rh of latent heat for the various thermal regimes.
The concept is to formulate a finite differences approximation of the first
equation of (8.62), to insert the measured temperatures together with the
estimated parameters C∗

h and K∗
h, and to interpret the residual, the deviation

from 0, as rh = r∗h + rexth , where r∗h represents the production of latent heat
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Figure 8.22. Effective conductive heat flux calculated from measured temper-
atures, positive in the direction of increasing depth. Black contours are isotherms,
red lines show jh = 0. The uncertainty of absolute values is about 30% due to the
uncertainty of K∗

h. This does not affect the sign of jh, however. The sign is sensitive
to the bias of the temperature sensors, though, and corresponding artifacts may be
suspected in the isothermal plateau and at the onset of the warming period.

from the internal processes as described by the second equation of (8.62)
(Figure 8.23). Again, the field of view for rh is smaller than that for T .
Indeed, the effect is stronger than it was with jh because now a second
derivative is required.

We first consider the cold period and keep the soil freezing characteris-
tic in mind which links temperature and liquid water content. Hence, as
temperatures decrease, some liquid water must disappear. This may be
accomplished by freezing or by evaporation and diffusive transport of the
vapor. These two pathways can be distinguished based on the production
of latent heat: it is positive for the freezing and negative for evaporation.
Figure 8.23 indicates that during the cold period, excess water freezes below
about 1 m and evaporates between 0.5 and 1 m. This vapor may be expected
to diffuse upwards, towards lower temperatures. There it will condenses
again and release the corresponding latent heat. The data indeed hint at
a heat production above some 0.5 m. Why is there no evaporation and
diffusion below 1 m but just freezing? This is the depth of the active
layer. Below it, the ice is quite impermeable with the liquid and vapor
phase hardly connected. Hence the only available pathway for reducing the
liquid water content is freezing. We finally notice that these phenomena are
more pronounced in the second cold period where temperature gradients are
considerably higher.

With the beginning of the warming period, the temperature gradient
reverses and with it the vapor movement. Condensation of water vapor
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Figure 8.23. Production rate rh of latent heat estimated from measured
temperatures. The color bars also indicate the equivalent mass for the transition
from the solid to the liquid phase, rslw, and from the liquid to the vapor phase, rlvw .

and melting of ice both contribute to the required increase of the liquid
water content but they lead to opposite signs of rh. The data indicate that
production from condensation dominates until the thawing front sets in. Keep
in mind, though, that this does not mean that more mass of liquid water is
provided by condensation than by melting since the latent heats for these
two processes differ by a factor of about 7.5.

In the thawed zone, the data hint at an increasing production of latent
heat towards the ice front and a very strong consumption below about 1 m.
The former may again be explained by water vapor migration towards colder
regions and condensation whereas the latter results from melting.

With the onset of the freeze-back and the formation of the isothermal
plateau, the process direction changes one more time. Water freezes and
releases the corresponding latent heat, first at a rather moderate rate – the
heat cannot be transport away and thus limits the rate of freezing – towards
the end of the plateau when conduction becomes more effective again, with
a rapidly increasing rate.

Exercises

8.1 Enthalpy of Phase Transitions of Water To appreciate the energies associated
with phase changes of water, calculate (i) ∆T if the respective enthalpies were
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invested in heating of the same mass of liquid water and (ii) ∆z if they were
invested into lifting the mass in the gravitational field of the Earth.

8.2 Humidity and Matric Potential Calculate the relative humidity for a soil at
10◦C and matric heads of 1 and 10 m, or a potential of −1.5 MPa (permanent
wilting point).

Conversely, calculate the matric potential for air at 20◦C relative humidities of
90% (damping wet), 50%, and 10% (desert).

8.3 Zero-Curtain during Warming The zero-curtain closes upon cooling of per-
mafrost soils and leads to the isothermal plateau where temperatures remain near
0◦C for an extended time. Why is the zero-curtain not also a prominent feature
during the warming period?

8.4 Permafrost Penetration Assume a uniform soil with water content θ = 0.3
and mean annual ground surface temperature (MAGT) of T0 = −10◦C. Let the
average geothermal flux be 0.05 Wm−2. Presuming for simplicity that the soil
freezes at 0◦C, what is the depth of the permafrost bottom in the stationary state?
What is the thermal gradient above and below the permafrost bottom? Assume
reasonable values wherever required.

8.5† A Simple Model for Permafrost Dynamics Assume a uniform soil with water
content θ = 0.3 and an average geothermal flux of 0.05 Wm−2 as in Exercise 8.4.
Again assume all the water to freeze at 0◦C. Consider two cases: (i) The soil
is initially in a stationary state with the surface at 0◦C. For t > 0, the surface
temperature drops to T0 < 0◦C and remains constant afterwards. (ii) The soil is
initially in a stationary state with the surface at T0 < 0◦C. For t > 0, the surface
temperature raises to T1 > 0◦C and remains constant there. Then:

1. Calculate the temporal evolution of the freezing and of the thawing front,
respectively. Neglect the heat capacity for simplicity.

2. Estimate the ice distribution at t = 0 for the following scenario (relict
permafrost from last ice age): At t = −30 ky, the soil is in a stationary
state with MAGT at 0◦C. MAGT then drops abruptly to T0 = −10◦C and
remains there until t = −12 ky. Then, MAGT jumps to +1◦C and remains
there until t = 0. Again neglect the heat capacity and make reasonable
assumptions whenever required.
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Mathematical Tools

This appendix provides an introduction to mathematical tools that are em-
ployed in the main text. Naturally, this constitutes a very limited selection
and the aim is intuitive understanding rather than mathematical rigor.

A.1
Vector Analysis

A.1.1
Gauss Theorem

Let V be an arbitrary volume bounded by ∂V and let v be a vector field that
has no singularity in V . Then

∫

∂V

v · dA =

∫

V

∇ · v dV . (A.1)

This theorem is also referred to as Ostrogradski theorem.

A.1.2
Total Derivative

Let f(x, t) be a scalar. The temporal rate of change of f at fixed location
x is given by the partial derivative ∂tf(x, t). The temporal rate of change
experienced by an observer who moves on the trajectory ξ(t) then is

dtf = ∂tf + v · ∇f , (A.2)

where v = ∂tξ(t) is the observer’s velocity. The derivative dt is also referred
to as substantial or as material derivative.

Letw be a vector with Cartesian components wi. The total derivative ofw
is then defined by applying dt to each component individually, hence

[dtw]i = ∂twi + v · ∇wi =:
[
∂tw + [v · ∇]w

]
i
. (A.3)
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A.1.3
Conservation Laws

We consider a quantity α which is conserved, i.e., neither produced nor
consumed by any process of interest. This quantity may flow by itself or
it may be transported by some other flow. Consider some control element in
space and notice that the rate of change of the amount of α in this element
must equal the net flow of the quantity through the boundary of the element.
In order to formulate this statement, we introduce the density ρα (amount
per unit volume) and flux jα (amount per unit area and unit time) of α. For a
control element, there are two obvious choices: a volume that is fixed in space,
the Eulerian perspective, and a fluid element that follows the movement, the
Lagrangian perspective.

Eulerian Perspective We consider an arbitrary volume element V that
is fixed in space. Let ∂V denote the boundary of V . The amount of α
in this volume is

∫
V
ρα dV and the outflow of α through the boundary is∫

∂V
jα · dA, where the area element dA is pointing outwards. Conservation

of α demands

∂t

∫

V

ρα dV +

∫

∂V

jα · dA = 0 . (A.4)

Exchanging differentiation and integration in the first term and applying
Gauss’ theorem to the second one yields

∫

V

[∂tρα +∇ · jα] dV = 0 . (A.5)

Since V is arbitrary, the integrand must vanish, hence

∂tρα +∇ · jα = 0 . (A.6)

Not all quantities are conserved in the above sense, however. Examples are
water taken up by plant roots, momentum dissipated into through friction, or
solutes that appear and disappear due to dissolution/precipitation or chemi-
cal reactions. It is convenient to account for such processes by introducing a
“source-term” into (A.6) by writing

∂tρα +∇ · jα = rα , (A.7)

where rα is the “production” rate of quantity α (amount per unit volume
and unit time). A negative value of rα corresponds to a “consumption” of α.
Since (A.7) no more formulates the conservation of α, it is referred to as
a continuity or balance equation which just describes the whereabouts of
quantity α.
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v

∂V (t+∆t)

dA

∂V (t)

Figure A.1.
Conservation from Lagrangian perspective. The fluid ele-
ment with boundary ∂V (t) and area element dA moves a
small distance in the velocity field v during time ∆t and
becomes deformed with new boundary ∂V (t + ∆t). By
definition, the mass of the element is conserved while the
volume is not. Quantities other than the fluid mass may
cross the elements boundary

Lagrangian Perspective An important tool for working in the Lagrangian
context – following an arbitrary fluid element as it moves with the flow –
is the total derivative dt = ∂t + v · ∇, (A.2), where v is the velocity of the
flow field. Relations deduced from the Lagrangian perspective can obviously
be transformed into the equivalent relations in the Eulerian view, and vice
versa, since the physics must not depend on our point of view.

First consider the conservation of mass in a fluid element with volume V (t)
and boundary ∂V (t) with outward pointing area element dA (Figure A.1).
Denoting the mass density of the fluid by ρ(x, t) the rate of change of the

mass in the fluid element may be calculated as

dt

∫

V (t)

ρ dV =

∫

V (t)

∂tρ dV +

∫

∂V (t)

ρv ·dA =

∫

V (t)

∂tρ+∇· [ρv] dV , (A.8)

where Gauss’ theorem was used to obtain the last equality. Since fluid mass is
conserved dt

∫
V (t)

ρ dV = 0 and further, since V (t) can be chosen arbitrarily,

∂tρ + ∇ · [ρv] = 0. Recognizing ρv as the mass flux of the fluid, (A.6) is
recovered.

Next consider some quantity α other than the fluid mass, e.g., heat or
dissolved chemicals, and denote its density by ρα(x, t). In general, the
flux of α across the boundary of a fluid element does not vanish because
only its convective component ραv is bound to the motion of the fluid.
Non-convective components arise for instance from heat conduction or from
molecular diffusion. We thus decompose the flux into these two components,
jα = ραv + jnonconvα , and notice that the rate of change of α in the fluid
element is

dt

∫

V (t)

ρα dV = −
∫

∂V (t)

jnonconvα · dA = −
∫

V (t)

∇ · jnonconvα dV . (A.9)

Inserting this in (A.8), we again recover (A.6) by arguing that the resulting
equation must be true for every choice of V (t).

We remark that the Lagrangian perspective is often conceptually simpler
since it separates processes related to the fluid flow, i.e., the convection of
quantity α, from processes that directly affect α, e.g., diffusion or chemical
reactions between different constituents. However, the resulting formulations
are usually technically more difficult.
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A.1.4
Stream Function

For incompressible flow ∇ · v = 0. Hence one may introduce the vector
potential Φ such that v = ∇ × Φ. This is particularly useful for two-
dimensional flow fields, where only one component of Φ is non-zero. Call
this component ϕ and define it in Cartesian coordinates through

vx =
∂ϕ

∂y
, vy = −∂ϕ

∂x
. (A.10)

Clearly, this velocity field satisfies ∇·v = 0. The function ϕ(x, y) is called the
stream function because it is constant along a stream line. Indeed,

dϕ =
∂ϕ

∂x
dx+

∂ϕ

∂y
dy = −vydx+ vxdy (A.11)

and, since by definition dy/dx = vy/vx along a stream line, dϕ = 0.

Given a two-dimensional velocity field, the corresponding stream function
is obtained by integrating (A.11) as

ϕ(x) = ϕ(x0) +

∫ x

x0

v(x′)× dx′ , (A.12)

or, in Cartesian coordinates and using that ϕ is a potential, as

ϕ(x, y) = ϕ(x0, y0)−
∫ x

x0

vy(x
′, y) dx′ +

∫ y

y0

vx(x, y
′) dy′ , (A.13)

which clearly satisfies (A.10).

A.1.5
Lagrangian Multipliers

Let g(x) and φ(x) be two differentiable functions. We wish to obtain ex-
tremal values of g under the constraint that φ has some fixed constant value
(Figure A.2). We first notice that ∇φ is by definition orthogonal to the
subspace φ(x) = const. Hence, for g(x) restricted to this subspace to be
extremal, ∇g must be parallel to ∇φ. If this were not the case, ∇g would
have a non-vanishing component in the subspace and g could be made more
extreme by moving in the corresponding direction. A necessary condition for
the constrained extremum is thus

∇g + µ∇φ = 0 , (A.14)

where µ is called the Lagrangian multiplier [e.g., Arfken andWeber 1995].



A.2 Statistical Descriptions 295

∇g

∇φ

φ = const

g = const

x2

x1

Figure A.2.
Determination of extremal values of g(x)
under the constraint that φ(x) has some
fixed value – imagine moving through some
hilly terrain along the given path φ(x) =
φ0 and finding local high and low points.
Notice that ∇g and ∇φ are parallel at
extremal points (green dots) but not at
others (black dot).

A.2

Statistical Descriptions

Only a rough outline of concepts is given in this section. For a more profound
treatment refer to an appropriate textbook, e.g., van Kampen [1981] or
Papoulis [1984]. Only one-dimensional quantities are considered here but
the extension to more dimensions is straightforward.

A.2.1
Random Variables

A random variable ω is defined by (i) the set of its possible values, sometimes
called the “phase space” and (ii) the distribution of probability over this set.
For us it suffices to consider the singly connected interval Ω ⊂ R as the set
of possible values of ω.

Probability Distribution Functions The distribution of probability may be
described by the cumulative distribution function (cdf )

Pω(y) := Prob{ω ≤ y} (A.15)

which is a non-negative and non-decreasing function of y with range [0, 1].
Alternatively, and more common in physics, we may use the probability
density function (pdf )

pω(y) :=
dPω(y)

dy
, (A.16)

which is non-negative and normalized, that is pω(y) ≥ 0 and
∫
Ω
pω(y) dy =

1.

The probability of finding ω in the interval ]y0, y1] may thus be calculated
as Pω(y1) − Pω(y0) or, for a sufficiently small interval ∆y centered at y,
approximated by pω(y)∆y.
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Expectation Values The average, or expectation value, of the random
variable ω is defined as

〈ω〉 :=
∫

Ω

ωp(ω) dω , (A.17)

that is, as the average of all possible values weighted with the probability
p(ω) dω of their occurrence. In analogy, the expectation value of some ordi-
nary function f(x) applied to ω – this maps the random variable ω to the
new random variable f(ω) – is

〈f(ω)〉 :=
∫

Ω

f(ω)p(ω) dω . (A.18)

Of special significance are the expectation values of powers of ω, the so-called
moments

Mn(ω) := 〈ωn〉 =
∫

Ω

ωnp(ω) dω (A.19)

and the central moments

mn(ω) := 〈[ω − 〈ω〉]n〉 =
∫

Ω

[ω − 〈ω〉]np(ω) dω . (A.20)

The first few moments are often used to roughly describe the pdf of a ran-
dom variable. Of particular interest is the variance, the second central
moment

var(ω) := 〈[ω − 〈ω〉]2〉 = 〈ω2〉 − 〈ω〉2 (A.21)

which in the study of transport processes is related to dispersion.

A.2.2
Central Limit Theorem

Let ωi be random variables with expectation 〈ωi〉 = µi < Cµ < ∞ and
variance var(ωi) = σ2

i < Cσ <∞ and define the new random variable

Ωn :=

n∑

i=1

ωi . (A.22)

If ωi and ωj are statistically independent for i 6= j, that is if for all positive
integers n and m

〈ωni ωmj 〉 = 〈ωni 〉〈ωmj 〉 , i 6= j (A.23)

then the central limit theorem (CLT) ascertains that in the limit n→ ∞ the
probability density function of Ωn approaches a Gaussian, hence

pΩn
(y)

n→∞−→ G(y;µ, σ2) =
1√
2πσ2

exp
(
−1

2

[y − µ]2

σ2

)
, (A.24)
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where G(y;µ, σ2) is shorthand for the Gaussian distribution with expectation
µ =

∑n
i=1 µi and variance σ2 =

∑n
i=1 σ

2
i .

The remarkable thing about this theorem is that it does not require any
assumptions about the distribution functions of the ωi other than that ex-
pectation and variance must be finite.1

In a typical application of the central limit theorem, n statistically in-
dependent samples xi, notice that these are regular numbers, of the single
random variable ω are considered. For sufficiently large values of n, the pdf
of zn =

∑n
i=1 xi may be approximated by the Gaussian G(z;nµ, nσ2), where

µ is the expectation of ω and σ2 is its variance. As an example, consider
the random variable that is obtained from summing the results of ten throws
of a dice. It is instructive to run this example on a computer, try different
values of n, and to compare the resulting pdf with the Gaussian. Where is
the deviation smallest, where is it largest?

A.2.3
Random Functions

A random function f(x, ω) depends on an ordinary argument x, e.g., space
or time, and on a random variable ω. It is sometimes also called a stochastic
process, particularly if x refers to time. For x = x0 constant, f(x0, ω) is a
random variable. For ω = ω0 constant, f(x, ω0) is an ordinary function, called
a realization of the random function. A set of realizations is an ensemble

(Figure A.3).

Probability Distribution Functions For x = x0 constant, the random
function simply maps the random variable ω to the new random variable
f(x0, ω) which is completely described by the corresponding cdf Pf (y;x0) =
Prob{f(x0, ω) ≤ y} or by the pdf pf (y;x0) = dyPf (y;x0). The pdf pf (y;x0)
may be expressed in terms of the pdf pω as

pf (y;x0) =

∫

Ω

δ
(
y − f(x0, ω)

)
pω(ω) dω , (A.25)

where Ω is the phase space of ω. This is referred to as the 1-point pdf of the
random function f . It is illustrated by the the green curve in the upper right
graph of Figure A.3. In analogy, the 2-point cdf is defined as the probability
that the random function f takes on values that are simultaneously smaller
than or equal to y1 and y2 at x1 and x2, respectively. Formally,

Pff (y1, y2;x1, x2) = Prob{f(x1) ≤ y1, f(x2) ≤ y2} . (A.26)

1 The formulation µi < Cµ < ∞ and similarly for σ2 in the definition of ωi has been chosen
to exclude pathological cases where µi is finite for all i but increases without bounds.
For such a situation, the central limit theorem would not hold, that is the corresponding
sum would not be described by a Gaussian distribution function. Such a situation may
occur in certain models of solute transport in hierarchical media. It leads to the so-called
anomalous dispersion.
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f(x, ω)

x0x1

x

f(x, ω)
ω0

x

f(x, ω)

Figure A.3. Four perspectives on the random function f(x, ω): For fixed x and
fixed ω, it is an ordinary number while for fixed x alone it is a random variable.
For fixed ω it is an ordinary function, called a realization (lower left) and for both
arguments free it is the ensemble of realizations (lower right). The green curves
in the upper right graph show the pdfs of the random variable f(xi, ω) at two
locations x0 and x1 as estimated from some 105 realizations, only four of which are
represented explicitly.

The pdf is again defined as the partial derivative, now with respect to both
yi,

pff (y1, y2;x1, x2) =
∂2Pff (y1, y2;x1, x2)

∂y1∂y2
, (A.27)

and it may again be expressed in terms of the pdf pω as

pff (y1, y2;x1, x2) =

∫

Ω

δ
(
[y1 − f(x1, ω)][y2 − f(x2, ω)]

)
pω(ω) dω , (A.28)

where we want to assume that x1 and x2 are different because, if they
are equal, the meaning of (A.28) reduces to that of (A.25). The n-point
density functions are defined along the same line. We notice that the n-
point density functions are symmetric in that permutations of the indices are
immaterial.

When two random functions f(x, ω) and g(x, ω) over the same phase space
are considered, the 2-point cross-cdf and -pdf are defined as

Pfg(y1, y2;x1, x2) = Prob{f(x1) ≤ y1, g(x2) ≤ y2}

pfg(y1, y2;x1, x2) =
∂2Pfg(y1, y2;x1, x2)

∂y1∂y2

pfg(y1, y2;x1, x2) =

∫

Ω

δ
(
[y1 − f(x1, ω)][y2 − g(x2, ω)]

)
pω(ω) dω (A.29)
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Figure A.4. Ensemble average 〈f〉(x) (solid black line) of the random function
f(x, ω) together with 〈f〉(x) ±

√
Cff (x, x) (dashed black lines). The colored lines

at x1 and x2 illustrate the calculation of the autocovariance function (A.31). They
correspond to the deviation of the corresponding realization from the ensemble
average. The deviations at two locations x1 and x2, multiplied and added over
all realizations, lead to Cff (x1, x2). The normalized result of this calculation is
shown in the graph on the right. The linear decrease reflects the construction of
the random function which was obtained by a moving averaging with an interval
∆x = 10 over a sequence of uniformly distributed uncorrelated random numbers.
Again, 105 realizations have been used for these graphs, only four of which are
shown (dimmed color lines).

with obvious extensions to n points and to more than two functions. We
notice that the cross-density functions are in general not symmetric, that is,
for instance, pfg(y1, y2;x1, x2) 6= pgf (y1, y2;x1, x2).

Ensemble Averages In analogy to (A.17) we define the expectation func-
tion or the ensemble average of the random function f(x, ω) by

〈f〉(x) :=
∫

Ω

f(x, ω)pω(ω) dω (A.30)

which is an ordinary function. The ensemble average 〈f〉 is thus defined as
the expectation value of the random variable f(x, ω) at each point x. We
emphasis that 〈f〉 is not some “average member of the random function f”:
its form is generally quite different from that of the realizations (Figure A.4).

Higher moments of f are defined in complete analogy. Of particular
interest is the autocovariance function Cff , the second central moment, which
is defined as

Cff (x1, x2) := 〈f0(x1)f0(x2)〉

=

∫

Ω

[
f(x1, ω)− 〈f〉(x1)

][
f(x2, ω)− 〈f〉(x2)

]
pω(ω) dω , (A.31)
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where f0(x) is shorthand for f(x)−〈f〉(x). Sometimes, Cff is called the auto-
correlation function. However, we will only use this term for the normalized
autocovariance function

Rff (x1, x2) =
Cff (x1, x2)√

Cff (x1, x1)Cff (x2, x2)
. (A.32)

Clearly, Cff and Rff are symmetric, i.e., Cff (x1, x2) = Cff (x2, x1). An
example of Rff is shown in Figure A.4.

Similar to the autocovariance and -correlation, we may define the cross-

covariance and -correlation between two random functions f(x, ω) and g(x, ω)
over the same phase space as

Cfg(x1, x2) := 〈f0(x1)g0(x2)〉

Rfg(x1, x2) =
Cfg(x1, x2)√

Cff (x1, x1)Cgg(x2, x2)
. (A.33)

Again, these functions are in general not symmetric.

Stationarity A random function is called stationary if its moments are
invariant with respect to translation, i.e., 〈f(x1 + x)f(x2 + x) · · · f(xn +
x)〉 = 〈f(x1)f(x2) · · · f(xn)〉 for all values of n and x. It is called weak-sense

stationary (wss) if this is true at least for n ≤ 2.
Obviously, the expectation value of a stationary random function is a

constant and the autocovariance function Cff (x1, x2) depends only on the
difference r = x2 − x1, which is often called the lag . Autocovariance and
-correlation may then be written as

Cff (r) = 〈f0(x)f0(x+ r)〉
Rff (r) = Cff (r)/Cff (0) (A.34)

for arbitrary x. By definition, Rff (0) = 1 and −1 ≤ Rff (0) ≤ 1. Further-
more, for non-periodic functions, Rff (r) approaches 0 for sufficiently large
values of r. This is because the correlation between the deviations from
the mean at two locations decreases as the distance between them increases.
A rough measure for the distance over which values are correlated is the
correlation length

ℓ :=

∫ ∞

0

Rff (r) dr . (A.35)

Notice that this integral need not exist. Then the correlation length is
undefined, as in the case of periodic random functions. If it exists, it may be
infinite indicating, if r is space, relations over arbitrary distances or, if r is
time, influence of events over arbitrarily long times.

Stationarity greatly simplifies the analysis of a random function because
it allows us to calculate the necessary statistics at a single location. Clearly,
there remains the task of ascertaining that the function is indeed stationary.
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This may be achieved based on some theoretical argument or by actually
inspecting the function. Sometimes, however, it is merely postulated and
justification is sought a posteriori. Whatever the foundation of the station-
arity property, we recall that while the statistics may be calculated at a single
location, we still require the entire ensemble of realizations.

Generating Realizations Sometimes, only a few averaged quantities are
given for a random function and we wish to construct realizations that
honor these quantities. We consider the simple but typical case of a real-
valued, weakly stationary random function f(x, ω) on the finite interval
[0, X] with zero mean, autocovariance function Cff (r), and finite correlation
length. One way to construct realizations is to add appropriate Fourier
components.

We define the discrete Fourier sine transform of a stationary random
function as

f(x, ω) =

∞∑

n=1

an,ω sin
(nπ
X
x+ bn,ω

)
, (A.36)

where an,ω and bn,ω are real-valued random variables. This somewhat un-
common definition with different phases bn,ω in the Fourier transform has
been chosen to accommodate stationary random functions. Without this,
f(0, ω) = 0 and also all the moments would vanish at x = 0. Notice that the
functions en(x) = sin(nπx/X+bn) with n ∈ Z

+ still form an orthonormal ba-

sis on [0, X] with respect to the inner product (g, h) := [2/X]
∫X
0
g(x)h(x) dx

since (en, em) = δn,m. The inverse transform is then

an,ω =
2

X

∫ X

0

f(x, ω) sin
(nπ
X
x+ bn,ω

)
dx . (A.37)

Notice that these transforms operate on the individual realizations, hence
on ordinary functions. Using the orthonormality of {en}, we easily obtain
identity of Parseval

1

X

∫ X

0

f(x, ω)2 dx =
1

2

∞∑

n=1

a2n,ω (A.38)

from (A.36). Taking the ensemble average and using stationarity – 〈f(x, ω)2〉
is a constant independent of x – we obtain from this

〈f2〉 =
∞∑

n=1

1

2
〈a2n〉 . (A.39)

This decomposes 〈f2〉, the mean square of the fluctuation of f(x, ω), into
the contributions from the single Fourier components which may also be
expressed by the spectral density S(k) of the fluctuations, which may be
interpreted as the power

S(k) dk =
∑

k≤nπ/X<k+dk

1

2
〈a2n〉 (A.40)
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of the fluctuations in the (spatial) frequency interval [k, k + dk]. At this
point, we invoke the Wiener-Khinchin theorem which relates S(k) to the
Fourier cosine transform of the autocovariance function Cff (r) of f(x, ω)
by

S(k) =
2

π

∫ ∞

0

cos(kr)Cff (r) dr =: C̃ff (k) (A.41)

and which may be proved by inserting (A.37) into (A.40).

For constructing a realization of f(x, ω), we choose dk = π/X in (A.40)
such that the sum contains exactly one term, hence 〈a2n〉 = 2S(k)π/X, choose
an =

√
〈a2n〉, and insert (A.41) to finally obtain, with k = nπ/X,

an =

[
2π

X
C̃ff

(nπ
X

)] 1
2

(A.42)

Using these in (A.36), the realization is defined up to the phases bn of
the Fourier components which we have not used up to now. We choose
them as realizations of an uncorrelated random variable with uniform prob-
ability distribution on the interval [0, 2π]. While the set {an} determines
the covariance function of the realization, the set {bn} picks a particular
realization. Choosing the same set {bn} with different covariance functions
leads to realizations that have a common large-scale structure but differ in
small-scale details according to the prescribed covariance. An example is
shown in Figure 5.11 on page 114.

Continuity of Realizations The autocovariance function Cff (r) quantifies
the variance between two points of the same realization at a distance r. Hence
the form of Cff at the origin carries the information about the continuity of
the realizations. To look into this, we consider a stationary random function
over R with 〈f〉 = 0. The generalization to non-stationary functions over Rn

with 〈f〉 6= 0 is straightforward.

We first notice that continuity of Cff (r) = 〈f(x)f(x + r)〉 at r = 0, that
is limr→0 Cff (r) = Cff (0), implies that the realizations f(x) are continuous.
Typical examples where this is not satisfied are random functions that contain
a component with spatial white noise, i.e., uncorrelated random fluctuations.
Realizations of such a function are nowhere continuous. Such a description
is often used to account for some small-scale fluctuations whose correlation
length is much smaller than the resolution at the scale of interest and hence
cannot be represented accurately.

Odd-order derivatives of Cff vanish at r = 0 because Cff is symmetric.
Hence, we next look at the second derivative of Cff (r), that is

drrCff (r) = drr〈f(x)f(x+ r)〉 = 〈f(x)dxxf(x+ r)〉 . (A.43)

Notice the change from drr to dxx in the last step. We introduce the
shorthand C ′′

ff (r) = drrCff (r) and f(x)′′ = dxxf(x), multiply both sides
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with w(x) ⊂ C∞, a regular but arbitrary function that decays rapidly for
large |x|, and integrate over R to obtain

∫ +∞

−∞

C ′′
ff (r)w(x) dx =

∫ +∞

−∞

〈f(x)f ′′(x+ r)〉w(x) dx

=

〈∫ +∞

−∞

f(x)f ′′(x+ r)w(x) dx

〉

= −
〈∫ +∞

−∞

f ′(x)f ′(x+ r)w(x) dx

〉

= −
∫ +∞

−∞

〈f ′(x)f ′(x+ r)〉w(x) dx , (A.44)

where integration over x and ensemble average on the right hand side have
been exchanged and integration by parts was used. Since (A.44) holds for
arbitrary functions w(x), we conclude that

C ′′
ff (r) = 〈f ′(x)f ′(x+ r)〉 (A.45)

and with r → 0 find that the first derivative of a realization is continuous
if the second derivative of Cff (r) is continuous at the origin. One can
show along the same line that a realization f(x) is n times continuously
differentiable everywhere if Cff (r) is 2n times continuously differentiable at
the origin.

The conclusions about the continuity of realizations only hold “with prob-
ability 1” since an average is involved. This means that each realization may
contain isolated points where it is not continuous and that some realizations,
whose probability mass is 0, may be even more irregular.

Frozen Random Fields Random functions have been applied very success-
fully to turbulence theory [e.g., Lumley 1970]. As an example, consider the
velocity field v(x, t) in a mountain river. Its large-scale structure will clearly
depend on boundary conditions like big rocks in the river bed while its small-
scale structure will change rapidly in time due to the highly turbulent nature
of the flow. Such a field may conveniently be described by a random function.
We may actually consider time t as analogous to the random variable ω
because different realizations of v(x) occur in the course of time. Ensemble
averages of the velocity field are thus conveniently estimated from time series
of appropriate measurements.

The situation is quite different for flow through porous media: While
transport properties may vary wildly in space, and with them also the state
variables and flow fields, all of them will typically be constant in time for
constant boundary conditions. This leads to the notion of a frozen random

field for which there clearly exists only a single realization. Hence, statistical
properties must be estimated from the spatial structure. Let f(x) be a
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Figure A.5.
illustration of ergodic random function —
to be completed —

x

f(x, ω)

quantity of interest, assume it to exist in R
3, and define the spatial average

as

f(x) :=

∫

R3

f(x+ ξ)w(ξ) dξ , (A.46)

where the weight function w(x) ≥ 0 falls off sufficiently rapidly for large
values of |x| and is normalized, i.e.,

∫
R3 w(x) dx = 1. While such an average

can be defined for arbitrary weight functions, it is useful only if it is objective
in the sense that f(x) depends only weakly on the precise location or shape of
w(x). Hence, the support of w(x) must not be larger than the REV for f(x).2

Higher order moments and covariance functions are defined in analogy to
(A.46). For instance, the two-point covariance function, the autocovariance,
is obtained as

Cff (x1,x2)

=

∫

R3

[
f(x1 + ξ)− f(x1)

][
f(x2 + ξ)− f(x2)

]
w(ξ) dξ . (A.47)

In analogy to the notion introduced previously, the function f(x) is called
stationary if its statistics is translation invariant. It is called weakly station-

ary if this is only true up to second order statistics. Clearly, a prerequisite
for stationarity is the existence of an REV for which case we will choose the
weight function w(x) such that its support equals the REV.

Ergodicity With the exception of molecular diffusion, there is nothing
“random” about transport in a frozen random field. However, we often wish
to account for the uncertainty in the transport phenomena that result from
an insufficient knowledge of the field’s detailed structure. To this end, we
envisage a random function of which f(x) is a realization. In particular, the
ensemble statistics of this function shall be the same as that of f(x). Hence,
we assume that the ensemble averages of Section A.2.3 may be replaced by
the corresponding averages over space, for instance Figure A.5

f(x) = 〈f〉(x) . (A.48)

Such a random function is called ergodic. We notice that in the context
porous media, ergodicity is a concept that is invoked. It cannot be checked,
since there exists only the one realization at hand.

2 A second useful situation arises when w(x) represents an instrument, f(x) thus
corresponds to the measurements of f . Clearly however, measurements are useful to
the extent that they are objective, hence encompasses at least an REV.
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A.2.4
Geostatistics

Geostatistics may be considered as the application of the theory of random
functions to problems in the geosciences. However, in the course of time a
rather specialized framework has evolved that deals with the peculiarities of
fields that appear there [Matheron 1971]. As a rule, the fields of interest are
frozen, hence only a single realization is available. Consequently, averaging
is almost exclusively done in space and, where necessary, the ergodicity
hypothesis is invoked.

Geostatistical Characterization of Structures The basic tenet of geo-
statistics is that many fields of interest are not stationary, not even weakly,
and that as a consequence the autocovariance function (A.34) is not well
suited for describing them. Instead, the semivariogram

γ(r) :=
1

2
[f(x+ r)− f(x)]2 (A.49)

is introduced which is well-behaved for a larger class of functions than
(A.34), namely for those with stationary increments. For a weakly station-
ary function, semivariogram and autocovariance yield equivalent descriptions
since

γ(r) =
1

2

[
[f(x+ r)− f ]︸ ︷︷ ︸

=:f0(x+r)

− [f(x)− f ]︸ ︷︷ ︸
=:f0(x)

]2

=
1

2

[
f0(x+ r)2 + f0(x)2 − 2f0(x+ r)f0(x)

]

= C(0)− C(r) . (A.50)

In practical applications, estimation of the semivariogram is the most
crucial and most difficult step: most crucial because it is often the only
information extracted from the available data, hence all the subsequent anal-
yses depend on it, most difficult because the datasets are typically rather
small, irregularly spaced, at least partly correlated, and often come with a
sizeable error. A simple-minded estimator for (A.49) is

γ∗(r) =
1

4n(r)

∑

|xi−xj−r|<ǫ

[f(xi)− f(xj)]
2 , (A.51)

where n(r) is the number of pairs of measured locations whose separation
is given by r with an accepted interval width of ǫ. The additional factor
of 2 comes from counting entries ij and ji separately. Other estimators,
particularly for small datasets, are given in the literature, e.g., in Cressie

[1993]. Whatever the method, the estimates γ∗ typical scatter quite strongly
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Figure A.6.
Typical semivariogram for a station-
ary quantity with finite correlation
length (range). The variance σ2

0

within the measurement support is
called the “nugget” and the total
variance σ2 of the field is referred to
as the “sill”.

nuggetσ2
0

sill
σ2

range
r

γ(r)

and it is mandatory to model the most appropriate semivariogram, i.e., to
prescribe its functional form and estimate the pertinent parameters.

An often used model expression for an isotropic semivariogram for a sta-
tionary quantity with finite correlation length ℓ is

γ(r) = σ2
0 + [σ2 − σ2

0 ]
[
1− exp

(
−r
ℓ

)]
, (A.52)

where σ2
0 is the variance attributed to variation within the measurement’s

support, the so-called nugget and σ2 is the variance of the entire field, the
so-called sill (Figure A.6).

We notice that the semivariogram may be interpreted as a decomposition
of the field’s variance into different spatial scale.

Geostatistical Interpolation (Kriging) We consider a set of unbiased mea-
surements {fi, i = 1, . . . , n} at locations {xi, i = 1, . . . , n} and wish to
obtain for the values of f at an arbitrary location x the best linear unbiased
estimator, sometimes called a BLUE, of the form

f∗(x) =

n∑

i=1

αifi (A.53)

that accounts properly for the spatial structure of the data. To this end, we
interpret the set {fi} as originating from a realization of an ergodic random
function f(x;ω). For f∗(x) to be unbiased, we demand

〈f∗(x)− f(x;ω)〉 = 0 , (A.54)

and for it to be the best estimator, we require the estimation variance to be
minimal, hence

σ2
est :=

〈
[f∗(x)− f(x;ω)]2

〉
. (A.55)

Notice that {fi} is a set of random variables, hence f∗(x) is also a random
variable.
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Weakly Stationary Random Space Function In order to develop the ideas,
we consider the simplest case where f(x;ω) is weakly stationary and we
choose 〈f(x;ω)〉 = 0. For this case, (A.54) is always satisfied since, inserting
(A.53),

〈f∗(x)− f(x;ω)〉 =
〈 n∑

i=1

αifi − f(x;ω)
〉
=

n∑

i=1

αi〈fi〉 − 〈f(x;ω)〉 (A.56)

and 〈fi〉 = 0 because the measurements are assumed to be unbiased. Thus,
there remains (A.55) to be satisfied, that is, again inserting (A.53),

σ2
est =

∑

i,j

αiαj 〈fifj〉︸ ︷︷ ︸
C(xi − xj)

−2
∑

i

αi 〈fif(x)〉︸ ︷︷ ︸
C(xi − x)

+ 〈f(x)2〉︸ ︷︷ ︸
σ2

(A.57)

shall be minimal. The weights αi are thus chosen such that ∂αi
σ2
est = 0 which

leads to ∑

j

αjC(xi − xj) = C(xi − x) , i = 1, . . . , n . (A.58)

This is a system of linear, inhomogeneous equations that may be written
more compactly as Cα = C0 with α = {α1, . . . , αn}T, [C]ij = C(xi − xj),
and [C0]i = C(xi − x). We notice that the matrix C inherits the symmetry
from the autocovariance function. For the case where the locations xi are all
different and C(0) > |C(r)| for |r| > 0, C is positive definite. Then a single
solution exists that is obtained readily using standard algorithms. Formally,
it may be written as

α = C
−1C0 (A.59)

We notice that C depends only on the location of the measurements through
the known autocovariance model C. An important consequence of this is that
the expensive inversion of C has to performed only once, even if interpolated
values are required at many different locations.

Once the best weights are obtained, denote them by α∗
i , we may calculate

the estimation variance. Inserting (A.58) into the first term of (A.57) leads
to

σ2
est = σ2 −

∑

i

α∗
iC(xi − x) . (A.60)

This shows how information from nearby measurement locations reduces the
variance of the estimated value. For locations that are many correlation
lengths away from the nearest measurement, σ2

est approaches σ
2, the variance

of the entire field (Figure A.7). Using (A.50), we may also express the
estimation variance in terms of the semivariogram as

σ2
est =

∑

i

α∗
i γ(xi − x) (A.61)

which has an analogous interpretation.
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Figure A.7.
Estimation variance (A.60) for
the interpolation of a stationary
random function from measure-
ments at locations x0, . . . , x2. The
distance between the locations
is ℓ/2 and ℓ, respectively. The
autocovariance model is assumed
to be given by (A.52) with σ0 = 0.

σ2

x/λ

σ2
est

x0 x1 x2

0 1 2 3 4

Notice that the variance of an estimate does not depend on the measured
values, but only on their locations. Given the autocovariance model, an
optimal sampling scheme that satisfies given quality criteria, possibly varying
in space, may thus be designed beforehand.3

Random Space Function with Stationary Increments We now turn to the
more common case of a random function that is not necessarily stationary
itself, but whose increments are. The geostatistical literature sometimes
refers to this as the “intrinsic case”. In the following, we will consider
semivariograms whose nugget vanishes, that is σ0 = 0. Obviously, the nugget
variance does not contain any information about spatial correlations and thus
cannot be used for interpolation. It would only have to included in the end
as an additive constant to the estimation variance.

We again assume f∗(x) to be of the form (A.53) demand (A.54) and (A.55)
to hold. While we found that (A.54) is always satisfied for weakly stationary
functions, we now find from (A.56) that

n∑

i=1

αi
!
= 1 (A.62)

in order to be able to represent a constant function.

3 Notice that the assumption that the autocovariance model is given is a very strong
stipulation in traditional applications where the field of interest is sampled and C is
estimated from those measurements. Once we are in the position to obtain a good
estimate for C or γ, we already know f(x) pretty well because the measurements must
lay well within a correlation length of each other in order to carry useful information.
An evolving alternative approach starts out from the premise that the most important
parameter in (A.60) is the correlation length ℓ, at least for well-behaved covariance
functions. The reason for this is that ℓ determines the “reach of information” while
the functional form of C typically leads to higher order modifications. To obtain a
reasonable estimate for ℓ, proxy variables may be used that are related to the quantity
of interest, possibly not very strongly, but that may be measured with little effort and at
a high spatial resolution. An example for this is ground penetrating radar (GPR) which
allows to map dielectric subsurface structure that can eventually be related to hydraulic
properties. Using such an estimate of ℓ, some covariance or semivariogram model is
chosen, e.g., (A.52), and the optimal sampling scheme is estimated with (A.61).
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Preliminary to looking into (A.55), we notice that the semivariance be-
tween two locations xi and xj may be distributed according to

γ(xi − xj) :=
1

2

〈
[f(xi)− f(xj)]

2
〉
=

1

2

〈[
[fi − f(x)]− [fj − f(x)]

]2〉

= γ(xi − x) + γ(xj − x)−
〈
[fi − f(x)][fj − f(x)]

〉
(A.63)

by introducing a third location x. Using that f(x) may be written as∑
i αif(x) because of (A.62), we obtain for the estimation variance (A.55)

σ2
est =

〈[∑

i

αi[fi − f(x)]
]2〉

=
∑

ij

αiαj

〈
[fi − f(x)][fj − f(x)]

〉

(A.63)
= −

∑

ij

αiαjγ(xi − xj) +
∑

ij

αiαjγ(xi − x)

︸ ︷︷ ︸
∑

i αiγ(xi−x)
∑

j αj

+
∑

ij

αiαjγ(xj − x)

︸ ︷︷ ︸
∑

j αjγ(xj−x)
∑

i αi

= 2
∑

i

αiγ(xi − x)−
∑

ij

αiαjγ(xi − xj) . (A.64)

The optimal weights {αi} are obtained from minimizing this expression under
the constraint (A.62). The most elegant way to achieve this is the use of
Lagrangian multipliers, hence to solve

∇ασ
2
est − 2µ∇αφ = 0

φ = 1 (A.65)

where φ(α) :=
∑n
i=1 αi. The factor −2 in front of µ is chosen for later con-

venience – to have G in (A.67) symmetric – but is otherwise immaterial since
µ is a constant to be determined. Inserting (A.64) we finally obtain

∑

j

αjγ(xi − xj) + µ = γ(xi − x) , i = 1, . . . , n

∑

j

αj = 1 (A.66)

which may be written more explicitly as



0 γ12 . . . γ1n 1
γ21 0 . . . γ2n 1
...

...
. . .

...
...

γn1 γn2 . . . 0 1
1 1 . . . 1 0




︸ ︷︷ ︸
G




α1

α2

...
αn
µ




︸ ︷︷ ︸
β

=




γ10
γ20
...
γn0
1




︸ ︷︷ ︸
G0

(A.67)
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Figure A.8.
Geostatistical interpolation (thick
line) based on three data points fi
(symbols) together with standard
deviation of estimate (dashed line)
and average of data (dotted line).
The setup of the data locations and
the semivariogram model are the
same as in Figure A.7.

fi

x/λ

f∗(x)

0 1 2 3 4 5 6

with the shorthand γij = γxi−xj
and γi0 = γxi−x. The diagonal of G is 0

because we assumed at the outset that γ(0) = 0. We notice that again G is
symmetric because γ is an even function, that the solution may formally be
written as

β = G
−1G0 , (A.68)

and that the inverse G
−1 needs to be calculated only once, even if β is to be

calculated for many different locations.
As the last step, we calculate the estimation variance. We again denote

the weight factors yielded by (A.68) by α∗, insert (A.66) into the second term
of (A.64), and obtain

σ2
est =

∑

i

α∗
i γxi−x + µ+ σ2

0 , (A.69)

where σ2
0 is the nugget variance that has been removed earlier and now has

to be brought back in as an additive term.
Figure A.8 shows a typical example of an interpolated (kriged) dataset. We

notice that the interpolation is very smooth between data points and that
at distances significantly larger than a correlation length, the estimate f∗

approaches the average fi of the given data with the uncertainty approaching
that of the data field.

Geostatistical Simulation Kriging attempts to estimate the average of all
the realisations that honor the given set of data. Clearly, such an average is
much smoother than a typical realization and it actually often belongs to a
different class of functions. This is often acceptable, even desirable, if kriging
is used to describe some measured quantity of interest, for instance the spatial
structure of the groundwater table or of some solute concentration in the soil.
The situation is quite different, however, when the set of data is used as the
basis of some simulation study. Consider for instance the situation where
we want to predict the migration of some dissolved contamination through
groundwater. Typically, a few measurements of hydraulic conductivity will
be available and we wish to estimate the conductivity field at a resolution
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x/λ

f∗(x)

0 1 2 3 4 5 6

Figure A.9.
Geostatistical simulations for the
situation shown in Figure A.8.
Green symbols represent data, thin
solid and dashed red lines are kriged
values and standard deviation of
estimation, respectively, thick red
line is one particular simulation
and thin dotted black lines are 30
additional simulations.

that suffices for the simulation. Using the kriged values will clearly lead to a
field that is unrealistically smooth, hence the simulated velocity field will be
much too smooth and the dispersion will be underestimated. In order to deal
with this difficulty, we require realizations of the random function, but only
those that honor the measured data. Generating such realizations is referred
to as “geostatistical simulation”.

A number of algorithms have been developed to generate realizations that
are conditioned on measured data. The most accurate ones start out from
the given data and sequentially generate values at randomly chosen locations,
typically on a grid, from kriging of all the previously assigned values [e.g.,
Deutsch and Journel 1998]. Obviously, this is a rather expensive undertaking
and more simple, albeit less accurate methods often suffice.

In the simplest approach to geostatistical simulation, realizations of some
weakly stationary random function with the desired spatial structure are
modified such that their expectation equals that of the kriged dataset. Let
g(x) be such a realization – a possible approach to its generation is described
on page 301f – and let {xi, fi} be the available dataset. Clearly, the covari-
ance structure of g(x) is chosen such as to represent the structure underlying
the dataset. We define two interpolating functions: f∗ obtained from kriging
the dataset and g∗ obtained from kriging the corresponding set {xi, g(xi)}.
The two functions thus contain the analogous information, one from the
dataset, the other from the realization. Finally, we define the geostatistical
simulation of the dataset as

f(x) := g(x)− g∗(x) + f∗(x) . (A.70)

Figure A.9 shows simulations of the dataset used in the previous figures. As
expected, each of the simulations is much more irregular than the kriged data.
Near the given data points, the variability between realizations is greatly
reduced but it increases rapidly for distances larger than the correlation
length.
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We note in closing that there exist a number of excellent resources for
geostatistical analysis. Most prominent areGSlib [Deutsch and Journel 1998],
which is available from ekofisk.stanford.edu/SCRFweb/supporting, and
Gstat [Pebesma and Wesseling 1998]

A.3

Laplace Transform

Linear partial differential equations (PDE) may often be solved efficiently
by integral transforms which turn differentiation with respect to a chosen
variable into an algebraic form. Thereby, the PDE can be transformed into an
ordinary differential equation or even into an algebraic equation which can be
solved readily. The result is then transformed back into normal space.

An integral transform of some function, say f(t), consists of an integration
of f(t), multiplied by a weighting factor, over the entire domain of the
variable t. The weighting factor contains the product of t and a parameter,
the so-called conjugate variable. The domain of t determines the type of
integral transform that is optimal. For the case of a semi-infinite domain,
this is the Laplace transform which is defined as

L : f(t) 7→ f̂(s) :=

∫ ∞

0

f(t) exp(−st) dt . (A.71)

This definition can be extended to a function f(t, x1, . . . , xn) of several vari-
ables,

f̂(s, x1, . . . , xn) :=

∫ ∞

0

f(t, x1, . . . , xn) exp(−st) dt . (A.72)

Many functions (or generalized functions) have Laplace transforms which can
be obtained by direct integration of (A.71). Examples are:

• Heaviside’s Step Function H(t)

Ĥ(s) =

∫ ∞

0

exp(−st) dt = −1

s
exp(−st)

∣∣∣
t=∞

t=0
=

1

s
(A.73)

• Dirac’s Function δ(t− a)

δ̂(s) =

∫ ∞

0

δ(t− a) exp(−st) dt =
{
exp(−sa) a > 0,

0 a < 0
(A.74)

Notice that (A.74) is undefined for a = 0. In the following, we will
always use L

(
δ(t)

)
= 1.

4 The sections on Laplace and Fourier transforms have been adapted from Jury and Roth

[1990] with minor changes.
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• Power Function tN

t̂N (s) =

∫ ∞

0

tN exp(−st) dt = N !

sN+1
(A.75)

A.3.1
Transforms of Derivatives and Integrals

One of the major uses of Laplace transforms is in the solution of ordi-
nary or partial differential equations, where often the dependent variable
is differentiated or integrated with respect to time. The Laplace transform
operation (A.71) of multiplying by exp(−st) and integrating over t from 0
to ∞ can be applied to each side of a differential equation, and to the
boundary conditions. As a preface to that exercise, the Laplace transform of
a derivative and integral of a function with respect to t will be evaluated. In
these exercises, as well as in future calculations, extensive use will be made
of the formula for integrating by parts,

∫ b

a

u(x) dv(x) = u(x)v(x)
∣∣∣
b

a
−
∫ b

a

v(x) du(x) . (A.76)

Transforming Partial Derivatives

L
[
∂tf(x, t)

]
=

∫ ∞

0

∂tf(x, t) exp(−st) dt

= f(x, t) exp(−st)
∣∣∣
∞

0
+ s

∫ ∞

0

f(x, t) exp(−st) dt ,

= −f(x, 0) + sf̂(x; s) (A.77)

Note that the initial value f(x, 0) of the function appears as part of the
transform of the time derivative of f(x, t). The Laplace transform of the
second time derivative is similar, except that two integrations by parts must
be carried out, hence

L
[
∂ttf(x, t)

]
= ∂tf(x, t) exp(−st)

∣∣∣
∞

0
+ s

∫ ∞

0

∂tf(x, t) exp(−st) dt .

= −∂tf(x, 0)− sf(x, 0) + s2f̂(x; s) . (A.78)

If the function is differentiated by a variable other than the one being trans-
formed, the order of differentiation and integration may be reversed.

L
[
∂xf(x, t)

]
=

∫ ∞

0

[∂xf(x, t)] exp(−st) dt = ∂x

∫ ∞

0

f(x, t) exp(−st) dt

= ∂xf̂(x; s) . (A.79)

Note that if we regard s as a parameter, then the derivative of the Laplace
transform in (A.79) may be written as a total derivative rather than as a
partial one.
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Transforming Integrals The integral of a function over t may be evaluated
using the integration by parts (A.76), hence

L
[∫ t

0

f(x, t′) dt′
]
=

∫ ∞

0

∫ t

0

f(x, t′) exp(−st) dt′ dt

= −exp(−st)
s

∫ t

0

f(x, t′) dt′
∣∣∣∣
t=∞

t=0

+
1

s

∫ ∞

0

f(x, t) exp(−st) dt ,

=
1

s
f̂(x; s) . (A.80)

A.3.2
Transformed Solution of Differential Equations

The formulas given in (A.77)–(A.80) make it possible to calculate the Laplace
transform of the solution to many ordinary and partial differential equations
of interest in physics and engineering, as illustrated in the next two exam-
ples.

Example: Laplace Transform Solution of the Damped Harmonic Oscillator A
spring of force constant k is attached at one end to a mass m lying on a table,
and at the other end to a wall at the end of the table. The equilibrium length
of the spring (at which it exerts no force on the mass) is x0. At time t = 0, the
spring is stretched out to a position x1 > x0 and released. We wish to calculate
the motion x(t) of the mass for t > 0, assuming that the table exerts a frictional
force F = −βdtx(t) on the mass.

By Newton’s first law of motion,

∑

i

Fi = ma = mdttx = −βdtx− k[x− x0] , (A.81)

where Fi are the forces (friction and spring) on the mass. Equation (A.81) is to be
solved subject to the initial conditions x(0) = x1 and dtx(0) = 0. Transforming
(A.81) into Laplace space using (A.73), (A.77), (A.78), and the initial conditions
yields

ms2x̂−msx1 + βsx̂− βx1 + kx̂− kx0
s

= 0 . (A.82)

This is merely an algebraic equation for the function x̂(s), the transform of x(t).
Thus

x̂(s) =
msx1 + βx1 + kx0/s

ms2 + βs+ k
, (A.83)

which is the Laplace transform of the solution to (A.81) for the given initial
conditions. Interested readers may evaluate the inverse transform using the
table of transforms in Section A.3.5.
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Example: Laplace Transform Solution of the Heat Equation Transforming a
two-dimensional partial differential equation into Laplace space yields an ordi-
nary differential equation which is much easier to solve. This is illustrated for
the one-dimensional heat flow equation which may be written as [Carslaw and
Jaeger 1990]

∂tT (x, t) = Dh∂xxT (x, t) (A.84)

where Dh is the thermal diffusivity. We consider the semi-infinite medium 0 <
x <∞ with zero initial temperature, whose inlet surface at x = 0 is held at the
constant value T0 for all times t > 0. Transforming this into Laplace space and
considering for the time being the conjugate variable s as a parameter produces
the ordinary differential equation

dxxT̂ (x)− q2T̂ (x) = 0 , T̂ (∞) = 0 , T̂ (0) =
T0

s
, (A.85)

where q :=
√
s/Dh. Substituting the trial solution T̂ (x) = exp(−mx) yields

[m2 − q2] exp(−mx) = 0 , (A.86)

which for arbitrary x can be satisified only if m = ±q. Therefore, the general
solution to (A.85) becomes

T̂ (x) = A exp(−qx) +B exp(qx) , (A.87)

where A and B are constants which may depend on the variable s but not on x.
Since q > 0, the condition for T (0) requires A = T0/s and the one for T (∞)
leads B = 0, hence

T̂ (x) =
T0

s
exp

(
−x

√
s

Dh

)
, (A.88)

which is the Laplace transform of the solution to (A.84) with the given intial
and boundary conditions.

A.3.3
Statistical Moments

Solving amenable differential equations in Laplace space is often easy. The
more difficult is invariably the transformation of the solution back into real
space. However, for some applications this solution may not be required and
knowing the statistical moments of the solution may already suffice. This is
in particular the case for many transport problems. The statistical moments
of a pdf, p̂(s) in Laplace space, may be calculated as

〈tn〉 = [−1]n
∂np̂(s)

∂sn

∣∣∣
s=0

. (A.89)

This is most easily demonstrated by directly inserting the definition of p̂(s)
into (A.89). Taking the nth derivative with respect to s – notice that t and
p(t) are not affected – yields

∫∞

0
p(t)[−t]n exp(−st) dt. Evaluating this at

s = 0 and recalling definition (A.19) leads to (A.89).
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A.3.4
Inverse Laplace Transformation

Direct Integration The transformation from Laplace space back into nor-
mal space may be formulated as

L−1 : f̂(s) 7→ f(t) :=
1

2πi

∫ γ+i∞

γ−i∞

f̂(s) exp(st) ds , (A.90)

where i :=
√
−1 and γ is a positive constant such that all singularities of f̂(s)

lie to the left. The integral is then evaluated using the calculus of residues
[e.g., Arfken and Weber 1995]. This integration is often rather cumbersome,
and will not be considered here any further. However, there exist several
alternatives to accomplish the inversion: direct inversion using a computer
mathematics program like Mathematics or Maple, numerical inversion, and
inversion tables.

Numerical Inversion Numerical evaluation of (A.90) is possible in many
cases if the function f(t) is reasonably smooth. A Fortran program for a
versatile inversion method is given in Jury and Roth [1990]. Numerical
inversion is often computationally more efficient than direct evaluation of
the analytic expressions found in inversion tables, or by contour integration.
However, it is often unstable.

Inversion Tables The most common method of inversion is to use the
tables of standard forms furnished in numerous mathematical handbooks.
A set of the most commonly encountered transforms in solute transport is
provided in Section A.3.5.

For example, the inverse transform of (A.88) may be calculated from (LT.9)
as

T (x, t) = T0erfc
( x

2
√
Dht

)
. (A.91)

In many cases, a Laplace transform which is not in the table can be converted
to one of the standard forms by various transform operations. The most
useful of these are given below.

Some Theorems for the Inverse Laplace Transform

Shifting Theorem

f̂(s) = L
[
f(t)

]

⇓

L−1
[
f̂(as+ b)

]
= exp

(
−bt
a

)
L−1

[
f̂(as)

]
=

1

a
exp

(
−bt
a

)
f
( t
a

)
(A.92)
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Example: Inversion of Travel Time PDF for Convection-Dispersion Solving
the convection-dispersion equation produces for the travel time pdf

p̂t(s;x) = exp
( vx
2D

[1− ξ]
)
, ξ =

√
1 +

4sD

v2
. (A.93)

This function does not appear in the table of transforms. However, using (A.92),
we may transform it as follows

p̂t(s;x) = exp
( vx
2D

[
1−

√
1 +

4sD

v2

])
= exp

( vx
2D

)
exp

(
− vx

2D

√
4D

v2

√
v2

4D
+ s

)

= exp
( vx
2D

)
exp

(
− x√

D

√
v2

4D
+ s

)
. (A.94)

This expression contains s only in the form s + v2/4D. Therefore, letting x =
x/

√
D, the inverse transform can be obtained with (A.92) as

pt(t;x) = L−1[p̂t(s;x)
]
= exp

( vx
2D

− v2t

4D

)
L−1[exp(−x

√
s)
]

(A.95)

which may be completed with (LT.7) to obtain

pt(t;x) = exp
( vx
2D

− v2t

4D

) x

2
√
πDt3

exp
(
− x2

4Dt

)

=
x

2
√
πDt3

exp
(
− [x− vt]2

4Dt

)
. (A.96)

Convolution Theorem

f̂1(s) = L
[
f1(t)

]
and f̂2(s) = L

[
f2(t)

]

⇓
f̂1(s)f̂2(s) = L

[∫ t
0
f1(τ)f2(t− τ) dτ

]
(A.97)

where we used
∫ t
0
f1(τ)f2(t − τ) dτ =

∫∞

0
f1(τ)f2(t − τ) dτ because, by

definition, f2(t) = 0 for t < 0. Also notice that
∫ t
0
f1(τ)f2(t − τ) dτ =∫ t

0
f1(t− τ)f2(τ) dτ .

Example: Inversion of the Transform of the Travel Time CDF of the CDE
The solute flux js(t;x) through the plane at x in response to the arbitrary flux
js(t; 0) through the plane at 0 is given by

js(t;x) =

∫ t

0

js(τ ; 0)pt(t− τ ;x) dτ , (A.98)

hence,
ĵs(s;x) = ĵs(s; 0)p̂t(s;x) . (A.99)

We consider as an example the response to the input flux step js(t; 0) = H(t).
With (A.98), this response may be written as

js(t;x) =

∫ t

0

z

2
√
πDτ3

exp
(
− [z − vτ ]2

4Dτ

)
dτ , (A.100)
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which is a difficult integral. However, using the convolution theorem with
the transforms (A.73) and (A.93), we may also express this in Laplace space
as

ĵs(s;x) =
1

s
exp

(
vx

2D

[
1−

√
1 +

4sD

v2

])
. (A.101)

Inverting this using (A.92) and (LT.11) yields

js(t;x) = exp
( vx
2D

− v2t

4D

)
L−1

[ 1

s− V 2/4D
exp(−x

√
s)
]

=
1

2

[
erfc

(x− vt

2
√
Dt

)
+ exp

(vx
D

)
erfc

(x+ vt

2
√
Dt

)]
. (A.102)

Generalized Convolution Theorem [Walker 1987]

f(t1, t2) = L−1
s1

[
L−1
s2

[
g(s1, s2)

]]

⇓∫ t
0
f(τ, t− τ) dτ = L−1

[
g(s, s)

]
. (A.103)

This is an extremely valuable tool for inverting complex transforms, by
allowing the s-dependence of the transform to be split up into two terms
which are inverted separately. This procedure will be illustrated in the next
example.

Example: Inversion of the Travel Time PDF of the CDE Under Rate Limited
Adsorption The travel time pdf of the CDE under rate limited adsorption
in Laplace space is given in dimensionless form by (7.49) on page 212. In
dimensional form, it may be written as

p̂t(s1, s2;x) = exp
( vx
2D

)
exp

(
− vx

2D

√

1 +
4D

v2

[
s1 +

s2β[R− 1]

s2 + β

])
, (A.104)

where β = α/ρb. In the first inversion with respect to s1, the parameter s2 may
be treated as a constant. Therefore, we may use the shifting theorem (A.92) to
produce

L−1
s1

[
p̂t(s1, s2;x)

]

= exp
(
−s2β[R− 1]t1

s2 + β

)
L−1

s1

[
exp

( vx
2D

[
1−

√
1 +

4Ds1
v2

])]

︸ ︷︷ ︸
pct (t1,x) , see(A.96)

= exp
(
−s2β[R− 1]t1

s2 + β

)
pct(t1, x)

= exp(−β[R− 1]t1) exp
(β2[R− 1]t1

s2 + β

)
pct(t1, x) , (A.105)
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where pct(t1, x) is the travel time pdf of a conservative tracer expressed in terms
of t1 rather than t. The second inversion with respect to s2 involves only the
middle term, whose inverse transform is given by (LT.25). Thus

f(t1, t2) = L−1
s2 L−1

s1

[
p̂t(s1, s2;x)

]

= A(t1)p
c
t(t1, x)

[
δ(t2) + T (t1, t2)B(t2)

]
, (A.106)

where

A(t) = exp(−β[R− 1]t)

B(t) = exp(−βt)

T (t1, t2) = β

√
[R− 1]t1

t2
I1
(
2β

√
[R− 1]t1t2

)
(A.107)

and I1 is the modified Bessel function of order 1 [Abramowitz and Stegun 1970].
With (A.103) we finally obtain

pt(t; z) = A(t)pct(t;x) +

∫ t

0

A(τ)T (τ, t− τ)B(t− τ)pct(τ ;x) dτ . (A.108)

A.3.5
Table of Laplace Transform Pairs

This table is adapted from Jury and Roth [1990] who compiled it from entries found
in van Genuchten and Alves [1982], Abramowitz and Stegun [1970], and Walker
[1987]. The first reference provided the source for the abbreviations

A =
1√
πt

exp
(
−x

2

4t

)
, B = erfc

( x

2
√
t

)

C± = exp
(
a2t± ax

)
erfc

( x

2
√
t
± a

√
t
)
.

IN is the modified Bessel function of integer order N ; a and b are constants.

f(t) f̂(s)

δ(t) 1 (LT.1)

1
1

s
(LT.2)

tN
N !

sN+1 (LT.3)

exp(−at)
1

s+ a
(LT.4)

sin(at)

a

1

s2 + a2
(LT.5)
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cos(at)
s

s2 + a2 (LT.6)

x

2t
A exp(−x

√
s) (LT.7)

A
exp(−x√s)√

s
(LT.8)

B
exp(−x√s)

s
(LT.9)

2tA− xB
exp(−x√s)

s
√
s

(LT.10)

C− + C+

2

exp(−x√s)
s− a2

(LT.11)

C− − C+

2a

exp(−x√s)√
s[s− a2]

(LT.12)

A− aC+
exp(−x√s)√

s+ a
(LT.13)

C+
exp(−x√s)√
s[
√
s+ a]

(LT.14)

B − C+

a

exp(−x√s)
s[
√
s+ a]

(LT.15)

tA+
C−

4a
− C+

4a
[1 + 2ax+ 4a2t]

exp(−x√s)
[s− a2][

√
s+ a]

(LT.16)

− tA
a

+
C−

4a2
+

C+

4a2
[−1 + 2ax+ 4a2t]

exp(−x√s)√
s[s− a2][

√
s+ a]

(LT.17)

tA
a2

− B
a3

+
C−

4a3
+

C+

4a3
[3− 2ax− 4a2t]

exp(−x√s)
s[s− a2][

√
s+ a]

(LT.18)

[1 + ax+ 2a2t]C+ − 2atA
exp(−x√s)
[
√
s+ a]2

(LT.19)

2tA− [x+ 2at]C+ exp(−x√s)√
s[
√
s+ a]2

(LT.20)

C+

a2
[−1 + ax+ 2a2t] +

B
a2

− 2t

a
A

exp(−x√s)
s[
√
s+ a]2

(LT.21)

C−

8a2
− tA

2a
[1 + ax+ 2a2t]

+
C+

8a2
[
−1 + 2ax+ 8a2t+ 2a2[x+ 2at]2

]
exp(−x√s)

[s− a2][
√
s+ a]2

(LT.22)
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I0
(
2
√
at
) 1

s
exp

(a
s

)
(LT.23)

I0
(
2
√
at
)
exp(−bt) 1

s+ b
exp

( a

s+ b

)
(LT.24)

δ(t) + I1
(
2
√
at
)√a

t
exp(−bt) exp

( a

s+ b

)
(LT.25)

1−
∫ a

0

exp(−y − bt)I0
(
2
√
ayt

)
dy =: J(a, bt)

1

s
exp

(
− as

s+ b

)
(LT.26)

(Goldstein’s J-function)

A.4
Fourier Transform

The Fourier transform is optimal for functions with an unbounded support
and may be defined as5

F : f(x) 7→ f̃(k) :=

∫ ∞

−∞

f(x) exp(−ikx) dx (A.109)

with the corresponding inverse

F−1 : f̃(k) 7→ f(x) :=
1

2π

∫ ∞

−∞

f̃(k) exp(ikx) dk , (A.110)

where k is the wave vector, the variable conjugate to x, and i :=
√
−1. In

contrast to the inverse integral (A.90) of the Laplace transform, the inverse
Fourier transform is an ordinary definite integral. Therefore, any tabulation
of definite integrals can be used to invert it and in addition the numerical
inversion is stable and can be implemented efficiently through the FFT (Fast
Fourier Transform) [e.g., Press et al. 2002].

One may also define the n-dimensional Fourier transform as [Arfken and

Weber 1995]

F : f(x) 7→ f̃(k) :=

∫ ∞

−∞

f(x) exp(−ik · x) dx ,

F−1 : f̃(k) 7→ f(x) :=
1

[2π]n

∫ ∞

−∞

f̃(k) exp(ik · x) dk . (A.111)

5 A general definition is f̃(k) :=
√

|b|/[2π]1−a
∫∞
−∞

f(x) exp(ibkx) dx, where popular

choices for {a, b} are {0, 1} (physics), {1,−1} (mathematics), {−1, 1} (classical physics),
and {0, 2π} (signal processing). We choose {a, b} = {1,−1} in order to obtain the same
structure as for the Laplace transform introduced above.
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Example: Fourier Transform of the Exponential Covariance Function The
three-dimensional, isotropic, exponential covariance function may be written
as

Cyy(r) = σ2
y exp(−r/ℓy) , (A.112)

where r is the separation between locations of the random variable y. Its Fourier
transform is most easily evaluated in spherical coordinates, hence, with r = |r|
and k = |k|,

F
[
Cyy(r)

]
= σ2

y

∫ ∞

0

∫ π

0

∫ 2π

0

exp
(
− r

ℓy
+ ikr cos(θ)

)
r2 sin(θ) drdθdφ

=
2πσ2

Y

ik

∫ ∞

0

[
exp

(
r
[
ik − 1

ℓy

])
− exp

(
−r

[
ik +

1

ℓy

])]
r dr

=
8πσ2

Y ℓ
3
y[

1 + [kℓy]2
]2 , (A.113)

where we have used
∫∞

0
xn exp(−ax) dx = n!/an+1.

The Fourier transform of the autocorrelation function appears in the formula-
tion of the macrodispersion coefficients on stochastic continuum theory [Gelhar
and Axness 1983; Dagan 1984]. Notice that the expression (A.113) differs by a
constant factor from the one given by Dagan [1984] because of the difference in
the definition of the Fourier transform.

Example: Travel Distance PDF for the CDE in Infinite Soil One can shown
that the Fourier transform of the travel distance pdf for the CDE in infinite soil
may be written as

f̃x(k; t) = exp(−ikvt− k2Dt) . (A.114)

Transforming this back into normal space yields

fx(x, t) =
1

2π

∫ ∞

−∞

exp(−k2Dt+ ik[x− vt]) dk

=
1

2π

∫ ∞

−∞

exp

(
−Dt

[
k − i[x− vt]

2Dt

]2
− [x− vt]2

4Dt

)
dk

=
1

2π
√
Dt

exp
(
− [x− vt]2

4Dt

)∫ ∞

−∞

exp(−y2) dy

=
1

2
√
πDt

exp
(
− [x− vt]2

4Dt

)
, (A.115)

where the substitution y :=
√
Dt

[
k−i[x−vt]/2Dt

]
was used. This shows that the

travel distance pdf for the CDE in an unbounded domain is a Gaussian.

A.5

Differential Equations
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A.5.1
Ordinary Differential Equations

A.5.2
Partial Differential Equations

Partial differential equations (PDEs) typically arise from the description of
the dynamics of spatially extended systems. Their solution is not straight-
forward and a number of instruments are available to approach them. While
integral transforms (Laplace, Fourier,. . . ) are very powerful instruments for
many linear PDEs a solution may be gained more easily by guessing an
appropriate ansatz. This is demonstrated in the following for some important
cases.

Diffusion Equation with Periodic Forcing As a characteristic example we
consider the one-dimensional form

∂tT (z; t)−D∂zzT = 0 (A.116)

of the heat conduction equation (8.15). In order to solve it, we employ the
ansatz

T (z; t) = f(t)g(z) , (A.117)

which presumes that temperature can be decomposed into the product of a
time- and a space-function. Inserting this into (A.116) and rearranging under
the premise that neither f nor g vanishes anywhere decomposes (A.116) into
a time- and a space-problem, namely

∂tf(t)

f(t)
= D

∂zzg(z)

g(z)
. (A.118)

Apparently, both sides of this equation must be constant since the left hand
side depends only on t and the right hand side only on z, both of which vary
independently. Let this constant be γ, possibly a complex number. First
solve the z-problem ∂zzg(z) = [γ/D]g(z) and obtain

g(z) = β1 exp
(
z
√
γ/D

)
+ β2 exp

(
−z

√
γ/D

)
, (A.119)

with constants β1 and β2.

Semi-Infinite Uniform Medium The appropriate boundary conditions for
a semi-infinite medium are g(0) = 1 and limz→∞ g(z) = 0. This leads
to

g(z) = exp
(
−z

√
γ/D

)
. (A.120)

Next, we consider the t-problem ∂tf(t) = γf(t) which is solved by

f(t) = α exp(γt) , (A.121)
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where α is again a constant. Inserting f(t) and g(z) into (A.117) finally
yields

T (z; t) = α exp
(
γt− z

√
γ

D

)
. (A.122)

We aim at describing a system that is forced periodically at z = 0. As a
first step we impose T (0; t) = α exp(iωt). This apparently leads to γ = iω
and further to

T (z; t) = α exp
(
iωt− z

√
iω

D

)
= α exp

(
iωt− z

√
ω

2D
[1 + i]

)
. (A.123)

Introducing the penetration depth

z0(ω) =

√
2D

ω
(A.124)

this may be written as

T (z; t) = α exp
(
− z

z0(ω)

)
exp

(
i
[
ωt− z

z0(ω)

])
(A.125)

As a final step, consider the arbitrary forcing T0(t) at z = 0 and, with
(A.110), write its Fourier representation as

T0(t) =
1

2π

∫ ∞

−∞

T̃0(ω) exp(iωt) dω . (A.126)

Since heat conduction equation (A.116) is linear, the principle of superposi-
tion is applicable and, employing (A.125), the solution to the above forcing
may be written as

T (z; t) =
1

2π

∫ ∞

−∞

T̃0(ω) exp
(
− z

z0(ω)

)
exp

(
i
[
ωt− z

z0(ω)

])
dω . (A.127)

We notice that (i) T̃0(ω) is in general complex which leads to a corresponding
shift in the phase, (ii) for a periodic forcing the integral reduces to a sum,
and (iii) this expression may be interpreted as the projection of the surface
forcing to depth z.

Uniform Medium with T = 0 at Finite Lower Boundary Let the lower
boundary be at z = ℓ. The appropriate boundary conditions for (A.119) are
then g(0) = 1 and g(ℓ) = 0. This leads to

β1 =
1

1− κ
, β2 = − κ

1− κ
, κ = exp

(
2ℓ
√
γ/D

)
. (A.128)

Inserting this, together with γ = iω, into (A.119) and further into (A.117)
leads to the somewhat complicated expression

T (z; t) = do this with Mathematica . (A.129)

[see hand-written notes]
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Numerical Methods

The aim of this appendix is to offer a glimpse at some important numerical
methods. More extensive and authoritative treatments are available and
should be consulted whenever numerical approaches are used. A good start-
ing point for general numerical algorithms is Press et al. [2002].

B.1
Partial Differential Equations

Partial differential equations (pde) play a dominating role in modeling dy-
namical systems. However, only a very small class of them can be solved
analytically. This has stirred early interest in numerical methods for ap-
proximate solutions. Pioneering work was done by Euler and Gauss in the
eighteenth century and some of todays methods were already in routine use
a hundred years ago [Richardson 1910, e.g., ]. Numerical methods began to
spread rapidly with the advent of digital computers and their importance
increased ever since. In the past few decades, they also facilitated deeper
insight into the highly nonlinear processes of flow, transport, and interaction
phenomena in soils and aquifers [Remson et al. 1971; Huyakorn and Pinder

1983; Helmig 1997].
Before looking into some of the numerical methods for solving a pde, we

recall that they typically arise as a formulation of the state or evolution of
some dynamic system. For a complete description, they have to be supple-
mented with boundary conditions which formulate the external forcing and
possibly with initial conditions if we consider an evolving system. As we will
find, the necessity for such conditions arises naturally when implementing
numerical solutions.

The fundamental challenge for the numerical solution of a pde is the
fact that computers can handle only limited amounts of information but
that an infinite amount is required for describing a continuous function in
general. The solution to this is discretization, typically in space and time but
sometimes also in the variable (particle tracking) or in frequency (spectral
methods). We will study two widely employed approaches – finite differences

325



326 B Numerical Methods

Figure B.1.
Discretization of the domain {(z, t) |
z ∈ [Z0, Z1], t ∈ [T0, T1]} for the finite
difference method. The arrows indicate
the flow of information for an implicit
formulation.
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and finite elements – and use as an example the one-dimensional Richards
equation in the form

C(h)∂th− ∂z
[
K(h)[∂zh− 1]

]
= 0 . (B.1)

Solving (B.1) means finding the function h(z, t) which (i) satisfies the pde in
the interior of the domain {(z, t) | z ∈ [Z0, Z1], t ∈ [T0, T1]} and (ii) satisfies
the imposed initial and boundary conditions, e.g., h(z, T0) = I(z), h(Z0, t) =
B0(t), and h(Z1, t) = B1(t). Both, finite differences and finite elements, first
discretize space and time.

B.1.1
Finite Differences

An intuitive approximation of a pde replaces derivatives by finite differences
on a discrete grid with grid constant ∆z in space and ∆t in time (Figure B.1).
Adding and subtracting Taylor series expansions of h(z+∆z) and h(z−∆z),
yields the approximations

∂zh(z) ≈ h(z +∆z)− h(z −∆z)

2∆z

∂zzh(z) ≈ h(z +∆z)− 2h(z) + h(z −∆z)

∆z2
. (B.2)

For ∂th(t), we use the analogous but lower order approximation

∂th(t) ≈
h(t+∆t)− h(t)

∆t
. (B.3)

We denote a point on the grid by (zi, t
j) and further introduce the abbre-

viations ∆t = tj+1− tj , hji = h(zi, t
j), and Cj+1

i = C(h(zi, t
j+1)). With this,

we approximate the first term of (B.1) by

C(h)∂th(zi, t
j+1) ≈ Cj+1

i

hj+1
i − hji
∆t

. (B.4)
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The choice to evaluate C at tj+1 leads to a so-called implicit formulation of
the finite difference approximation. It has the advantage of a higher numerical
stability although at the cost of a lower accuracy. Alternatives are the Crank-

Nicholson formulation C
j+ 1

2

i which is higher order accurate but less stable and

the explicit formulation Cji which does not require the solution of a system
of equations, as we will see in the following, but which is only conditionally
stable.

For the second term of (B.1), we find, after some algebraic manipula-
tions,

∂z
[
K(h)[∂zh− 1]

]
≈

Kj

i+ 1
2

[hji+1 − hji ]−Kj

i− 1
2

[hji − hji−1]

∆z2

−
Kj

i+ 1
2

−Kj

i− 1
2

∆z
. (B.5)

Inserting (B.4)–(B.5) into (B.1) finally yields the approximation

Cj+1
i

hj+1
i − hji
∆t

−
Kj+1

i+ 1
2

[hj+1
i+1 − hj+1

i ]−Kj+1

i− 1
2

[hj+1
i − hj+1

i−1 ]

∆z2
+
Kj+1

i+ 1
2

−Kj+1

i− 1
2

∆z
= 0 (B.6)

for (B.1). The choice to evaluate (B.5) at tj+1 again represents a fully implicit
formulation. The flow of information for this scheme is indicated by the
arrows in Figure B.1. The decision on where to evaluate C and K, and on
how to approximate their values at internodal points, e.g., Kj+1

i+ 1
2

, is crucial

for the performance of the resulting method and is discussed extensively in
textbooks on numerical techniques [Helmig 1997, e.g., ].

We notice that (B.6) cannot be evaluated at the boundary nodes z1 and
zm because values at the nonexistent nodes z0 and zm+1 are required. This
is naturally resolved by introducing the boundary conditions B0(t) and B1(t)
which automatically yield the values of hj1 and hjm for all j.

The approximation (B.6) consists of m − 2 equations, one for the matric
head hj+1

i at each node in space except for the boundary nodes, where the
head is already known. These equations are nonlinear because the material
properties C and K depend on the matric head h. To solve one of them,
the head hji for the earlier time tj is required. In addition, also the heads at
the new time tj+1 must be known at adjacent positions zi−1 and zi+1. This
leads to the coupling of the m− 2 equations and requires their simultaneous
solution. Efficient algorithms are readily available for solving coupled linear
equations. However, they are not immediately applicable to solving (B.6)
because of the nonlinearity. A common solution to this problem is to guess
the head at time tj+1 based on the known values at tj and to iteratively
improve this guess until (B.6) is satisfied to some given accuracy.
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Figure B.2.
Basis functions for linear finite
elements. The red line is the
basis function βi(z).

z

β

zi−1 zi zi+1

1

The numerical solution of (B.1) thus starts at t1 = T0 with the given initial
condition I(z) and iteratively calculates the matric head at t2 = T0 + ∆t,
performing a so-called time step. Repeating time steps propagate the solution
through the domain of interest to tn = T1.

B.1.2
Finite Elements

A popular alternative to finite differences are finite elements which are more
flexible for higher dimensional problems and for irregularly shaped domains.
However, the underlying theory is more demanding and the resulting codes
are more involved. Finite elements are typically used for solving the spatial
part of the problem only with the temporal evolution still handled by finite
differences. To illustrate the concept of finite elements, we consider stationary
flow for which (B.1) simplifies to

∂z
[
K(h)[∂zh− 1]

]
= 0 . (B.7)

With finite differences, an approximation for the value of h is sought at grid
nodes and h is undefined at other locations. These values can be interpolated,
of course, but this is not part of the numerical solution and hence not
quality-controlled during the simulation. In contrast, the finite element
formulation divides the domain of interest into small subregions, so-called
elements, typically low-order simplexes. These include one-dimensional line
segments, two-dimensional triangles or quadrangles, and three-dimensional
tetrahedrons. Within each element, the function h is approximated by basis
functions. These are typically low-order polynomials, in the most simple case
linear functions.

For the one-dimensional problem (B.7), element i is the line segment
between zi−1 and zi, and the basis function βi(z) is a piecewise linear function
which equals 1 at zi and is 0 at all other nodes (Figure B.2). The βi form a
basis – not an orthogonal one – of the space of continuous, piecewise linear
functions. An approximation of the solution of (B.7) from this space may
thus be written as

ĥ(z) =
∑

i

hiβi(z) , (B.8)
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where hi is the value of h at zi and where the index i runs through all nodes.
In general, ĥ(z) does not satisfy (B.7) and the residual

R(ĥ(z)) := ∂z[K(ĥ(z))[∂zĥ(z)− 1]] (B.9)

is different from 0. The aim then is to find ĥ(z) such that R(ĥ) is minimal.

Since R(ĥ) is a function, however, there exist various ways to define “mini-
mal”. A popular approach is to again use the basis functions βi for weighing
R(ĥ) and to require the resulting integral over the entire domain Ω to vanish.
For our simple example, we thus want

∫

Ω

βi(z)∂z
[
K(ĥ(z))[∂zĥ(z)− 1]

]
dz = 0 , ∀i . (B.10)

This approach is known as Galerkin’s method. The first step in evaluating
(B.10) is an integration by parts which leads to

βi(z)K(ĥ(z))[∂zĥ(z)− 1]
∣∣∣
∂Ω

−
∫

Ω

β′
i(z)K(ĥ(z))[∂zĥ(z)− 1] dz = 0 , (B.11)

where ∂Ω denotes the boundary of the domain Ω and β′
i := ∂zβi. This

integration removes the problems that arise from using the second derivative
of a function that is only piecewise linear, here the basis function βi. It fur-
thermore provides a natural way of including flux-type boundary conditions,
since the first term in (B.11) is the negative of the water flux jw across the
boundary, weighted with the basis function. Notice that for most i, this term
vanishes since βi is only nonzero at the boundary for the first and the last
basis function, respectively.

Inserting (B.8) into (B.11) and rearranging finally yields

βi(z)jw

∣∣∣
∂Ω

−
∫

Ω

Kβ′
i(z) dz +

∑

j

ĥj

∫

Ω

Kβ′
i(z)β

′
j(z) dz = 0 , (B.12)

where the index j runs through all nodes. Notice with Figure B.2 that most
terms in the sum vanish since only overlapping basis functions contribute. If
we neglect the dependence of K on h, the integrals are constant and (B.12)

is a system of linear equations for the unknown heads ĥj . This is for instance
the case for saturated conditions. For unsaturated flow, we are again faced
with the problem to interpolateK within the element and to solve a nonlinear
system of equations. This has already been discussed for the method of finite
differences.

B.2
Nonlinear Parameter Estimation

An inverse problem can be solved by parameterizing the underlying physics
with a model M that depends on m parameters p = {p1, . . . , pm}. It
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then reduces to finding p such that the given dataset d = {d1, . . . , dn}
for generalized locations x = {x1, . . . , xn} is optimally described by the
corresponding model predictions M(x;p). This is often accomplished by
minimizing the cost function

χ2(p) =

n∑

i=1

[di −M(xi;p)

σi

]2
, (B.13)

where σi is the uncertainty of data di, where we have assumed for simplicity
that the data are statistically independent. Generalized locations can be
space, time, or any other independent variable. Examples of inverse problems
can be found in Section 6.4.

There exist a number of approaches to minimize (B.13). In the following,
we consider the workhorse of nonlinear parameter estimation, the Levenberg-
Marquardt algorithm. It is an example of the so-called gradient methods.
These are typically highly efficient but are only able to find a local minimum.
If there exists only one minimum, as is the case for a well-designed pair of
experiment and model, then this obviously suffices.

In general, the function χ2(p) is very complicated with many local minima.
However, in the following we consider only the simple case with a single
well-defined minimum. If there are multiple minima, this just means that
the starting point must be sufficiently near to the desired minimum. We
approximate χ2(p) locally by the quadratic function

χ2(p) ≈ χ2
0 +

1

2
[p− popt]T A [p− popt] , (B.14)

where A with elements aij = ∂2χ2/[∂pi∂pj ] evaluated at popt is the constant
Hessian matrix and popt is the parameter array that minimizes χ2. We notice
that by its definition, A is symmetric and positive definite, i.e., vT

Av > 0 for
all vectors v with |v| > 0. Apparently, in the approximation (B.14) the op-
timal parameter array popt can be obtained in a one-step procedure,

popt = p− A
−1∇χ2(p) , (B.15)

from an arbitrary starting point p. Towards the edge of the validity of the
quadratic approximation, (B.15) still yields a very efficient iteration rule for
calculating popt. The matrix A then obviously has to be approximated by
calculating it at p.

If the initial estimate for popt is too far off, however, then (B.15) is quite
useless and the best we can do is to follow χ2 down-gradient. Naively, we
could try an iteration like pnext = pact−λ∇χ2(pact), where λ is some number.
However, the components of p are typically quantities with completely differ-
ent units and their numerical values may differ by orders of magnitude. Look
at Table 6.3 on page 179 for an example where p = {θr, θs, αd, αw, n, a,K0}T.
Obviously, the naive iteration is then dimensionally wrong and even if it is
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∇χ2

pi − popti

pj − poptj

χ2 = const

χ2 = const

p′j

p′i∇′χ2

Figure B.3. Sketch for the distortion of the original parameter space {pi} and
its remediation by the scaling {p′i} = {√aii[pi − popti ]}, where aii is a diagonal
component of the Hessian matrix A.

reduced to the numerical values alone, the metric of the parameter space
is wildly distorted (Figure B.3). To remediate this problem, we realize
with (B.15) that this distortion is determined by the Hessian matrix A and
introduce the dimensionless parameters

p′i =
√
aii[pi − popti ] . (B.16)

The down-gradient iteration then becomes

p′next = p′act − λ∇′χ2(p′act) , (B.17)

where ∇′ = {∂p′i} = {a−1/2
ii ∂pi}. Translating this back into normal space

finally yields the iteration

pnext = pact − λa−1
I∇χ2(pact) , (B.18)

where a−1 = {1/a11, . . . , 1/amm}, I is the identity matrix, and λ is a yet
undetermined number.

We thus have two different iteration rules, (B.15) for small distances from
the (unknown) optimal array popt and (B.18) for large ones. We notice that
a convenient smooth transition between these two is accomplished by

pnext = pact − [A−1 + λa−1
I]∇χ2(pact) , (B.19)

where λ varies between 0 near popt and some large value far from it. How
should we choose λ? This is a difficult question which determines the speed
of convergence, but not the final result. A simple approach, suggested by
Press et al. [2002], is to choose a small value to start with, say λ = 0.001 and
to check if χ2(pnext) < χ2(pact). If this is the case, reduce λ by a large factor,
say 10, and continue the iteration. Whenever this condition is not satisfied,
we are apparently too far away from the minimum and should shift more
towards moving down-gradient, hence increase λ by a factor of 10.

Finally, we need stopping criteria for the iteration. There are basically two
avenues available. The first one is based on the χ2-statistics and decides if a
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further reduction of χ2 is statistically significant. Indeed, with χ2 being a sum
of n independent Gaussian variates, 〈χ2〉 = n and var(χ2) = n. Applying this
to (B.13) and noticing that n data points to estimate m model parameters
leads to n − m degrees of freedom leads to 〈χ2〉 = n − m and var(χ2) =
n −m, provided model M is a correct description of the data and p is the
correct parameter vector. The correctness of the model is a tough premiss,
however. A more robust heuristic criterion for stopping the iteration is to
look at absolute and relative changes of p and to set corresponding break
points.

A final comment on the calculation of ∇χ2 and of A is in order. For the
components of the gradient we obtain with (B.13)

∂χ2(p)

∂pj
= −2

n∑

i=1

1

σ2
i

[di −M(xi;p)]
∂M(xi;p)

∂pj︸ ︷︷ ︸
=:Sj(xi;p)

, (B.20)

where Sj(xi;p) is the so-called model sensitivity for parameter pj at gen-
eralized location xi. The components of A result from taking a further
derivative,

∂2χ2(p)

∂pj∂pk
= 2

n∑

i=1

1

σ2
i

[
Sj(xi;p)Sk(xi;p)− [di −M(xi;p)]

∂2M(xi;p)

∂pj∂pk

]

≈ 2
n∑

i=1

1

σ2
i

Sj(xi;p)Sk(xi;p) . (B.21)

The approximation is motivated by the following facts: (i) Calculating the
second derivative is computationally expensive. (ii) In the neighborhood of
popt and for a correct model, the deviations di−M(xi;p) approach random
noise that is not correlated with the model. This part of the sum may thus
be expected to be very small. (iii) Approximations of A, even very crude
ones, only affect the path to popt, but not its final value.
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Modeling Exercises

Soil physical processes almost invariably lead to complicated, often non-linear
problems once they are studied beyond the most fundamental level. This is
certainly true for all practical issues like optimal irrigation with minimal
salinization, water harvesting in semi-arid regions, or contamination and
remediation of soils and aquifers, to just mention some. In addition, also more
conceptual considerations often lead to representations whose phenomenology
is hard to visualize let alone to quantify. These challenges invariably lead
to numerical simulations, an approach which in the past decades rapidly
evolved into a third pillar of our scientific understanding of the World, next
to experiment and theory.

This appendix collects a series of modeling exercises that expand the main
themes of these lecture notes and make them more tangible. These exer-
cises are separated into individual sections which follow the same structure:
(i) The thematic background is briefly outlined. (ii) A model representation
is proposed, (iii) simulated numerically, and presented. (iv) Some threads for
further exploration are suggested.

The exercises in this appendix go well beyond the traditional paper-pencil-
calculator approach and require more evolved tools. Given those tools,
however, and their appropriate command, the exercises are no more difficult
or time-consuming than those accessible to paper-pencil-calculator. There
are three classes of tools that are useful: (i) computer mathematics systems,
(ii) systems for technical computing, and (iii) dedicated solvers for partial
differential equations. The separations between these three classes are by
no means sharp and they indeed evolve rapidly. Prominent examples for
the first class are Mathematica1 and Maple,2 which both cover large parts
of mathematics and go well into the field of numerical simulations. A well-
known representative of the second class is MATLAB,3 a generic tool for data
analysis and simulations. There exists an open source clone, Octave4, and

1 www.wolfram.com/mathematica
2 www.maplesoft.com/products/Maple
3 www.mathworks.com/products/matlab
4 www.gnu.org/software/octave
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the similar, but incompatible, open source tool Scilab5. An example for the
third class, dedicated pde-solvers, is COMSOL Multiphysics6. The DUNE
project’s dune-pdelab7 offers a research oriented open platform for develop-
ing pde-solvers. Highly specialized, and correspondingly efficient solvers for
Richards’ equation include MuPhi (µϕ)8 and HYDRUS,9 with the latter only
available for the Windows operating system, however.

In the following, we will predominantly employMathematica, dune-pdelab,
and MuPhi and corresponding recipes are provided. The examples are for-
mulated in a generic way, however, such that they may be adapted easily to
other appropriate tools.

5 www.scilab.org
6 www.comsol.com/products/multiphysics
7 www.dune-project.org/pdelab
8 Olaf Ippisch, personal communication
9 www.pc-progress.com/en/Default.aspx?hydrus-3d and [Radcliffe and Šimu̇nek 2010]
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C.1

Stationary Water Flow in Layered Soil

Water flow in the vadose zone may often be described as stationary with
episodic strong fluctuation. Situations where stationary flow prevails include
(i) extended stretches of time with constant forcing, precipitation or evapo-
ration, when only the surface layer is of interest and (ii) the vadose zone at
a sufficient distance from the surface when fluctuations of the forcing have
abated.

The subsurface architecture is typically heterogenous and the surface is
not flat. For simplicity, we focus on situations with uniform and horizontal
layers. This is appropriate for many settings like agricultural fields in large
basins.

Model Formulation

Richards equation (6.2) is the appropriate formulation for the dynamics of
soil water. However, for stationary flow and layered soils, it suffices to just
integrate the ordinary differential equation (6.15) obtained from requiring
the Buckingham-Darcy flux to be constant. This approach is also much more
economical in terms of computing resources.

For the soil architecture, we consider a stack of uniform horizontal layers
with each of the materials described by the simplified Mualem-van Genuchten
parameterization (3.45) and (3.56) with parameters given in Table 3.1.

As boundary conditions, consider a range of infiltration and evaporation
fluxes. Recall from Section 6.2.1 that the infiltrating flux is limited by the
saturated hydraulic conductivity of the soil and that the maximum evapora-
tion flux that can be sustained indefinitely is reached as hm → ∞ at the soil
surface. Depending the hydraulic properties of the layers near the surface,
this may already happen at very small fluxes.

Numerical Simulation

We choose to employ Mathematica for the integration of the ODE (6.15) with
the code shown in Figure C.1. We consider two soil layers, sand on top of
silt, each 1 m thick, and define the conductivity function of the corresponding
stack with

k[h_, z_] := Piecewise[{{kmvg[h, p1], z<-1}, {...}}]

where kmvg[h, p] is the Mualem-van Genuchten parameterization with pa-
rameters p = {α, n, a,K0} and {...} represents the second and possibly
further layers.
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(* define the conductivity function for a stack of two materials... *)

k[h_, z_] := Piecewise[{

{kmvg[h, p1], z<-1},

{kmvg[h, p2], z>=-1}

}]

(* ...with Mualem-van Genuchten parameterization... *)

kmvg[h_, p_]:=p[[4]] (1+(p[[1]] h)^p[[2]])^(-p[[3]] (1-1/p[[2]]))

(1-(p[[1]] h)^(p[[2]]-1)(1+(p[[1]] h)^p[[2]])^(-1+1/p[[2]]))^2

(* ...and parameters *)

alpha1 = -2.0; n1 = 4.00; a1 = 0.5; k01 = 10^(-4); p1={alpha1, n1, a1, k01};

alpha2 = -0.5; n2 = 1.33; a2 = 0.5; k02 = 10^(-5); p2={alpha2, n2, a2, k02};

(* set effective conductivity as reference for boundary fluxes *)

k0eff = 1.81818 10^(-5);

(* specify set of dimensionless boundary fluxes to solve ODE for,

negative for evaporation, positive for infiltration *)

xi = {-6.8 10^(-6), -5.0 10^(-6), -2.5 10^(-6),

10^(-5), 10^(-4), 10^(-3), 10^(-2), 0.026, 0.1, 0.3};

(* calculate dimensional boundary flux *)

jw = xi k0eff;

(* numerically solve ODE in depth interval [-2 m, 0] for set of boundary

fluxes and groundwater table at z=0 *)

sol = Table[

NDSolve[{h’[z] == 1 - jw[[i]]/k[h[z], z], h[0] == 0},

h, {z, 0, -2}

],

{i, 10}

];

(* plot the resulting matric heads... *)

Plot[Evaluate[h[z] /. sol], {z, 0, -2}, PlotRange -> All]

(* ...and export them to a file for later processing *)

Export["stat-flow-layered-sl.dat",

Table[Flatten[{z, Flatten[Evaluate[h[z] /. sol]]}], {z, 0, -2, -0.05}]

]

(* clean up *)

ClearAll[jw, xi, k0eff, p1, p2, alpha1, n1, a1, k01, alpha2, n2, a2, k02]

Figure C.1. Mathematica code for calculating the matric head hm(z) for
stationary flow in layered medium. The graphical output is shown in Figure C.2.
The exported data were used to generate Figure 6.9 on page 149.
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Figure C.2.
Matric head hm(z)
for various stationary
water fluxes in layered
medium obtained with
Mathematica code
shown in Figure C.1.

Finally assume a constant water table at depth z = 0 and choose the same
values for the dimensionless fluxes ξ := jw/K

eff
0 as those in Figure 6.9 on

page 149.
At the heart of the simulation is the solver NDSolve which produces the

numerical solution for the ODE with the given boundary condition hm(0) = 0
and for the interval [−2 m, 0]. A somewhat compact notation was used in
that the list {xi} is used to hand down the entire set of fluxes to the solver
instead of looping over its elements individually. The result, stored in sol for
later use, consists of a set of interpolating functions which can be evaluated
for any z ∈ [−2, 0]. This is done by the operator Evaluate for plotting as
well as for exporting the data. Looking at the command

Plot[Evaluate[h[z] /. sol], {z, 0, -2}, PlotRange -> All]

in some more detail, it requests to evaluate the interpolating functions h[z]
contained in solution sol and to plot them in the interval [−2, 0] with the
plot range chosen such that all values are shown (Figure C.2).

Further Suggestions

• Change the order of materials such that silt is the top layer (see Fig-
ure 6.7 on page 147).

• Experiment with different thicknesses, different material parameters
and parameterizations, and add a third layer.

• What happens if the requested fluxes exceed their limits, i.e., too high
an infiltration or evaporation?
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C.2

Simple Atmospheric Forcing of Soil Water Flow

Soil water flow is primarily driven at the soil surface by precipitation and
evaporation. We represent this forcing in a simplified manner this forcing
by a spatially uniform flux jrain for precipitation and a spatially uniform
soil matric head hmsurf

< 0 for evaporation. Thereby, we neglect all the
complications that arise from (i) the coupling between water and energy fluxes
through the latent heat of evaporation, (ii) the vegetation which extracts
water from deeper soil layers through their roots and transport it higher
into the land-atmospheric boundary layer through their leaves, and (iii) the
coupling between soil and atmosphere by the water flux which lowers/raises
the chemical potential of water in the atmosphere, thereby modifying the
driving force all the way to switching from precipitation to evaporation and
vice versa.

Model Formulation

We represent the dynamics of water flow by Richards’ equation (6.2). For
the soil architecture, we focus on situations with a horizontal soil surface and
consider (i) a uniform medium, (ii) horizontal layers, and (iii) heterogeneous
media, where the simplified Mualem-van Genuchten parameterization (3.45)
and (3.56) with parameters given in Table 3.1 describe the hydraulic proper-
ties of the constituting materials. Apparently, the first two architectures may
be studied with one-dimensional simulations, while the third one requires an
at least two-dimensional representation.

Numerical Simulation

1. Use Figure 6.7 and Figure 6.9 as guides for the construction of the
one-dimensional representation of the uniform and of the horizontally
layered media as well as for the upper boundary condition. Choose z
to point downwards with z = 0 at the depth of the water table. As
lower boundary condition choose a constant water table and as initial
condition hydrostatic equilibrium, i.e., hm(z) = z.

2. Prescribe a constant upper boundary condition (infiltration or evapora-
tion) which is turned on at time t = 0 and observe/discuss the transition
from the static to the dynamic equilibrium. Address in particular:

• the formation and propagation of an infiltration front depending
on soil hydraulic properties and infiltration flux,

• the formation of an evaporation zone, again depending on material
properties and matric potential,
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• the effect of a thin coarse-textured layer at the soil surface for both
infiltration and evaporation,

• for layered media, the behavior of θ and hm at the interface.

It may be useful to represent the simulation results – θ(z; t), hm(z; t), and
jw(t; z) – as contours in a space-time plot.

Further Suggestions

1. Generate a two-dimensional heterogeneous medium, either using an
appropriate random number generator or by drawing it by hand, and
explore its phenomenology along the same lines as above.

2. Calculate and discuss horizontal averages of θ and hm.

3. Explore materials with other hydraulic parameters.
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C.3

Fluctuating Water Table

A fluctuating water table may originate from a phreatic aquifer that is
strongly influenced by some surface waters like a river or by ocean tides,
or by the operation of pumping wells. It may also result from agricultural
operations like irrigation in regions with less permeable soil layers at greater
depths. Possible effects of such fluctuations range from surface salinization
and, conversely, drying up vegetation, to modifications of microbial activities
like soil carbon decomposition and denitrification, and further to modifica-
tions of gaseous environmental tracers like noble gases.

Model Formulation

We recall from Section 6.1 that the dynamics of the capillary fringe imme-
diately above the water table is beyond the Richards regime and from Sec-
tion 3.4 that the hysteresis of the soil water characteristic is most pronounced
near saturation. While both issues are addressed in current research, they are
not yet understood firmly and quantitatively. Modeling thus demands some
bold assumptions and we will assume the same formulation for the dynamics
of the water phase as in Section C.2, Richards equation, and also consider
the same architectures. This obviously precludes an accurate simulation of
the capillary fringe, but it will still lead to insight into the dynamics of the
water phase above the capillary fringe.

Numerical Simulation

Further Suggestions
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C.4

Solute Transport with Stationary Water Flow

Solutes originate from a multitude of sources. They are deposited at the soil
surface as agrochemicals, dusts, and chemicals dissolved in rainwater and
fog, they are present in groundwater, or they are released by biogeochemical
processes within soils and aquifers. Their transport is primarily driven by the
water flow – neglect transport paths through the soil air which is important
for a number of substances –, but interrupted at the soil surface where water
evaporates, leaving the solutes behind. Focussing on transport proper, we
only consider stationary flows and conservative solutes.

Model Formulation

Consider the media and the stationary flow regimes explored in Section C.2
and let solute transport be described locally by the convection-dispersion
equation (4.53) with the effective dispersion coefficient given by the sum
of molecular diffusion, parameterized by one of the Millington-Quirk mod-
els (4.55), and of hydromechanic dispersion represented by the Scheidegger
tensor (4.56). If values for the required dispersivities are not available, choose
λℓ = ℓ/100, where ℓ is the length of the flow domain, in the direction of the
main flow, and choose λt = λℓ. Notice that for stationary flow, all parameters
– θ and v, with this also Deff – are constant in time, but not necessarily
uniform in space.

Numerical Simulation: Uniform Media

1. Consider a one-dimensional situation and observe the evolution of a
solute concentration that is highly localized at time t = 0, ideally of
the form δ(z),

• at the soil surface, when water infiltrates,

• at the water table, for evaporation.

2. As functions of time, calculate the first two spatial moments

〈z〉 :=

∫ ℓ

0

zpz(z; t) dz ,

var(z) :=

∫ ℓ

0

[
z − 〈z〉

]2
pz(z; t) dz

with

pz(z; t) :=
Ct(z; t)

m0
, m0 =

∫ ℓ

0

Ct(z; t) dz ,
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where ℓ < 0 is the position of the soil surface and pz(z; t) is the travel
distance pdf. Use the method of moments to quantify the transport
and calculate the corresponding apparent transport parameters defined
through (4.26) and (4.27), respectively. Specifically, address:

• for a uniform medium and the region with gravity flow, the agree-
ment between expected and simulated values of the transport
parameters and their dependence on the flow velocity,

• the qualitative changes of the pulse form as the respective outflow
boundary is approached,

• the qualitative changes of the pulse form at a layer interface of
a multi-layer soil, paying particular attention to the differences
between Ct and Cw.

3. Consider a soil that is initially free of solutes, with constant evaporation,
and with the constant solute concentration Cw0

> 0 in the groundwater.
Predict, at least qualitatively, the evolution of the concentration profile
Ct(z; t) and then observe it in the numerical simulation. How does
Ct(z; t) depend on (i) the extent of the flow domain and (ii) on the
hydraulic parameters.

Numerical Simulation: Heterogeneous Media

For the following, consider two different materials, e.g., the sand and the silt
used before, to construct heterogeneous architectures. Study solute trans-
port (i) with gravity flow and (ii) with a constant water table at the lower
boundary for the following geometries:

1. Two vertical slabs with thicknesses d1 and d2, respectively, as a gener-
alization of the MIM model. Assume no-flow at the outer boundaries.

2. Two horizontal slabs, again with thicknesses d1 and d2 and with vertical
flow.

3. Random distribution with correlation lengths λh and λv in the hori-
zontal and vertical, respectively.

In particular calculate Deff/Dm as a function of the Peclet number Pe for
the gravity flow regime and plot it as a function of Pe and, alternatively, of
θ.

Choosing Miller- or Warrick-scaling and continuous distributions of scal-
ing factors, the architectures used above may be further generalized. It is
instructive to study to what extent this modifies the results obtained from
the discrete architectures.
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Further Suggestions

1. Generate a two-dimensional heterogeneous medium with vertical cor-
relation length λz = ℓ/100, where ℓ is the height of the simulated
flow domain, and horizontal correlation length λx = 10λz. Assume
the vertical boundaries to be periodic, i.e., what flows out at one end
flows in at the other. Calculate the horizontally averaged concentration
profile

Ct(z; t) :=

∫ ℓx

0

Ct(x, z; t) dx ,

where ℓx is the horizontal extent of the flow domain, and address some
of the issues already raised above. In particular observe the shape of
the concentration profile and its dependence on the flow velocity.

2. Generate a two-dimensional medium that is uniform except for a cir-
cular inclusion with radius r0 at zi. Again choose periodic boundaries
for the vertical.

• Simulate various stationary flow fields – infiltration and evapora-
tion with different fluxes – and observe how the hydraulic character
of the inclusion changes. You may want to play with the dimen-
sionless numbers r0/ℓx and αzi, where α is the scaling parameter
in the van Genuchten parameterization (3.44) of the embedding
material.

• Study solute transport along the lines explored above, in particular
illuminate the definition of apparent/effective transport parame-
ters as functions of v, Deff , r0, and zi.
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C.5

Flow and Transport under Irrigated Field

The production of food and biomass for energy production in semi-arid and
arid regions is an important field of application for soil physics. A key issue
is the optimal control of salinization with the minimal consumption of water.
As a starter for this very complicated problem, we neglect all the really
difficult issues like plants and their development or the dynamics of the soil,
which includes cracking and formation of surface crusts, and only consider
(i) sequences of irrigations followed by evaporation and (ii) the associated
transport of solutes. As the only complicating factor, we look at the impact
of soil heterogeneity.

Model Formulation

We envisage a moderately permeable silty soil that is managed through
flood irrigation (see for instance front picture of these lecture notes). We
then assume flow and transport to be described locally by the Richards
and the convection-dispersion equation, respectively, as was done already in
Sections C.2 and C.4. For simplicity, disregard hysteresis and the fact that
Richards equation is not applicable near saturation. For the soil, consider a
uniform soil and the two architectures described und “Further Suggestions”
in Section C.4.

Hydraulic forcing of the system is by cycles of (i) an irrigation event,
modeled with hm = 0.02 m at the soil surface for a duration that leads to a
mean infiltration of some 3 mm/d, and (ii) an evaporation period, modeled
with hm = −10 m for the remainder of the cycle. Treat the cycle time T as a
variable, which would eventually be optimized but choose T = 2 d for a start.
At the lower boundary, let hm = 0. For the two-dimensional simulations, the
vertical boundaries are periodic.

For studying transport, let the mass density m0 be uniform at the soil
surface at time t = 0, hence the vertical profile of the form δ(x). Let the
upper and lower boundaries be impermeable for solute, with the vertical
boundaries again periodic. We thus study the fluctuation and redistribution
of the initially present mass, which is conserved over time.

For quantitative analyses, we again employ the method of moments on the
horizontally averaged total concentration Ct(z; t).

Numerical Simulation

Choose two materials to be employed – recall that the embedding material
must be moderately conductive, else flood irrigation could not be used (why
not?) – and roughly estimate the irrigation schedule.
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1. Observe the evolution of the solute pulse through the irrigation cycles
and compare the different architectures. Play with the various system
parameters to understand their influence.

2. Calculate 〈z〉 and var(z) as functions of time.

Further Suggestions

1. Calculate the autocovariance function of the total concentration and
the crosscovariance between total concentration and material as they
evolve in time.





E

Some Constants and Material Properties

E.1
General Constants

Name Symbol Value

Avogadro constant NA 6.0221 · 1023 mol−1

Boltzmann constant k 1.3807 · 10−23 JK−1

universal gas constant NAk R 8.3144 Jmol−1K−1

acceleration of gravity on Earth g 9.81 m s−2

E.2
Material Properties of Water

Density ρw, vapor pressure pvapor, dynamic viscosity µw, surface tension
water-air σwa, and heat capacity Cp as functions of temperature T at stan-
dard pressure p0 = 105 Pa. Data from Lide [1994], page 6-10.

T ρw pvapor µw σwa Cp
◦C kgm−3 kPa 10−3 Pa s Jm−2 J kg−1 K−1

0 999.84 0.6113 1.793 0.07564 4218
10 999.70 1.2281 1.307 0.07423 4192
20 998.21 2.3388 1.002 0.07275 4182
30 995.65 4.2455 0.798 0.07120 4178
40 992.22 7.3814 0.653 0.06960 4179
50 988.03 12.344 0.547 0.06794 4181
60 983.20 19.932 0.467 0.06624 4184
70 977.78 31.176 0.404 0.06447 4190
80 971.82 47.373 0.354 0.06267 4196
90 965.35 70.117 0.315 0.06082 4205
100 958.40 101.325 0.282 0.05891 4216
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Other material properties of water

Name Symbol Value Unit

enthalpy of fusion (0◦C) Hsl 0.333 MJkg−1

enthalpy of vaporisation (0◦C) Hlv 2.503 MJkg−1

enthalpy of vaporisation (100◦C) Hlv 2.259 MJkg−1

E.3
Material Properties of Air

Name Symbol Value Unit

density (dry air, 0◦C, 101’325 Pa) ρa 1.293 kgm−3

dynamic viscosity (10◦C) µa 1.77 · 10−5 Pa s

E.4

Properties of Geologic Materials

Name Symbol Value Unit

quartz minerals (SiO2)
density ρm 2.65 · 103 kgm−3

heat capacity (300 K) C 733 J kg−1 K−1
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A
abstraction Entnahme

of groundwater

AD nach Christus
anno Domini

advection Advektion
flow of something from one region to
another, e.g., of groundwater from a
high- to a low-pressure region; ր con-
vection

alluvial alluvial (geol.), angeschwemmt
related to flowing surface water, e.g.,
alluvial deposits or alluvial fan

anomaly Anomalie, Abweichung
deviation from some reference which
may be a scalar, vector, or function

aquiclude Grundwasserstauer
less permeable than aquitard

aquifer Grundwasserleiter

aquitard Grundwasserstauer
more permeable than aquiclude

B
BC vor Christus

before Christ

C
capillary fringe Kapillarsaum

in sensu stricto the water-saturated
zone above a water table, the so-
called satiated zone where the ma-
tric potential is already negative but
the largest pore not yet air-filled; in
sensu lato the zone above a water

table where the air phase is not yet
continuous

clay Ton
small-sized grain size fraction of soils;
depending on classification, the size
fraction ranges up to about 2 µm;
ր silt, ր sand

conductivity Leitfähigkeit

confined aquifer gespannter Grund-
wasserleiter

convection Konvektion
transport of something with some-
thing else, e.g., of solutes or heat with
groundwater flow; ր advection

core drilling Kernbohrung
drilling that yields undisturbed core

D
diagenetic diagenetisch (geol.)

physical, chemical, or biological alter-
ation of sediments into sedimentary
rock at relatively low temperatures
and pressures

drainage Entwässerung

F
facies Fazies (geol.)

sum of characteristics of a rock, sedi-
menatry, or other unit

fluid Fluid (die umgangssprachliche
“Flüssigkeit” ist ein Beispiel eines
Fluids, deckt aber die Bedeutung bei
weitem nicht vollständig ab)

forcing (externer) Antrieb
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G
groundwater Grundwasser

H
head h Höhe

height of water column equivalent to
certain potential: matric head, hy-
draulic head,. . .

I
igneous magmatisch (geol.)

originating from molten rock; op-
posed to sedimentary

imbibition Benetzung

irrigation Bewässerung

L
loam Lehm

soil consisting of about 40% clay, 40%
silt, and 20% sand

M
MAGT (mean annual ground tem-

perature) mittlere Jahrestemper-
atur des Bodens

metamorphic metamorph (geol.)

rock alterated by high temperatures
or pressures, higher than with diage-
netic alterations, or by contact with
different fluids

momentum Impuls

P
parameterization Parametrisierung

(i) class of functions to approximate
the relation between variables, e.g.,
the van Genuchten parameterization
for the relation between water content
and matric head; (ii) a macroscale
model for microscale processes that
are not represented in detail, e.g.,
Darcy’s flux law at the continuum
scale for Stokes flow at the pore scale

permeability k Durchlässigkeit

tensorial quantity that describes the
geometry of a porous medium with re-
spect to fluid flow, scalar in isotropic
media; not to be confounded with
conductivity K = k/µ, where µ is the
dynamic viscosity

piezometer Piezometer
tube inserted into the ground to mea-
sure height of watertable, the piezo-
metric head

R
residual Rest

deviation from some model or exact
value (math)

S
sand Sand

large-sized grain size fraction of soils;
depending on classification, the size
fraction ranges from about 63 µm
to 2 mm; still larger fractions are
referred to as gravel; ր clay, ր silt

silt Schluff (Staub)
medium-sized grain size fraction of
soils; depending on classification, the
size fraction ranges from about 2 µm
to about 63 µm; ր clay, ր sand

soil Boden

stationary stationär
(i) dynamics: all partial deriva-
tives with respect to time vanish,
(ii) statistics: all statistical moments
are translation invariant

structure Struktur
features that must be represented ex-
plicitly and in detail in order to ob-
tain a faithful description; ր texture

T
table Spiegel, Oberkante

for groundwater or permafrost

transmissivity Transmissivität
vertically integrated hydraulic con-
ductivity

texture Textur
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features, for which a statistical repre-
sentation suffices, whose contribution
to a process of interest is parameter-
ized; ր structure

U
unconfined aquifer freier Grund-

wasserleiter

V
vadose zone vadose, wasserungesät-

tigte Zone

W
water table Grundwasserspiegel
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Kandhai, D., D. Hlushkou, A. G. Hoekstra, P. M. A. Sloot, H. V. As, and
U. Tallarek, 2002: Influence of stagnant zones on transient and asymptotic
dispersion in macroscopically homogeneous porous media, Phys. Rev. Lett., 88,
(23), 234501 1–4, doi:10.1103/PhysRevLett.88.234501.

Kersting, A. B., D. W. Efurd, D. L. Finnegan, D. J. Rokop, D. K. Smith and J. L.
Thompson, 1999: Migration of plutonium in ground water at the Nevada Test
Site, Nature, 397, (6714), doi:10.1038/16231, 56–59.

Kessler, M. A. and B. T. Werner, 2003: Self-organization of sorted patterned
ground, Science, 299, 380–383.

Kiehl, J. T. and K. E. Trenberth, 1997: Earth’s annual global mean energy budget,
Bull. Amer. Meteor. Soc., 78, (2), 197–208.

Kirkpatrick, R. J., A. G. Kalinichev and J. Wang, 2005: Molecular dynamics
modelling of hydrated mineral interlayers and surfaces: structure and dynamics,
Mineralogical Magazine, 69, (3), 289–308.

Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible
viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 30, (4),
translation 1991 in Proc. R. Soc. Lond. A, 434, 9–13.

Kool, J. B. and J. C. Parker, 1987: Development and evaluation of closed-form
expressions for hysteretic soil hydraulic properties, Water Resour. Res., 23, 105–
114, doi:10.1029/WR023i001p00105.

Kool, J. B., J. C. Parker and M. T. van Genuchten, 1985: Determinig soil hydraulic
properties from one-step outflow experiments by parameter estimation: I. Theory
and numerical studies, Soil Sci. Soc. Am. J., 49, 1348–1354.
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Index

A
active layer, 275
advection, 136
air-entry value, 62
anomalous dispersion, 297
apparent

transport parameters, 84–86,
227–231

aquiclude, 101
aquifer, 101
aquitard, 101
Aral, 6
artesian well, 102
asl (above sea level), 275
atmospheric boundary condition, 154
atmospheric forcing, 160
autocovariance function, 299

B
Bangladesh, 8
Bayelva site, 277–286
BLUE, 306
blue water, 2
Borden aquifer, 110
breakthrough curve, 199
Brooks-Corey parameterization, 62
Brownian motion, 80
Buckingham’s conjecture, 71

modification, 137
Buckingham-Darcy law, see

Buckingham’s conjecture
bulk density, 49

C
calibration

groundwater model, 127

capacity
soil water, 57, 135

capillary
barrier, 150
fringe, 50, 57
length, 45
number, 189
potential, dynamic, 136
potential, static, 136
pressure, dynamic, 189

capillary fringe, 367
capillary rise, 43–44
CDE, see convection-dispersion

equation
cdf, see cumulative distribution

function
central limit theorem, 296
characteristic

soil water, 57
Clausius-Clapeyron, 244
CLT (central limit theorem), 296
coefficient of thermal expansion, 17
compressibility, 17
concentration, 89
conductivity

hydraulic, 55
thermal

de Vries parameterization,
269–272

confined-unconfined, 101
conservative tracer, 196
contact angle, 42
contact lines, 42
convection-dispersion equation

general form, 93
one-dimensional, 84

381
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uniform, 201
correlation length, 300
cost function, 175
Crank-Nicholson, 327
critical point, 243
crosscovariance, 300
cumulative distribution function, 199,

295

D
Darcy

flux law, 54
velocity, 55

darcy
as unit of permeability, 55

de Vries parameterization, 269–272
derivative

total, substantial, material, 291
desaturation-imbibition curve, see soil

water characteristic
diffusion

pressure, 103
diffusion equation, 80
diffusivity

soil water, 136
thermal, 249

dilatant, 20
dispersion, 77

anomalous, 297
hydromechanic, 88
Taylor-Aris, 84

dispersivity, 88, 204
MIM model, 213
soil water, 162

distribution function, see probability
density function

Dupuit assumption, 121
dynamic capillary potential, 136
dynamic matric potential, 138

E
effective

dispersion coefficient (MIM), 212
hydraulic conductivity, 116–119,

144, 157–159
transport parameters, 84–86, 227

enhancement factor, 266, 271
ensemble average, 299
enthalpy, 245

entry pressure, 58
environmental archives, 254–255
ergodic random function, 304
evaporation, 2, 169
evaporation curve, 243, 244
evapotranspiration, 2, 169

F
falling head permeameter, 131
Fick, flux law, 80
fingering, 185–192
fluid element, 13
fluid potential, 22
flux laws

Buckingham-Darcy (unsaturated
fluid flow), 71

Darcy (saturated fluid flow), 54, 55
Fick (diffusion), 80
Fourier (heat convection), 249
Kozeny-Carman (unsaturated fluid

flow), 71
Fokker-Planck equation, 202
forward problem, 175
Fourier law, 249
Fourier transform, 321
freezing characteristic, see soil freezing

characteristic
Froude number, 23, 24
frozen random field, 303
funnel flow, 184

G
Galerkin’s method, 329
gas, 39
Gauss theorem, 291
Gibbs energy, 243
grain size distribution, 32
gravity flow, 140, 141, 157
gravity potential, 50
green water, 2
Green’s function, 209
ground-penetrating radar, 153
groundwater equation, 102

H
H-bonds, 38
Hagen-Poiseuille, 29
Haines jumps, 58, 188
Helmholtz free energy, 246
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Henry constant, 139
hydraulic capacity, 57
hydraulic conductivity, 55

direct measurement, 65
effective, 117, 144, 158
falling head permeameter, 131
parameterization, 65–70

hydraulic head, 51
hydromechanic dispersion, 88
hydrostatic equilibrium, 25

I
impulse response function, 209
independence

statistical, 296
indicator function, 46
interception, 2
interfacial energy, 39
interfacial tension, 40
internal energy, 242
inverse problem, 175, 259, 329
isothermal compressibility, 17
isothermal plateau, 281

J
jack-knifing, 128

K
Kelvin equation, 247
Kersten number, 268
kinematic viscosity, 21
Kozeny-Carman, 71
kriging, 306–310

L
lag, 300
Lagrangian multiplier, 294
Laplace equation, 104
Laplace transform

tables, 319–321
latent heat flux, 3
Levenberg-Marquardt algorithm, 175,

330–332
liquid, 39
Little Ice Age, 256
local equilibrium hypothesis, 57

M
macroscopically uniform, 226

Magnus formula, 245
MAGT, 287
Matheron’s conjecture, 118
matric head, 51
matric potential, 51, 135

dynamic, 138
thermodynamics, 246
vapor pressure, 246

matrix flow, 185
mean curvature, 41
Medieval Optimum, 256
melting curve, 245
method of moments, 85, 203, 205, 227
Miller-similarity, 221
MIM, see mobile-immobile model
mixing

length, 88
time, 87

mixing length, 203
mobile-immobile model, 209–220
model sensitivity, 332
momentum flux, 15
Mualem-Brooks-Corey

parameterization, 67
Mualem-van Genuchten

parameterization, 67
mud boils, 277
multi-step outflow method, 176–181

N
Navier-Stokes equation, 16, 21

approximations, 24–25
net radiation, 277
Newtonian fluid, 19
non-Newtonian fluids, 20
nugget (geostatistics), 306

O
Onsager’s theorem, 71
Ostrogradski theorem, 291
overload, 50

P
parallel bundle of capillaries, 30
parameterization

hydraulic conductivity, 65
soil water characteristic, 61

Parseval identity, 301
pde (partial differential equation), 325
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pdf, see probability density function
Peclet number

macroscopic, 203, 211
microscopic, 81

pedotransfer functions, 61
permafrost

relict, 287
permeability, 54
phase, 46
phreatic aquifer, 101
piezometer, 101
piezometric head, 102
plants, see root water uptake
PLIF (planar laser-induced

fluorescence), 96–97
point spread function, 209
Poisson equation, 104
pore size distribution, 32
pore water velocity, 55
porosity, 32, 47, 48
preferential flow

definitions, 184
vs matrix flow, 185

pressure potential, 50
pressure-saturation relation, see soil

water characteristic
primary drainage branch, 59
probability density function

n-point, 298
general, 295
transformation of variables, 204
travel distance, see travel distance

pdf
travel time, see travel time pdf

pseudoplastic, 20

R
random function, 297
random variable, 295
rate parameter, 211
relict permafrost, 287
representative elementary volume, see

REV
resident concentration, 90
residual air, 59
residual phase, 138
retardation factor, 211
REV, 46–48

heterogeneous media, 226

Reynolds number, 23

Richards equation, 135

failure, 189

with root water uptake, 169

Richards regime, 139

root water uptake, 169–171

S

salinization, 142

saturation, 49, 61

SC (stochastic convection), 85

scanning loops, 60

secondary drainage branch, 59

semivariogram, 305

sensible heat flux, 3

sill (geostatistics), 306

similar, flow problems, 26

similarity analysis, 26–27

soil freezing characteristic, 247

soil genesis, 35

soil water

capacity, 57, 135

characteristic, 57

direct measurement, 59

parameterization, 61

diffusivity, 136

dispersivity, 162

thermodynamic potential, 242–243

soil water potential, 51

solute, 77

solution, 77

solvent, 77

static capillary potential, 136

stationary random function, 300–301,
304

statistical independence, 296

stochastic convection, 85

Stokes equation, 25

time-dependent, 24

storage coefficient, 72

strain, 20

stream function, 294

stress, 20

Strouhal number, 23, 24

structure, 48, 220

surface energy, see interfacial energy

surface tension, see interfacial tension
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T
Taylor-Aris dispersion, 84

in heterogeneous media, 222
TDR, 200
texture, 48, 220
thawing front, 280
thermal conductivity

de Vries parameterization, 269–272
enhancement factor, 266, 271

thermal expansion, 17
thermodynamic potential, 242

soil water, 242–243
tortuosity, 66
transfer functions

diffusion, heat conduction,
250–253

solutes, 207–209
transmissivity, 104, 112
transpiration, 2, 169
travel distance pdf

CD, 202–204
heat conduction, 251
MIM, 216–217
molecular diffusion, 80
related to concentration, 198
SC, 200–201

travel time pdf
CD, 204–205
heat conduction, 251
MIM, 211–216
related to flux, 199
SC, 200–201

tree rings, 254
triple point, 243

U
unsorted circles, 277

V
vadose zone, 133

decoupling from groundwater, 167
validation, 128
van der Waals force, 38
van Genuchten parameterization, 62, 63
vapor pressure

matric potential, 246
vapor pressure curve, 243, 245
virtual water, 5
viscosity

eddy, 28
Newton’s law, 19

viscous fingers, 185–192

W
water content

discontinuous, 136, 144
water potential, 51, 135
water table, 101
weak-sense stationary, 300
wet, 42
Wiener-Khinchin theorem, 302
wss, 300

Y
Young equation, 42
Young-Laplace equation, 41

Z
zero-curtain, 281


