Sr. No. of Question Paper : 1555

Unique Paper Code : 2222011101
Name of the Paper : Mathematical Physics - I
Name of the Course : B.Sc. Hons. Physics
Semester
Duration: 3 Hours Maximum Marks: 90

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. Question 1 is Compulsory.
3. Attempt any four questions from question Numbers 2-6.
4. All questions carry equal marks.
5. (a) By calculating the Wronskian of the functions x, x^{2} and x^{3} check whether the functions are linearly dependent or independent.
(b) Find the coordinates $\mathrm{P}(1,2)$ with reference to the new axes, when the axes are rotated by 30° in anticlockwise direction.
P.T.O.
(c) Find the unit tangent vector to any point on the curve
$x=\left(t^{2}+1\right), y=(4 t-3), z=\left(2 t^{2}-6 t\right) \quad t>0$
(d) Show that if $\Phi(x, y, z)$ is any solution of Laplace equation $\nabla^{2} \Phi=0$, then $\vec{\nabla} \Phi$ is a vector which is both solenoidal and irrotational.
(e) Show that $\oiint \overrightarrow{\left(\nabla r^{2}\right)} \cdot \overrightarrow{d S}=6 \mathrm{~V}$ where V is the volume enclosed by surface S.
(f) The probability distribution function is defined by

$\mathrm{X}:$	0	1	2	3	4	5	6
$\mathrm{P}(\mathrm{X}):$	k	3 k	5 k	7 k	9 k	11 k	13 k

Find $\mathrm{P}(3<\mathrm{X} \leq 6)$.
2. (a) Solve by Method of Variation of Parameters:

$$
\begin{equation*}
d^{2} y / d x^{2}-y=2 /\left(1+e^{x}\right) \tag{6}
\end{equation*}
$$

(b) Consider an LCR circuit, governed by the differential equation

$$
\mathrm{d}^{2} \mathrm{I} / \mathrm{dt}^{2}+\frac{R}{L} \mathrm{~d} / \mathrm{dt}+\frac{1}{L C} \mathrm{I}=\frac{1}{L} \mathrm{dE}(\mathrm{t}) / \mathrm{dt}
$$

It is connected in series and has $\mathrm{R}=10$ ohms, $\mathrm{C}=10^{-2}$ farad, $\mathrm{L}=1 / 2$ henry and an applied voltage $\mathrm{E}=12 \mathrm{~V}$. Assuming no initial current
and no initial charge at $t=0$ when the voltage is first applied, find the subsequent current for the problem.
(c) Solve the differential equation:

$$
\begin{equation*}
x^{2} d^{2} y / d x^{2}-2 x d y / d x+2 y=x \log x \tag{6}
\end{equation*}
$$

3. (i) Solve by Method of Undetermined Coefficients:

$$
\begin{equation*}
d^{2} y / d x^{2}+10 d y / d x+25 y=14 e^{5 x} \tag{6}
\end{equation*}
$$

(ii) Show that following equation is inexact equation and solve it :
$\left(y^{4}+2 y\right) d x+\left(x y^{3}+2 y^{4}-4 x\right) d y=0$
(iii) Solve the following differential equation:
$d y / d x+y / x=y^{2}$
4. (i) Show that
$\vec{\nabla} \mathrm{f}(\mathrm{r})=f^{\prime}(\mathrm{r}) \vec{r} / \mathrm{r} \quad$ where $f^{\prime}(\mathrm{r})=\mathrm{df}(\mathrm{r}) / \mathrm{dr}$
where $\vec{r}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{k}$.
(ii) Show that
$\vec{F}=\left(y^{2} \cos x+z^{3}\right) \hat{\imath}+(2 y \sin x-4) \hat{\jmath}+\left(3 x^{2}+2\right) \hat{k}$ is a conservative force field and then evaluate $\oint \vec{F} \cdot \overrightarrow{d r}$ over any contour C from $(0,1,-1)$ to $(\pi / 2,-1,2)$.
P.T.O.
(iii) Prove

$$
\begin{equation*}
\vec{\nabla} \times(\vec{\nabla} X \vec{A})=-\nabla^{2} \vec{A}+\vec{\nabla}(\vec{\nabla} \cdot \vec{A}) \tag{6}
\end{equation*}
$$

5. (i) Verify Divergence Theorem for

$$
\begin{equation*}
\vec{F}=\left(x^{2}\right) \hat{\imath}+\left(y^{2}\right) \hat{\jmath}+\left(z^{2}\right) \hat{k} \tag{9}
\end{equation*}
$$

taken over the cube $0 \leq x, y, z \leq 1$.
(ii) Verify Green' theorem in the plane for
$\oint\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$
over C which is boundary of the region defined by $y=\sqrt{x}, y=x^{2}$.
6. (i) Show that scalar product of two vectors is invariant under rotation of axes.
(ii) Find an expression for the mean and variance of Poisson distribution.
(iii) Evaluate $\iiint(2 x+y) d V$ where V is the closed region bounded by the cylinder $z=4-x^{2}$ and the planes $x=0, y=0, y=2$ and $z=0$.

