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Teaching Robots New Tasks through Natural Interaction  

Joyce Y. Chai, Maya Cakmak, and Candace Sidner 

Abstract 

This chapter focuses on the main challenges and research opportunities in enabling natural 

interaction to support interactive task learning. Interaction is an exchange of communicative 

actions between a teacher and a learner. Natural interaction is viewed as an interaction between 

a human and an agent that leverages ways in which humans naturally communicate and does 

not require the human to have any prior expertise. The goal of communication is to achieve 

common ground and allow the learner to acquire new task knowledge. This chapter outlines the 

different types of knowledge that can be transferred between agents and discusses the 

perception, action, and coordination capabilities that enable teaching-learning interactions.  

Introduction 

Extending the framework introduced by Mitchell et al. (this volume), our focus in this chapter 

is on natural interactions between a human and an agent to enable interactive task learning. To 

reflect most prior work on this topics, we focus on interactive task learning scenarios where the 

teacher is a human and the learner is a physically embodied agent (e.g., robot) as opposed to a 

software agent. 

Imagine an elderly couple, Katie and John Smith, who purchased a robot “Mia” as their 

personal assistant. Mia comes equipped with general knowledge of household chores and 

perceptual capabilities to recognize common household objects, such as those sold in grocery 

stores and hardware stores. Mia also has basic manipulation skills, such as grasping common 

objects or opening different types of containers. Despite these preexisting capabilities, Mia is 

unable to perform many tasks at Katie and John’s house right out of the box. Not only does it 

need to be taught the unique tasks that the Smiths desire, it also must acquire new knowledge 

and capabilities that will enable those tasks. The process of learning these tasks as well as task-

relevant knowledge and capabilities happens through various forms of interaction with people, 

as in the following scenarios: 

1. On the day of delivery, David, an employee from the company that manufactured Mia, 

arrives at the Smiths’ with the new robot. David has an associate degree in robotic 

technology and has completed training on how to teach robots. The process starts with 

teaching Mia a map of the Smiths’ house. David manually drives Mia to different rooms 

to construct the map and also verbally provides information about each room and 

different points and regions in the room, such as where the main entrance is and locations 

of appliances, trash bins, tools, and supplies. Next, David programs a set of basic skills 

tailored for the Smiths’ house, such as how to open or close their cabinets, drawers, and 

appliances as well as how to operate various tools and appliances. He teaches Mia these 

skills by moving the robot’s arm to demonstrate them. Then, under various scenarios, 

David tests the learned skills to ensure they are robust. 

2. Once Mia is settled in the new house, the Smiths continue to teach Mia new knowledge 

and tasks. For example, they show where they put their groceries or kitchen tools by 

pointing where they are and verbally describing their locations with natural language: 

“The waffle maker goes in the bottom cabinet next to the stove.” Katie teaches Mia how 

to make their favorite dish from a family recipe. Using natural language and deictic 

gestures, she shows Mia different ingredients and demonstrates how and in what order 
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to mix the ingredients. Mia sometimes has difficulty understanding Katie’s instruction. 

For example, when Katie asks Mia to “grind the onion,” Mia does not understand what 

“grind” means and subsequently asks Katie for further instructions. Katie then provides 

detailed step-by-step instructions to show Mia how to perform the action “grind”: “cut 

the onion in half, put them into the blender, and press the top button.” By following 

Katie’s instruction and observing the change of the onion, Mia learns the meaning of the 

verb “grind” with respect to how the corresponding action changes the physical world. 

Mia can now transfer this understanding and perform related actions, such as “grind the 

carrot,” assuming Mia understands what a carrot is. Through this type of interaction, 

Mia continuously optimizes its task performance based on feedback from Katie, such as 

“That looks slightly overcooked. Try reducing the baking time next time around.” 

3. For outdoor chores (e.g., a simple car maintenance task) John instructs Mia similarly to 

how he taught his son: John demonstrates to Mia how to (a) open the hood of the car, (b) 

check the engine oil, (c) check the radiator coolant and fill if needed, (d) check the 

windshield wiper fluid and fill if needed, and (e) replace the air filter if it is dirty. John 

and Mia both use language and deictic gestures to establish shared attention during the 

teaching-learning process. Once John explains and demonstrates “how to fill radiator 

coolant,” Mia can apply the learned skill to “fill windshield wiper coolant.” To teach the 

task, John uses conditional statements (e.g., “if the oil is below this line, then add 

coolant”) and purposive descriptions (e.g., “you hold it because the funnel is too big,” 

“put it so that the screw comes through the narrow part,” or “place it right where the 

middle center opens into the screw so that the screw goes through the middle hole where 

it’s open.”). Mia extracts causal-effect relations and converts them into schemas to 

support action planning and execution. The process also involves learning background 

knowledge mentioned in conditional statements, such as a too large funnel, the air filter 

being dirty, the time needed to hold an object in place, or the colors of objects though 

demonstrations or examples. 

4. To understand Mia’s capabilities and limitations, the Smiths can ask Mia different 

questions about its knowledge and its representation of the shared environment and tasks. 

These questions not only include “what” questions, but also “why” and “how” questions 

to assess Mia’s reasoning and decision-making capabilities. Mia also proactively 

communicates with the Smiths about its internal representations of the world and the 

tasks, as well as the underlying reasoning that might take place to reach certain 

conclusions or decisions. Mia can even teach the Smiths’ grandson how to cook their 

favorite dish and how to do car maintenance. 

These scenarios illustrate different types of natural interaction that humans can use to teach 

robots new tasks or task-relevant knowledge and capabilities: by performing the task 

themselves, by verbally or kinesthetically guiding the robot, or through situated language 

instructions and gestures. This natural interaction between humans and agents instantiates the 

general framework of interactive task learning, as shown in Figure 9.1. The human teacher has 

some target task knowledge in mind and intends to transfer this knowledge to the robot through 

various forms of interaction. Let 𝑆 represent the set of states of the physical world relevant to 

the task and 𝑆𝑐  represent the set of states of communication, such as the verbal utterances or 

focus of attention of the teacher at each step of the interaction. The robot learner perceives a 

task-related world state 𝑠 ∈ 𝑆 through its sensors and constructs a communicative state 𝑠𝑐 ∈ 𝑆𝑐 

based on  its perception of the teacher’s communicative actions. Let 𝐴 represent the set of task-

related actions (e.g., pick up an object) and 𝐴𝑐  the set of communicative actions (e.g., asking 

for confirmation for its interpretation of a world state) available to the robot through its 

effectors. At each step of the interaction, the robot needs to decide what task-related actions 

𝑎 ∈ 𝐴 and/or communicative actions 𝑎𝑐 ∈ 𝐴𝑐 it should take, given its current state and learning 

goals. The sequence of states and actions that a robot goes through during interactive tasks 



learning constitutes its interaction experience. The robot needs to then extract learning 

experience from its interaction experience to obtain examples, specifications, and feedback 

from which it can obtain new task knowledge. 

Enabling interactive task learning on robots through natural interactions requires a wide 

range of capabilities for perception, action, reasoning, learning, decision making, and 

communication. Here, we discuss the challenges and open questions associated with these 

capabilities. Specifically, we explore: 

1. Forms of human teaching and the different kinds of knowledge that can be taught 

or learned through interaction. 

2. Capabilities to perceive and infer task-related state and communicative state 

through sensors, including visual scene understanding, language understanding, and 

grounding language to visual perception (e.g., the environment, perception of 

human gestures, and perception of human actions) 

3. Capabilities to act in the environment through effectors, including acting to 

manipulate the environment and communicating to the human during interaction. 

4. Capabilities to manage and coordinate interaction and establish common ground. 

Figure 9.1 Extended two agent + world model separating task-related actions and communicative state and 

actions. Task-related states (S) and actions (A) are the minimal set of states and actions that an agent needs to 

perform the target task successfully. Communicative states (Sc) and actions (Ac) are what an agent needs to 

communicate to extract useful data and provide feedback for learning. 

Types of Task Knowledge and Forms of Interaction 

Humans can learn new tasks from other humans through various means: watching each other 

perform the task, doing the task themselves accompanied by instructions and guidance, or 

conversing and imagining the task without performing any actions (e.g., acquiring a new 

recipe). Similarly, as illustrated in our example scenario, robots can learn from humans in 

analogous ways. During interactive task learning, task knowledge from human teachers (i.e., 

targeted task knowledge) is transferred to the robot learner.  

As shown in Figure 9.2, in interactive task learning the robot needs to extract learning 

experience from interaction experience through interaction. The learning experience can 

involve examples of goal states, examples of action sequences that lead to a goal, or evaluations 

of action sequences generated by the robot. These different learning experiences can be 

expressed in terms of the physical world state (si), task-related actions (ai), and values assigned 

to them (vi). The goal of task learning is to extract different types of task knowledge such as 

task goal (e.g., v(s) → v) and task procedure (e.g., a policy to perform the task π(s) → a) from 

these experiences. Different learning algorithms require specific types of experience data (e.g., 

direct policy learning requires sequences of state-action pairs). The role of the communicative 

actions is to extract this data from the unstructured stream of data that the agent experiences. 

For instance, communicative actions by the teacher might indicate the start and end of a 

demonstration to help the learning process, even though the communicative states and actions 

are excluded from the learning data. As we discuss next, the way in which task knowledge is 

transferred and the role of communicative actions in that process largely depends on the type 

of task knowledge. 

Figure 9.2 Interactive task learning is the process of converting the learning agent’s experience into task 

knowledge. Different types of knowledge are learned from different types of example data. 

Task Knowledge Types 

The main goal of task learning is to acquire task knowledge, which defines what a task is and 

provides sufficient information to permit the robot to perform the task on its own. There are 

different types of task related knowledge and capabilities (described later in this section) that 



can be acquired during interaction. As discussed by Laird et al. (this volume), task related 

knowledge often includes goals, actions, and constraints which define the problem space as 

well as procedural/policy knowledge which is needed to perform the task. In this chapter, we 

particularly focus on two types of task knowledge and their representations: task procedures 

and task outcomes. 

Task procedure information captures what the agent needs to do to complete the task, as 

shown in Figure 9.2. Most existing agent frameworks represent procedural information as a 

policy, which is a function that maps the perceived state to an action (π(s) → a). Such functions 

can be represented with many different types of classifiers or regressors and can be learned 

from examples. Process information can also be captured in more explicit forms such as plans, 

programs, Finite State Machines, or Hierarchical Task Networks. Although these different 

representations do not necesarily provide a full mapping of states to actions, they still capture 

procedural knowledge by specifying a sequence, a partial ordering, a schedule, or a hierarchical 

organization of actions in the context of a task. For example, Pardowitz et al. (2007) introduced 

task precedence graphs (TPGs) that capture ordering constraints between actions involved in a 

task. Similarly, Ekvall and Kragic (2008) represent tasks with a set of ordering constraints 

between pairs of actions. Alexandrova et al. (2015) use a flow diagram to represent tasks with 

actions that have pre- and post-conditions that can cause branching in the program. Huang and 

Cakmak (2017) use the general-purpose visual programming language, Blockly, to represent 

various tasks that branching and looping. 

Task outcome information relates to the goals or desired outcomes of a task, independent of 

the process followed to achieve them. This is different from the actual outcomes when 

performing a task (which can be expected or uninteded). Task goals are often captured by the 

reward or value functions associated with states and actions, assuming the agent is maximizing 

reward or value. In practice, task goals might be easier to express in terms of world states in 

which the task is considered complete; for instance, a conjunction of state variables that need 

to be true or other arbitrary functions that evaluate a given state in terms of whether the goal is 

achieved. A value can then be associated with each state based on how close they are to a goal 

state. The task “tidy up the living room,” for example, could be specified with the list of items 

in the room and their desired locations, without any information on how to get them there. Such 

a representation was used by Chao et al. (2011) to represent simple object re-configuration 

tasks. The ability to carry out tasks based solely on specified goals often requires the robot to 

have planning capabilities. 

Some task representations involve combinations of process and outcome information. For 

example, a recipe for a particular dish specifies not only a sequence of actions but also mentions 

what to expect at the end of the process or when a task is considered complete. 

Forms of Interaction in Transferring Task Knowledge 

There are many forms of interaction that enable transfer of task knowledge. Our focus here is 

on  two key types of information transferred in those interactions: demonstrations of the task 

or direct specifications of task constraints or properties. 

      In learning task processes from task demonstrations, multiple demonstrations provide 

alternative ways of achieving the same task (Argall et al. 2009). Different task representations 

capture this information in different ways. For example, a partially ordered plan captures 

alternative orderings of low-level actions. Hence different demonstrations of the task might 

involve a different ordering of actions. Similarly, a program with conditionals and loops 

captures alternative ways of performing a task, depending on a perceivable “condition” or 

different numbers of repetitions contingent on user-specified or environmental parameters. 

Different demonstrations of such tasks will involve alternative traces of the program.Task 

outcomes can also be taught by demonstration. Multiple examples provide variations of the 

states in which the task is considered successfully completed. One of the key computational 



challenges is to identify parts of the state that are relevant/irrelevant for the task. It is therefore 

important for demonstrations provided by the teacher to involve such variations. 

    Tasks can be demonstrated through different forms of interaction, for example, by the teacher 

performing the task, or provided directly to the robot, with guidance from the human teacher  

• In tasks performed by humans, one of the most intuitive ways to demonstrate a task is for 

a human to perform it herself. For the robot to learn from this type of demonstration, the 

robot must be able to perceive the human’s actions and/or the effects of human action on 

the environment. Perception of human actions can be facilitated through external sensors 

or wearable sensors on the human. Once a robot perceives human actions, they need to 

be mapped to corresponding robot actions. This is referred to as the retargeting problem. 

In some cases, perception of actual actions is not necessary, as long as the robot can detect 

the state changes that result from the task demonstration and learn the task based on that 

information (Baisero et al 2015; Mollard et al 2015). 

• For tasks performed by a robot with guidance from human, the human teacher 

demonstrates a task to the robot by guiding it through the task. This mode of teaching 

bypasses the retargeting problem but requires the teacher to have a good understanding 

of the robot’s action capabilities. The guidance to the robot can be provided in various 

ways, from kinesthetic movements to verbal instructions: 

• Kinesthetic guidance involves physically holding the robot and moving its manipulators 

to perform the task (e.g., Akgun et al 2012; Phillips et al 2016).  

• Natural language guidance involves instructing the robot on what to do to perform the 

task. Mohan et al. (2012) and She et al. (2014), for instance, use step-by-step language 

instructions to teach new tasks to a robot.  

• Multimodal language guidance uses multimodal instructions (speech and gestures) to 

guide a robot through the task.  

• Gestures often serve to reference parts of the environment.  

• Joystick-based guidance involves driving the robot and triggering prespecified actions 

with the help of a special device to perform the task.  

• GUI-based guidance employs a graphical interface to control the robot and trigger 

prespecified actions to perform the task. 

 

In task specifications, alternative ways of achieving a task are directly specified by the 

teacher in a format compatible with the robot’s task representation. For example, for a partially 

ordered plan representation, the teacher might verbally state:  

First bring all of the ingredients and tools to the kitchen counter (in any order). 

Second, pour all the dry ingredients into the mixing bowl (in any order). 

While teaching by demonstration inevitably involves a particular ordering of the actions and 

hence requires multiple demonstrations to capture order invariances, direct specification 

provides an efficient way to provide the same information. Similarly, if the representation is a 

program, the user can directly specify loops or conditionals by literally writing a program or 

verbally specifying those with instructions like: 

 

Insert a toothpick into the center of the cake. If it comes out clean, take out the cake; 

otherwise continue to bake. Alternatively, for each cup on the muffin pan, pour until ¾ 

full. 

 

Similarly, direct specification of task goals involves the teacher directly indicating parts of the 

world state that are relevant or irrelevant to the robot’s task, rather than trying to exemplify 



variations of positive and negative goal states. For example, the teacher may verbally describe 

the desired goal state when teaching a robot to set up a table:  

 

The red bowl should be on top of the green plate and the napkin should be to the right 

of the plate. 

 

Task specifications can be provided through natural language or graphical user interfaces 

(GUIs): 

• Natural language specifications involve the use of language to directly specify certain 

properties or constraints about the task representation. For example, Cantrell et al. (2012) 

use natural language to specify precondition and effects of action schemas for task 

planning. 

• GUIs can be used to specify properties or constraints about a task being taught to a robot. 

 

Humans often combine these two means of communicating task knowledge (demonstrations 

and specifications). For example, a teacher might demonstrate the physical act of adding 

different ingredients to the mix in a particular order as part of teaching a recipe, while verbally 

specifying partial ordering constraints by saying: “Add all dry ingredients in any order.” 

Similarly, a person might set up the table themselves to show an example of how they want the 

table to be set up, but then specify invariance constraints by saying “The salt and pepper can be 

anywhere in the center area of the table.” In any case, regardless of the specific form of 

interaction, during learning, symbolic representations of human inputs (e.g., GUI, natural 

language) need to be tightly grounded to the robot’s internal representations of perception and 

action. 

 

 

 

 

 

 

Task-Relevant Background Knowledge and Capabilities 

When we speak about a robot learning new tasks, we often assume that the robot has the 

necessary background knowledge and capabilities. The ability to perform new tasks, however, 

might equally be due to the acquisition of other knowledge or capabilities, not solely due to 

newly acquired task knowledge. Hence, the ability to acquire these different kinds of 

background knowledge and capabilities through interactions is also highly relevant for task 

learning. For example, the capabilities of a robot that already knows the task of sorting objects, 

based on different properties, can be expanded by the acquisition of new perceptual capabilities 

(e.g. the ability to detect new object properties) or new action capabilities (e.g. the ability to 

manipulate new types of objects). We identify the following four types of knowledge and 

capabilities relevant for task learning: 

1. Perception capabilities refer to the ability to perceive the task-relevant environment and 

interpret human language, including: 

• state and actions of humans, 

• state, properties, and affordances of objects, 

• scene composition (surfaces, objects, humans, and their relationships), 



• changes of the state that occurred to the environment, and 

• state of communication such as communicative intent and focus of attention. 

2. Action capabilities refer to lower-level policies that control a robot’s actuators to carry 

out tasks and/or communicate with humans. These include capabilities that allow robots 

to: 

• navigate the environment, 

• manipulate objects in the environment, and 

• communicate with humans in the environment. 

3. Linguistic knowledge concerns the meanings of words and phrases. For physical robots 

(which need to sense from and act upon the physical world, as opposed to the symbolic 

world), this knowledge cannot be purely symbolic as in a dictionary or thesaurus. Word 

semantics need to be grounded to the robot’s sensorimotor skills. 

4. World knowledge captures any other task-relevant knowledge about the world and how 

the world works, including. 

• Facts about the world and the robot’s task environment: “My owner’s name is Katie 

Smith” or “I was built in 2017.” 

• Common-sense knowledge allows a robot to reason about how to achieve task goals 

(Tenorth and Beetz 2009; Al-Moadhen et al. 2013): to “boil the water,” the water 

must first be placed in the boiling pot. 

• Action knowledge captures the existing knowledge about subtasks and subgoals 

previously acquired or learned. Formal action models capture preconditions and 

effects of actions (Fox and Long 2003). Preconditions specify world states in which 

the action is applicable; effects specify the expected changes to the world state. 

• Domain knowledge corresponds to information specific to a particular task 

environment or user that a robot needs to perform its task. For example, a robot that 

performs object deliveries to hotel rooms needs to have a map specific to the hotel 

within which it is deployed, with room numbers annotated on the map. 

Some of these knowledge and capabilities can be programmed into a robot, they can also be 

acquired through interactions with humans although the means of acquisition is less clear than 

that for task knowledge.  

Forms of Interaction for Learning Task-Relevant Knowledge or Capabilities 

The types of interactions that support acquiring task-relevant knowledge and capabilities are 

similar to those involved in learning the task itself. As shown in Table 1, the forms of interaction 

often depend on the kind of knowledge or capabilities to be learned. For example, to help train 

the robot’s visual perception capabilites, the teacher may use language descriptions and also 

show target objects from different angels.  To acquire the navigation map,  tele-operation (e.g., 

through joystick guidance) can be employed as well as language descriptions. Acquisition of 

low-level action knowledge (e.g., lower-level policies to generate trajectories) may benefit from 

kinesthetic demonstration whereas higher-level task knowledge (e.g., partial orderings) may 

best benefit from language instructions. Linguistic knowledge certainly involves the use of 

language, which is often combined with deictic gestures or action demonstrations because the 

semantics of words need to be grounded to visual perception and the change of state in the 

physical world. 

Table 1 Example forms of interaction for different types of knowledge 

Knowledge Example forms of interaction 

Perception 
capabilities 

• Natural language and deictic gestures to teach labels of objects and indicate 
their relations 

• Natural language to specify object affordances 



Action 
capabilities 

• Kinesthetic demonstration to teach low-level control policies to generate arm 
trajectories or navigation strategies 

Linguistic 
knowledge 

• Natural language combined with deictic gestures to teach nouns and 
adjectives 

• Natural language combined with action demonstration to teach action verbs 

World 
knowledge 

 

• Natural language to specify order constraints among sub-actions 
• Natural language to specify causality (i.e., precondition and effect) of an action 
• Demonstrations performed by the human to show how basic actions/verbs 

change the state of the world 
• Joystick guidance to build a map of the robot’s environment for navigation 

Open Questions in Enabling Effective Task Learning Interaction 

Teaching presupposed task-relevant knowledge 

While previous work has investigated the acquisition of many types of task-related knowledge 

and capabilities, the acquisition of common sense world knowledge in task learning has largely 

gone unexplored. In human-to-human interactions, knowledge about the world and the domain 

is often presupposed. The speaker and the listener believe they share the same kind of world 

knowledge, so it does not need to be explicitly stated. However, in human-robot interactions, 

huge discrepancies in world knowledge can exist between humans and robots. Often, the robot 

does not have sufficient background knowledge to learn a new task. Thus human teachers need 

to be able to assess what kind of background knowledge the robot has and to teach the robot 

background knowledge pertinent to the task at hand. What sort of background knowledge must 

a robot possess? For example, the result states of basic action verbs are not usually specified, 

and humans naturally take them for granted. Existing verb semantic models (such as Verbnet, 

FrameNet) and preexisting knowledge bases (e.g., Google’s Knowledge Graph, Freebase, 

among others) offer sources of information, but not at the level of detail required for the robot 

to understand the very basic principles about the conditions for their actions (e.g., “put A on B” 

requires A generally smaller and lighter than B) and how their actions may change the world 

(e.g., slicing a cucumber may lead to the change of the shape, size, and pieces of the cucumber).  

Thus, it is important to understand what a human must teach a robot about the domain of a 

task. Some background knowledge (e.g., time as duration, units of time, and time relations) may 

be best taught once for many domains, but much human knowledge is domain specific. 

Learning domain-specific knowledge will lead to a whole new set of research questions: 

• How does the human know what knowledge the robot (e.g., sub-actions) has so that it can 

be used to teach new tasks?  

• During task learning, what signals indicate the lack of background knowledge and clarify 

when human teaching is required?  

• How can existing resources be leveraged to acquire the correct level of background 

knowledge during teaching?  

• What level of granularity should background knowledge be taught by a human?  

• How should background knowledge be represented and used for effective reasoning and 

inference? 

Combining different forms of interaction for task learning/teaching 

Most previous work on task learning has focused on a single form of interaction for teaching. 

Except for a limited few (Rybski et al. 2007; Niekum et al. 2015; Kirk et al., 2016; Mohseni-

Kabir et al. 2018), techniques that combine language, dialogue, and action demonstration to 

teach complex tasks are in critical need. As discussed above, different forms benefit different 

types of knowledge. In addition, as the situation changes (e.g., the lighting situation changes 

from being good to poor), the form of interaction may need to adapt (e.g., switch from visual 

demonstration to language instruction). Thus we need to know how to seamlessly combine and 



adapt different forms of teaching to enable the most effective teaching. Is combining and 

adapting a problem for human teachers or a problem for robot learners? The answer is both. 

Teaching Humans How to Teach Robots 

After working with a robot, an experienced human teacher—in our scenario involving Mia, this 

would be David, the employee from robotic manufacturer—should be able to discern which 

form of interaction is necessary to teach a specific kind of knowledge to meet specific 

circumstances. Experienced human teachers should know when to provide a particular kind of 

feedback (such as reward or punishment) so that the robot can learn from such feedback and 

adjust its behaviors to maximize future rewards. Experienced human teachers may also apply 

scaffolding, intentionally vary the situation, and design different experiences for the robot to 

learn the task and aspects associated with the task.  

Thus, similar to the setting in human skill learning, human teachers’ behaviors and 

experience have a massive influence on the success of robot task learning. How, then, should 

we train a new generation of human partners/teachers, so that robots can be effectively taught 

through their collaborations? 

Enabling Robots to Engage Proactively in Learning 

We cannot expect that every human partner will be capable of identifying and employing the 

most effective means to teach the appropriate kind of knowledge. Thus a robot needs to be able 

to share the burden of selecting effective strategies. A crucial issue, not yet studied, is: How 

can a robot be made to be aware of its own learning situation—one in which it is capable of 

communicating to the human its limitations and proactively requesting the right kind of 

teaching from the human? 

Capabilities to Perceive the Environment and Human Inputs 

The ability to perceive the environment and human inputs as well as to infer current task-related 

states and communicative states is fundamental to interactive task learning. A robot must be 

able to recognize task-relevant objects in the environment, the change of the environment cause 

by an action, task demonstration from humans, and verbal and non-verbal human 

communicative behaviors. It must also be able to infer human intent, interpret instructed actions 

and their involved objects, and derive task structures by grounding language to perception. 

Visual Perception 

Performing or learning tasks inevitably requires an understanding of objects and environments 

integral to the tasks. This includes objects, their properties, fluents (i.e., attributes which can 

potentially change), and relations, as well as an understanding of external actions and how they 

may have changed the perceived state of the physical world. As humans can perform actions to 

teach robots and apply nonverbal modalities (such as deictic gestures, iconic gestures, and gaze 

directions) to facilitate communication, the robot should also have the capability to recognize 

the state and actions of its human partners.  

Acquiring perceptual capability has been the main research goal for the computer vision 

community. Most of the learning algorithms for perception are trained offline and rely on large 

training data for object recognition, activity recognition, etc. Recent years have seen significant 

progress on recognition of common objects from static scenes (e.g., images) (Grauman and 

Leibe 2011). However, in a dynamic scene such as is encountered in task learning, object 

tracking and human action recognition still face many challenges (for recent reviews, see 

Aggarwal and Ryoo 2011; Sargano et al. 2017). In addition, during task learning, it is likely 

that neither relevant computer vision models nor sufficient data are available. Thus, it is critical 

for the robot to continuously acquire new models for object recognition through interaction 



with its human teacher. The teacher can use language to provide the name, the object type, and 

related properties to a perceived object in the environment. However, the ability to efficiently 

learn a generalized model (e.g., for object recognition) that can be applied in new situations still 

faces many challenges. Some key research questions include:  

• How can a robot learn reliable models based on a small number of examples with 

limited human supervision during interaction?  

• How can it transfer and adapt models learned from previous experience to a new 

situation (e.g., transfer learning), perhaps with limited human intervention? 

Language Understanding 

Language serves as a main mode of interaction in interactive task learning. From a human’s 

linguistic utterance, the robot needs first to understand the underlying intent of the teacher (e.g., 

whether it is to teach the robot a new step or to correct the robot’s current understanding of a 

learned step/action). When a referring expression is involved, the agent needs to understand 

what entities, from the interaction discourse or the shared environment, are being referenced. 

When the utterance describes some task steps, the agent needs to understand what actions are 

specified and what participants are involved (e.g., agent, patient, instrument, source, 

destination, etc.). The robot also needs to be able to extract any information from the utterance 

that specifies preconditions, effects, and constraints (e.g., temporal orders) associated with 

actions and tasks. To help achieve the above-mentioned abilities, recent advances in natural 

language processing—particularly in syntactic parsing, semantic processing, and discourse 

processing—can be applied (Jurafsky and Martin 2008). In the event that the robot cannot 

successfully understand human utterances, dialogue can clarify human intent and disambiguate 

different interpretations of linguistic expressions. 

In situated interaction, language communication is often accompanied by other nonverbal 

modalities, such as gesture. Deictic gestures (e.g., pointing to objects in the environment) and 

iconic gestures (e.g., waving hello or indicating an action or a particular type of object) are vital 

to an understanding of the teacher’s intent. Pointing gestures are essential to task instruction 

because the array of objects in a task (which may be difficult to describe verbally) lead to the 

need to point at them rather than rely solely on language descriptions. Matuszek et al. (2014), 

for example, combine language and gesture to interpret directives in human-robot interaction. 

Speech communication is perhaps one of the most natural means of interaction in task 

learning. Speech recognition has made significant progress over the last decade. More recently, 

advances in deep neural networks have made it possible for machines to achieve recognition 

performance on par with human performance. At the time of writing this article (June 2017), 

Google reported a 4.9% word error rate in recognition while human performance is estimated 

to be around 4% word error rate (Saon et al. 2016). Although encouraging, these results were 

often obtained based on offline benchmark data. Thus, it is not clear whether the same 

performance can be attained in a real-time, interactive, and unconstrained environment. How 

can recent advances in speech recognition be successfully applied to real-time interactive 

systems for task learning? 

Unlike traditional natural language processing, to enable communication with physical 

robots, linguistic knowledge must go beyond pure symbolic representations, as in a dictionary 

or thesaurus. The meanings of words need to be grounded to the robot’s internal representations 

that are connected with sensors and effectors. Concrete nouns, for instance, need to be grounded 

to the types of objects or object attributes perceived from the environment (e.g., color words 

grounded to color histograms). Adjectives are often grounded to the perceived attributes (e.g., 

the size of the bounding boxes, the weights of an object) and fluents (e.g., door open or closed, 

box open or closed). Verbs need to be grounded to the underlying action representations, which 

can be accessed by the robot’s control system to plan and execute the corresponding actions. 

On one hand, existing knowledge of grounded word semantics will be applied to ground 



language to perception and action (discussed in the next section). On the other, as new words 

are often encountered during interaction, they should be acquired continuously through situated 

interaction (Mohan et al. 2012). When a situation changes (e.g., a change in the environment), 

the learned word representation may not fit the new situation (e.g., a lighting change in the 

environment may affect grounded word models for color words). Thus, it is important word 

models need to be adaptable to new situations (Liu and Chai 2015; Thomason et al. 2015). 

Grounding Language to Perception 

The capability to ground human language to the perceived physical environment is particularly 

important for task learning. Suppose a human teaches the robot how to boil water by 

demonstrating to the robot how to achieve this task through step-by-step instructions: pick up 

the pot, fill the pot with water, boil the water,…. To learn how to perform this task, the robot 

must first understand what perceived objects are involved in each step of instruction by 

grounding the arguments of action verbs, such as the noun phrase the pot, to the perceived 

objects in the environment. 

This task of grounding language to perception of the environment has received an increasing 

amount of attention (Mooney 2008; Tellex et al. 2011; Krishnamurthy and Kollar 2013; Yu and 

Siskind 2013; Matuszek et al. 2014; Tellex et al. 2014; Yang et al. 2016). Most previous 

approaches first process language and vision separately, and then integrate the partial results 

together. In a dynamic scene with ongoing activities, computer vision algorithms still have 

difficulty reliably recognizing and tracking objects and actions; this leads to a bottleneck in 

grounding language to vision. Recent deep learning approaches directly fuse raw features from 

language and vision and have achieved state-of-the-art empirical results on applications such 

as caption generation from images/videos and visual question answering. These approaches, 

however, require a large amount of training data. To integrate language and vision in the context 

of interactive task learning, what would be the optimal architecture?  

Another line of recent work has explored causality modeling for action verbs (Gao et al. 

2016). Here the idea is that knowledge of how concrete action verbs (e.g., cut, slice, pick up, 

etc.) might alter the world can drive visual detection. For example, from the directive “slice the 

cucumber,” knowledge about expected changes to the cucumber will provide high-level 

guidance to look specifically for grounded objects with relevant features (or the change of 

features) in the visual scene. Recent work has also explored common-sense physical knowledge 

about objects that are implied by action verbs (Forbes and Choi 2017). For example, “he threw 

the ball” implies that “he” is bigger, heavier, and faster than “the ball.” This kind of implicit 

knowledge can potentially provide additional cues to ground language to perception. 

Capabilities to Act and Communicate 

Enabling a robot to learn new tasks requires action capabilities to carry out task-related actions 

as well as actions that facilitate communication. These capabilities span a wide range, from 

navigation and manipulation to communication. 

Task-Related Actions and Grounding Language to Action Representation 

A robot’s action capabilities can be based on manually designed and tuned controllers, as well 

as policies learned from human demonstrations or through reinforcement learning. In some 

robotic applications, it is essential for the robot already to possess all of the action capabilities 

needed to complete a task. For example, previous work in the robotics community aimed to 

translate natural language instructions to robotic operations (Kress-Gazit et al. 2007; 

Spangenberg and Henrich 2015), but they were not designed for learning new actions or tasks. 

In other cases, tasks and actions can be learned simultaneously. For example, Mohan and Laird 

(2014) developed a system where a robot can learn a hierarchical representation of a new task 



based on linguistic interaction with the human. Similarly, Liu et al. (2016) applied grammar 

induction to learn a hierarchical and/or graph representation for a new task from human’s 

language instructions and visual demonstrations. 

To support action learning from language instructions, recent work has begun to explore the 

connection between semantics of concrete action verbs and action planning (She et al. 2014; 

Misra et al. 2016) and explicitly represented grounded verb semantics as desired goal states of 

the physical world as a result of the corresponding actions. Such representations are learned 

based on example actions demonstrated by the human. For example, a human may teach the 

robot how to “boil water” by issuing step-by-step language instructions which the robot knows 

how to perform: “move to the kettle, grasp the kettle, move to the stove, …” By following these 

steps, the robot will experience the change of the physical world. By capturing the differences 

between the goal state and the initial state, the robot is able to acquire the semantics of the verb 

frame “boil (water)”. Once acquired, these grounded representations will allow the robot to 

interpret verbs/commands issued by humans in new situations and apply planning to execute 

actions. One limitation of previous work is that the algorithms were mainly developed based on 

simulations (e.g., simulated Baxter robots). Except for a few (e.g., She and Chai 2017), 

uncertainties from the environment were largely ignored. However, the world is full of 

uncertainties at various levels: from motion planning to perception and language grounding. To 

extend task learning from language instructions to the physical world, it is paramount to address 

how to integrate uncertainties at multiple levels together, so that new actions associated with 

concrete action verbs can be learned. 

Verbal and Nonverbal Communicative Action 

Separate from its task-related actions, a robot will need to perform communicative actions to 

facilitate its learning/teaching interactions. In situated interaction, both verbal and nonverbal 

modalities are available for the robot to communicate to its human partner. This communication 

includes such capabilities as: 

• Generating speech and deictic gestures to confirm understanding of instructions or refer 

to objects in the environment (Fang et al. 2015), 

• Generating gaze direction, communicative head gestures (e.g., nodding and shaking 

head), or facial expressions (confused or confident face) to respond to human input at 

different points in the interaction (Holroyd et al. 2011), or  

• Displaying visualizations of learned concepts to enable humans to inspect them. 

In particular, the embodiment of a physical robot can take advantage of nonverbal modalities 

(e.g., gaze and gesture) for efficient communication. The robotics community has learned from 

psychologists that gazing at others and at objects in the environment are quintessential human 

behaviors. Gaze that is used to convey information to a collaborator is referred to as social gaze. 

Gaze at a collaborator functions to gather attention from the other, to indicate social presence, 

and to indicate attention to the individual (e.g., turn taking via gaze aversion). Gaze at objects 

serves to indicate what one is paying attention to, is about to point at, what one intends to do 

next, or to indicate that what another has focused on should now be the object of mutual gaze. 

Collaborators use gaze information to assess how well their partners comprehend their 

collaborations as well as to assess the collaborators’ level of continued engagement (Rich et al. 

2010). Every one of these abilities is valuable in task learning, as they enable the assessment of 

how the learning is progressing, whether the learner is looking in the right direction, and what 

the teacher intends for the learner to do. Gestures also have similar effects in coordinating 

interaction, establishing shared attention, and providing feedback. Proxemics, which models 

the stance of individuals to others and how they approach one another, can be significant in 

tasks because where the learner stands in performing a task may be crucial. How to effectively 

generate verbal and nonverbal communicative behaviors to facilitate task learning remains an 

important focus for research research. 



Capabilities to Manage and Coordinate Interaction 

Managing interactions between humans and robots is critical to support task learning/teaching. 

At any point in the interaction, robots need to decide what to do next based on interaction 

history, current situation, and learning goals. These decisions can be made by following simple 

decision rules that are manually crafted or interaction policies that are learned from experience. 

Interaction Management and Active Learning 

Decades of work on dialogue modeling are relevant for interactive task learning. Different 

approaches have been developed, for example, driven by intention and collaboration (e.g., 

Grosz and Sidner 1986; Rich and Sidner 1998), based on information states (Larsson and Traum 

2000) or interaction policies learned from reinforcement learning ( Kaelbling et al., 1996; 

Young et al. 2013). Despite recent progress, dialogue modeling remains a significant challenge. 

Dialogue models need to be able to accommodate interruption, turn taking, and other dialogue 

behaviors, which neither the intention-based nor information state approach have successfully 

addressed, but are essential in task instruction. 

Specifically to learn new tasks, active learning has been shown to be an important component 

that contributes to effective interaction management. Most work on task learning assumes a 

learner that passively receives information from the teacher. However, humans are often 

suboptimal in their teaching when the learner is passive. One line of work explores active task 

learning whereby the learner actively requests specific information that it evaluates as most 

useful. Active questioning enables much more efficient learning. For example, Chao et al. 

(2010) and Cakmak et al. (2010) demonstrated that an active learner which requests labels 

(positive/negative) for specific instances of a task goal outperforms a passive learner taught by 

examples selected by naïve human teachers. In particular, Cakmak and Thomaz (2012) 

identified three types of questions that can be used by a human/robot student as part of active 

task learning: (a) demonstration queries asking for a full or partial demonstration of the task, 

(b) label queries asking whether an execution is correct, and (c) feature queries asking about 

the relevance or invariance of specific aspects of the task. Recent work by She and Chai (2017) 

extended this question/answer style of interaction and applied reinforcement learning to acquire 

an interaction policy that allows the robot to handle noisy environment and learn new verbs and 

corresponding actions. 

To improve interactive task learning, we need to know how to engage in a full range of 

interaction that can incorporate active learning with other communicative goals (e.g., 

clarification and disambiguation) to acquire more reliable models of skills. 

Extra Collaborative Effort and Transparency 

In human-human task learning, background knowledge is largely presupposed. The speaker and 

the listener believe they share the same kind of background knowledge, so it does not need to 

be explicitly stated. In addition, human partners often share similar perceptual capabilities. 

There is basic common ground where human teacher/learner can ground to without much effort. 

In human-robot task learning, however, there are huge discrepancies in background 

knowledge between humans and robots. Often the robot does not have sufficient background 

knowledge to learn a new task. Furthermore, although co-present in a shared environment, 

humans and robots have mismatched capabilities in reasoning, perception, and action. Their 

representations of the shared environment and joint tasks can be significantly misaligned. A 

significant challenge in interaction and communication with cognitive robots involves the lack 

of common ground and discrepancies in the human’s mental model of what a robot knows and 

is capable of doing. Previous work (Chai et al. 2016) has shown that to bridge the gap and strive 

for a common ground of shared representations, humans and robots need to make extra effort 



to establish common ground. This extra collaborative effort in interaction not only has 

implications in algorithms for language grounding, but also affects interaction management. 

Transparency plays an important role in achieving common ground and promoting accurate 

mental models during interaction. For example, Thomaz and Breazeal (2006) show that natural 

transparency mechanisms like gaze can steer the human’s behavior while demonstrating a task. 

Pejsa et al. (2014) used facial expressions to provide transparency about dialog uncertainties. 

Alexandrova et al. (2015) employed interactive visualizations of learned actions to enable 

teachers to verify tasks that are learned from a single demonstration and correct any mistakes 

they detect. Guha (2016) used pointing to communicate the robot’s understanding of a 

referenced object, and Whitney et al. (2016) used heat map visualizations and facial expressions 

to communicate uncertainty about its inference. Recent work by Hayes and Shah (2017) allows 

a robot to automatically generate verbal description of its learned policy (i.e., which actions it 

takes in which contexts). 

To enable common ground for effective task learning, there are many research questions to 

pursue:  

• How can an agent make its internal representations (e.g., causal-effect relations) 

transparent to the human?  

• How can an agent explain its autonomy or decision so that the human can better 

understand the agent’s capabilities and limitations?  

• What are the mechanisms to manage interaction so that it can encourage human’s 

collaborative behaviors and simultaneously create more collaborative behaviors from the 

robot? 

Conclusions 

To fully support interactively teaching robots new tasks through various means, many 

challenges and open questions remain as discussed above. While the scenarios in the 

introduction section focused on in-home settings, teaching robots new tasks is applicable in 

many situations, especially ones with highly structured environments. Already robots are being 

trained by people in ad-hoc ways to work in manufacturing assembly lines (cf. the Baxter robots 

of Re-Think robotics). Robots working in warehouses are largely programmed by hand, but it 

is not difficult to envision the need for them to be taught tasks by human co-workers. The same 

applies to robots in the service industry (e.g. hotel helpers). 

One key challenge in task learning that has not been discussed above is evaluation. 

Evaluation has long been a critical and difficult issue in interactive systems because many 

confounding factors are involved. In the context of interactive task learning, many new 

questions arise:  

• How do we know the task is learned?  

• What additional metrics should be used to evaluate the success of task acquisition 

beyond traditional metrics for evaluating interaction (e.g., efficiency and task 

completion)?  

• What are reasonable baselines and upper bound (e.g., human-human interaction)?  

• How do researchers conduct longitudinal studies and evaluation?  

• What kinds of products are available that may make longitudinal evaluation (e.g., 

putting robots in people’s house) possible? 

While this paper is mainly about task learning where humans serve as teachers and robots 

serve as learners, it is not difficult to imagine that a well-trained and capable robot can also 

teach humans new tasks. In the intelligent tutoring world, computer programs have been 

teaching humans in various ways for more than three decades. Virtual agents teach humans all 

sorts of tasks, from turbine engine operation (Rickel and Johnson 2000) to negotiation (Gratch 

et al. 2015) to cross cultural communication (Johnson and Zaker 2012). The idea that robots 



might teach humans has received relatively little attention, perhaps in part due to the lack of 

capabilities. Robots are not yet teachers, but for many tasks, from doing experiments, to 

manipulation of heavy equipment, the form factor of a robot will be useful in ways that 

computer programs and virtual agents are not. As robots become more capable, the 

teacher/learner role reverse is foreseeable in the future, which will bring new research 

challenges and opportunities. 
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