
Appraisal in Human-Robot Collaboration

Paper 24

ABSTRACT
We have investigated the mutual influence of affective and
collaborative processes in a cognitive theory to support in-
teraction between humans and robots or virtual agents. We
have developed new algorithms for appraisal processes, as
part of a new overall computational model for implement-
ing collaborative robots and agents. We build primarily on
the cognitive appraisal theory of emotions and the Shared-
Plans theory of collaboration to investigate the structure,
fundamental processes and functions of emotions in a col-
laboration. We have evaluated our implemented algorithms
by conducting an online user study.
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1. INTRODUCTION
Sousa in The Rationality of Emotion [20] makes the case

for claiming that humans are capable of rationality largely
because they are creatures with emotions. The idea of hav-
ing robots or other intelligent agents living in a human en-
vironment has been a persistent dream from science fic-
tion books to artificial intelligence and robotics laborato-
ries. Collaborative robots are expected to become an in-
tegral part of humans’ environment to accomplish their in-
dustrial and household tasks. In these environments humans
will be involved in robots’ operations and decision-making
processes. The involvement of humans influences the effi-
ciency of robots’ interaction and performance, and makes
them dependent on humans’ cognitive abilities and mental
states.

This work is implemented as part of a larger effort to build
robots capable of generating and recognizing emotions in or-
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der to be better collaborators. In this paper, we report on
the specific problem of appraising events within a collab-
orative interaction. Our contribution is to ground general
appraisal concepts in the specific context and structure of
collaboration. This work is part of the development of Af-
fective Motivational Collaboration Theory which is built on
the foundations of the SharedPlans theory of collaboration
[6] and the cognitive appraisal theory of emotions [5].

After discussing related works, we briefly introduce the
Affective Motivational Collaboration Theory, focusing on
the collaboration and appraisal mechanisms as well as men-
tal states. We then provide more details about the graph
representation of the robot’s mental state. Next, we de-
scribe the algorithms we developed to compute the value of
four crucial appraisal variables. To compare the results from
our algorithms with humans’ decisions we have conducted a
user study using crowd sourcing; the results are provided in
Section 7.

2. RELATED WORK
Our work builds on the general notions of appraisal theory

[5, 12, 17, 18], but is focused on its application in human-
robot collaboration. Computational appraisal models have
been applied to a variety of uses including psychology, robotics,
AI, and cognitive science. For instance, in [11] EMA is used
to generate specific predictions about how human subjects
will appraise and cope with emotional situations. Further-
more, appraisal theory has also been used in robots’ decision
making [4], or in their cognitive systems [7, 10]. Addition-
ally, in the virtual agents community, empathy and affective
decision-making is a research topic that has received much
attention in the last two decades [13, 14, 15, 22]. However,
EMA and several other examples in artificial intelligence and
robotics which apply appraisal theory do not focus on the
dynamics of collaborative contexts [1, 8, 11, 16].

The computational collaboration model in our work is
strongly influenced by the SharedPlans theory [6]. How-
ever, our algorithms are also compatible with other collabo-
ration theories, e.g., Joint Intentions theory [2], or STEAM
[21]. These theories have been extensively used to exam-
ine and describe teamwork and collaboration. Yet, collabo-
ration and emotion theories have never been combined, as
they are in our work. We believe a systematic integration of
collaboration theories and appraisal theory can help us de-
scribe the underlying collaboration processes leading to the
existing collaboration structures.



3. AFFECTIVE MOTIVATIONAL COLLAB-
ORATION THEORY

Affective Motivational Collaboration Theory deals with
the interpretation and prediction of observable behaviors in
a dyadic collaboration. The theory focuses on the processes
regulated by emotional states. The observable behaviors
represent the outcome of reactive and deliberative processes
related to the interpretation of the self’s relationship to the
environment. Affective Motivational Collaboration Theory
aims to explain both rapid emotional reactions to events as
well as slower, more deliberative responses. The reactive and
deliberative processes are triggered by two types of events:
external events, such as the other’s utterances and primi-
tive actions, and internal events, comprising changes in the
self’s mental states, such as belief formation and emotional
changes. The theory explains how emotions regulate the
underlying processes when these events occur. It also elu-
cidates the role of motives as goal-driven emotion-regulated
constructs with which a robot can form new intentions to
cope with events.
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Figure 1: Computational framework based on Af-
fective Motivational Collaboration Theory (arrows
indicate primary influences between mechanisms).

Our focus is on the mechanisms depicted as mental pro-
cesses in Figure 1 along with the mental states. Each mecha-
nism includes one or more processes in our architecture. For
instance, the Collaboration mechanism includes processes
such as Focus Shifting and Constraint Management, while
as we discuss in Section 6 the Appraisal mechanism includes
processes to compute the values for different appraisal vari-
ables. The mental states includes self’s (robot’s) beliefs,
intentions, motives, goals and emotion instances as well as
the anticipated mental states of the other (human). The
Collaboration mechanism maintains constraints on actions,
including task states and the ordering of tasks (see Figure
2). The Collaboration mechanism also provides processes to
update and monitor the shared plan. The Appraisal mecha-
nism is responsible for evaluating changes in the self’s mental
states, the anticipated mental states of the other, and the
state of the collaboration environment. The Coping mecha-
nism provides the self with different coping strategies associ-
ated with changes in the self’s mental states with respect to
the state of the collaboration. The Motivation mechanism
operates whenever the self a) requires a new motive to over-
come an internal impasse in an ongoing task, or b) wants to

provide an external motive to the other when the other faces
a problem in a task. The Theory of Mind mechanism infers
a model of the other’s anticipated mental state. The self
progressively updates this model during the collaboration.

3.1 Mental States
A brief description of mental states is provided as prereq-

uisite knowledge for understanding the appraisal processes.
The mental states shown in Figure 1 comprise the knowl-
edge base required for all the mechanisms in the overall
model. Mental states are conscious states of mind pro-
viding the content for cognitive processes. Affective Mo-
tivational Collaboration Theory operates with the following
mental states: beliefs, intentions, motives, goals and emo-
tion instances. These mental states possess attributes, each
of which provides a discriminating and unique interpreta-
tion of the related cognitive entities. The self uses these
attributes whenever there is an arbitration in the internal
cognitive processes. We only describe the attributes of be-
liefs and motives in this paper, since they are used in our
appraisal algorithms. We briefly provide the way we com-
pute the attributes’ values, due to the limited space.

3.1.1 Belief
Beliefs are a crucial part of the mental states. We have

two different perspectives on categorization of beliefs. In one
perspective, we categorize beliefs based on whether they are
shared between the collaborators. In the second perspec-
tive, beliefs are categorized based on who or what they are
about. In this categorization, beliefs can be about the self,
the other, or the environment. Beliefs can be created and
updated by different processes. They also affect how these
processes function as time passes.

The attributes of a belief are involved in arbitration pro-
cedures within different processes in Affective Motivational
Collaboration Theory. They impact a range of these pro-
cesses from the formation of new beliefs, the evaluation of
an external event by the Appraisal mechanism, the genera-
tion of new motives and updates to the collaboration plan, to
the activation of coping strategies and ultimately the self’s
behavior. We use six belief attributes in our framework.
Belief strength is about how strongly the self holds salient
beliefs about an object, an entity, or an anticipated behav-
ior. Accuracy of a belief is the relation between that belief
and the truth which that belief is about. The frequency of
a belief is related to how regularly it appears as the result
of an internal or an external event. The recency of a belief
refers to how temporally close a particular belief is to the
current state of collaboration. The saliency of a belief is a
cognitive attribute that pertains to how easily the self be-
comes aware of a belief. The persistence of a belief refers to
how resistant the belief is to changes.

3.1.2 Motive
Motives are mental constructs which can initiate, direct

and maintain goal-directed behaviors. They are created by
the emotion-regulated Motivation mechanism. Motives can
cause the formation of a new intention for the robot accord-
ing to: a) its own emotional states (how the robot appraises
the environment), b) its own private goal (how an action
helps the robot to make progress), c) the collaboration goal
(how an action helps to achieve the shared goal), and d)
other’s anticipated beliefs (how an action helps the other).



Motives can be compared on various dimensions [19], and
they possess a set of attributes. The Motivation mechanism
compares motives based on the quality of these attributes
and chooses the one which is the most related to the current
state of the collaboration. We have the following five mo-
tive attributes in our framework. The insistence of a motive
defines the “interrupt priority level” of the motive, and how
much that motive can attract the self’s focus of attention.
The importance of a motive is determined by the correspond-
ing beliefs about the effects of achieving or not achieving the
associated goal. The urgency of a motive defines how much
time the self has to acknowledge and address that motive
before it is too late. The intensity of a motive determines
how actively and vigorously that motive can help the self to
pursue the goal if adopted, rather than abandoning the goal
and ultimately the collaboration. The failure disruptiveness
attribute of a motive determines how disruptive failure is to
achieving the corresponding goal.

3.1.3 Intention
Intentions are mental constructs directed at goals and fu-

ture actions. They play an essential role in taking actions
according to the collaboration plan as well as behavior selec-
tion in the Coping mechanism. Intentions are also involved
in selecting intention-related strategies, e.g., planning, seek-
ing instrumental support and procrastination. Intentions
possess a set of attributes, i.e., Temporal Status, Direct Ex-
perience, Certainty, Ambivalence, Affective-Deliberative Con-
sistency which moderate the consistency between intention
and behavior [3]. The details about these attributes are be-
yond the scope of this paper.

3.1.4 Goal
Goals help the robot to create and update its collaboration

plan according to the current private and shared goal con-
tent and structure, i.e., the Specificity, Proximity and Dif-
ficulty of the goal. Goals direct the formation of intentions
to take appropriate corresponding actions during collabora-
tion. Goals also drive the Motivation mechanism to generate
required motive(s). The details about goal’s attributes are
beyond the scope of this paper.

3.1.5 Emotion Instance
Emotions in mental states are emotion instances that are

elicited by the Appraisal mechanism, e.g., Joy, Anger, Hope,
Worry. These emotion instances include the robot’s own
emotions as well as the anticipated emotions of the other
which are created with the help of the processes in the The-
ory of Mind mechanism. Each emotion has its own function-
ality in either the intrapersonal or interpersonal level. These
emotions not only regulate the self’s internal processes, but
also assist the self to anticipate the other’s mental states.

4. EXAMPLE SCENARIO
The example scenario is part of a much larger interaction

we are implementing to test our theory. This example shows
a very short part of an interaction between a robot and an
astronaut during their collaboration. Their mission is to
finish installing a few solar panels together. However, the
astronaut encounters a measurement tool problem:

Astronaut [turn t-1]: Oh no! Finishing the quality check
of our installation with this measurement problem is
so frustrating. I think we should stop now!

Robot [turn t]: I see. This is frustrating. But, I can help
you with the measurement tool and we can finish the
task as originally planned.

In this scenario, the robot appraises the problem with
the measurement tool as a relevant, undesirable, unexpected,
but controllable one. Consequently, the coping mechanism
first acknowledges the astronaut’s negative valenced emotion
(i.e., frustration), then provides a new plan to continue the
collaboration.

5. COLLABORATION
The Collaboration mechanism constructs a hierarchy of

goals associated with tasks in the form of a hierarchical task
network (see Figure 2), and also manages and maintains
the constraints and other required details of the collabora-
tion including the inputs and outputs of individual tasks,
the preconditions (specifying whether it is appropriate to
perform a task), and the postconditions (specifying whether
a just-completed task was successful). Collaboration also
keeps track of the focus of attention, which determines the
salient objects, properties and relations at each point, and
shifts the focus of attention during the interaction.
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Figure 2: Collaboration structure (shared plan).

Here, we briefly describe the methods which retrieve in-
formation about the collaboration structure, and are used in
our algorithms to compute the values of appraisal variables.
In these methods, εt is the event corresponding to time t,
and gt is a given goal at time t.

• recognizeGoal(εt) returns the unique goal to which the given
event (action, utterance, or emotional expression) directly
contributes, or ambiguous if this method does not recognize
a goal in the plan.

• topLevelGoalStatus(gt) returns the status of the top level
goal whether it is achieved, failed, blocked, inappli-
cable, pending, or in progress. In our example, “Install
Solar Panels” is the top level goal.

• currGoalStatus(gt) returns the current goal status whether
it is achieved, failed, blocked, inapplicable, pending,
or in progress. In our example, “Prepare Measurement
Tool” is the current (focused) goal.

• precondStatus(gt) returns the status of the precondition for
the given goal whether it is satisfied, unsatisfied or un-
known. For instance, the precondition for fixing a panel is
whether the panel is appropriately located on its frame.

• isLive(gt) returns true if all the predecessors of the given
goal are achieved and all the preconditions of the goal are
satisfied; otherwise returns false.



• isFocusShift(gt) returns true if the given goal is not the
previous focus (top of the stack); otherwise returns false.

• isNecessaryFocusShift(gt) returns true if the status of the
previous focus was achieved; otherwise returns false [9].

• isPath(g1, g2) returns true if there is a path between g1 and
g2 in a plan tree structure; otherwise returns false.

• doesContribute(gt) returns whether the given goal contributes
to another goal in the higher level of the plan hierarchy. For
instance, an abstract (nonprimitive) goal of “Bring Panels”
contributes to the higher level goal of “Install Solar Panels”.

• extractContributingGoals(gt) returns all the contributing goals
of the given goal. For instance, “Prepare Measurement
Tool” and “Measure Quality” are two goals contributing to
the “Check Panels” nonprimitive goal.

• extractPredecessors(gt) returns the predecessors of the given
goal. For instance, the “Fix Panels” goal is the predecessor
of another goal called “Check Panels”.

• extractInputs(gt) returns all the required inputs for the given
goal. For example, the goal “Fix Panels” requires inputs
such as the welding tool and the panel.

• isAvailable(gt) returns whether the given input is available.
For instance, if the welding tool is required for the goal “Fix
Panels”, is it available now?

• isAchieved(gt) returns whether the given goal is achieved,
i.e., whether all the postconditions of the given goal are
satisfied.

• isFocused(gt) returns whether the focus is on given goal
now. In this example, the focus is on the goal “Prepare
Measurement Tool”. The focused goal is the goal that the
robot is currently pursuing.

• getResponsible(gt) returns responsible agents of the given
goal. In a dyadic collaboration, both of the agents can be
partly responsible for a nonprimitive goal, while each is re-
sponsible for one or more primitive goals. For instance,
both the robot and the astronaut are responsible for the
nonprimitive goal of “Install Solar Panels”, whereas it is
only the astronaut who is responsible for the primitive goal
of “Prepare Measurement Tool”.

6. APPRAISAL PROCESSES
We consider four appraisal variables to be the most im-

portant appraisal variables in a collaboration context, i.e.,
Relevance (Algorithm 1), Desirability (Algorithm 2), Ex-
pectedness (Algorithm 3), and Controllability (Algorithm 4).
There are other appraisal variables introduced in psycholog-
ical [18] and computational literature [5]. We believe most
of these variables can be straightforwardly added to our ap-
praisal mechanism later. All of the algorithms in this sec-
tion use mental states of the robot (discussed in Section
3.1) which are formed based on the collaboration structure.
These algorithms use the corresponding recognized goal of
the most recent event at each turn.

6.1 Relevance
Relevance as an appraisal variable measures the signifi-

cance of an event for the robot. An event can be evaluated
to be relevant if it has a positive utility or it can causally
impact a state with a positive utility [11]. Relevance is an

important appraisal variable since the other appraisal vari-
ables are more meaningful only for relevant events.

Algorithm 1 determines the relevance of the given event
with respect to the current mental state. The relevance of
the event depends on the significance of the event with re-
spect to the current collaboration status. The significance
of an event is determined based on the utility of the event as
it is also presented in [5, 11]. We believe although the util-
ity of the event represents the significance of the event, the
other collaborator’s expressed emotion also plays a role by
influencing the significance of the utility through a thresh-
old value. As a result, evaluating the relevance of the events
can cause a collaborative robot to respond effectively to the
events which can positively impact the status of the shared
goal, without dedicating all resources to every single event.
The relevance process also benefits from the information
that the collaboration structure contains, e.g., shared goal.

Algorithm 1 (Relevance)

1: function IsEventRelevant(Event εt)

2: gt ← recognizeGoal(εt)

3: U ← getEventUtility(gt)
4: τt ← getEmotionalThreshold(gt)

5: if (U ≥ τt) then
6: return RELEVANT

7: else
8: return IRRELEVANT

After perceiving an event, it is the belief about that event
which represents the event in the robot’s mental state. Also,
recognizeGoal returns the goal (gt) to which the current
event contributes, unless it is ambiguous; gt represents the
shared goal at time (turn) t within the shared plan. We
compute the utility (0 ≤ U ≤ 1) of the event based on the
values of the attributes associated with the existing beliefs
in the mental state, as well as the attributes of the motive
associated with the recognized goal. We use three of the
belief attributes discussed in Section 3.1.1 to compute the
belief related part of the utility:

• Strength: The extent to which the pre and post conditions
of a goal and its predecessors and/or contributing goals are
satisfied or unsatisfied makes a belief about the goal
stronger. Respectively, an unknown pre and post condition
status of a goal and its predecessors and/or contributing
goals forms beliefs with lower strength.

• Saliency : Beliefs related to the goal at the top of the focus
stack are more salient than beliefs related to any other goal
in the plan, whether those goals are already achieved or
failed, or they will be pursued in the future.

• Persistence: The recurrence of a belief over the passage of
time (turns) increases the persistence of the belief. Beliefs
occuring only in one turn have the lowest value of persis-
tence.

We also use two of the motive attributes discussed in Section
3.1.2 to compute the motive related part of the utility (U):

• Urgency : There are two factors impacting the urgency of
a motive: a) whether the goal directing the given motive
is the predecessor of another goal for which the other col-
laborator is responsible, and b) whether achieving the goal



directing the given motive can mitigate the other collabo-
rator’s negative valenced emotion.

• Importance: A motive is important if failure of the directing
goal causes an impasse in the shared plan (i.e., no further
goal is available to achieve), or achievement of the directing
goal removes an existing impasse.

We compute the utility of an event based on these five
attributes. The value of each attribute is between 0 and 1,
and we consider the same weight for each attribute. These
weights can be learned or modified when our framework is
fully implemented. The value of the overall utility is com-
puted using a simple weighted averaging function which re-
sults in an overall value between 0 and 1.

The significance of an event in a collaborative environ-
ment is based not only on the utility of the event, but it
is also influenced by the perceived emotion of the human
collaborator. The human’s emotion influences the decision
about the utility of the event in the form of a threshold
value τt (see Algorithm 1). For instance, a positively ex-
pressed emotion of the human reduces the threshold value
which consequently makes the robot find an event relevant
with even a slightly positive utility. This threshold value
(τt) is currently determined based on whether the valence
of the human’s perceived emotion is positive (e.g., happi-
ness) or negative (e.g., anger). Consequently, an event can
be considered irrelevant even though the utility has a rel-
atively positive value, because relevance is influenced by the
human’s perceived emotional state.

6.2 Desirability
Desirability characterizes the value of an event to the

robot in terms of whether the event facilitates or thwarts
the collaboration goal. Desirability captures the valence of
an event with respect to the robot’s preferences [5]. In a col-
laborative robot, preferences are biased towards those events
facilitating progress in the collaboration. Desirability plays
an important role in the overall architecture; it makes the
processes involved in the other mechanisms (e.g., Motivation
and Theory of Mind), and consequently the robot’s mental
state, congruent with the collaboration status which is a col-
laborative robot’s desire. Therefore, it causes the robot to
dismiss events causing inconsistencies in the robot’s collab-
orative behavior. Moreover, desirability is also crucial from
the collaboration’s point of view.

Algorithm 2 provides a process in which the desirability
of an event is computed with regard to the status of the
shared goal; i.e., it operates based on whether and how the
event changes the status of the current shared goal. It distin-
guishes between top level goal and current goal because top
level goal’s change of status attains higher positive or neg-
ative value of desirability. For instance, failure of the top
level goal (e.g., installing solar panel) is more undesirable
than failure of a primitive goal (e.g., measuring the quality
of the installed panel).

An ambiguous goal is the goal associated with the current
event (εt) which is not recognized in the robot’s plan; there-
fore it is undesirable for a collaborative robot. A top level
goal is dependent upon its status as achieved (i.e., satis-
fied postcondition) to consider the event most-desirable.
When the goal has status of being failed (i.e., unsatisfied
postcondition) or blocked, the associated event has the
most-undesirable or undesireable values respectively. A
goal is blocked if any of the required goals or goals recur-

sively through the parent goal are not done. An inapplica-
ble1 goal is also considered as undesirable. For pending
and inprogress2 top level goals, the status of the current
goal associated with the top level goal determines the sta-
tus of the event εt. A goal can be pending if it is live,
or if it is a non-primitive goal that has not been started
yet. Achieved current goals mark an event (εt) as desire-
able, while failed or blocked goals render the event asso-
ciated with them as most-undesireable and undesirable
respectively. Pending or inprogress current goals mark
their associated events as neutral.

Algorithm 2 (Desirability)

1: function IsEventDesirable(Event εt)

2: gt ← recognizeGoal(εt)

3: if (gt = AMBIGUOUS) then
4: return UNDESIRABLE

5: if (topLevelGoalStatus(gt) = ACHIEVED) then
6: return MOST-DESIRABLE

7: else if (topLevelGoalStatus(gt) = FAILED) then
8: return MOST-UNDESIRABLE

9: else if (topLevelGoalStatus(gt) = BLOCKED) or

10: (topLevelGoalStatus(gt) = INAPPLICABLE) then
11: return UNDESIRABLE

12: else if (topLevelGoalStatus(gt) = PENDING) or

13: (topLevelGoalStatus(gt) = INPROGRESS) then

14: if (currGoalStatus(gt) = ACHIEVED) then
15: return DESIRABLE

16: else if (currGoalStatus(gt) = FAILED) then
17: return MOST-UNDESIRABLE

18: else if (currGoalStatus(gt) = BLOCKED) or

19: (topLevelGoalStatus(gt) = INAPPLICABLE) then
20: return UNDESIRABLE

21: else if (topLevelGoalStatus(gt) = PENDING) or

22: (currGoalStatus(gt) = INPROGRESS) then
23: return NEUTRAL

6.3 Expectedness
Expectedness is the extent to which the truth value of a

state could have been predicted from causal interpretation
of an event [11]. In the collaboration context the expected-
ness of an event evaluates the congruency of the event with
respect to the existing knowledge about the shared goal.
Thus, expectedness underlies a collaborative robot’s atten-
tion. Congruent beliefs in a robot’s mental state will lead to
more consistent and effective outcomes of the processes in
the overall architecture. The collaboration mechanism uses
expectedness to maintain the robot’s attention and subse-
quently its mental state with respect to the shared goal.
Reciprocally, the appraisal mechanism uses the underlying
information of the collaboration structure to evaluate the
expectedness of an event. Therefore, a collaborative robot
uses expectedness to maintain its own mental state towards
the shared goal. The robot will also be able to respond to
unexpected but relevant events.

1
A goal is inapplicable if any of its predecessors are not achieved,

and/or its preconditions are not satisfied.
2
Only a non-primitive goal can have inprogress status, if it has

been started but is not yet completed.



Algorithm 3 (Expectedness)

1: function IsEventExpected(Event εt)

2: gt ← recognizeGoal(εt)
3: gtop ← getTopLevelGoal(gt)

4: if (isLive(gt)) then
5: if (¬isFocusShift(gt) or

6: isNeccessaryFocusShift(gt)) then
7: return MOST-EXPECTED

8: else
9: return EXPECTED

10: else
11: if (isPath(gt, gtop)) then
12: return UNEXPECTED

13: else
14: return MOST-UNEXPECTED

In Algorithm 3 we provide the process of the expected-
ness based on the shared plan and status of the shared goal.
The key point in this algorithm is the status of the current
shared goal (gt) that is associated with the event εt and its
relationship with the top level goal (gtop).

The intuition captured here is that one expects the cur-
rent goal to be finished before undertaking another activity,
but the goals that are the next focus of attention are also
to be expected [9]. Therefore, if the goal is live, the al-
gorithm checks whether the goal has not changed, or the
interpretation of the last event results in a necessary focus
shift. Shifting the focus to a new goal is necessary when the
former goal is achieved and a new goal is required. Conse-
quently the new event is the most-expected one. However,
even if the focus shift is not necessary, the new event can be
considered as expected, since the corresponding goal is al-
ready live. For goals that have not yet been started (that is,
are not live), the algorithm must determine how unexpected
it would be to do one now; if the goal is at least in the plan,
i.e., on the path to the top level goal, it is just unexpected
while any others are most-unexpected.

6.4 Controllability
Controllability is the extent to which an event can be in-

fluenced, and it is associated with a robot’s ability to cope
with an appraised event [5]. Thus, a robot can determine
whether the outcome of an event can be altered by some
actions under either of the collaborators’ control. In other
words, controllability is a measure of a robot’s ability to
maintain or change a particular state as a consequence of an
event.

Controllability is also important for the overall architec-
ture. For instance, the robot can choose to ask or negotiate
about a collaborative task which is not controllable, or the
robot can interpret or predict the other’s emotional state
(e.g., anger if the task is blocked, i.e., uncontrollable for
the other), or form a new motive to establish an alternative
goal for the current uncontrollable event. In general, other
mechanisms in the architecture use the appraisal process of
controllability in their decision making processes; meanwhile
controllability uses the information from the collaboration
structure, e.g., successful predecessors of a goal.

An important determinant of one’s emotional response is
the sense of control over the events occurring. This sense

Algorithm 4 (Controllability)

1: function IsEventControllable(Event εt)

2: α← GetAgencyRatio(εt)
3: β ← GetAutonomyRatio(εt)

4: λ← GetSucPredecessorsRatio(εt)
5: µ← GetAvailableInput(εt)

6: U ← ω0·α+ω1·β+ω2·λ+ω3·µ
ω0+ω1+ω2+ω3

7: τt ← getEmotionalThreshold()

8: if (U ≥ τt) then
9: return CONTROLLABLE

10: else
11: return UNCONTROLLABLE

of subjective control is based on one’s reasoning about self’s
power. For instance, the robustness of one’s plan for exe-
cuting actions can increase one’s sense of power and subse-
quently the sense of control. In the collaboration context,
we have translated the sense of control into a combination of
four different factors including a) agency and b) autonomy
of the robot, as well as the ratios of c) successful predeces-
sors, and d) the available inputs of a given goal (i.e., gt) in
the shared plan.

In Algorithm 4, we compute the controllability of an event
based on these four factors (lines 2 to 5). We use weighted
averaging over these four factors to compute the utility of an
event in terms of controllability of the event. The value of
all these weights are set to 1.0 for the purpose of simplicity
at this stage of the project. We will adjust these weights
after further investigating the influence of these factors, and
implementing other mechanisms in the overall architecture.
After computing the value of the utility, we compare this
value to an emotional threshold similar to what we discussed
in Algorithm 1. This comparison leads to our decision about
the controllability of an event (lines 8 to 11 in Algorithm 4).

Agency is the capacity of an individual to act indepen-
dently in any given environment. In a collaborative envi-
ronment collaborators are sometimes required to act inde-
pendently of each other. Hence, they need to have some
internal motives that are formed based on their own mental
states rather than motives that are reinforced by the other
collaborator. These internal motives will lead the collabora-
tors to acquire new intentions towards new goals whenever
it is required. We extract the motive associated with the
current goal in the mental state. We consider a maximum
agency value denoted as α in Algorithm 4 (i.e., α = 1.0)
if the robot’s mental state possesses an internal motive to-
wards the recognized goal; otherwise we consider the mini-
mum agency value (i.e., α = 0.0) for no motives or external
motives only. Note that the process of forming new internal
motives is beyond scope of this paper.

Autonomy is the ability to make decisions without the
influence of others. Autonomy implies acting on one’s own
and being responsible for that. In a collaborative environ-
ment, tasks are delegated to the collaborators based on their
capabilities. Therefore, each collaborator is responsible for
the delegated task and the corresponding goal. In Algo-
rithm 4, β denotes the value of autonomy with regard to



the event (εt). This value is the ratio of the number of the
goals contributing to gt for which the robot is responsible
over the total number of contributing goals to gt. If the
goal associated with the current event corresponds to a non-
primitive goal, the algorithm checks the responsible agent
for each primitive goal contributing to the nonprimitive one
and returns a value of which (0 ≤ β ≤ 1). However, if the
associated goal of the current event corresponds to a primi-
tive goal the value of β would be 0 or 1. In general, higher
autonomy leads to a more positive value of controllability.

The structure of a shared plan accommodates the order of
the required predecessors of a goal. Predecessors of a goal,
g, are other goals that the collaborators should achieve be-
fore trying to achieve goal g. We use the ratio of successfully
achieved predecessors of the recognized goal (gt) associated
with the current event over the total number of predecessors
of the same goal. This ratio (denoted as λ in Algorithm 4)
is the third factor used to compute the controllability of an
event. If all of the predecessors of the given goal are already
achieved, then λ = 1 which is the maximum value for λ. On
the contrary, failure of all of the predecessors will lead to
λ = 0. Therefore, a higher λ value positively impacts the
value of controllability for the current event.

Finally, inputs of a task are the required elements that
the collaborators use to achieve the specified goal of the
task. These inputs are also part of the structure of a shared
plan. We extract the required inputs of the associated goal
with the current event, and check whether all the required
inputs are available for the goal gt. The outcome will be the
ratio of the available required inputs over the total required
inputs of the goal associated with the current event. This
value (denoted as µ in Algorithm 4) will be bound to 0 and
1. Similar to the other factors in the controllability process,
the closer the value of µ gets to 1, the more positive impact
it has on the overall controllability value of the event.

In summary, the output of these four appraisal processes
serves as critical input for the other mechanisms of the Affec-
tive Motivational Collaboration Framework, shown in Fig-
ure 1. By providing adequate interpretation of events in the
collaborative environment, the appraisal mechanism enables
the robot to carry out proper collaborative behaviors.

7. EVALUATION
We developed our user study to test our hypothesis that

humans will provide similar answers as our algorithms to
questions related to different factors used to compute four
appraisal variables. We conducted a between subject user
study using an online crowdsourcing website – CrowdFlower3.
We had one group of subjects for each questionnaire corre-
sponding to an appraisal variable. There were 12 questions
(including 2 test questions) in controllability and expect-
edness questionnaires, 14 questions (including 2 test ques-
tions) in desirability questionnaire, and 22 questions (in-
cluding 3 test questions) in relevance questionnaire. Each
group originally had 40 subjects. To increase the quality of
our subjects’ answers, we limited the visibility of our ques-
tionnaires to a few English speaking countries, i.e., United
States, Britain, and Australia. We also limited our subject
pools to those that have acquired the highest confidence level
on the crowdsourcing website. Our questionnaires included
2 or 3 test questions (depending on the length) to check
the sanity of the answers. We eliminated subjects providing

3http://www.crowdflower.com

wrong answers to our sanity questions. We also eliminated
subjects with an answering time less than 2 minutes. The
final number of accepted subjects in each group is provided
in Table 1.

Table 1: Evaluation Results
appraisal variables # of subjects mean stdev p-value

Relevance 29 0.713 0.107 <0.001

Desirability 35 0.778 0.150 <0.001

Expectedness 33 0.785 0.120 <0.001

Controllability 33 0.743 0.158 <0.001

To minimize the background knowledge necessary for our
test subjects, we used a simple domestic example of prepar-
ing a peanut butter and jelly sandwich, and a hard boiled
egg sandwich for a hiking trip. We provided clear textual
and graphical instructions for all four questionnaires. The
instructions presented a sequence of hypothetical collabo-
rative tasks to be carried out by the test subject and an
imaginary friend, Mary, in order to accomplish their goal of
preparing two sandwiches. Figure 3 shows the corresponding
task model for these instructions. Test questions introduced
specific situations related to the shared plan; these situa-
tions included, among others, blocked tasks, and failure or
achievement of a shared goal provided in the instruction.
Each question provided three possible answers (which were
counterbalanced in the questionnaire). One option provided
a distinct alternative; another option was used to provide a
dichotomy with the first alternative, and a third option was
used to check whether the subjects perceived the other two
options as equal. We also provided a brief description as well
as a simple example for each appraisal variable, e.g., rele-
vance, at the end of the corresponding instructions. Using
this approach, we prepared four different online question-
naires for the appraisal variables: relevance, desirability, ex-
pectedness and controllability. Note that the collaboration
structure and the instructions were the same for all four
questionnaires.

Each question was designed based on different factors that
we use in our algorithms (see Section 6). Here, we present
three example questions from expectedness, controllability,
and desirability questionnaires, and describe how each ques-
tion relates to a specific factor within the corresponding al-
gorithm. The input for our algorithms was the task model
depicted in Figure 3.

Imagine you have pressed the two slices of bread (one covered with 
strawberry jam and one covered with peanut butter) together and passed 
it to Mary. Which of the following two actions is more expected?

A. Mary puts the given sandwich into a zip lock bag after cutting it in half.

B. Mary puts some pickles on another slice of bread.

C. Equally expected.

Figure 4: Example Expectedness Question.

Figure 4 shows the example question from the expected-
ness questionnaire. In this example, with respect to Algo-
rithm 3 (line 6), option A is more expected because the task
related to this option provides the next available task in the
focus stack (see the task model in Figure 3). Although the
task in option B is part of the existing task model, it is con-
sidered as unexpected by our algorithm, since it is not live
in the plan. We provided option C to determine whether the
human subjects will similarly differentiate between these two
options. This question was presented to the human subjects
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to determine whether their decision for the expectedness of
this event is similar to the output of the expectedness al-
gorithm. For this question, the human decision was 97%
similar to the algorithm’s output. Average results for the
expectedness questionnaire are presented in Table 1.

Imagine you want to make a peanut butter sandwich. Which of the following 
two actions is more controllable?

A. You can spread the peanut butter on one slice of bread and you need 
Mary to spread strawberry jam on the second slice of bread.

B. You can spread the peanut butter on one slice of bread and strawberry 
jam on the second slice of bread.

C. Equally controllable.

Figure 5: Example Controllability Question.

Figure 5 shows an example question from the controlla-
bility questionnaire. The algorithm’s output is option B,
and is determined by Algorithm 4 (line 3), similarly to the
expectedness example above. In this example, option B is
more controllable than option A, because the self over total
ratio of the responsibility of the predecessors of the given
task (see Autonomy in Section 6.4) is higher than the ratio
in option A; i.e., self is responsible to spread peanut butter
on one slice of bread and strawberry jam on another slice
of bread. In this question, the humans decision was 90% in
agreement with the algorithm’s output.

Which of the following two actions is more desirable?

A. Imagine you pressed two slices of bread together with peanut butter 
and strawberry jam on them, and passed them to Mary. Mary cuts the 
peanut butter sandwich in half and puts them in the zip lock bag.

B. Imagine you want to make the egg sandwich. You have sliced the 
eggs, put them on one slice of bread, salted them, and waiting for Mary 
to put some pickles on your eggs. Mary puts some pickles on your eggs.

C. Equally desirable.

Figure 6: Example Desirability Question.

Figure 6 shows an example question from the desirability
questionnaire. The output based on the Algorithm 2 (line
14) is option C, since in both option A and option B, the
focus goal has been achieved successfully. Therefore, in this
example, both options A and B are desirable. The humans
decision was 77% in agreement with the algorithm’s output
in this question.

We conducted the user study to compare the results with
the implemented algorithms discussed in Section 6. As we
mentioned, each question had 3 answers. Therefore, a to-
tally random distribution would result in 33% agreement

with our algorithms results. However, the average ratio indi-
cating similarity between human subjects decisions and the
output of our algorithms is significantly higher than 33%.
The total number of subjects’ answers similar to a) the rel-
evance algorithm (n=29) averaged 71.3% (s=10.7%), b) the
desirability algorithm (n=35) averaged 77.8% (s=15.0%), c)
the expectedness algorithm (n=33) averaged 78.5% (s=12.0%),
and d) the controllability algorithm (n=33) averaged 74.3%
(s=15.8%). It is worth noting that the human subjects
agreed 100% on some questions, while one some other ques-
tions there was a much lower level of agreement.

The results indicate that our algorithms provide appraisal
variable outputs sufficiently similar to the decisions of hu-
man’s appraisal. Our hypothesis in our evaluation was that
our algorithms would correctly predict the judgements of hu-
mans on doing these tasks. Our results indicate that people
largely performed as our hypothesis predicted. The p-values
obtained based on a one-tailed z-test (see Table 1) show the
probability of human subjects’ data being generated from a
random set. The very small p-values indicate that the data
set is not random; in fact, the high percentage of similar-
ity shows that the four appraisal algorithms predicted the
human judgements.

8. CONCLUSION
While these results support our hypothesis, they are not a

perfect prediction. We believe the difference between these
two results could be due to several reasons, including: a)
the fact that we conducted our study online and had little
control on our subjects, b) our algorithms may require fur-
ther granularity, or c) the difference between decision mak-
ing processes of individuals, which can be affected by other
factors such as personality, gender, and culture. While it
may be possible to achieve a higher level of agreement be-
tween humans and the algorithms results, these results indi-
cate that the current algorithms are adequate to be used in
a collaboration context. In our future work, we will imple-
ment the remaining mechanisms in Affective Motivational
Collaboration framework and carry out an end-to-end user
study to verify the behavior of a collaborative robot using
our architecture.
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