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Abstract
To facilitate more accessible spoken language technologies and
advance the study of dysphonic speech this paper presents Un-
commonVoice, a freely-available, crowd-sourced speech corpus
consisting of 8.5 hours of speech from 57 individuals, 48 of
whom have spasmodic dysphonia. The speech material con-
sists of non-words (prolonged vowels, and the prompt for di-
adochokinetic rate), sentences (randomly selected from TIMIT
prompts and the CAPE-V intelligibility analysis), and sponta-
neous image descriptions. The data was recorded in a crowd-
sourced manner using a web-based application. This dataset is
a fundamental resource for the development of voice-assistive
technologies for individuals with dysphonia as well as the en-
hancement of the accessibility of voice-based technologies (au-
tomatic speech recognition, virtual assistants, etc). Research on
articulation differences as well as how best to model and repre-
sent dysphonic speech will greatly benefit from a free and pub-
licly available dataset of dysphonic speech. The dataset will be
made available at http://uncommonvoice.org. In the
following sections, we detail the data collection process as well
as provide an initial analysis of the speech corpus.
Index Terms: voice disorder, spasmodic dysphonia, dataset
human-computer interaction,

1. Introduction
There is much interest in mitigating “algorithmic unfairness”
in machine learning-based production systems across a variety
of domains [1]. In spoken dialogue systems, a dearth of disor-
dered speech training data drives their inaccessibility to users
exhibiting said disorders. In light of this problem, we present
the UncommonVoice dataset to both better represent individ-
uals with voice disorders in current voice-based technologies
and to enable the development of future voice-assistive tech-
nologies. UncommonVoice was inspired by the work done at
Mozilla on Common Voice [2], a large, freely-available, crowd-
sourced dataset with speakers from all over the world. Common
Voice was created as a high-quality, publicly-open dataset of
voice data, with the goal of teaching machines how real people
speak. While Common Voice has made great strides towards
making large volumes of speech data readily available for hob-
byists or researchers to jump in and start playing with the data,
Common Voice still is made of up mostly healthy speakers and
does not provide insight into how individuals with voice disor-
ders speak.

1.1. Accessibility of Voice-Based Systems

There exists a body of previous work demonstrating the lack of
accessibility of voice-based technologies for individuals with
voice disorders [3, 4, 5]. Automatic speech recognition can be
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used for a variety of assistive contexts, such as computer in-
teractions and phone-based interactions. However, individuals
with voice disorders generally cannot obtain satisfactory perfor-
mance with commercially available ASR systems [6, 7]. Voice
Assistants (VAs) are becoming increasingly popular as a form
of human-computer interaction leading to voice-based control
of many systems around the house. It has been shown, how-
ever, that these systems recognize speech from individuals with
voice disorders significantly less often than speech from indi-
viduals without voice disorders. This difference indicates that
there is a barrier to access of VAs for individuals with voice
disorders.

1.2. Spasmodic Dysphonia

One particular group for which improving the accessibility of
voice-based systems could be beneficial to is individuals with
Spasmodic Dysphonia. Spasmodic dysphonia (SD), also known
as laryngeal dystonia, is a voice disorder that is characterized
by the improper functioning of the muscles that generate a per-
son’s voice [8]. These muscles spasm, in what is referred to as a
laryngospasm, which makes it difficult to speak or breathe. De-
pending on which muscles are affected these spasms can lead to
either breathy and/or creaky speech.

Botulinum toxin A, (known commercially as Botox and re-
ferred to clinically as BTX) therapy has proven to be an effec-
tive treatment for SD [9], however, BTX often causes an indi-
vidual’s voice to change in a cyclic pattern. Over a period of
several weeks, an individual’s voice will go from creaky before
injection, to breathy after an injection. Once the BTX injec-
tion starts to wear off, the individual’s voice will sound ‘modal’
(normal) for a little while before becoming creaky again [10].

In a series of surveys, individuals with SD have described
their difficulties using voice-based technologies such as smart
speakers or speech to text as these systems rarely understand
their speech. Voice disorders significantly affect an individual’s
social life, emotional wellbeing, and career.

Compared to neurologically dysarthric speech, SD is un-
derstudied. There are no large-scale publicly available datasets
of speech from SD patients. The SD datasets that do exist are
difficult to access as they often include sensitive health data.

1.3. Motivation and Contribution

Towards the goal of improving the representation of individuals
with voice disorders in the vast corpora of speech, we present
UncommonVoice, a crowdsourced, publicly available dataset of
speech from individuals with voice disorders. While datasets
like TORGO [11] and UASPEECH [12] focus on freely provid-
ing speech data from individuals with dysarthria, Uncommon-
Voice focuses on providing data from individuals with dyspho-
nia.

We believe that UncommonVoice posits a significant con-
tribution to the field and will enable advancement in improving

http://uncommonvoice.org


Table 1: Pre-Collection Survey Questions

Question Answer Type
Are you 18 years or older? Yes/No
Are you a native English speaker? Yes/No
Do you have a voice disorder? Yes/No
What voice disorder do you have? Multiple Select
Do you regularly receive Botox injections
for your voice? Yes/No
When was your last injection? Date
How often do you normally receive
injections? Number
How would you describe your voice
today? Multiple Choice
How would you rate your voice quality in
terms of clarity? Rating Scale
How easy is it for you to speak? Rating Scale

the accessibility of voice-based technologies as well as the de-
velopment of voice-assistive technologies.

2. Uncommonvoice Collection Process
The process of contributing data to UncommonVoice includes
five main steps: the pre-collection survey, and then four main
speaking tasks. These tasks are outlined in more detail in the
following sections.

2.1. Data Collection System

The UncommonVoice data collection website was implemented
with the goal of it to be as convenient as possible for users to
provide speech samples. This included building out a feature
that allows users to stop at any point in the collection process,
should they need a break, etc, the data collection tool saves their
spot. The next time the user logs in, the system will ask if
they’ve received a Botox Injection (if they receive BTX therapy)
since they last recorded speech samples, and if so get a date, but
then it will launch them right back where they left off. This
feature was implemented after the realization that it may not
be convenient for everyone to collect the speech in one sitting.
Throughout the entire dataset collection process, it was made
clear to participants that participation was voluntary, and that
they could skip any tasks at any time, except for the screener
question asking if they were 18 years or older.

2.2. Pre-Collection Survey

Before the voice sample recordings, users were asked to pro-
vide some demographic information about themselves, as well
as provide more information about their voices. The exact ques-
tions asked to participants are shown in 1. Only participants
exhibiting Spasmodic Dysphonia were asked the last six ques-
tions. In the final two, participants rate how clear their voice is
on a scale from ‘Not clear at all’ to ‘Very clear’, and to rate how
easy it is for them to speak on a scale from ‘Very difficult’ to
‘Effortless’.

2.3. Data Collection Tasks

The UncommonVoice data collection process consists of 4
tasks. The design decision to keep the order of the tasks the
same between users, but to randomize the presentation of stim-
uli within each task was made to obtain the highest value data

first as there was an expectation for some of the participants to
drop-off mid data collection. To control for–or at least be able
to measure–any ordering effects due to this decision, Tasks 1
and 4 contain the same non-word content so that the data ex-
ists to measure any change in vocal quality throughout the data
collection process.

2.3.1. Task 1: Non-words Round 1

The first task that users were asked to complete is holding vow-
els for 5 seconds. The respondents were asked to hold the corner
vowels, so /a/, /u/, /ae/, and /i/. To make sure the task was
clear, a target word was provided so that the speaker knew what
sound they should be holding–for example for /ae/, we asked
them to hold /ae/ as in ‘nap’. The goal behind this task was
to be able to calculate vocal quality measures. The participants
were also asked to repeat ‘puh-tuh-kuh’ as many times as pos-
sible in 5 seconds to obtain the speaker’s diadochokinetic rate
as described in [13].

2.3.2. Task 2: Read Sentences

In the second task, we asked users to read sentences that were
randomly selected from TIMIT [14]. We asked the user to read
84 different sentences from the TIMIT dataset. These sentences
were randomly presented to avoid any ordering effect. To cal-
culate a speaker’s CAPE-V as in [15], speakers were also asked
to read the sentences involved in the calculation of the CAPE-V
score.

2.3.3. Task 3: Image Descriptions

In the third task, we asked users to describe three different im-
ages in their natural way of speaking. We chose to include an
image description task to have some spontaneous speech that
would have a more natural cadence than read speech. The im-
ages were chosen from the Microsoft Common Objects in Con-
text (MSCOCO) [16].

2.3.4. Task 4: Non-words Round 2

In the final task, we asked users to repeat the non-words tasks
that they completed in Task 1 again. The purpose of this is to be
able to measure any change in vocal quality over the duration
of the tasks.

2.4. Participant Recruitment

Both dysphonic and control speakers were recruited primarily
through email list solicitation. The National Spasmodic Dys-
phonia Association (NSDA) shared the data collection link with
their network of individuals exhibiting SD, and healthy control
speakers were recruited through university mailing lists. Data
collection began in February 2020 and will remain active going
forward to facilitate its further growth.

3. UncommonVoice Results
We present statistics of the 1.0 release of the UncommonVoice
dataset, consisting of all recordings collected as of May 2020.
Additionally, we provide acoustic and ASR model-based anal-
yses for validation and motivation for future work.

3.1. UncommonVoice Demographics

Currently, UncommonVoice consists of 4,683 speech record-
ings from 57 individuals–approximately 8.5 hours of data. Of



Figure 1: Correlation Between Average WER Per Speaker and
Average CPP.

those individuals, 44 (77%) of the individuals who recorded
speech are female, while the other 13 (23%) are male. Of the
individuals who contributed speech samples, 48 (84%) of them
have a voice disorder, while the other 9 (16%) do not. Of the
individuals who have a voice disorder, 18 (37.5%) of the in-
dividuals who provided speech samples regularly receive BTX
injections as a treatment for their voice disorder, while the other
30 individuals with voice disorders (62.5%) do not regularly
receive BTX injections as a treatment. The respondents were
also asked to disclose whether or not they were native English
speakers. In response to this question, 49 (86%) indicated that
they are native English speakers while the other 8 (14%) were
not.

In the pre-voice-recording survey, participants who ac-
knowledged having a voice disorder were asked to rate ‘How
would you rate your voice quality in terms of clarity’, on a scale
from ‘Not at all clear’ (1) to ‘Very clear’ (4), and the average
rating was a 2.44 ± 1.13. Participants were also asked to rate
‘How easy is it for you to speak’ on a scale from ‘Very difficult’
(1) to ‘Very easy’ (4). The average rating for the speaking effort
was 2.34 ± 1.10.

Respondents with voice disorders were asked to classify
their voice into one of the following categories: tight/creaky,
breathy, modal (normal), or combination (breathy and tight). In
response to this question, 43% of the participants with voice
disorders answered ‘tight/creaky’, 31% ‘combination’, 10% re-
sponded as ‘breathy’, and 10% responded ‘modal/normal’.

3.2. Studying the Acoustics of SD

As this is the first large-scale publicly available dataset of SD
speech, there are many ways that this dataset can be used to
demonstrate properties of SD speech. For example, Cepstral
Peak Prominence (CPP) has shown to be a reliable measure of
dysphonia, more than the traditional acoustic metrics of jitter,
shimmer, and the fundamental frequency [17].In [18], signal
periodicity is shown to be highly correlated with the breathi-
ness quality of speech. Calculating these acoustic properties
and using them to predict dysphonia is one way that this dataset
could be utilized. The dataset was collected in such a way that
the Vowel Space Area for each speaker can be calculated at the
beginning of the recording process and the end of the recording

Figure 2: Mel spectrograms of the Vowel /ae/ for Control (top),
and Dysphonic (bottom).

Table 2: Analysis of the intelligibility of control and dyspho-
nic speech in UncommonVoice where Correct, S, I, D are the
number of Correct, Substitutions, Insertions, and Deletions re-
spectively, and WER is the Word Error Rate.

Voice Type Correct S I D WER
Control 7.46 1.02 0.07 0.29 0.15
Dysphonic 6.35 1.35 0.45 1.07 0.32

process [19, 20]. The change in Vowel Space Area over the du-
ration of the data collection could provide insight into how SD
voices are affected by heavy voice usage. In Figure 2, the dif-
ference between control and dysphonic speech when producing
/ae/ is shown. The waves that are evident in the bottom mel-
spectrogram are indicative of the ’choppier’ glottal pulse, and
lack of control that characterizes dysphonia.

3.3. Evaluating Intelligibility

3.3.1. ASR Performance

Given previous work on ASR system accessibility discussed in
Section 1.1, we expected the dysphonic speech transcriptions
to have a higher word error rate (WER) than the control speech.
On average, when fed into an ASR system, the ASR system rec-
ognized more words correctly in the control speech (7.46) than
the dysphonic speech (6.35). There were more substitutions
in the dysphonic speech (1.35) compared to the control speech
(1.02). There were on average 0.45 insertions per utterance for
dysphonic speech, while only 0.07 insertions per utterance in
control speech. The deletions showed a similar pattern with
0.29 average deletions per utterance for control speech and 1.07
average deletions per utterance for dysphonic speech. Overall,
the WER for the control speech was 0.15, while the WER for
the dysphonic speech was more than double that at 0.32. It is
worth noticing that dysphonic speech seems to be recognized
more successfully than dysarthric speech. The most common
error that the ASR system made when transcribing dysphonic
speech was substituting words, followed by deleting words.



-7

-6

-5

-4

-3

-2

-1

0

G
o

o
d

n
es

s 
o

f 
P

ro
n

u
n

ci
at

io
n

 (
G

o
P

)

Voiced Unvoiced Vowel Consonant

Control Normal Breathy Creaky Combined

Figure 3: Goodness of Pronunciation (GoP) grouped by the
self-reported speech quality and phoneme type.

3.3.2. Acoustic Features and Intelligibility

To better understand what acoustic features might be correlated
with the intelligibility–or in this case, the proxy for intelligibil-
ity that is the WER–the extent to which each acoustic feature is
correlated with WER was investigated.

The most highly correlated feature with WER was the dura-
tion of the speech sample. This result is very similar to the result
observed in [3]. The Pearson Correlation Coefficient between
the CPP and WER is 0.75 and is shown in Figure 1.

The second most highly correlated acoustic feature was the
cepstral peak prominence (CPP). This result was what we ex-
pected to find, as the CPP has been demonstrated to be a viable
predictor of dysphonia in previous work [17, 21]. The Pearson
Correlation Coefficient between the CPP and WER is 0.6.

The other features that were evaluated–jitter, shimmer, Har-
monic Noise Ratio (HNR), and the fundamental frequency (f0)–
all showed relatively low correlation with the WER for a given
utterance.

3.3.3. Goodness of Pronunciation

We extract Goodness of Pronunciation (GoP) features [22]
from each Task 2 sentence. Using a Kaldi GMM-HMM ASR
model [23] each utterance is force aligned to its corresponding
ground truth datasets. Each phoneme is then assessed with a
log-likelihood ratio comparing the ASR model-assessed likeli-
hood of the most probable phoneme in the language to the true
phoneme as indicated by the transcript. A lower GoP score for
a given phoneme corresponds to a less well-realized phoneme
that “sounds” more like a different phoneme to the ASR model.
As in [24] the GoP scores averaged by-phoneme across all utter-
ances to generate a vector of 40 phoneme GoP scores for each
speaker.

We average the scores of all voiced phonemes, unvoiced
phonemes, vowels, and consonants to generate four compos-
ite GoP scores for each speaker, and plot the distributions of
these composite scores for the control group and the four spas-
modic dysphonia self-reported quality groups: modal (Normal),
breathy, creaky, and combined. Figure 3 shows these distribu-
tions. Of them, the combined group has the most bimodal dis-
tribution, with a cluster of low GoP scores and a cluster of high
GoP scores. The SD speakers, across all vocal quality types,
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Figure 4: Goodness of Pronunciation (GoP) for each level of
self-reported vocal clarity (4 point opinion scale where 1 is not
clear at all and 4 is very clear).

have a higher cluster variance and lower mean GoP than the
healthy control group, as expected.

Figure 4 depicts the same four composite GoP scores plot-
ted against the speaker’s self-reported vocal clarity rating, on
a four point opinion scale. This figure lends credibility to the
accuracy of these self-reported ratings, as mean and minimum
composite GoP strictly increases with increasing self-reported
clarity as composite GoP standard deviation decreases. This
means that collectively, the 4-clarity speakers more consistently
achieve better GoP than the lower self-rated clarity speakers,
and so on.

4. Conclusion

We have described a database of dysphonic speech produced
by 48 individuals with dysphonia. We currently have 9 con-
trol speakers, however, these control speakers are not age and
gender-matched. We will strive to collect age and gender-
matched control speakers to compare the two populations. We
continue to collect speech samples from both individuals with
and without voice disorders. We will provide instructions on
how to access the dataset at http://uncommonvoice.
org.

We believe this speech database is an impactful resource for
the development of voice assistive technologies for individuals
with voice disorders, as well as for improving the accessibility
of state-of-the-art voice-based technologies. Analysis of this
database will offer a deeper understanding of how to robustly
model dysphonic speech.
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