2022 Consumer Confidence Report #### **Water System Information** Water System Name: Garden Farms Community Water District Report Date: June 22, 2023 Type of Water Source(s) in Use: **Groundwater Wells** Name and General Location of Source(s): Wells #1, #2, and #3 are located throughout the development off of Poplar Avenue, Oak Avenue, and El Camino Real, respectively. Drinking Water Source Assessment Information: Source assessment information is available from San Luis Obispo County Environmental Health Services. A copy of the complete assessment can be requested by calling (805) 781-5544. Time and Place of Regularly Scheduled Board Meetings for Public Participation: **Garden Farms Chapel Meeting Hall at 7:00PM on the second Wednesday of every month.** For More Information, Contact: Garden Farms Community Water District Office, (805) 438-3751 ### **About This Report** We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2022 and may include earlier monitoring data. # Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong) Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Garden Farms Community Water District a 17005 Walnut Avenue, Atascadero, CA 93422, (805) 438-3751 para asistirlo en español. Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Garden Farms Community Water District 以获得中文的帮助: 17005 Walnut Avenue, Atascadero, CA 93422, (805) 438-3751. Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa Garden Farms Community Water District, 17005 Walnut Avenue, Atascadero, CA 93422 o tumawag sa (805) 438-3751 para matulungan sa wikang Tagalog. Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Garden Farms Community Water District tại 17005 Walnut Avenue, Atascadero, CA 93422, (805) 438-3751 để được hỗ trợ giúp bằng tiếng Việt. Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau Garden Farms Community Water District ntawm 17005 Walnut Avenue, Atascadero, CA 93422, (805) 438-3751 rau kev pab hauv lus Askiv. ## **Terms Used in This Report** | Term | Definition | |--|---| | Level 1 Assessment | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. | | Level 2 Assessment | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. | | Maximum Contaminant Level (MCL) | The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. | | Maximum Contaminant Level Goal (MCLG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). | | Maximum Residual Disinfectant Level (MRDL) | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | Maximum Residual Disinfectant Level Goal (MRDLG) | The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | Primary Drinking Water
Standards (PDWS) | MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. | | Public Health Goal
(PHG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. | | Regulatory Action Level (AL) | The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. | | Secondary Drinking Water
Standards (SDWS) | MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. | | Treatment Technique (TT) | A required process intended to reduce the level of a contaminant in drinking water. | | Variances and Exemptions | Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions. | | ND | Not detectable at testing limit. | | ppm | parts per million or milligrams per liter (mg/L) | | ppb | parts per billion or micrograms per liter (µg/L) | | ppt | parts per trillion or nanograms per liter (ng/L) | | ppq | parts per quadrillion or picogram per liter (pg/L) | | pCi/L | picocuries per liter (a measure of radiation) | # Sources of Drinking Water and Contaminants that May Be Present in Source Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. ## Regulation of Drinking Water and Bottled Water Quality In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. # **About Your Drinking Water Quality** #### **Drinking Water Contaminants Detected** Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. Table 1. Sampling Results Showing the Detection of Coliform Bacteria | Microbiological
Contaminants | Highest No. of Detections | No. of
Months in
Violation | MCL | MCLG | Typical Source of Bacteria | |---------------------------------|---------------------------|----------------------------------|-----|------|------------------------------| | E. coli | (In the year)
0 | 0 | (a) | 0 | Human and animal fecal waste | (a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*. Table 2. Sampling Results Showing the Detection of Lead and Copper | Lead and Copper | Sample Date | No. of Samples
Collected | 90th Percentile
Level Detected | No. Sites
Exceeding AL | AL | PHG | No. of Schools
Requesting Lead
Sampling | Typical Source of
Contaminant | |-----------------|-------------|-----------------------------|-----------------------------------|---------------------------|-----|-----|---|---| | Lead
(ppb) | 2022 | 10 | 11 | 0 | 15 | 0.2 | None. | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits | | Copper (ppm) | 2022 | 10 | 1.110 | 0 | 1.3 | 0.3 | Not
applicable | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | Table 3. Sampling Results for Sodium and Hardness | Chemical or
Constituent (and
reporting units) | Sample Date | Level
Detected | Range of Detections | MCL | PHG
(MCLG) | Typical Source of
Contaminant | |---|-------------|-------------------|---------------------|------|---------------|--| | Sodium (ppm) | 4/27/2022 | 46 | 33 – 58 | None | None | Salt present in the water and is generally naturally occurring | | Hardness (ppm) | 4/27/2022 | 350 | 240 – 440 | None | None | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | Table 4. Detection of Contaminants with a Primary Drinking Water Standard | Chemical or
Constituent (and
reporting units) | Sample Date | Level
Detected | Range of Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | |---|-------------|-------------------|---------------------|---------------|--------------------------|--| | Arsenic (ppb) | 4/27/2022 | 1.73 | ND – 5.2 | 10 | 0.004 | Erosion of natural deposits; runoff from orchards; glass and electronics production wastes | Table 5. Detection of Contaminants with a Primary Drinking Water Standard, Continued | Chemical or
Constituent (and
reporting units) | Sample Date | Level
Detected | Range of Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | |---|------------------------|-------------------|---------------------|--------------------------------|---------------------------|---| | Barium (ppb) | 4/27/2022 | 93.3 | ND – 160 | 1 | 2 | Discharges of oil
drilling wastes and
from metal
refineries; erosion
of natural deposits | | Chlorine Residual
(ppm)* | 2022
(various) | 0.92 | 0.28 – 4.70 | [4.0 (as
Cl ₂)] | [4 (as Cl ₂)] | Drinking water
disinfectant
added for
treatment | | Fluoride (ppm) | 4/27/2022 | 0.15 | 0.13 – 0.18 | 2.0 | 1 | Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories | | Gross Alpha Particle Activity (pCi/L) | 8/24/2020
9/2/2020 | 2.18 | 1.64 – 2.88 | 15 | (0) | Erosion of natural deposits | | Haloacetic Acids (ppb) | 9/2/2020 | 4.5 | N/A | 60 | N/A | Byproduct of drinking water disinfection | | Nitrate as N (ppm) | 2/23/2022
4/27/2022 | 2.33 | 1.9 – 2.7 | 10
(as N) | 10
(as N) | Runoff and
leaching from
fertilizer use;
leaching from
septic tanks and
sewage; erosion of
natural deposits | | Selenium (ppb) | 4/27/2022 | 2.7 | 2.4 – 3.0 | 50 | 30 | Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive) | Table 6. Detection of Contaminants with a Primary Drinking Water Standard, Continued | Chemical or
Constituent (and
reporting units) | Sample Date | Level
Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | |---|-------------------------|-------------------|------------------------|---------------|--------------------------|--| | Total Trihalomethanes - TTHMs - Distribution (ppb) | 9/2/2020 | 17 | N/A | - 80 | N/A | Byproduct of drinking water disinfection | | Total
Trihalomethanes –
TTHMs – Wells (ppb)* | 6/28/2019
12/26/2019 | 18.30 | ND – 88 | | N/A | | Table 7. Detection of Contaminants with a Secondary Drinking Water Standard | Chemical or
Constituent (and
reporting units) | Sample Date | Level
Detected | Range of Detections | SMCL | PHG
(MCLG) | Typical Source of Contaminant | |---|-------------|-------------------|---------------------|-------|---------------|--| | Chloride (ppm) | 4/27/2022 | 43.7 | 35 – 58 | 500 | N/A | Runoff/leaching from natural deposits; seawater influence | | Color (ppm) | 4/27/2022 | 5 | N/A | 15 | N/A | Naturally-occurring organic materials | | Iron (ppb)* | 4/27/2022 | 179.3 | 46 – 430 | 300 | N/A | Leaching from natural deposits; industrial wastes | | Manganese (ppb)* | 4/27/2022 | 475 | 400 – 550 | 50 | N/A | Leaching from natural deposits | | Specific
Conductance
(µS/cm) | 4/27/2022 | 806.7 | 620 – 1,000 | 1,600 | N/A | Substances that form ions when in water; seawater influence | | Sulfate (ppm) | 4/27/2022 | 69.3 | 40 – 87 | 500 | N/A | Runoff/leaching from natural deposits; industrial wastes | | Total Dissolved
Solids – TDS (ppm) | 4/27/2022 | 470 | 370 – 580 | 1,000 | N/A | Runoff/leaching from natural deposits | | Turbidity (NTU) | 4/27/2022 | 0.49 | 0.39 - 0.63 | 5 | N/A | Soil runoff | | Zinc (ppm)* | 4/27/2022 | 20.3 | ND – 61 | 5 | N/A | Runoff/leaching from
natural deposits;
industrial wastes | **Table 8. Detection of Unregulated Contaminants** | Chemical or
Constituent (and
reporting units) | Sample Date | Level
Detected | Range of Detections | Notification
Level | Health Effects | |---|-------------------------|-------------------|---------------------|-----------------------|----------------| | Bromodichloromethane (ppb) | 6/28/2019
12/26/2019 | 0.82 | ND – 3.6 | N/A | N/A | | Bromoform (ppb) | 6/28/2019
12/26/2019 | 0.28 | ND – 0.86 | N/A | N/A | | Chloroform (ppb) | 6/28/2019
12/26/2019 | 16.6 | ND – 83 | N/A | N/A | | Chloromethane (ppb) | 6/28/2019
12/26/2019 | 0.11 | ND – 0.57 | N/A | N/A | | Dibromochloromethane (ppb) | 6/28/2019
12/26/2019 | 0.56 | ND – 1.1 | N/A | N/A | ^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. #### **Additional General Information on Drinking Water** Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Garden Farms Community Water District is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead. While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the cost of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. Iron, Manganese, and Zinc were found at levels that exceeded the secondary MCL (Maximum Contaminant Level) standards. The secondary MCLs were set to protect you against unpleasant aesthetic effects (e.g., color, taste, and odor) and the staining of plumbing fixtures (e.g., tubs and sinks) and clothing while washing. The high levels are most likely due to the leaching of natural deposits, runoff from natural deposits, and industrial wastes. The notification level for manganese is used to protect consumers from neurological effects. High levels of manganese in people have been shown to result in adverse effects to the nervous system. (The notification level for manganese is 500 ppb.) Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement | Violation | Explanation | Duration | Actions Taken to
Correct Violation | Health Effects
Language | |--|---|-------------------------|--|--| | One distribution chlorine residual was above the MRDL. | Staff suspects that the elevated chlorine residual was due to the chlorine injection pump settings at the time of sample collection or an error in the recording of the data. | Resolved upon discovery | GFCWD staff advised that if not an error, the chlorine injection pump rate was lowered to lower the chlorine residual within the system. | Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort. | | Some raw well Total
Trihalomethanes
(TTHM) results were
over the MCL. | Chlorination occurs within the well column and staff suspects that this practice contributed to some elevated raw well TTHM results. | Ongoing | Distribution TTHM sample results were in compliance with the MCL. | Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience liver, kidney, or central nervous system problems, and may have an increased risk of getting cancer. |