2015 NBC			2020 NBC	CHANGES MADE	
Code Ref.	Pa	rt 4	Code Ref.		Part 4
4.1.2.1	Use and Occupancy Importance	Importance Category	4.1.2.1	Type of Building	Importance Category
	Category			A Low Importance Category building is a	Low
	Buildings that represent a low direct or	Low(1)]	building that represents a low direct or	
	indirect hazard to human life in the			indirect hazard to human life in the	
	event of failure, including:			event of structural failure.	
	 low human-occupancy buildings, 			A Normal Importance Category building	Normal
	where it can be shown that collapse is			is a building that does not meet the	
	not likely to cause injury or other			criteria for a Low Importance Category	

4.1.2.1	Use and Occupancy Importance	Importance Category	4.1.2.1	Type of Building	Importance Category	
	Category			A Low Importance Category building is a	Low	
	Buildings that represent a low direct or	Low(1)		building that represents a low direct or		
	indirect hazard to human life in the			indirect hazard to human life in the		
	event of failure, including:			event of structural failure.		
	 low human-occupancy buildings, 			A Normal Importance Category building	Normal	
	where it can be shown that collapse is			is a building that does not meet the		
	not likely to cause injury or other			criteria for a Low Importance Category		
	serious consequences			building, High Importance Category		
	minor storage buildings			building or post-disaster building.		
	All buildings except those listed in	Normal		A High Importance Category building is a	High	
	Importance Categories Low, High and			building that provides a greater degree		
	Post-disaster			of safety to human life than a Normal		
	Buildings that are likely to be used as	High		Importance Category building.		
	post-disaster shelters, including			Community centres and elementary,		
	buildings whose primary use is:			middle and secondary schools are High		
	• as an elementary, middle or secondary			Importance Category buildings.		
	school			A post-disaster building.	Post-disaster	
	as a community centre Manufacturing					
	and storage facilities containing toxic,					
	explosive or other hazardous substances					
	in sufficient quantities to be dangerous					
	to the public if released(1)					
	Post-disaster buildings are buildings that	Post-disaster				
	are essential to the provision of services					
	in the event of a disaster, and include:					
	hospitals, emergency treatment					
	facilities and blood banks					
	telephone exchanges					
	 power generating stations and 					
	electrical substations					
	control centres for air, land and					
	marine transportation					
	public water treatment and storage					
	facilities, and pumping stations					
	marine transportationpublic water treatment and storage					

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
4.1.2.2	• sewage treatment facilities and buildings having critical national defence functions • buildings of the following types, unless exempted from this designation by the authority having jurisdiction:(2) • emergency response facilities • fire, rescue and police stations, and housing for vehicles, aircraft or boats used for such purposes • communications facilities, including radio and television stations Loads Not Listed 1) Where a building or structural member can be expected to be subjected to loads, forces or other effects not listed in Article 4.1.2.1., such effects shall be taken into	4.1.2.2	Loads Not Listed 1) Where a building or structural member can be expected to be subjected to loads, forces or other effects not listed in Article 4.1.2.1., such effects shall be taken into account in the design
	account in the design based on the most appropriate information available.		based on the most appropriate information available. (See Note A-4.1.2.2.(1).)
4.1.3.4	Serviceability 1) A building and its structural components shall be checked for serviceability limit states as defined in Clause 4.1.3.1.(1)(a) under the effect of service loads for serviceability criteria specified or recommended in Articles 4.1.3.5. and 4.1.3.6. and in the standards listed in Section 4.3. (See Note A-4.1.3.4.(1).)	4.1.3.4	Serviceability 1) A building and its structural components shall be checked for serviceability limit states as defined in Clause 4.1.3.1.(1)(a) under the effect of service loads for serviceability criteria specified or recommended in Articles 4.1.3.5. and 4.1.3.6. and in the standards listed in Section 4.3. (See Note A-4.1.3.4.(1).) 2) The effect of service loads on the serviceability limit states shall be determined in accordance with this Article and the load combinations listed in Table 4.1.3.4., the applicable combination being that which results in the most critical effect. 3) Other load combinations that must also be considered are the principal loads acting with the companion loads taken as zero. 4) Deflections calculated for load types P, T and H, if present, with load factors of 1.0 shall be included with the calculated deflections due to principal loads. 5) The determination of the deflection shall consider the following: a) for materials that result in increased deformations over time under sustained loads, the deflection calculation shall consider the portion of live load, L, that is sustained over time, Ls, and the portion that is transitory, Lt, and b) the calculated deflection due to dead load, D, and sustained live load, Ls, shall be increased by a creep factor as specified in the standards listed in Section 4.3. to obtain the additional long-term deflection. 6) The determination of the long-term settlement of foundations shall consider the following: a) for foundation soil types that result in increased settlement over time under sustained loads,

2015 NBC		CHANGES MADE					
Code Ref.	Part 4	Code Ref.			F	Part 4	
			sustained over time settlements due to foundation soil processing the settlements due to foundation soil processing the settlements due to foundation soil processing the settlement of the sett	e, Ls, and the portion dead load, D, and soperties provided by ads and Load Comb	on that i sustaine y a quali inations	determined for the portion of stransitory, Lt, and b) the add live loads, Ls, shall be calcufied professional geotechnical for Serviceability Forming P	ditional long-term lated from the Il engineer.
			Limit State	Structural	Load	Load Combinations	6
			Deflection for	Parameter	Case	Principle Loads	Companian Loads
			Deflection for materials not	Deflection of the structure or	2	1.0D + 1.0L 1.0D + 1.0 W	0.3W or 0.35S 0.35L or 0.35S
			subject to creep	of components of the structure(1)	3	1.0D + 1.0S	0.3W or 0.35L
			Deflection for	Total deflection	1	1.0D + 1.0Ls (4) + 1.0Lt (5)	0.3W or 0.35S
			materials	of the structure	2	1.0D + 1.0W	0.35L(2) or 0.35S
			subject to creep	or of	3	1.0D + 1.0S	0.3W or 0.35L(2)
				components of the structure(3)			
			Vibration serviceability	Acceleration		(6)	
			Notes to Table 4.1.	3.4:	· I		
			(1) The calculated	deflection due to de	ead load	, D, is permitted to be exclud	ed where specified
			in the standards lis				
			1 ' '		for live	load, L, shall be increased to	0.5 for storage areas,
			equipment areas a		عدياء من	- dood lood D :	
			specified in the sta			o dead load, D, is permitted t	o be excluded where
			(4) Ls = sustained p			•	
			(5) Lt = transitory p				
			(6) See Note A-Tab		•		
4.1.3.6	Vibration	4.1.3.6	Vibration				
	2) Where the fundamental vibration frequency of a structural system supporting		2) Where floor vib	rations caused by re	esonance	with operating machinery or	;
	an assembly occupancy used for rhythmic activities, such as dancing, concerts, jumping		equipment are anti	cipated, dynamic a	nalysis c	of the floor system shall be car	ried out.
	exercises or gymnastics, is less than 6 Hz, the effects of resonance shall be investigated		(See Note A-4.1.3.6	.(2).)			

2015 NBC			2020 NBC	CHANGES MADE	
Code Ref.	Part	: 4	Code Ref.	Part	t 4
	by means of a dynamic analysis. (See Note A	4.1.3.6.(2).)			
4.1.4.1	Dead Loads 1) The specified dead load for a structural member itself, b) the weight of all materials building to be supported permanently by the the weight of permanent equipment, and e) trees. 2) Except as provided in Sentence (5), in are than permanent partitions, are shown on the added in the future, allowance shall be mad 3) The partition weight allowance referred the from the actual or anticipated weight of the position, but shall be not less than 1 kPa over 4) Partition loads used in design shall be shown 2.2.4.3.(1)(d) of Division C. 5) In cases where the dead load of the partitive referred to in Sentences (2) and (3) shall not 6) Except for structures where the dead load system, where the dead load due to soil, supposed to the partitive referred to in Sentences (2) and (3) shall not 6) Except for structures where the dead load system, where the dead load due to soil, supposed to the partitive referred to in Sentences (2) and (3) shall not 6) Except for structures where the dead load system, where the dead load due to soil, supposed to the partitive referred to in Sentences (2) and (3) shall not 6) Except for structures where the dead load due to soil, supposed to the partitive referred to in Sentences (2) and (3) shall not 6) Except for structures where the dead load due to soil, supposed to the partitive referred to in Sentences (2) and (3) shall not 6) Except for structures where the dead load due to soil, supposed to the partitive referred to in Sentences (2) and (3) shall not 6) Except for structures where the dead load due to soil, supposed to the partitive referred to in Sentences (2) and (3) shall not 6) Except for structures where the dead load due to soil, supposed to the partitive referred to in Sentences (2) and (3) shall not 6) Except for structures where the dead load due to soil, supposed to the partitive referred to in Sentences (2) and (3) shall not 6).	of construction incorporated into the emember, c) the weight of partitions, d) the vertical load due to earth, plants and as of a building where partitions, other e drawings, or where partitions might be efor the weight of such partitions. To in Sentence (2) shall be determined partitions placed in any probable at the area of floor being considered. The area of floor being considered in the drawings as provided in Clause the included in the design calculations. It of soil is part of the load-resisting perimposed earth, plants and trees is	4.1.4.1	Dead Loads 1) The specified dead load for a structural membitself, b) the weight of all materials of construction supported permanently by the member, c) the wequipment, and e) the vertical load due to soil, so 2) In areas of a building for which partitions are so referred to in Clause (1)(c) shall be taken as the advantage of a building for which partitions are so partitions referred to in Clause (1)(c) shall be a partitions referred to in Clause (1)(c) shall be a partition being considered. (See Note A-4.1.4.1.(3) 4) The weights of partitions and partition weight on the drawings as provided in Clause 2.2.4.3.(1) 5) Where the partition weight allowance referred to other loads, it shall not be included in the design of Except for structures where the dead load of soil system, where the dead load due to soil, superimport counteractive to other loads, it shall not be included Note A-4.1.4.1.(6).)	eight of partitions, d) the weight of permanent uperimposed earth, plants and trees. Shown on the drawings, the weight of partitions actual weight of such partitions. (See Note Amot shown on the drawings, the weight of artition weight allowance determined from the artition weight allowance determined from the but shall not be less than 1 kPa over the area allowances used in the design shall be shown (d) of Division C. to in Sentence (3) is counteractive gn calculations. It is part of the load-resisting osed earth, plants and trees is
4.1.5.3	Office areas (not including record storage and computer rooms) located in Basement and the first storey Floors above the first storey	2.4	4.1.5.3	Office areas(1) (not including record storage and computer rooms) located in Basements, and floors, including mezzanines, with direct access to the exterior at ground level Other floors	2.4
4.1.5.5	4) Roof parking decks shall be designed for a loads specified in Table 4.1.5.3., the concentra roof snow load, whichever produces the most	ted live loads listed in Table 4.1.5.9., or the	4.1.5.5	4) Roof parking decks and exterior areas accessib designed a) for the appropriate load combination listed in S load, L, consisting of either a uniformly distributed Table 4.1.5.3. or a concentrated live load as listed in produces the most critical effect, and a companion	Sentence 4.1.3.2.(2) with a <i>live</i> d <i>live load</i> as specified in n Table 4.1.5.9., whichever

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
			prescribed in Subsection 4.1.6., but with the companion-load factor reduced to 0.2, and b) such that the load combination in Clause (a) is not less than the snow and rain loads prescribed in Subsection 4.1.6. with the <i>live load</i> taken as zero. 5) Roof parking decks that are used for the long-term storage of vehicles shall be designed for the appropriate load combination listed in Sentence 4.1.3.2.(2) with a <i>live load</i> , L, consisting of either a uniformly distributed <i>live load</i> as specified in Table 4.1.5.3. or a concentrated <i>live load</i> as listed in Table 4.1.5.9., whichever produces the most critical effect, and a snow load, S, as prescribed in Subsection 4.1.6.
4.1.5.8	1) An area used for <i>assembly occupancies</i> designed for a <i>live load</i> of less than 4.8 kPa and roofs designed for the minimum loading specified in Table 4.1.5.3. shall have no reduction for tributary area.	4.1.5.8	1) One- and two-way floor slabs shall have no reduction for tributary area applied to <i>live load</i> .
	New in 2020		5) Where the specified <i>live load</i> for a floor is reduced in accordance with Sentence (3) or (4), the structural drawings shall indicate that a <i>live load</i> reduction factor for tributary area has been applied and which structural elements are impacted by this factor.
4.1.5.14	1) The minimum specified horizontal load applied outward at the minimum required height of every required <i>guard</i> shall be a) 3.0 kN/m for open viewing stands without fixed seats and for <i>means of egress</i> in grandstands, stadia, bleachers and arenas, b) a concentrated load of 1.0 kN applied at any point, so as to produce the most critical effect, for access ways to equipment platforms, contiguous stairs and similar areas where the gathering of many people is improbable, and c) 0.75 kN/m or a concentrated load of 1.0 kN applied at any point so as to produce the most critical effect, whichever governs for locations other than those described in Clauses (a) and (b). 2) The minimum specified horizontal load applied inward at the minimum required height of every required <i>guard</i> shall be half that specified in Sentence (1). 3) Individual elements within the <i>guard</i> , including solid panels and pickets, shall be designed for a load of 0.5 kN applied outward over an area of 100 mm by 100 mm located at any point in the element or elements so as to produce the most critical effect. 4) The size of the opening between any two adjacent vertical elements within a <i>guard</i> shall not exceed the limits required by Part 3 when each of these elements is subjected to a specified <i>live load</i> of 0.1 kN applied in opposite directions in the in-plane	4.1.5.14	1) The minimum horizontal specified <i>live load</i> applied outward at the minimum required height of every required <i>guard</i> shall be a) 3.0 kN/m for open viewing stands without fixed seats and for <i>means of egress</i> in grandstands, stadia, bleachers and arenas, b) 1.0 kN applied at any point, so as to produce the most critical effect, for access ways to equipment platforms, contiguous stairs and similar areas where the gathering of many people is improbable, and c) 0.75 kN/m or 1.0 kN applied at any point so as to produce the most critical effect, whichever governs, for locations other than those described in Clauses (a) and (b). 2) The minimum horizontal specified <i>live load</i> applied inward at the minimum required height of every required <i>guard</i> shall be half that specified in Sentence (1). 3) Individual elements within the <i>guard</i> , including solid panels and pickets, shall be designed for a horizontal specified <i>live load</i> of 0.5 kN applied outward over an area of 100 mm by 100 mm located at any point on the element or elements so as to produce the most critical effect. 4) The size of the opening between any two adjacent vertical elements within a <i>guard</i> shall not exceed the limits required by Part 3 when each of these elements is

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
	direction of the <i>guard</i> so as to produce the most critical effect. 5) The loads required in Sentence (3) need not be considered to act simultaneously with the loads provided for in Sentences (1), (2) and (6). 6) The minimum specified load applied vertically at the top of every required <i>guard</i> shall be 1.5 kN/m and need not be considered to act simultaneously with the horizontal load provided for in Sentence (1). 7) Handrails and their supports shall be designed and constructed to withstand the following loads, which need not be considered to act simultaneously: a) a concentrated load not less than 0.9 kN applied at any point and in any direction for all handrails, and b) a uniform load not less than 0.7 kN/m applied in any direction to handrails not located within <i>dwelling units</i> .		subjected to a horizontal specified <i>live load</i> of 0.1 kN applied in opposite directions in the in-plane direction of the <i>guard</i> so as to produce the most critical effect. 5) The specified <i>live loads</i> required in Sentence (3) need not be considered to act simultaneously with the loads provided for in Sentences (1), (2), (6) and (7). 6) The minimum specified <i>live load</i> applied vertically at the top of every required <i>guard</i> shall be 1.5 kN/m and need not be considered to act simultaneously with the horizontal specified <i>live load</i> provided for in Sentences (1), (3) and (7). 7) Handrails and their supports shall be designed and constructed to withstand the following minimum specified <i>live loads</i> , which need not be considered to act simultaneously: a) 0.9 kN applied at any point and in any direction for all handrails, and b) 0.7 kN/m applied in any direction for handrails not located within <i>dwelling units</i> .
4.1.6.1	Specified Load Due to Rain or to Snow and Associated Rain	4.1.6.1	Specified Load Due to Rain or to Snow and Associated Rain
	1) The specified load on a roof or any other <i>building</i> surface subject to snow and		1) The specified load on a roof or any other <i>building</i> surface subject to snow
	associated rain shall be the snow load specified in Article 4.1.6.2., or the rain load specified in Article 4.1.6.4., whichever produces the more critical effect.		and associated rain shall be the snow load specified in Article 4.1.6.2., or the rain load specified in Article 4.1.6.4., whichever produces the more critical effect. (See Note A-4.1.6.1.(1).)
4.1.6.2	where l_c = characteristic length of the upper or lower roof, defined as $2w-w_2/l$, in m, w = smaller plan dimension of the roof, in m, and l = larger plan dimension of the roof, in m, or b) conform to Table 4.1.6.2B, using linear interpolation for intermediate values of . (See Note A-4.1.6.2.(2).)	4.1.6.2	where l_c = characteristic length of the upper or lower roof, defined as $2w - w_2/l$, in m, w = smaller plan dimension of the roof, in m, and l = larger plan dimension of the roof, in m, s b) conform to Table 4.1.6.2B, using linear interpolation for intermediate values of , or s c) be taken as equal to 1 for any roof structure with a mean height of less than $1 + S_s/\gamma$, inm, above <i>grade</i> , where γ is the specific weight of snow determined in accordance with Article 4.1.6.13. (See Note A-4.1.6.2.(2).)
4.1.6.4	4) Where scuppers are provided and where the position, shape and deflection of the loaded surface make an accumulation of rainwater possible, the loads due to rain shall be the lesser of either the one-day rainfall determined in conformance with Subsection 1.1.3. or a depth of rainwater equal to 30 mm above the level of the scuppers, applied over the horizontal projection of the surface and tributary areas	4.1.6.4	4) Where scuppers are provided as secondary drainage systems and where the position, shape and deflection of the loaded surface make an accumulation of rainwater possible, the loads due to rain shall be the lesser of either the one-day rainfall determined in conformance with Subsection 1.1.3. or a depth of rainwater equal to 30 mm above the bottom of the scuppers, applied over the horizontal projection of

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
			the surface and tributary areas.
4.1.6.5	where C_{a0} = peak value of C_a at x = 0 determined in accordance with Sentences (3) and (4) and as shown in Figure 4.1.6.5B, x = distance from roof step as shown in Figure 4.1.6.5A, and x_d = length of drift determined in accordance with Sentence (2) and as shown in Figure 4.1.6.5A. Notes to Figure 4.1.6.5A: (1) If $a > 5$ m or $h \le 0.8S_s/@$, drifting from the higher roof need not be considered. (2) For lower roofs with parapets, $C_s = 1.0$, otherwise it varies as a function of slope \langle as defined in Sentences 4.1.6.2.(5) and (6).	4.1.6.5	where C_{a0} = peak value of C_a at x = 0 determined in accordance with Sentences (3) to (5) and as shown in Figure 4.1.6.5B, x = distance from roof step as shown in Figure 4.1.6.5A, and x_d = length of drift determined in accordance with Sentence (2) and as shown in Figure 4.1.6.5A. Notes to Figure 4.1.6.5A: (1) If $a > 5$ m or $b \le 0.8$ ($b \le 0.8$), drifting from the higher roof need not be considered. (2) If $b \ge 0$ m, the value of $b \le 0.8$ for Case I is permitted to be determined in accordance with Sentence 4.1.6.5.(4).
	where h _P = height of the roof perimeter parapet of the source area, to be taken as zero unless all the roof edges of the source area have parapets 4) The value of C _{a0} shall be the highest of Cases I, II and III, considering the different roof source areas for drifting snow, as specified in Sentence (3) and Figure 4.1.6.5B. New in 2020		where h_p = height of the roof perimeter parapet of the source area, to be taken as zero unless all the roof edges of the source area have parapets. 4) Where $h \ge 5$ m, the value of C_{a0} for Case I is permitted to be taken as $C_{a0} = \left(\frac{25-h}{20}\right) \left(\frac{F}{C_b}-1\right) + 1 \text{ for } 5 \text{ m} \le h \le 25 \text{ m}, \text{ and } C_{a0} = 1 \text{ for } h > 25 \text{ m}$ 5) The value of C_{a0} shall be the highest of Cases I, II and III, considering the different roof source areas for drifting snow, as specified in Sentences (3) and (4) and Figure 4.1.6.5B.
4.1.6.8	2) The drift loads on the lower level roof against the two faces of an inside corner of an upper level roof or a parapet shall be calculated for each face and applied as far as the bisector of the corner angle as shown in Figure 4.1.6.8B.	4.1.6.8	2) The drift loads on the lower level roof against the two faces of an inside corner of an upper level roof or a parapet shall be calculated for each face and the higher of the two loads shall be applied where the drifts overlap as shown in Figure 4.1.6.8B

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
4.1.6.16	Lower roof Lower roof Lower roof Face with higher Cae bisector of angle between two faces (Corrected)	4.1.6.16	Roofs with Solar Panels (See Note A-4.1.6.16.) 1) Where solar panels are installed on a roof, the snow loads, S, shall be determined in accordance with Sentences (2) to (6) or with the requirements for roofs without solar panels, whichever produces the most critical effect. 2) For the purposes of this Article, solar panels shall be classified as a) Parallel Flush, where the panels are installed parallel to the roof surface with their upper surface less than or equal to CbCwSs/y above the roof surface, b) Parallel Raised, where the panels are installed parallel to the roof surface with their upper surface greater than CbCwSs/y above the roof surface with their upper surface greater than CbCwSs/y above the roof surface or c) Tilted, where the panels are installed at an angle to the roof surface with their highest edge greater than CbCwSs/y above the roof surface with their highest edge greater than CbCwSs/y above the roof surface. 3) For sloped roofs with solar panels, the snow loads, S, shall be determined in accordance with the requirements for roofs without solar panels, except that the slope factor, Cs, shall be

Code Ref. Part 4	_	
	Code Ref.	Part 4
	Code Ref.	a) taken as 1.0 for roof areas extending upslope from the downslope edge of a panel or array of panels at an angle of 45° from each side edge of the panel or array, and b) as specified in Sentences 4.1.6.2.(5) to (7) for all other roof areas. (See Note A-4.1.6.16.(3).) 4) For sloped roofs with Parallel Flush solar panels, the snow loads, S, shall be determined in accordance with the requirements for roofs without solar panels, except that a) Cs shall be determined in accordance with Sentence (3), b) where the gap width, w ₈ , between the panels along the roof slope is greater than or equal to the panel width, w _P , along the roof slope, the accumulation factor, C _a , shall be taken as i) 0.0 for the panels, ii) 2.0 for roof areas within a distance of w _P downslope from a downslope panel edge, and iii) 1.0 for all other roof areas (see Note A-4.1.6.16.(4)(b)), and c) where the gap width, w _P , along the roof slope, C _a shall be taken as i) 0.0 for panel areas within a distance of w _P downslope from an upslope panel edge, iii) 1.0 for other panel areas, iiii) 2.0 for roof areas in gaps between the panels, and iv) 1.0 for all other roof areas (see Note A-4.1.6.16.(4)(c)). 5) For roofs with Parallel Raised solar panels, the snow loads, S, shall be determined in accordance with the requirements for roofs without solar panels, except that a) where the roof is flat, C _a shall be taken as i) 1.0 for the panels, ii) 1.0 for roof areas not under the panels, iii) 1.0 for roof areas under the panels, iii) 1.0 for roof areas under the panels, iii) 1.0 for roof areas under the panels, within a distance of min(2h _E ,2w _E) from a panel edge, where h _E is the gap height between the lower surface of the panels and the roof
		surface, and w_g is the gapwidth between the panels, and
		$min(2h_g,2w_g)$ from a panel edge, where h_g is the gap height between the lower surface of the panels and the roof

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
			iv) 0.0 for other roof areas under the panels (see Note A-4.1.6.16.(5)(a)), and b) where the roof is sloped, the snow loads, S, derived from Clause (a) shall be used, except that i) Cs shall be determined in accordance with Sentence (3), ii) S shall be taken as 0.0 on the panels, and iii) S for all roof areas shall be taken as the sum of S on the panels, as derived from Subclause (a)(i) and shifted by a distance of w_P downslope onto the roof, where w_P is the panel width along the roof slope, and S on the roof areas, as derived from Subclauses (a)(ii) to (a)(iv) (see Note A-4.1.6.16.(5)(b)). 6) For flat roofs with Tilted solar panels, the snow loads, S, shall be determined in accordance with the requirements for roofs without solar panels, except that a) Ca shall be taken as 0.0 for the panels, b) Ca shall be taken as 0.0 for of areas beyond a distance of $5(h - C_b C_w S_y \gamma)$ from the lowest edge of the panels, where h is the height of the highest edge of the panels above the roof surface, c) except as provided in Clauses (d) and (e), for roof areas within a distance of $5(h - C_b C_w S_y \gamma)$ from the lowest edge of the panels, Ca shall be taken as i) 1.25 for $(h_b - C_b C_w S_y \gamma)$ 50.3 m, where h_b is the gap height between the lowest edge of the panels and the roof surface, ii) 1.294 - 0.1471($h_b - C_b C_w S_y \gamma$) for 0.3 < $(h_b - C_b C_w S_y \gamma) \le 2.0$ m, and iii) 1.0 for $(h_b - C_b C_w S_y \gamma) > 2.0$ m (see Note A-4.1.6.16.(6)(c)), d) except as provided in Clause (e), Ca shall be taken as 2.0 for roof areas within a distance of w_{Pb} beyond the lowest edge of the panels, where w_{Pb} is the horizontal projection of the panel width, w_{Py} , along the sloped panel edges, and e) where the panels, panel supports or back plates obstruct snow from sliding under the panels, the load of the increased volume of snow in the gaps between the panels shall be considered to be uniformly distributed. (See Note A-4.1.6.16.(6).)

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
4.1.7.2	3) A <i>building</i> shall be classified as very dynamically sensitive if a) its lowest natural frequency is less than or equal to 0.25 Hz, or b) its height is more than 6 times its minimum effective width as defined in Clause (2)(c)	4.1.7.2	3) A <i>building</i> shall be classified as very dynamically sensitive if a) its lowest natural frequency is less than or equal to 0.25 Hz, or b) it contains a human occupancy, and its height is more than 6 times its minimum effective width as defined in Clause (2)(c).
4.1.7.5	1) Applicable values of external pressure coefficients, C _P , are provided in a) Sentences (2) to (5), and b) Article 4.1.7.6. for certain shapes of low <i>buildings</i> . 5) For the design of balcony <i>guards</i> , the internal pressure coefficient, C _{Pi} , shall be taken as zero and the value of C _P shall be taken as ±0.9, except that within a distance equal to the larger of 0.1W and 0.1D from a <i>building</i> corner, C _P shall be taken as ±1.2. New in 2020	4.1.7.5	1) Applicable values of external pressure coefficients, C _P , are provided in a) Sentences (2) to (9), and b) Article 4.1.7.6. for certain shapes of low buildings. 5) Except as provided in Sentence (6), for the design of balcony guards, the internal pressure coefficient, C _{Pi} , shall be taken as zero and the value of C _P shall be taken as ±0.9, except that, within a distance equal to the larger of 0.1W and 0.1D from a building corner, C _P shall be taken as ±1.2. 6) Where the top of the balcony guard is 2.0 m or less below the roof surface, the values of C _P shall be taken as equal to those determined for parapets in Sentences (7) and (8). 7) To determine the contribution from parapets to the wind loads on the main structural system, the values of C _P shall be taken as a) on the outer faces, equal to those on the walls below, b) on the inner face of the windward parapet, equal to that on the upwind edge of a roof surface at the level of the top of the parapet, and c) on the inner faces of the other parapets, zero. 8) For the structural design of parapets themselves, the values of C _P shall be taken as equal to those specified in Sentence (7), except that the value of C _P on the inner face of the leeward parapet shall be taken as equal to that on the outer face of the windward parapet. 9) For the design of cladding on parapets, the values of C _P shall be taken as a) on the outer vertical surfaces, equal to those on the cladding on the walls below, and b) on the inner and top surfaces, equal to those on the cladding of a roof
4.1.7.6	New in 2020	4.1.7.6	surface at the level of the top of the parapet. 10) The wind loads on balcony <i>guards</i> on low <i>buildings</i> shall be as specified in Sentences 4.1.7.5.(5) and (6). 11) The wind loads on parapets on low <i>buildings</i> shall be as specified in

2015 NBC		2020 NBC	C CHANGES MADE		
Code Ref.	Part 4	Code Ref.	Part 4		
			Sentences 4.1.7.5.(7) to (9).		
4.1.7.7	Internal Pressure Coefficient 1) The internal pressure coefficient, C _{pi} , shall be as prescribed in Table 4.1.7.7. New in 2020	4.1.7.7	 The internal pressure coefficient, C_{pi}, for <i>buildings</i> shall be as prescribed in Table 4.1.7.7. The internal pressure coefficient, C_{pi}, for cladding on parapets shall be 		
4.1.7.9	Full and Partial Wind Loading 1) Except where the wind loads are derived from the combined C _P C _g values determined in accordance with Article 4.1.7.6., buildings and structural members shall be capable of withstanding the effects of the following loads: a) the full wind loads acting along each of the 2 principal horizontal axes considered separately, b) the wind loads described in Clause (a) but with 100% of the load removed from any one portion of the area, c) the wind loads described in Clause (a) but with both axes considered simultaneously at 75% of their full value, and d) the wind loads described in Clause (c) but with 50% of these loads removed from any portion of the area. (See Note A-4.1.7.9.(1).)	4.1.7.9	Full and Partial Wind Loading 1) Except where the wind loads are derived from the combined C _g C _p values determined in accordance with Article 4.1.7.6., buildings and structural members shall be capable of withstanding the effects of the following loads: a) the full wind loads acting along each of the 2 principal horizontal axes considered separately, b) 75% of the wind loads described in Clause (a) but offset from the central geometric axis of the building by 15% of its width normal to the direction of the force to produce the worst load effect, c) 75% of the wind loads described in Clause (a) but with both axes considered simultaneously, and d) 56% of the wind loads described in Clause (a) but with both axes considered simultaneously and offset from the central geometric axis of the building by 15% of its width normal to the direction of the force. (See Note A-4.1.7.9.(1).)		
4.1.7.12	Wind Tunnel Procedure 1) Except as provided in Sentences (2) and (3), wind tunnel tests on scale models to determine wind loads on <i>buildings</i> shall be conducted in accordance with ASCE/SEI 49, "Wind Tunnel Testing for Buildings and Other Structures." 2) Where an adjacent <i>building</i> provides substantial sheltering effect, the wind loads for the main structural system shall be no lower than 80% of the loads determined from tests referred to in Sentence (1) with the effect of the sheltering <i>building</i> removed as applied to a) the base shear force for <i>buildings</i> with a ratio of height to minimum effective width, as defined in Sentence 4.1.7.2.(2), less than or equal to 1.0, or b) the base moment for <i>buildings</i> with a ratio of height to minimum effective	4.1.7.12	Attached Canopies on Low Buildings with a Height $H \le 20 \text{ m}$ (See Note A-4.1.7.12.) 1) For the purposes of this Article, "attached canopy" shall mean a horizontal canopy with a maximum slope of 2% that is attached to a building wall at any height, h_c , above ground level. 2) The specified external wind pressure, p , and the specified net external wind pressure, p_{net} , for attached canopies on exterior walls of low buildings with a height $H \le 20 \text{ m}$ shall be determined as follows: $p = I_{\mathbf{W}} q C_{\mathbf{c}} C_{\mathbf{t}} C_{\mathbf{g}} C_{\mathbf{p}}, \text{ and } p_{net} = I_{\mathbf{W}} q C_{\mathbf{c}} C_{\mathbf{t}} (C_{\mathbf{g}} C_{\mathbf{p}})_{net}$		

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
	width greater than 1.0. 3) For the design of cladding and secondary structural members, the exterior wind loads determined from the wind tunnel tests shall be no less onerous than those determined by analysis in accordance with Article 4.1.7.3. using the following assumptions: a) $C_p = \pm 0.72$ and $C_g = 2.5$, where the <i>building</i> 's height is greater than 20 m or greater than its minimum effective width, and b) $C_p C_g = 80\%$ of the values for zones w and r provided in Article 4.1.7.6., where the <i>building</i> 's height is less than or equal to 20 m and no greater than its minimum effective width.		where p = specified external wind pressure acting statically and in a direction normal to the upper or lower surface of the canopy, considered positive when acting towards the surface and negative when acting away from the surface, p_{net} = specified net external wind pressure acting statically on the canopy, considered positive when acting in a downward direction and negative when acting in an upward direction, Iw , q , C_e , C_t = as defined in Sentence 4.1.7.3.(1), C_gC_p = gust pressure coefficient on the upper or lower surface of the canopy, as given in Figure 4.1.7.12A, and $(C_gC_p)_{net}$ = net gust pressure coefficient on the canopy, considering simultaneous contributions from the upper and lower surfaces of the canopy, as given in Figure 4.1.7.12B.

2015 NBC		2020 NBC CHANGES MADE	
Code Ref.	Part 4	Code Ref.	Part 4
			Figure 4.1.7.12-A Gust pressure coefficients on the upper and lower surfaces of attached canopies with no gap between the canopy and the building Forming Part of Sentence 4.1.7.12.(2)
			upper surface upper surface 1.0 upper surface upper surface 1.0 upper surface 1.0 upper and lower surfaces surface 1.0 upper and lower surfaces 1.0 Area, m²
			Notes to Figure 4.1.7.12A: (1) The coefficients apply for any roof slope, 〈. (2) The reference height, h, is the mid-height of the roof or 6 m, whichever is greater. (3) Positive CgCp values denote forces acting towards the upper or lower surface of the canopy, whereas negative CgCp values denote forces acting away from the surface. Each structural element must be designed to resist both the positive and negative forces.

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
			Figure 4.1.7.12B Net gust pressure coefficients on attached canopies, considering simultaneous contributions from the upper and lower surfaces of the canopy Forming Part of Sentence 4.1.7.12.(2)
			4.0 3.2 3.0 0.9 ≤ h/H ≤ 1.0 3.0 0.5 < h/H < 0.9 4.0 0.5 < h/H < 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
			Notes to Figure 4.1.7.12B: (1) The coefficients apply for any roof slope, <
			(2) The reference height, h, is the mid-height of the roof or 6 m, whichever is greater.(3) Positive (C_gC_p)_{net} values denote net forces acting in a downward direction on the canopy, whereas negative
			negative $(C_gC_p)_{net}$ values denote net forces acting in an upward direction on the canopy. The canopy must be
			designed
			to resist both the positive and negative net forces.

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
4.7.13	New in 2020	4.1.7.13	Roof-Mounted Solar Panels on Buildings of Any Height (See Note A-4.1.7.13.)
			1) Where solar panels are installed on a roof, the roof wind loads shall account for the wind loads on the solar panels, as determined in accordance with Sentences (2) to (7), or shall be determined in the same way as for the roof without solar panels, whichever approach results in the most critical effect. 2) For an array of solar panels where the panels are installed close and parallel to the roof surface with their upper surface not more than 250mmabove the roof surface and with gaps around the panels of not less than 6 mm, the net positive or negative pressure difference between the upper and lower surfaces of a panel or the array shall be calculated as follows: $\mathbf{p} = \mathbf{IwqC_cC_tC_pC_pE_{pa}}$
			where Iw, q , C_e , C_t , C_g , C_p = as defined in Sentence 4.1.7.3.(1), determined in the same manner as for the roof cladding, E = edge factor, as provided in Sentence (4), and γ_a = pressure equalization factor, as provided in Sentence (3). 3) The pressure equalization factor, γ_a , in Sentence (2) shall be a) for a panel or an array where the panel chord length, L_p , is greater than 2 m or for a panel or an array that is within a distance of $2h_2$ from the roof edge or ridge, where h_2 is the height of the panel's highest point above the roof surface, taken as 1.0, and b) for other panels or arrays, determined from Figure 4.1.7.13A based on the area of the panel or array over which the wind load is being calculated.

Code Ref.	Part 4	Code Ref.	Part 4
			Figure 4.1.7.13A Pressure equalization factor, γ _a , for solar panels or arrays mounted on roofs of buildings of any height Forming Part of Clause 4.1.7.13.(3)(b)
			4) The edge factor, E, in Sentence (2) shall be taken as a) 1.5 within a distance of 1.5L _P from an exposed edge of the array of solar panels, as defined in Sentence (5), and b) 1.0 elsewhere. 5) For the purposes of Clause (4)(a), an exposed edge of the array of solar panels shall be considered to occur a) where the distance to the next row of panels or the distance across a gap in
			the same row of panels exceeds $4h_2$ or 1.2 m, whichever is greater, or b) where the distance to the roof edge exceeds $4h_2$ or 1.2 m, whichever is greater, and exceeds $0.5h$, where h is the reference height of the roof. 6) For an array of solar panels mounted on a roof with a slope, α , less than or equal to 7° , where the panels are tilted relative to the roof surface, have a chord length, L_P , not greater than 2 m, and are installed such that the height of their lowest point above the roof surface, h_1 , is not greater than 0.6 m, the height of their highest point above the roof surface, h_2 , is not greater than 1.2 m, and their tilt angle relative to the roof surface, ω , is not greater than 35° , or where the panels are installed parallel to the roof surface with their upper surface greater than 250 mm above the roof surface and with gaps not less than 6 mm between the panels, the net positive or negative pressure difference between the upper and the lower surfaces of a panel or the array shall be calculated as follows

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
			$p_{net} = I_W q C_e C_t \left(C_g C_p \right)_{net}$
			where
			Iw, q_tC_e , C_t = as defined in Sentence 4.1.7.3.(1), determined in the same manner as
			for the roof cladding, and
			$(C_gC_p)_{net}$ = net gust pressure coefficient, as provided in Sentence (7).
			7) The net gust pressure coefficient, (C _g C _p) _{net} , in Sentence (6) shall be calculated as
			follows:
			$\left(C_g C_p\right)_{net} = \pm \gamma_p \gamma_c E \left(C_g C_p\right)_n$
			where
			γ_p = parapet factor, determined as the lesser of 1.2 and (0.9 + h _{pt} /h),
			γ_c = chord factor, determined as the greater of (0.6 + 0.2L _p) and 0.8,
			E = as defined in Sentence (2), and
			$(C_gC_p)_n$ = normalized gust pressure coefficient, determined from Figure 4.1.7.13B
			based on ω and A_N ,
			where
			h_{pt} = height of the parapet above the roof surface, in m,
			h = reference height of the roof, in m,
			L _p = panel chord length, in m,
			ω = panel tilt angle relative to the roof surface, and A _N = normalized panel or array area, calculated as
			\overline{A}_{N} = $\frac{1000 A}{max(L_{b}^{2},25)}$
			where
			A = panel or array area over which the wind load is being calculated, in m ₂ , and
			L _b = normalized <i>building</i> length, in m, determined as the lesser of
			$(0.4\sqrt{hW_L})$, h
			where
			W _L = longest horizontal dimension of the <i>building</i> , in m, and
			Ws = smallest horizontal dimension of the <i>building</i> , in m.

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
<mark>4.1.8.1</mark>	Analysis	4.1.8.1	Analysis
	1) Except as permitted in Sentence (2), the deflections and specified loading		1) Except as permitted in Sentence (2), the deflections and specified loading
	due to earthquake motions shall be determined according to the requirements of		due to earthquake motions shall be determined according to the requirements of
	Articles 4.1.8.2. to 4.1.8.22.		Articles 4.1.8.2. to 4.1.8.23.
	2) Where IeF _s S _a (0.2) and IeF _s S _a (2.0) are less than 0.16 and 0.03 respectively, the		2) Where $IeF_sS_a(0.2,X_{450})$ and $IeF_sS_a(2.0,X_{450})$ are less than 0.16 and 0.03 respectively,
	deflections and specified loading due to earthquake motions are permitted to be		the deflections and specified loading due to earthquake motions are permitted to be
	determined in accordance with Sentences (3) to (15), where		determined in accordance with Sentences (3) to (15), where
	a) IE is the earthquake importance factor and has a value of 0.8, 1.0, 1.3		a) IE is the earthquake importance factor and has a value of 0.8, 1.0, 1.3 and
	and 1.5 for buildings of Low, Normal, High and Post-Disaster importance		1.5 for <i>buildings</i> in the Low, Normal, High and Post-disaster Importance
	respectively,		Categories respectively,
	b) F _s is the site coefficient based on the average 60 or su, as defined in		b) F_s is the site coefficient based on the average ${}_{60}$ or , as defined in
	Article 4.1.8.2., for the top 30 m of <i>soil</i> below the footings, pile caps, or mat		Article 4.1.8.2., for the top 30 m of <i>soil</i> below the footings, <i>pile</i> caps, or mat
	foundations and has a value of		foundations and has a value of
	i) 1.0 for <i>rock</i> sites or when 60 > 50 or su > 100 kPa,		i) 1.0 for <i>rock</i> sites or when 60 > 50 or > 100 kPa,
	ii) 1.6 when $15 \le 60 \le 50$ or $50 \text{ kPa} \le \text{su} \le 100 \text{ kPa}$, and		ii) 1.6 when $15 \le 60 \le 50$ or $50 \text{ kPa} \le \le 100 \text{ kPa}$, and
	iii) 2.8 for all other cases, and		iii) 2.8 for all other cases, and
	c) S _a (T) is the 5% damped spectral response acceleration value for period T,		c) S _a (T,X450) is the 5%-damped spectral acceleration value at period T for site
	determined in accordance with Subsection 1.1.3.		designation X ₄₅₀ , as defined in Article 4.1.8.2., determined in accordance with Subsection 1.1.3. and corresponding to a 2% probability of exceedance
	TO THE CONTRACT OF THE CONTRAC		in 50 years.
	$V_s = F_s S_a (T_s) I_E W_t / R_s$		
	where		$V_s = F_s S_a \left(T_s, X_{450} \right) I_E W / R_s$
	$S_a(T_s) = value of S_a$		where
	at T _s determined by linear interpolation between the value of S _a		$S_a(T_s, X_{450})$ =valueof S_a
	at 0.2 s, 0.5 s, and 1.0 s, and		(T_s, X_{450}) determined by linear interpolation between the values
	$= S_a(0.2) \text{ for } T_s \le 0.2 \text{ s},$		of $S_a(0.2, X_{450})$, $S_a(0.5, X_{450})$ and $S_a(1.0, X_{450})$,
	W _t = sum of W _i over the height of the <i>building</i> , where W _i is defined in		$= S_a(0.2, X_{450})$ for $T_s \le 0.2$ s, and
	Article 4.1.8.2., and		$= S_a(1.0, X_{450})$ for $T_s \ge 1.0$ s,
	R_s = 1.5, except R_s = 1.0 for structures where the <i>storey</i> strength is less than that		W =sumofWi over the height of the <i>building</i> , where Wi is defined in
	in the <i>storey</i> above and for an unreinforced masonry SFRS,		Article 4.1.8.2., and
			R_s = 1.5, except R_s = 1.0 for structures where the <i>storey</i> strength is less than that
	where		in the <i>storey</i> above and for an unreinforced masonry SFRS,
	h_n = height above the base, in m, as defined in Article 4.1.8.2.,		
	except that V_s shall not be less than $F_sS_a(1.0)I_EW_t/R_s$ and, in cases where R_s =1.5, V_s		where
	need not be greater than $F_sS_a(0.5)I_EW_t/R_s$.		h_n = height, in m, above the base to level n, as defined in Article 4.1.8.2., and

2015 NBC		2020 NBC CHANGES MADE	
Code Ref.	Part 4	Code Ref.	Part 4
4.1.8.2	$V_{sp} = 0.1 F_s I_E W_p$ $F_a = \text{site coefficient for application in Subsection 4.1.8., as defined in}$	4.1.8.2	N =total number of <i>storeys</i> above exterior <i>grade</i> to level n, as defined in Article 4.1.8.2., except that, in cases where R_s = 1.5, V_s need not be greater than $F_sS_a(0.5,X_{450})I_EW/R_s$. $V_{sp} = 0.9S_a (0.2,X_{450})F_sI_EW_p$ F_a = acceleration-based site coefficient for application in standards referenced in
	Sentence 4.1.8.4.(7), $F(PGA)$ = site coefficient for PGA, as defined in Sentence 4.1.8.4.(5), $F(PGV)$ = site coefficient for PGV, as defined in Sentence 4.1.8.4.(5), F_s = site coefficient as defined in Sentence 4.1.8.1.(2) for application in Article 4.1.8.1., $F(T)$ = site coefficient for spectral acceleration, as defined in Sentence 4.1.8.4.(5), Some new in 2020		Subsection 4.1.8., as defined in Sentence 4.1.8.4.(7), F_s = site coefficient as defined in Sentence 4.1.8.1.(2) for application in Article 4.1.8.1., F_t = portion of V to be concentrated at the top of the structure, as defined in Sentence 4.1.8.11.(7), F_v = velocity-based site coefficient for application in standards referenced in Subsection 4.1.8., as defined in Sentence 4.1.8.4.(7), F_x = lateral force applied to level x, as defined in Sentence 4.1.8.11.(7),
			M_x = overturning moment at level x, as defined in Sentence 4.1.8.11.(8), N =totalnumber of <i>storeys</i> above exterior <i>grade</i> to level n, = average standard penetration resistance, in blows per 0.3 m, in the top 30 m of <i>soil</i> , corrected to a rod energy efficiency of 60% of the theoretical maximum, PGA(X) = peak ground acceleration, expressed as a ratio to gravitational acceleration, for site designation X, as defined in Sentence 4.1.8.4.(1),
			PGV(X) = peak ground velocity, in m/s, for site designation X, as defined in Sentence 4.1.8.4.(1), PI = plasticity index for <i>soil</i> , Rd = ductility-related force modification factor reflecting the capability of a structure to dissipate energy through reversed cyclic inelastic behaviour, as defined in Article 4.1.8.9.,
			R_s = combined overstrength and ductility-related modification factor, as defined

2015 NBC	NBC 2020 NBC CHANGES MADE			
Code Ref.	Part 4	Code Ref.	Part 4	
	Part 4 Site Properties 1) The peak ground acceleration (PGA), peak ground velocity (PGV), and the 5% damped spectral response acceleration values, S ₈ (T), for the reference ground conditions (Site Class C in Table 4.1.8.4A) for periods T of 0.2 s, 0.5 s, 1.0 s, 2.0 s, 5.0 s and 10.0 s shall be determined in accordance with Subsection 1.1.3. and are based on a 2% probability of exceedance in 50 years.		in Sentence 4.1.8.1.(7), for application in Article 4.1.8.1., Sa(T,X) = 5%-damped spectral acceleration, expressed as a ratio to gravitational acceleration, at period T for site designation X, as defined in Sentence 4.1.8.4.(1), SC = Seismic Category assigned to a building based on its Importance Category and the design spectral acceleration values at periods of 0.2 s and 1.0 s, as defined in Article 4.1.8.5., X = site designation, either Xv or Xs, Xs = site designation in terms of Site Class, where S is the Site Class determined in accordance with Sentence 4.1.8.4.(3), Xv = site designation in terms of Vsao, where V is the Vsao value calculated from in situ measurements of shear wave velocity, X450 = site designation Xv with Vsao = 450 m/s, Dave = average displacement of the structure at level x, as defined in Sentence 4.1.8.11.(10), and Dmax = maximum displacement of the structure at level x, as defined in Sentence 4.1.8.11.(10). Site Properties 1) For site designation X, as determined in accordance with Sentence (2) or (3), the peak ground acceleration, PGA(X), the peak ground velocity, PGV(X), and the 5%-damped spectral acceleration values, Sa(T,X), at periods T of 0.2 s, 0.5 s, 1.0 s, 2.0 s, 5.0 s and 10.0 s shall a) except as provided in Sentence (4), be determined in accordance with Subsection 1.1.3., and b) except as provided in Article 4.1.8.23., correspond to a 2% probability of	
			exceedance in 50 years. 2) Except as provided in Sentence (3), the site designation referred to in Sentence (1) shall be determined using the average shear wave velocity, V _{s30} , calculated	
			from in situ measurements of shear wave velocity, as follows: a) for the ground profiles described in Table 4.1.8.4A, the site designation shall be determined in accordance with the Table, and b) for all other ground profiles, the site designation shall be Xv, where V is	
			the value of $V_{\rm s30}$. (See Note A-4.1.8.4.(2) and (3).)	

2015 NBC		2020 NBC	CHANGES MADE	
Code Ref.	Part 4	Code Ref.	Part 4	

Table 4.1.8.4-A Site Classification for Seismic Site Response Forming Part of Sentences 4.1.8.4.(1) to (3)

		Average Properties in Top 30 m, as per Note A-4.1.8.4.(3) and Table 4.1.8.4A				
Site Class	Ground Profile Name	Average Shear Wave Velocity, \overline{V}_{s30} , m/s	Average Standard Penetration Resistance, \$\overline{N}_{60}\$	Soil Undrained Shear Strength, s _u		
A	Hard rock(1)(2)	∇ _{s30} > 1500	n/a	n/a		
В	Rock(1)	$760 < \overline{V}_{830} \le 1500$	n/a	n/a		
С	Very dense soil and soft rock	$360 < \vec{V}_{830} < 760$	N̄ ₆₀ > 50	s _u > 100 kPa		
D	Stiff soil	$180 < \overline{V}_{830} < 360$	15 ≤ N ₆₀ ≤ 50	50 kPa < s _u ≤ 100 kPa		
		$\overline{V}_{s30} < 180$	N ₆₀ < 15	s _u < 50 kPa		
E	Soft soil	Any profile with more than 3 m of soil with the following characteristics: • plasticity index: PI > 20 • moisture content: w ≥ 40%, and • undrained shear strength: s _u < 25 kPa				
F	Other soils(3)	Site-specific evaluation required				

Notes to Table 4.1.8.4.-A:

(1) Site Classes A and B, hard *rock* and *rock*, are not to be used if there is more than 3 m of softer materials between the *rock* and the underside of

footing or mat *foundations*. The appropriate Site Class for such cases is determined on the basis of the average properties of the total thickness of

the softer materials (see Note A-4.1.8.4.(3) and Table 4.1.8.4.-A).

- (2) Where has been measured in-situ, the F(T) values for Site Class A derived from Tables 4.1.8.4.-B to 4.1.8.4.-G are permitted to be multiplied by the factor 0.04 + (1500/)..
- (3) Other *soils* include:
- (a) liquefiable *soils*, quick and highly sensitive clays, collapsible weakly cemented *soils*, and other *soils* susceptible to failure or collapse under seismic loading,
- (b) peat and/or highly organic clays greater than 3 m in thickness,
- (c) highly plastic clays (PI > 75) more than 8 m thick, and
- (d) soft to medium stiff clays more than 30 m thick.

Table 4.1.8.4.-A Exceptions for Site Designation Using V_{sso} Calculated from In Situ Measurements Forming Part of Sentence 4.1.8.4.(2)

	Ground Profile Characteristics	
Average Shear Wave Velocity in Top 30 m, V ₅₃₀ . Calculated from In Situ Measurements, in m/s	Additional Characteristics	Site Designation
V _{s30} > 760	Ground profile contains more than 3 m of softer materials between rock and the underside of footing or mat foundations	X ₇₈₀
V _{s30} > 140	Ground profile contains more than 3 m of soil with all the following characteristics: • plasticity index, PI > 20, • moisture content, w ≥ 40%, and • undrained shear strength, s _u < 25 kPa	X _E
V _{s30} > 140	Ground profile contains • liquefiable soil, quick and highly sensitive clay, collapsible weakly cemented soil, or other soil susceptible to failure or collapse under seismic loading, • more than 3 m of peat and/or highly organic clay, • more than 8 m of highly plastic soil (with PI > 75), or • more than 30 m of soft to medium-stiff clay	X _F
V _{s30} ≤ 140	n/a	X _F

3) Where V_{s30} calculated from in situ measurements is not available, the site designation referred to in Sentence (1) shall be X_S , where S is the Site Class determined using the energy-corrected average standard penetration resistance, , or the average undrained shear strength, , in accordance with Table 4.1.8.4.-B, and being calculated based on rational analysis. (See Notes A-4.1.8.4.(3) and A-4.1.8.4.(2) and (3).)

Table 4.1.8.4.-B Site Classes, S, for Site Designation X_S Forming Part of Sentence 4.1.8.4.(3)

		Ground Profile Characteristics				
Site Class, S	Ground Profile	Average Shear Wave Velocity in Top 30 m, V ₅₃₀ , in m/s ⁽¹⁾	Average Standard Penetration Resistance in Top 30 m, \bar{N}_{60} , in Blows per 0.3 m	Average Undrained Shear Strength in Top 30 m, su, in kPa		
A	Hard rock(2)	V _{s30} > 1 500	n/a	n/a		
В	Rock ⁽²⁾	760 < V _{s30} ≤ 1 500	n/a	n/a		
С	Very dense soil and soft rock	360 < V _{s30} ≤ 760	Ñ ₆₀ > 50	B _u > 100		

2015 NBC		2020 NBC	<u>CHANGES MADE</u>
Code Ref.	Part 4	Code Ref.	Part 4

Table 4.1.8.4.-B Values of F(0.2) as a Function of Site Class and PGA_{ref} Forming Part of Sentences 4.1.8.4.(4) and (5)

Site Class	Values of F(0.2)						
Site Class	$PGA_{rat} \le 0.1$	$PGA_{rot} = 0.2$	$PGA_{ref} = 0.3$	$PGA_{rot} = 0.4$	PGA _{rat} ≥ 0.5		
Α	0.69	0.69	0.69	0.69	0.69		
В	0.77	0.77	0.77	0.77	0.77		
C	1.00	1.00	1.00	1.00	1.00		
D	1.24	1.09	1.00	0.94	0.90		
E	1.64	1.24	1.05	0.93	0.85		
F	(1)	(1)	(1)	(1)	(1)		

Notes to Table 4.1.8.4.-B:

(1) See Sentence 4.1.8.4.(6).

Table 4.1.8.4.-C
Values of F(0.5) as a Function of Site Class and PGA_{ref}
Forming Part of Sentences 4.1.8.4.(4) and (5)

Site Class	Values of F(0.5)							
	PGA _{rol} ≤ 0.1	$PGA_{rat} = 0.2$	$PGA_{rot} = 0.3$	$PGA_{rot} = 0.4$	PGA _{ref} ≥ 0.5			
Α	0.57	0.57	0.57	0.57	0.57			
В	0.65	0.65	0.65	0.65	0.65			
C	1.00	1.00	1.00	1.00	1.00			
D	1.47	1.30	1.20	1.14	1.10			
E	2.47	1.80	1.48	1.30	1.17			
F	(1)	(1)	(1)	(1)	(1)			

Table 4.1.8.4.-B (Continued)

			Ground Profile Characteristics	3	
Site Class, S	Ground Profile	Average Shear Wave Velocity in Top 30 m, V ₅₃₀ , in m/s ⁽¹⁾	Average Standard Penetration Resistance in Top 30 m, N ₆₀ , in Blows per 0.3 m	Average Undrained Shear Strength in Top 30 m, su, in kPa	
D	Stiff soil	180 < V _{s30} ≤ 360	$15 < \bar{N}_{60} \le 50$	50 < § _u ≤ 100	
		140 < V _{s30} ≤ 180	$10 < \bar{N}_{60} \le 15$	40 < ន _ធ ≤ 50	
E	Soft soil	Any ground profile other than Site Class F that contains more than 3 m of soil with all the following characteristics: • plasticity index, PI > 20, • moisture content, w ≥ 40%, and • undrained shear strength, s _u < 25 kPa			
		V _{s30} ≤ 140	Ñ ₆₀ ≤ 10	<u>B</u> _u ≤ 40	
F Other soils(*) • liquefial or other more the more the		or other soil susceptit more than 3 m of per more than 8 m of hig	ins and highly sensitive clay, colla le to failure or collapse under at and/or highly organic clay, hly plastic soil (with PI > 75), o oft to medium-stiff clay	seismic loading,	

Notes to Table 4.1.8.4.-B:

- (1) See Note A-4.1.8.4.(2) and (3).
- (2) Site designations X_A and X_B , corresponding to Site Classes A and B, are not to be used in cases where the ground profile contains more than 3 m
- of softer materials between rock and the underside of footing or mat foundations. The appropriate site designation for such cases is X_{760} .
- (3) Site-specific geotechnical evaluation is required.
- 4) Site-specific geotechnical evaluation is required to determine the values of $PGA(X_F)$, $PGV(X_F)$ and $S_a(T,X_F)$ for site designation X_F .
- 5) Where structures on liquefiable *soils* have a fundamental lateral period, T_a , of 0.5 s or less, the site designation X and the corresponding values of $S_a(T,X)$ and PGA(X) are permitted to be determined in accordance with Sentence (1) by assuming that the *soils* are not liquefiable.
- 6) The design spectral acceleration, S(T), shall be determined in accordance with Table 4.1.8.4.-C, using log-log or linear interpolation for intermediate values of T. (See Note A-4.1.8.4.(6).)

2015 NBC		2020 NBC	<u>CHANGES MADE</u>
Code Ref.	Part 4	Code Ref.	Part 4

Table 4.1.8.4-D Values of F(1.0) as a Function of Site Class and PGA_{ref} Forming Part of Sentences 4.1.8.4.(4) and (5)

Site Class	Values of F(1.0)							
OILE CIASS	PGA _{rat} ≤ 0.1	$PGA_{rot} = 0.2$	$PGA_{ret} = 0.3$	$PGA_{ref} = 0.4$	PGA _{ref} ≥ 0.5			
A	0.57	0.57	0.57	0.57	0.57			
В	0.63	0.63	0.63	0.63	0.63			
С	1.00	1.00	1.00	1.00	1.00			
D	1.55	1.39	1.31	1.25	1.21			
E	2.81	2.08	1.74	1.53	1.39			
F	(1)	(1)	(1)	(1)	(1)			

Notes to Table 4.1.8.4.-D:

(1) See Sentence 4.1.8.4.(6).

Table 4.1.8.4.-E
Values of F(2.0) as a Function of Site Class and PGA_{ref}
Forming Part of Sentences 4.1.8.4.(4) and (5)

Cito Class	Values of F(2.0)							
Site Class	PGA _{ral} ≤ 0.1	$PGA_{rot} = 0.2$	$PGA_{rot} = 0.3$	$PGA_{rot} = 0.4$	PGA _{ref} ≥ 0.5			
A	0.58	0.58	0.58	0.58	0.58			
В	0.63	0.63	0.63	0.63	0.63			
С	1.00	1.00	1.00	1.00	1.00			
D	1.57	1.44	1.36	1.31	1.27			
E	2.90	2.24	1.92	1.72	1.58			
F	(1)	(1)	(1)	(1)	(1)			

Notes to Table 4.1.8.4.-E:

(1) See Sentence 4.1.8.4.(6).

Table 4.1.8.4.-F
Values of F(5.0) as a Function of Site Class and PGA_{ref}
Forming Part of Sentences 4.1.8.4.(4) and (5)

Site Class	Values of F(5.0)							
	PGA _{ref} ≤ 0.1	PGA _{ref} = 0.2	$PGA_{ref} = 0.3$	$PGA_{ref} = 0.4$	PGA _{ref} ≥ 0.5			
A	0.61	0.61	0.61	0.61	0.61			
В	0.64	0.64	0.64	0.64	0.64			
С	1.00	1.00	1.00	1.00	1.00			
D	1.58	1.48	1.41	1.37	1.34			
E	2.93	2.40	2.14	1.96	1.84			
F	(1)	(1)	(1)	(1)	(1)			

Table 4.1.8.4.-C Design Spectral Acceleration Forming Part of Sentence 4.1.8.4.(6)

Period, T, in s	Design Spectral Acceleration, S(T)
≤ 0.2	S _a (0.2,X) or S _a (0.5,X), whichever is greater
0.5	S _a (0.5,X)
1.0	S _a (1.0,X)
2.0	S _a (2.0,X)
5.0	S _a (5.0,X)
10.0	S _a (10.0,X)

7) Where required for the application of a standard referenced in this Subsection, the acceleration-based site coefficient, F_a , for site designation X shall be taken as $S(0.2)/S_a(0.2,X_{450})$ and the velocity-based site coefficient, F_v , for site designation X shall be taken as $S(1.0)/S_a(1.0,X_{450})$.

NBC							2020 NBC	CHANGES MADE
Ref.			P	art 4			Code Ref.	Part 4
	T							
		Valu	es of F(10.0) as a Fur	4.1.8.4G nction of Site Class ar	nd PGA _{ref}			
			Forming Part of Sen	tences 4.1.8.4.(4) and	(5)			
	Site Class	PGA _{ref} ≤ 0.1	PGA _{ref} = 0.2	Values of F(10.0) PGA _{rol} = 0.3	PGA _{ref} = 0.4	PGA _{ref} ≥ 0.5		
	A	0.67	0.67	0.67	0.67	0.67		
	В	0.69	0.69	0.69	0.69	0.69		
	С	1.00	1.00	1.00	1.00	1.00		
	D	1.49	1.41	1.37	1.34	1.31		
	E	2.52	2.18	2.00	1.88	1.79		
	F					(1)		
	Notes to Table 4.1 (1) See Sentence 4.	1.8.4.(6).	es of F(PGA) as a Fu	: 4.1.8.4H nction of Site Class a tences 4.1.8.4.(4) and	nd PGA _{ref} (5)			
				Values of F(PGA)	(-)			
	Site Class	PGA _{ref} ≤ 0.1	$PGA_{rat} = 0.2$	$PGA_{rol} = 0.3$	PGA _{ref} = 0.4	PGA _{ref} ≥ 0.5		
	A	0.90	0.90	0.90	0.90	0.90		
	В	0.87	0.87	0.87	0.87	0.87		
	С	1.00	1.00	1.00	1.00	1.00		
	D	1.29	1.10	0.99	0.93	0.88		
	E	1.81 (1)	1.23	0.98	0.83	0.74 (1)		
	_ <u>- </u>		14	17	17	1.7		
	Notes to Table 4.1 (1) See Sentence 4.							
			Table	4184J				
		Table 4.1.8.4I Values of F(PGV) as a Function of Site Class and PGA _{ref} Forming Part of Sentences 4.1.8.4.(4) and (5)						
	City Class			Values of F(PGV)				
	Site Class	PGA _{ref} ≤ 0.1	$PGA_{rat} = 0.2$	PGA _{rof} = 0.3	PGA _{ref} = 0.4	PGA _{ref} ≥ 0.5		
	A	0.62	0.62	0.62	0.62	0.62		
	В	0.67	0.67	0.67	0.67	0.67		
	C	1.00	1.00	1.00	1.00	1.00		
	D	1.47	1.30	1.20	1.14	1.10		
	E	2.47	1.80	1.48	1.30	1.17		
	F	(1)	(1)	(1)	(1)	(1)		
L.8.5	Importance F	actor					4.1.8.5	Importance Factor and Seismic Category
	1) The earthqu	iake importan	ce factor In sl	nall be determi	ned according	to		1) The earthquake importance factor, IE, shall be determined according to
		aure miportan	ice factor, 1e, 51	ian be acterin	ica according			
	Table 4.1.8.5.							Table 4.1.8.5A
							ı	

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
	New on 2020		2) Buildings shall be assigned a Seismic Category in accordance with Table 4.1.8.5B. Table 4.1.8.5B Seismic Categories for Buildings Forming Part of Sentence 4.1.8.5.(2) Seismic Category(1) I _E S(0.2) I _E S(1.0)
	New on 2020		SC1 $ _{E}S(0.2) < 0.2$ $ _{E}S(0.2) < 0.35$ $0.1 \le _{E}S(1.0) < 0.1$ $0.2 \le _{E}S(0.2) < 0.35$ $0.1 \le _{E}S(1.0) < 0.2$ $0.35 \le _{E}S(0.2) \le 0.75$ $0.2 \le _{E}S(1.0) \le 0.3$ $0.35 \le _{E}S(0.2) > 0.75$ $0.35 \le _{E}S(0.2)$
4.1.8.6	3) Except as required by Article 4.1.8.10., in cases where IeFaSa(0.2) is equal to or greater than 0.35, structures designated as irregular must satisfy the provisions referenced in Table 4.1.8.6.	4.1.8.6	3) Except as required by Article 4.1.8.10., where the Seismic Category is SC3 or SC4, structures designated as irregular must satisfy the provisions referenced in Table 4.1.8.6. Table 4.1.8.6. Structural Irregularities(*)(2) Forming Part of Sentences 4.1.8.6.(1) and (3), Clause 4.1.8.7.(1)(c) and Article 4.1.8.10.
	Table 4.1.8.6. Structural Irregularities(*)(2) Forming Part of Sentence 4.1.8.6.(1) Type Irregularity Type and Definition Notes Vertical Stiffness Irregularity Vertical stiffness irregularity shall be considered to exist when the lateral stiffness of the SFRS in a storey is less than 70% of the stiffness of any adjacent storey, or less than 80% of the average stiffness of the three storeys above or below.		Type Irregularity Type and Definition Notes Vertical Stiffness Irregularity For concrete and masonry shear walls, vertical stiffness irregularity shall be considered to exist where the lateral stiffness of the SFRS in any storey is less than 70% of the stiffness in an adjacent storey, or less than 80% of the average stiffness in the three storeys above or below. For all other types of SFRS, vertical stiffness irregularity shall be considered to exist where the interstorey deflection under lateral earthquake forces divided by the interstorey height, h _s , of any storey is greater than 130% of that of an adjacent storey.

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
	New on 2020		Sloped Column irregularity Sloped column irregularity shall be considered to exist where a vertical member that is inclined more (4)
	Notes to Table 4.1.8.6.:		than 2° from the vertical supports a portion of the weight of the building in axial compression.
	(1) One- <i>storey</i> penthouses with a weight of less than 10% of the level below need not be		N T II . 4100
	considered in the application of this Table.		Notes to Table 4.1.8.6.:
	(2) See Note A-Table 4.1.8.6.		(1) One- <i>storey</i> penthouses with a weight of less than 10% of the level below need not be considered in
	(3) See Article 4.1.8.7.		the application of this Table.
	(4) See Article 4.1.8.10.		(2) See Note A-Table 4.1.8.6.
	(5) See Article 4.1.8.15.		(3) See Article 4.1.8.7.
	(6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4).		(4) See Article 4.1.8.10.
	(7) See Article 4.1.8.8		(5) Increased stiffness in <i>storeys</i> below <i>grade</i> need not be considered in the determination of vertical
			stiffness irregularity.
			(6) See Article 4.1.8.15.
			(7) See Sentences 4.1.8.11.(10) and (11), and 4.1.8.12.(4).
			(8) See Article 4.1.8.8.
4.1.8.7	1) Analysis for design earthquake actions shall be carried out in accordance with	4.1.8.7	1) Analysis for earthquake actions shall be carried out in accordance with the
	the Dynamic Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)),		Dynamic Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)),
	except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be		except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be
	used for structures that meet any of the following criteria:		used for structures that meet any of the following criteria:
	a) in cases where $IeF_aS_a(0.2)$ is less than 0.35,		a) where the Seismic Category is SC1 or SC2,
4.1.8.8	b) where the components of the SFRS are not oriented along a set of orthogonal	4.1.8.8	b) where the components of the SFRS are not oriented along a set of orthogonal
	axes and IeFaSa(0.2) is less than 0.35, independent analyses about any two		axes and the Seismic Category is SC1 or SC2, independent analyses about
	orthogonal axes is permitted, or		any two orthogonal axes is permitted, or
	c) where the components of the SFRS are not oriented along a set of orthogonal		c) where the components of the SFRS are not oriented along a set of orthogonal
	axes and $IeF_aS_a(0.2)$ is equal to or greater than 0.35, analysis of the structure		axes and the Seismic Category is SC3 or SC4, analysis of the structure
	independently in any two orthogonal directions for 100% of the prescribed earthquake loads applied in one direction plus 30% of the prescribed		independently in any two orthogonal directions for 100% of the specified
	earthquake loads in the perpendicular direction, with the combination		earthquake loads applied in one direction plus 30% of the specified earthquake loads in the perpendicular direction, with the combination
	requiring the greater element strength being used in the design.		requiring the greater element strength being used in the design.
4.1.8.9	requiring the greater element strength being used in the design.	4.1.8.9	requiring the greater element such gui being used in the design.
	1) Except as provided in Sentence 4.1.8.20.(7), the values of R _d and R _o and the		1) Except as provided in Articles 4.1.8.20. and 4.1.8.22., the values of R_d and R_o
	corresponding system restrictions shall conform to Table 4.1.8.9. and the requirements		and the corresponding system restrictions shall conform to Table 4.1.8.9. and the
	of this Subsection.		requirements of this Subsection.
	of the outsection.	1	requirements of this subsection.

Code Ref. Part 4 Table 4.1.8.9. SFRS Ductility-Related Force Modification Factors, R _o , Overstrength-Related Force Modification Factors, R _o , and General Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5) Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5), 4.1.8.10.(5) and (6), 4.1.8.11.(12), 4.1.8.15.(9) and 4.1.8.20.(8) Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5), 4.1.8.10.(5) and (6), 4.1.8.11.(12), 4.1.8.15.(9) and 4.1.8.20.(8) Type of SFRS Ref. Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5), 4.1.8.10.(5) and (6), 4.1.8.11.(12), 4.1.8.15.(9) and 4.1.8.20.(8) Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5), 4.1.8.10.(5) and (6), 4.1.8.11.(12), 4.1.8.15.(9) and 4.1.8.20.(8) Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5), 4.1.8.10.(5) and (6), 4.1.8.11.(12), 4.1.8.15.(9) and 4.1.8.20.(8) Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5), 4.1.8.10.(5) and (6), 4.1.8.11.(12), 4.1.8.15.(9) and 4.1.8.20.(8) Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5), 4.1.8.10.(5) and (6), 4.1.8.11.(12), 4.1.8.15.(9) and 4.1.8.20.(8) Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5), 4.1.8.10.(5) and (6), 4.1.8.11.(12), 4.1.8.15.(9) and 4.1.8.20.(8) Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5), 4.1.8.10.(5) and (6), 4.1.8.11.(12), 4.1.8.15.(9) and 4.1.8.20.(8) Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5), 4.1.8.10.(5) and (6), 4.1.8.11.(12), 4.1.8.15.(9) and 4.1.8.20.(8) Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5), 4.1.8.10.(5) and (6), 4.1.8.11.(12), 4.1.8.15.(9) and 4.1.8.20.(8) Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5), 4.1.8.10.(5) and (6), 4.1.8.11.(12), 4.1.8.15.(9) and 4.1.8.20.(8) Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5)	2015 NBC										2020 NBC	CHANGES MADE						
SFRS Ductility-Related Force Modification Factors, R ₀ , Overstrength-Related Force Modification Factors, R ₀ , and General Restrictions(*) Forming Part of Sentences 4.1.8.9.(1) and (5) Restrictions(*) Forming Part of Sentences 4.1.8.9.(1) and (5) Type of SFRS R _d Restrictions(*) Cases Where l _E F ₈ S ₀ (0.2) Cases Where l _E F ₈ S ₀ (1.0) Cases	Code Ref.				Part 4						Code Ref.		Par	rt 4				
Type of SFRS R_d R_d R_o $Cases Where I_EF_aS_b(0.2)$ $Cases Where I_EF_bS_b(1.0)$ $Steel Structures Designed and Detailed According to CSA $16(3)(4)$		Table 4.1.8.9. SFRS Ductility-Related Force Modification Factors, R _o , Overstrength-Related Force Modification Factors, R _o , and General Restrictions(1) Forming Part of Sentences 4.1.8.9.(1) and (5)				•	ors, R _d , Overs Restric	strength-Rela ctions(1)										
Steel Structures Designed and Detailed According to CSA S16(9)(4)	1		Type of SFRS	R₀	R _o			ere I _E F _a S _a (0.2)	·	Where I _E F _v S _a (1.0)		Type of SFRS	R _d	R _o	SC1	Seismic	Category	SC4
Steel Structures Designed and Detailed According to CSA S16(4)(4)				< 0.2 0.35 ≤ 0.75 > 0.75 > 0.3		Steel Structures Designed and Detailed According to CSA S16(9(4)				<u> </u>								
Ductile moment-resisting traines 5.0 1.5 NL NL NL NL NL					and Detailed	According to	CSA S16(9)					Ductile moment-resisting frames	5.0	1.5	NL	NL	NL	NL
Ductile moment-resisting frames 5.0 1.5 NL		- 1	<u> </u>		1.5	NL NI	NL NI		NL NI	NL NI			3.5	1.5	NL	NL	NL	NL
Moderately ductile moment-resisting frames 3.5 1.5 NL NL NL NL NL NL NL NL Limited ductility moment-resisting frames 2.0 1.3 NL NL 60 30 30						NL NL	NL NL			NL 30				+		NL	60	

2015 NBC		2020 NBC	<u>CHANGES MADE</u>
Code Ref.	Part 4	Code Ref.	Part 4

Table 4.1.8.9. (Continued)

					Restrictions(2)			
Type of SFRS	R₄	R _o			Cases Where I _E F _v S _z (1.0			
			< 0.2	≥ 0.2 to < 0.35	≥ 0.35 to ≤ 0.75	> 0.75	> 0.3	
Concrete Structures Designed and Detailed According to CSA A23.3								
Ductile moment-resisting frames	4.0	1.7	NL	NL	NL	NL	NL	
Moderately ductile moment-resisting frames	2.5	1.4	NL	NL	60	40	40	
Ductile coupled walls	4.0	1.7	NL	NL	NL	NL	NL	
Moderately ductile coupled walls	2.5	1.4	NL	NL	NL	60	60	
Ductile partially coupled walls	3.5	1.7	NL	NL	NL	NL	NL	
Moderately ductile partially coupled walls	2.0	1.4	NL	NL	NL	60	60	
Ductile shear walls	3.5	1.6	NL	NL	NL	NL	NL	
Moderately ductile shear walls	2.0	1.4	NL	NL	NL	60	60	
Conventional construction								
Moment-resisting frames	1.5	1.3	NL	NL	20	15	10(5)	
Shear walls	1.5	1.3	NL	NL	40	30	30	
Two-way slabs without beams	1.3	1.3	20	15	NP	NP	NP	
Tilt-up construction								
Moderately ductile walls and frames	2.0	1.3	30	25	25	25	25	
Limited ductility walls and frames	1.5	1.3	30	25	20	20	20(6)	
Conventional walls and frames	1.3	1.3	25	20	NP	NP	NP	
Other concrete SFRS(s) not listed above	1.0	1.0	15	15	NP	NP	NP	
Timber Struct	tures Designe	d and Detaik	ed According	to CSA O86				
Shear walls								
Nailed shear walls: wood-based panel	3.0	1.7	NL	NL	30	20	20	
Shear walls: wood-based and gypsum panels in combination	2.0	1.7	NL	NL	20	20	20	
Braced or moment-resisting frames with ductile connections								
Moderately ductile	2.0	1.5	NL	NL	20	20	20	
Limited ductility	1.5	1.5	NL	NL	15	15	15	
Other wood- or gypsum-based SFRS(s) not listed above	1.0	1.0	15	15	NP	NP	NP	
Masonry Structures Designed and Detailed According to CSA S304								
Ductile shear walls	3.0	1.5	NL	NL	60	40	40	
Moderately ductile shear walls	2.0	1.5	NL	NL	60	40	40	
Conventional construction								
Shear walls	1.5	1.5	NL	60	30	15	15	
Moment-resisting frames	1.5	1.5	NL	30	NP	NP	NP	
Unreinforced masonry	1.0	1.0	30	15	NP	NP	NP	
Other masonry SFRS(s) not listed above	1.0	1.0	15	NP	NP	NP	NP	

Table 4.1.8.9. (Continued)

				Hestric	ctions(4)	
Type of SFRS	R _d	R _o		Seismic	Category	
			SC1	SC2	SC3	SC4
Moderately ductile truss moment-resisting frames	3.5	1.6	NL	NL	50	30
Moderately ductile concentrically braced frames						
Tension-compression braces	3.0	1.3	NL	NL	40	40
Tension only braces	3.0	1.3	NL	NL	20	20
Limited ductility concentrically braced frames						
Tension-compression braces	2.0	1.3	NL	NL	60	60
Tension only braces	2.0	1.3	NL	NL	40	40
Ductile buckling-restrained braced frames	4.0	1.2	NL	NL	40	40
Ductile eccentrically braced frames	4.0	1.5	NL	NL	NL	NL
Ductile plate walls	5.0	1.6	NL	NL	NL	NL
Moderately ductile plate walls	3.5	1.3	NL	NL	40	40
Limited ductility plate walls	2.0	1.3	NL	NL	60	60
Conventional construction of moment-resisting frames, braced frames or plate walls						
Assembly occupancies	1.5	1.3	NL	NL	15	15
Other occupancies	1.5	1.3	NL	NL	60	40
Other steel SFRSs not defined above	1.0	1.0	15	15	NP	NP
Concrete Structures	Designed and	Detailed Accor	rding to CSA A	23.3		
Ductile moment-resisting frames	4.0	1.7	NL	NL	NL	NL
Moderately ductile moment-resisting frames	2.5	1.4	NL	NL	60	40
Ductile coupled walls	4.0	1.7	NL	NL	NL	NL
Moderately ductile coupled walls	2.5	1.4	NL	NL	NL	60
Ductile partially coupled walls	3.5	1.7	NL	NL	NL	NL
Moderately ductile partially coupled walls	2.0	1.4	NL	NL	NL	60
Ductile shear walls	3.5	1.6	NL	NL	NL	NL
Moderately ductile shear walls	2.0	1.4	NL	NL	NL	60
Conventional construction						
Moment-resisting frames	1.5	1.3	NL	NL	20	10(5)(6)
Shear walls	1.5	1.3	NL	NL	40	30
Two-way slabs without beams	1.3	1.3	20	15	NP	NP
Tilt-up construction						
Moderately ductile walls and frames	2.0	1.3	30	25	25	25
Limited ductility walls and frames	1.5	1.3	30	25	20	20(1)
Conventional walls and frames	1.3	1.3	25	20	NP	NP
Other concrete SFRSs not listed above	1.0	1.0	15	15	NP	NP
Timber Structures	Designed and	Detailed Accor	rding to CSA C)86		
Shear walls						
Nailed shear walls: wood-based panel	3.0	1.7	NL	NL	30	20
Shear walls: wood-based and gypsum panels in combination	2.0	1.7	NL	NL	20	20
Moderately ductile cross-laminated timber shear walls: platform-type construction	2.0	1.5	30	30	30	20

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4

Table 4.1.8.9. (Continued)

					Restrictions (4)	
Type of SFRS	Rd	R _o		Cases Wher	e I _E F _a S _a (0.2)		Cases Where I _E F _v S _a (1.0)
			< 0.2	≥ 0.2 to < 0.35	≥ 0.35 to ≤ 0.75	> 0.75	> 0.3
Cold-Formed Steel	Structures De	signed and D	etailed Accor	ding to CSA	S136		•
Shear walls							
Screw-connected shear walls - wood-based panels	2.5	1.7	20	20	20	20	20
Screw-connected shear walls - wood-based and gypsum panels in combination	1.5	1.7	20	20	20	20	20
Diagonal strap concentrically braced walls							
Limited ductility	1.9	1.3	20	20	20	20	20
Conventional construction	1.2	1.3	15	15	NP	NP	NP
Other cold-formed SFRS(s) not defined above	1.0	1.0	15	15	NP	NP	NP

Notes to Table 4.1.8.9.:

- (1) See Article 4.1.8.10.
- (2) NP = system is not permitted.

NL = system is permitted and not limited in height as an SFRS.

Numbers in this Table are maximum height limits above *grade*, in m.

Height may be limited in other Parts of the Code.

The most stringent requirement governs.

- (3) Higher design force levels are prescribed in CSA S16 for some heights of *buildings*.
- (4) See Note A-Table 4.1.8.9.
- (5) Frames limited to a maximum of 2 *storeys*.
- (6) Frames limited to a maximum of 3 *storeys*.

Table 4.1.8.9. (Continued)

				Restric	tions(4)			
Type of SFRS	R₫	R _o	Seismic Category					
			SC1	SC2	SC3	SC4		
Limited ductility cross-laminated timber shear walls: platform-type construction	1.0	1.3	30	30	30	20		
Braced or moment-resisting frames with ductile connections								
Moderately ductile	2.0	1.5	NL	NL	20	20		
Limited ductility	1.5	1.5	NL	NL	15	15		
Other wood- or gypsum-based SFRSs not listed above	1.0	1.0	15	15	NP	NP		
Masonry Structures	Designed and	Detailed Accor	rding to CSA S	3304				
Ductile shear walls	3.0	1.5	NL	NL	60	40		
Moderately ductile shear walls	2.0	1.5	NL	NL	60	40		
Conventional construction								
Shear walls	1.5	1.5	NL	60	30	15		
Moment-resisting frames	1.5	1.5	NL	30	NP	NP		
Unreinforced masonry	1.0	1.0	30	15	NP	NP		
Other masonry SFRSs not listed above	1.0	1.0	15	NP	NP	NP		
Cold-Formed Steel Struct	tures Designed	and Detailed	According to C	SA S136				
Shear walls								
Screw-connected shear walls - wood-based panels	2.5	1.7	20	20	20	20		
Screw-connected shear walls – wood-based and gypsum panels in combination	1.5	1.7	20	20	20	20		
Diagonal strap concentrically braced walls								
Limited ductility	1.9	1.3	20	20	20	20		
Conventional construction	1.2	1.3	15	15	NP	NP		
Other cold-formed SFRSs not defined above	1.0	1.0	15	15	NP	NP		

Notes to Table 4.1.8.9.:

- (1) See Article 4.1.8.10.
- (2) NP = system is not permitted.

NL = system is permitted and not limited in height as an SFRS.

Numbers in this Table are maximum height limits above *grade*, in m.

Height may be limited in other Parts of the Code.

The most stringent requirement governs.

- (3) Higher design force levels are prescribed in CSA S16 for some heights of *buildings*.
- (4) See Note A-Table 4.1.8.9.

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
			(f) Evamos ava limited to a maximum of 2 starava
			(5) Frames are limited to a maximum of 2 <i>storeys</i> .
			(6) The maximum height limit is permitted to be increased to 15 m where $I_ES(1.0) \le 0.3$.
11010		44040	(7) Frames are limited to a maximum of 3 <i>storeys</i> .
4.1.8.10	1) Except as required by Clause (2)(b), structures with a Type 6 irregularity,	4.1.8.10	Additional System Restrictions
	Discontinuity in Capacity - Weak Storey, as described in Table 4.1.8.6., are not		1) Except as required by Clause (2)(b), structures with a Type 6 irregularity,
	permitted unless IEFaSa(0.2) is less than 0.2 and the forces used for design of the SFRS		Discontinuity in Capacity - Weak Storey, as described in Table 4.1.8.6., are not
	are multiplied by RdRo.		permitted unless the Seismic Category is SC1 and the forces used for design of the
	2) Post-disaster buildings shall		SFRS are multiplied by R _d R _o .
	a) not have any irregularities conforming to Types 1, 3, 4, 5, 7 and 9 as described		2) Post-disaster buildings shall
	in Table 4.1.8.6., in cases where I _E F _a S _a (0.2) is equal to or greater than 0.35,		a) not have Type 1, 3, 4, 5, 7, 9 or 10 irregularities as described in Table 4.1.8.6.,
	b) not have a Type 6 irregularity as described in Table 4.1.8.6.,		where the Seismic Category is SC3 or SC4,
	c) have an SFRS with an R _d of 2.0 or greater, and		b) not have a Type 6 irregularity as described in Table 4.1.8.6.,
	d) have no <i>storey</i> with a lateral stiffness that is less than that of the <i>storey</i> above		c) have an SFRS with an Rd of 2.0 or greater,
	11.		
			Desired the control of the control o
			d) where they are constructed with concrete or masonry shear walls, have no storey with a lateral stiffness that is less than that of the storey above it, and
	3) For <i>buildings</i> having fundamental lateral periods, T _a , of 1.0 s or greater, and		e) where they are constructed with other types of SFRS, have no <i>storey</i> for
	where $IeF_vS_a(1.0)$ is greater than 0.25, shear walls that are other than wood-based and		which the interstorey deflection under lateral earthquake forces divided by
	form part of the SFRS shall be continuous from their top to the foundation and shall not		the interstorey height, hs, is greater than that of the storey above it.
	have irregularities of Type 4 or 5 as described in Table 4.1.8.6.		3) High Importance Category <i>buildings</i> shall
	4) For <i>buildings</i> constructed with more than 4 <i>storeys</i> of continuous wood		a) not have Type 1, 3, 4, 5, 7, 9 or 10 irregularities as described in Table 4.1.8.6.,
	construction and where $IeF_aS_a(0.2)$ is equal to or greater than 0.35, timber SFRS		where the Seismic Category is SC4,
	consisting of shear walls with wood-based panels or of braced or moment-resisting		b) not have a Type 6 irregularity as described in Table 4.1.8.6.,
	frames as defined in Table 4.1.8.9. within the continuous wood construction		c) have an SFRS with an Rd of at least
	shall not have Type 4 or Type 5 irregularities as described in Table 4.1.8.6. (See		i) 2.0 where the Seismic Category is SC4, and
	Note A-4.1.8.10.(4).)		ii) 1.5 otherwise,
	5) The ratio, α , for a Type 9 irregularity as described in Table 4.1.8.6. shall be		d) where they are constructed with concrete or masonry shear walls, have no
	determined independently for each orthogonal direction using the following equation:		storey with a lateral stiffness that is less than that of the storey above it, and
	where		e) where they are constructed with other types of SFRS, have no <i>storey</i> for
	QG = gravity-induced lateral demand on the SFRS at the critical level of the		which the interstorey deflection under lateral earthquake forces divided by
	yielding system, and		the inter <i>storey</i> height, h _s , is greater than that of the <i>storey</i> above it.
	Q _y = the resistance of the yielding mechanism required to resist the minimum		4) Where the fundamental lateral period, Ta, is greater than or equal to 1.0 s and
	earthquake loads, which need not be taken as less than Romultiplied by		IES(1.0) is greater than 0.25, shear walls that are other than wood-based and form part

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
	the minimum lateral earthquake force as determined in Article 4.1.8.11. or 4.1.8.12., as appropriate. (See Note A-4.1.8.10.(5).) 6) For buildings with a Type 9 irregularity as described in Table 4.1.8.6. and where $I_EF_aS_a(0.2)$ is equal to or greater than 0.5, deflections determined in accordance with Article 4.1.8.13. shall be multiplied by 1.2. 7) Structures where the value of α , as determined in accordance with Sentence (5), exceeds twice the limits specified in Table 4.1.8.6. for a Type 9 irregularity, and where $I_EF_aS_a(0.2)$ is equal to or greater than 0.5 are not permitted unless determined to be acceptable based on non-linear dynamic analysis studies. (See Note A-4.1.8.10.(7).)		of the SFRS shall be continuous from their top to the <i>foundation</i> and shall not have Type 4 or 5 irregularities as described in Table 4.1.8.6. 5) For <i>buildings</i> in Seismic Category SC3 or SC4 that are constructed with more than 4 <i>storeys</i> of continuous wood construction, timber SFRSs consisting of shear walls with wood-based panels or of braced or moment-resisting frames as defined in Table 4.1.8.9. within the continuous wood construction shall not have Type 4 or 5 irregularities as described in Table 4.1.8.6. (See Note A-4.1.8.10.(5) and (6).) 6) For <i>buildings</i> in Seismic Category SC3 or SC4 that are constructed with more than 4 <i>storeys</i> of continuous wood construction, timber SFRSs consisting of moderately ductile or limited ductility cross-laminated timber shear walls, platform-type construction, as defined in Table 4.1.8.9. within the continuous wood construction shall not have Type 4, 5, 6, 8, 9 or 10 irregularities as described in Table 4.1.8.6. (See Note A-4.1.8.10.(5) and (6).) 7) The ratio α for a Type 9 irregularity as described in Table 4.1.8.6. shall be determined independently for each orthogonal direction using the following equation:
	New on 2020		9) For <i>buildings</i> where the value of α , as determined in accordance with Sentence (7), exceeds twice the appropriate limit specified in Table 4.1.8.6. for a Type 9 irregularity and where IES(0.2) is equal to or greater than 0.5, a Non-linear Dynamic Analysis of the structure shall be carried out in accordance with Article 4.1.8.12. and the following criteria: a) the analysis shall account for the effects of the vertical response of the <i>building</i> mass, b) the analysis shall account for the effects of the vertical response of <i>building</i> components that undergo a vertical displacement when displaced laterally, c) the analysis shall use vertical ground motion time histories that are compatible with horizontal ground motion time histories scaled to the target response spectrum and that are applied concurrently with the horizontal ground motion time histories, d) the largest inter <i>storey</i> deflection at any level of the <i>building</i> as determined from the analysis shall not be greater than 60% of the appropriate limit stated in Sentence 4.1.8.13.(3), and

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
4.1.8.11	c) for <i>buildings</i> located on a site other than Class F and having an SFRS with an	4.1.8.11	e) the results of an analysis using the ground motion time histories in Clause (c) multiplied by 1.5 shall satisfy the non-linear acceptance criteria. (See Note A-4.1.8.10.(9).) 10) The design of <i>buildings</i> in Seismic Category SC3 or SC4 with a Type 10 irregularity as described in Table 4.1.8.6. shall satisfy the following requirements: a) the structure shall be designed to resist the additional earthquake forces due to the vertical accelerations of the mass supported by inclined vertical members (see Note A-4.1.8.10.(10)(a)), and b) the effects of the horizontal and vertical movements of inclined vertical members, while undergoing earthquake-induced deformations, on the floor systems they support shall be considered in the design of the <i>building</i> and accounted for in the application of Sentence 4.1.8.3.(5). c) for <i>buildings</i> located on a site designated as other than X _F and having an
	Rd equal to or greater than 1.5, V need not be greater than the larger of		SFRS with an Rd equal to or greater than 1.5, V need not be greater than the larger of

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4

Table 4.1.8.11.

Higher Mode Factor, M_v, and Base Overturning Moment Reduction Factor, J(1)(2)(3)(4)

Forming Part of Sentence 4.1.8.11.(6)

S(0.2)/S(5.0)	M_v for $T_a \le 0.5$	My for Ta = 1.0	My for Ta = 2.0	M _v for T _a ≥ 5.0	J for Ta≤ 0.5	J for Ta = 1.0	J for Ta = 2.0	J for T _a ≥ 5.0
Moment-Resisting Frames								
5	1	1	1	(5)	1	0.97	0.92	(5)
20	1	1	1	(5)	1	0.93	0.85	(5)
40	1	1	1	(5)	1	0.87	0.78	(5)
65	1	1	1.03	(5)	1	0.80	0.70	(5)
				Coupled Walls(6)				
5	1	1	1	1(7)	1	0.97	0.92	0.80(8)
20	1	1	1	1.08(7)	1	0.93	0.85	0.65(8)
40	1	1	1	1.30(7)	1	0.87	0.78	0.53(8)
65	1	1	1.03	1.49(7)	1	0.80	0.70	0.46(8)
	•			Braced Frames				
5	1	1	1	(5)	1	0.95	0.89	(5)
20	1	1	1	(5)	1	0.85	0.78	(5)
40	1	1	1	(5)	1	0.79	0.70	(5)
65	1	1.04	1.07	(5)	1	0.71	0.66	(5)
	•		Walls	Wall Frame Syst	ems			
5	1	1	1	1.25(7)	1	0.97	0.85	0.55(8)
20	1	1	1.18	2.30(7)	1	0.80	0.60	0.35(8)
40	1	1.19	1.75	3.70(7)	1	0.63	0.46	0.28(8)
65	1	1.55	2.25	4.65(7)	1	0.51	0.39	0.23(8)
	•			Other Systems				
5	1	1	1	(5)	1	0.97	0.85	(5)
20	1	1	1.18	(5)	1	0.80	0.60	(5)
40	1	1.19	1.75	(5)	1	0.63	0.46	(5)
65	1	1.55	2.25	(5)	1	0.51	0.39	(5)

Notes to Table 4.1.8.11.:

- (1) For intermediate values of the spectral ratio S(0.2)/S(5.0), $M_{\rm V}$ and J shall be obtained by linear interpolation.
- (2) For intermediate values of the fundamental lateral period, T_a , $S(T_a)M_v$ shall be obtained by linear interpolation using the values of M_v obtained in accordance with Note (1).
- (3) For intermediate values of the fundamental lateral period, T_a, J shall be obtained by linear interpolation using the values of J obtained in accordance with Note (1).
- 11) Torsional effects shall be accounted for as follows:
- a) for a building with $B \le 1.7$ or where $IeF_aS_a(0.2)$ is less than 0.35, by applying

Table 4.1.8.11.

Higher Mode Factor, M_v, and Base Overturning Moment Reduction Factor, J⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾

Forming Part of Sentence 4.1.8.11.(6)

S(0.2)/S(5.0)	M_v for $T_a \le 0.5$	M_v for $T_a = 1.0$	M_v for $T_a = 2.0$	M_v for $T_a \ge 5.0$	J for T_a ≤ 0.5	J for T _a = 1.0	J for $T_a = 2.0$	J for $T_a \ge 5.0$
			Mom	ent-Resisting Fran	nes			
5	1	1	1	(5)	1	1	0.95	(5)
20	1	1	1	(5)	1	0.97	0.88	(5)
40	1	1	1	(5)	1	0.90	0.79	(5)
70	1	1	1	(5)	0.98	0.88	0.70	(5)
				Coupled Walls(6)				
5	1	1	1	1(7)	1	1	0.95	0.80(*)
20	1	1	1	1.09(7)	1	0.97	0.88	0.66(8)
40	1	1	1	1.33(7)	1	0.90	0.79	0.52(8)
70	1	1	1	1.90(7)	0.98	0.88	0.70	0.40(8)
				Braced Frames				
5	1	1	1	(5)	1	0.98	0.93	(5)
20	1	1	1	(5)	1	0.91	0.80	(5)
40	1	1	1	(5)	0.91	0.82	0.72	(5)
70	1	1	1.19	(5)	0.91	0.77	0.61	(5)
			Walls	, Wall-Frame Syst	ems			
5	1	1	1	1.30(7)	1	1	0.85	0.59(8)
20	1	1	1.18	2.50(7)	1	0.80	0.60	0.35(8)
40	1	1.25	1.85	4.10(7)	0.80	0.59	0.42	0.23(8)
70	1	1.25	2.30	6.40(7)	0.80	0.56	0.30	0.18(8)
				Other Systems				
5	1	1	1	(5)	1	1	0.85	(5)
20	1	1	1.18	(5)	1	0.80	0.60	(5)
40	1	1.25	1.85	(5)	0.80	0.59	0.44	(5)
70	1	1.37	2.30	(5)	0.80	0.56	0.30	(5)

Notes to Table 4.1.8.11.:

- (1) For intermediate values of the spectral ratio S(0.2)/S(5.0), M_{ν} and J shall be obtained by linear interpolation. For spectral ratios less than 5, M_{ν} and
- J shall be obtained by linear interpolation with their values at a spectral ratio of 0 taken as equal to 1. For spectral ratios greater than 70, M_V and
- J shall be taken as equal to their values at a spectral ratio of 70.

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
	torsional moments about a vertical axis at each level throughout the <i>building</i> , derived for each of the following load cases considered separately: i) $T_x = F_x(e_x + 0.10 D_{nx})$, and ii) $T_x = F_x(e_x - 0.10 D_{nx})$ where F_x is the lateral force at each level determined according to Sentence (7) and where each element of the <i>building</i> is designed for the most severe effect of the above load cases, or b) for a <i>building</i> with $B > 1.7$, in cases where $I_EF_aS_a(0.2)$ is equal to or greater than 0.35, by a Dynamic Analysis Procedure as specified in Article 4.1.8.12.		(2) For intermediate values of the fundamental lateral period, Ta, in cases where S(Ta) is obtained by log-log interpolation, Mv shall be obtained by linear interpolation using the values of Mv obtained in accordance with Note (1). In cases where S(Ta) is obtained by linear interpolation, the product S(Ta)Mv shall be obtained by linear interpolation using the values of Mv obtained in accordance with Note (1). (3) For intermediate values of the fundamental lateral period, Ta, J shall be obtained by linear interpolation using the values of J obtained in accordance with Note (1).
	equal to or greater than 1.5, the elastic base shear obtained from a Linear Dynamic Analysis may be multiplied by the larger of the following factors to obtain the design elastic base shear, V_{ed} :		 11) Torsional effects shall be accounted for as follows: a) for a building with B ≤ 1.7 or in Seismic Category SC1 or SC2, by applying torsional moments about a vertical axis at each level throughout the building, derived for each of the following load cases considered separately: i) Tx = Fx(ex + 0.10Dnx), and ii) Tx = Fx(ex - 0.10Dnx) where Fx is determined in accordance with Sentence (7) and where each element of the building is designed for the most severe effect of the above load cases, or b) for a buildingwith B > 1.7 in Seismic Category SC3 or SC4, by a Dynamic Analysis Procedure as specified in Article 4.1.8.12. 6) For buildings located on a site designated as other than XF that have an SFRS with Rd equal to or greater than 1.5, the elastic base shear, Ve, obtained from a Linear Dynamic Analysismay bemultiplied by the larger of the following factors to obtain Ved:
4.1.8.15	5) In cases where IeFaSa(0.2) is equal to or greater than 0.35, the elements supporting any discontinuous wall, column or braced frame shall be designed for the lateral load capacity of the components of the SFRS they support. (See Note A-4.1.8.15.(5).)	4.1.8.15	5) Where the Seismic Category is SC3 or SC4, the elements supporting any discontinuous wall, column or braced frame shall be designed for the lateral load capacity of the components of the SFRS they support. (See Note A-4.1.8.15.(5).)
4.1.8.16	6) In cases where IeFaSa(0.2) is equal to or greater than 0.35, the following requirements shall be satisfied: a) <i>piles</i> or <i>pile</i> caps, drilled piers, and <i>caissons</i> shall be interconnected by continuous ties in not less than two directions (see Note A-4.1.8.16.(6)(a)), b) <i>piles</i> , drilled piers, and <i>caissons</i> shall be embedded a minimum of 100 mm		6) Where the Seismic Category is SC3 or SC4, the following requirements shall be satisfied: a) <i>piles</i> or <i>pile</i> caps, drilled piers, and <i>caissons</i> shall be interconnected by continuous ties in not less than two directions (see Note A-4.1.8.16.(6)(a)), b) <i>piles</i> , drilled piers, and <i>caissons</i> shall be embedded a minimum of 100 mm

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
	into the <i>pile</i> cap or structure, and c) <i>piles</i> , drilled piers, and <i>caissons</i> , other than wood <i>piles</i> , shall be connected to the <i>pile</i> cap or structure for a minimum tension force equal to 0.15 times the factored compression load on the <i>pile</i> 7) At sites where I _E F _a S _a (0.2) is equal to or greater than 0.35, <i>basement</i> walls shall be designed to resist earthquake lateral pressures from backfill or natural ground. (See Note A-4.1.8.16.(7).) 8) At sites where I _E F _a S _a (0.2) is greater than 0.75, the following requirements shall be satisfied: a) <i>piles</i> , drilled piers, or <i>caissons</i> shall be designed and detailed to accommodate cyclic inelastic behaviour when the design moment in the element due to earthquake effects is greater than 75% of its moment capacity (see Note A-4.1.8.16.(8)(a)), and b) spread footings founded on <i>soil</i> defined as Site Class E or F shall be interconnected by continuous ties in not less than two directions.		into the <i>pile</i> cap or structure, and coissons, other than wood <i>piles</i> , shall be connected to the <i>pile</i> cap or structure for a minimum tension force equal to 0.15 times the factored compression load on the <i>pile</i> . 7) Where the Seismic Category is SC3 or SC4, <i>basement</i> walls shall be designed to resist earthquake lateral pressures from backfill or natural ground. (See Note A-4.1.8.16.(7).) tisfied: a) <i>piles</i> , drilled piers, or <i>caissons</i> shall be designed and detailed to accommodate cyclic inelastic behaviour when the design moment in the element due to earthquake effects is greater than 75% of its moment capacity (see Note A-4.1.8.16.(8)(a)), and b) spread footings founded on <i>soil</i> designated as Xv, where V _{s30} is less than or equal to 180 m/s, X _E or X _F shall be interconnected by continuous ties in not less than two directions.
4.1.8.18	1) Except as provided in Sentences (2), (7) and (16), elements and components of <i>buildings</i> described in Table 4.1.8.18. and their connections to the structure shall be designed to accommodate the <i>building</i> deflections calculated in accordance with Article 4.1.8.13. and the element or component deflections calculated in accordance with Sentence (9), and shall be designed for a lateral force, V _P , distributed according to the distribution of mass: V _P = 0.3 F _a S _a (0.2) I _P S _P W _P where F _a = as defined in Sentence 4.1.8.4.(7), S _a (0.2) = spectral response acceleration value at 0.2 s, as defined in Sentence 4.1.8.4.(1), I _E = importance factor for the <i>building</i> , as defined in Article 4.1.8.5., S _P = C _P A _r A _x /R _P (the maximum value of S _P shall be taken as 4.0 and the minimum value of S _P shall be taken as 0.7), where C _P = element or component factor from Table 4.1.8.18., A _r = element or component force amplification factor from Table 4.1.8.18., A _x = height factor (1 + 2 h _x / h _n), R _P = element or component response modification factor from Table 4.1.8.18., and W _P = weight of the component or element.	4.1.8.18	1) Except as provided in Sentences (2), (7) and (16), elements and components of <i>buildings</i> described in Table 4.1.8.18. and their connections to the structure shall be designed to accommodate the <i>building</i> deflections calculated in accordance with Article 4.1.8.13. and the element or component deflections calculated in accordance with Sentence (9), and shall be designed for a specified lateral earthquake force, V _p , distributed according to the distribution of mass: V _p = 0.38 (0.2) I _E S _p W _p where S(0.2) = design spectral acceleration value at a period of 0.2 s, as defined in Sentence 4.1.8.4.(6), I _E = earthquake importance factor for the <i>building</i> , as defined in Article 4.1.8.5., S _p = C _p A _r A _x /R _p (the maximum value of S _p shall be taken as 4.0 and the minimum value of S _p shall be taken as 0.7), where C _p = element or component factor from Table 4.1.8.18., A _r = element or component force amplification factor from Table 4.1.8.18., A _x = height factor (1 + 2h _x /h _n), R _p = element or component response modification factor from Table 4.1.8.18., and W _p = weight of the component or element.

2015 NBC		2020 NBC	<u>CHANGES MADE</u>
Code Ref.	Part 4	Code Ref.	Part 4

Table 4.1.8.18. Elements of Structures and Non-structural Components and Equipment⁽¹⁾ Forming Part of Sentences 4.1.8.18.(1), (2), (3), (6) and (7)

Category	Part or Portion of Building	C _p	Ar	R _p
1	All exterior and interior walls except those in Category 2 or 3	1.00	1.00	2.50
2	Cantilever parapet and other cantilever walls except retaining walls	1.00	2.50	2.50
3	Exterior and interior ornamentations and appendages	1.00	2.50	2.50
4	Floors and roofs acting as diaphragms(*)	-	-	-
5	Towers, chimneys, smokestacks and penthouses when connected to or forming part of a building	1.00	2.50	2.50
6	Horizontally cantilevered floors, balconies, beams, etc.	1.00	1.00	2.50
7	Suspended ceilings, light fixtures and other attachments to ceilings with independent vertical support	1.00	1.00	2.50
8	Masonry veneer connections	1.00	1.00	1.50
9	Access floors	1.00	1.00	2.50
10	Masonry or concrete fences more than 1.8 m tall	1.00	1.00	2.50
11	Machinery, fixtures, equipment and tanks (including contents)			
	that are rigid and rigidly connected	1.00	1.00	1.25
	that are flexible or flexibly connected	1.00	2.50	2.50
12	Machinery, fixtures, equipment and tanks (including contents) containing toxic or explosive materials, materials having a flash point below 38°C or firefighting fluids			
	that are rigid and rigidly connected	1.50	1.00	1.25
	that are flexible or flexibly connected	1.50	2.50	2.50
13	Flat bottom tanks (including contents) attached directly to a floor at or below grade within a building	0.70	1.00	2.50
14	Flat bottom tanks (including contents) attached directly to a floor at or below grade within a building containing toxic or explosive materials, materials having a flash point below 38°C or firefighting fluids	1.00	1.00	2.50
15	Pipes, ducts (including contents)	1.00	1.00	3.00

Table 4.1.8.18. (Continued)

Category	Part or Portion of Building	C _p	Ar	R _p
16	Pipes, ducts (including contents) containing toxic or explosive materials	1.50	1.00	3.00
17	Electrical cable trays, bus ducts, conduits	1.00	2.50	5.00
18	Rigid components with ductile material and connections	1.00	1.00	2.50
19	Rigid components with non-ductile material or connections	1.00	1.00	1.00
20	Flexible components with ductile material and connections	1.00	2.50	2.50
21	Flexible components with non-ductile material or connections	1.00	2.50	1.00
22	Elevators and escalators(9)			
	machinery and equipment	as p	er categor	y 11
	elevator rails	1.00	1.00	2.50
23	Floor-mounted steel pallet storage racks ⁽⁴⁾	1.00	2.50	2.50
24	Floor-mounted steel pallet storage racks on which are stored toxic or explosive materials or materials having a flash point below 38°C ¹⁰ .	1.50	2.50	2.50

2) For buildings other than post-disaster buildings, seismically isolated buildings, and buildings with supplemental energy dissipation systems, where $IeF_aS_a(0.2)$ is less than 0.35, the requirements of Sentence (1) need not apply to Categories 6 through 22 of

Table 4.1.8.18. Elements of Structures and Non-structural Components and Equipment(1) Forming Part of Sentences 4.1.8.18.(1) to (3), (6), (7) and (16), and Clauses 4.1.8.23.(2)(c) and (3)(c)

Category	Part or Portion of Building	Cp	Ar	R _p			
Architectural and Structural Components							
1	All exterior and interior walls, and cladding panels, except those in Category 2 or 3	1.00	1.00	2.50			
2	Cantilever parapet and other cantilever walls, including cantilever cladding panels, except retaining walls	1.00	2.50	2.50			
3	Exterior and interior ornamentations and appendages	1.00	2.50	2.50			
4	Floors and roofs acting as diaphragms(4)	-	-	-			
5	Towers, chimneys, smokestacks and penthouses when connected to or forming part of a building	1.00	2.50	2.50			
6	Horizontally cantilevered floors, balconies, beams, etc.	1.00	1.00	2.50			
7	Suspended ceilings, light fixtures and other attachments to ceilings with independent vertical support	1.00	1.00	2.50			
8	Masonry veneer connections	1.00	1.00	1.50			
9	Access floors	1.00	1.00	2.50			
10	Masonry or concrete fences more than 1.8 m tall	1.00	1.00	2.50			
Mechanical	and Electrical Components						
11	Machinery, fixtures, equipment and tanks (including contents)						
	that are rigid and rigidly connected	1.00	1.00	1.25			
	that are flexible or flexibly connected	1.00	2.50	2.50			

2015 NBC		2020 NBC	<u>CHANGES MADE</u>
Code Ref.	Part 4	Code Ref.	Part 4

Table 4.1.8.18.

- 7) Connections to the structure of elements and components listed in Table 4.1.8.18. shall be designed to support the component or element for gravity loads, shall conform to the requirements of Sentence (1), and shall also satisfy these additional requirements:
- a) friction due to gravity loads shall not be considered to provide resistance to seismic forces,
- b) R_{p} for non-ductile connections, such as adhesives or power-actuated fasteners, shall be taken as 1.0,
- c) R_P for anchorage using shallow expansion, chemical, epoxy or cast-in-place anchors shall be 1.5, where shallow anchors are those with a ratio of embedment length to diameter of less than 8,
- d) power-actuated fasteners and drop-in anchors shall not be used for tension loads.
- e) connections for non-structural elements or components of Category 1, 2 or 3 of Table 4.1.8.18. attached to the side of a *building* and above the first level above *grade* shall satisfy the following requirements:
- i) for connections where the body of the connection is ductile, the body shall be designed for values of C_P , A_r and R_P given in Table 4.1.8.18., and all of the other parts of the connection, such as anchors, welds, bolts and inserts, shall be capable of developing 2.0 times the nominal yield resistance of the body of the connection, and
- ii) connections where the body of the connection is not ductile shall be designed for values of C_P = 2.0, R_P = 1.0 and A_r given in Table 4.1.8.18., and
- f) a ductile connection is one where the body of the connection is capable of dissipating energy through cyclic inelastic behaviour.
- 15) Glass need not comply with Sentence (14), provided at least one of the following conditions is met:
- a) $I_EF_aS_a(0.2) < 0.35$,
- b) the glass has sufficient clearance from its frame such that $D_{clear} \ge 1.25 D_p$ calculated as follows:

Table 4.1.8.18. (Continued)

Category	Part or Portion of Building	C _p	Ar	R _p
12	Machinery, fixtures, equipment and tanks (including contents) containing toxic or explosive materials, materials having a flash point below 38°C or firefighting fluids			
	that are rigid and rigidly connected	1.50	1.00	1.25
	that are flexible or flexibly connected	1.50	2.50	2.50
13	Flat bottom tanks (including contents) attached directly to a floor at or below grade within a building	0.70	1.00	2.50
14	Flat bottom tanks (including contents) attached directly to a floor at or below grade within a building containing toxic or explosive materials, materials having a flash point below 38°C or firefighting fluids	1.00	1.00	2.50
15	Pipes, ducts (including contents)	1.00	1.00	3.00
16	Pipes, ducts (including contents) containing toxic or explosive materials		1.00	3.00
17	Electrical cable trays, bus ducts, conduits		2.50	5.00
Other Syste	m Components			
18	Rigid components with ductile material and connections	1.00	1.00	2.50
19	Rigid components with non-ductile material or connections	1.00	1.00	1.00
20	Flexible components with ductile material and connections	1.00	2.50	2.50
21	Flexible components with non-ductile material or connections	1.00	2.50	1.00
22	Elevators and escalators(9)			
	machinery and equipment	as p	er Categor	y 11
	elevator rails	1.00	1.00	2.50
23	Floor-mounted steel pallet storage racks(4)	1.00	2.50	2.50
24	Floor-mounted steel pallet storage racks on which are stored toxic or explosive materials or materials having a flash point below 38°C/9	1.50	2.50	2.50

- 2) For *buildings* in Seismic Category SC1 or SC2, other than *post-disaster buildings*, seismically isolated *buildings*, and *buildings* with supplemental energy dissipation systems, the requirements of Sentence (1) need not apply to Categories 6 through 22 of Table 4.1.8.18.
- 7) Connections to the structure of elements and components listed in Table 4.1.8.18. shall be designed to support the component or element for gravity loads, shall conform to the requirements of Sentence (1), and shall also satisfy these additional requirements:
- a) except as provided in Sentence (17), friction due to gravity loads shall not be considered to provide resistance to earthquake forces,
- b) R_P for non-ductile connections, such as adhesives or power-actuated fasteners, shall be taken as 1.0,
- c) R_p for shallow post-installed mechanical, post-installed adhesive, and cast-in-place anchors in concrete shall be 1.5, where shallow anchors are

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
	16) For structures with supplemental energy dissipation, the following criteria shall apply: a) the value of S _a (0.2) used in Sentence (1) shall be determined from the mean 5% damped floor spectral acceleration values at 0.2 s by averaging the individual 5% damped floor spectra at the base of the structure determined using Non-Linear Dynamic Analysis, and b) the value of F _a used in Sentence (1) shall be 1.		those with a ratio of embedment length to diameter of less than 8, d) post-installed mechanical, drop-in and adhesive anchors in concrete shall be pre-qualified for seismic applications by cyclic load testing in accordance with i) CSA A23.3, "Design of concrete structures," and ii) ACI 355.2, "Qualification of Post-Installed Mechanical Anchors in Concrete (ACI 355.2-19) and Commentary," or ACI 355.4, "Qualification of Post-Installed Adhesive Anchors in Concrete (ACI 355.4-19) and Commentary," as applicable, e) post-installed mechanical and adhesive anchors in masonry and post-installed mechanical and adhesive anchors in masonry and post-installed mechanical and structural steel shall be pre-qualified for seismic applications by cyclic tension load testing (see Note A-4.1.8.18.(7)(e)), f) power-actuated fasteners shall not be used for cyclic tension loads, g) connections for non-structural elements or components of Category 1, 2 or 3 of Table 4.1.8.18. attached to the side of a building and above the first level above grade shall satisfy the following requirements: i) for connections where the body of the connection is ductile, the body shall be designed for values of C _p , A _r and R _p given in Table 4.1.8.18, and all of the other parts of the connection, such as anchors, welds, bolts and inserts, shall be capable of developing 2.0 times the nominal yield resistance of the body of the connection, and ii) connections where the body of the connection is not ductile shall be designed for values of C _p = 2.0, R _p = 1.0 and Ar given in Table 4.1.8.18, and h) a ductile connection is one where the body of the connection is capable of dissipating energy through cyclic inelastic behaviour. 15) Glass need not comply with Sentence (14), provided at least one of the following conditions is met: a) the Seismic Category is SC1 or SC2, b) the glass has sufficient clearance from its frame such that D _{clear} ≥ 1.25D _p calculated as follows:

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
		<u> </u>	
			16) For structures with supplemental energy dissipation, elements and components
			of buildings described in Table 4.1.8.18. and their connections to the structure shall be
			designed for a specified lateral earthquake force, V _P , determined at each floor level as
			follows:
			where
			S_{sed} = peak spectral acceleration, $S_a(T,X)$, in the period range of $T=0$ s to $T=0.5$ s
			determined from the mean 5%-damped floor spectral acceleration values
			by averaging the individual 5%-damped floor response spectra at the
			centroid of the floor area at that floor level determined using Non-linear
			Dynamic Analysis, and
			IE, C_p , A_r , R_p , W_p = as defined in Sentence (1).
			(See Note A-4.1.8.18.(16).)
			17) For a ballasted array of interconnected solar panels mounted on a roof, where
			IES(0.2) is less than or equal to 1.0, friction due to gravity loads is permitted to be
			considered to provide resistance to seismic forces, provided
			a) the roof is not normally occupied, b) the roof is surrounded by a parapet extending from the
			roof surface to not
			less than the greater of
			i) 150 mm above the centre of mass of the array, and
			ii) 400 mm above the roof surface,
			c) the height of the centre of mass of the array above the roof surface is less
			than the lesser of
			i) 900 mm, and
			ii) one half of the smallest plan dimension of the supporting
			base of the array,
			d) the roof slope at the location of the array is less than or equal to 3°,
			e) the factored friction resistance calculated using the kinetic friction coefficient
			determined in accordance with Sentence (18) and a resistance factor of 0.7
			is greater than or equal to the specified lateral earthquake force, V _p , on the
			array determined in accordance with Sentence (1) using values of $A_r = 1.0$,
			$A_x = 3.0$, $C_p = 1.0$, and $R_p = 1.25$,
			f) the minimum clearance between the array and other arrays or fixed objects
			is the greater of
			i) 225 mm, and
			ii) 1 500(IeS(0.2) – 0.4)2, in mm, and

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
4.1.8.19	4) The ground motion histories used in Sentence (3) shall be a) appropriately selected and scaled following good engineering practice, b) compatible with i) a response spectrum derived from the design spectral acceleration values, S(T), defined in Sentence 4.1.8.4.(9) for ground conditions of Site Classes A, B and C, and ii) a 5% damped response spectrum based on a site-specific evaluation for ground conditions of Site Classes D, E and	4.1.8.19	g) the minimum clearance between the array and the roof parapet is the greater of i) 450 mm, and ii) 3 000(IeS(0.2) – 0.4)z, in mm. 18) For the purpose of Clause (17)(e), the kinetic friction coefficient shall be determined in accordance with ASTM G115, "Standard Guide for Measuring and Reporting Friction Coefficients," through experimental testing that a) is carried out by an accredited laboratory on a full-scale array or a prototype of the array, b) models the interface between the supporting base of the array and the roof surface, and c) accounts for the adverse effects of anticipated climatic conditions on the friction resistance. (See Note A-4.1.8.18.(18).) 4) The ground motion time histories used in Sentence (3) shall be a) appropriately selected and scaled following good engineering practice, b) compatible with i) a response spectrum derived from the design spectral acceleration values, S(T), defined in Sentence 4.1.8.4.(6) for site designations Xv, where V ₅₀₀ is greater than 360 m/s, XA, XB and XC, and ii) a 5%-damped response spectrum based on a site-specific
	F, and c) amplitude-scaled in an appropriate manner over the period range of 0.2 T ₁ to 1.5 T ₁ , where T ₁ is the period of the isolated structure determined using the post-yield stiffness of the isolation system in the horizontal direction under consideration, or the period specified in Sentence 4.1.8.20.(1) if the post-yield stiffness of the isolation system is not well defined. (See Note A-4.1.8.19.(4) and 4.1.8.21.(5).)		evaluation for site designations Xv, where Vs30 is less than or equal to 360 m/s, Xd, Xe and Xf, and c) amplitude-scaled in an appropriate manner over the period range of 0.2T1 to 1.5T1, where T1 is the period of the isolated structure determined using the post-yield stiffness of the isolation system in the horizontal direction under consideration, or the period specified in Sentence 4.1.8.20.(1) if the post-yield stiffness of the isolation system is not well defined. (See Note A-4.1.8.19.(4) and 4.1.8.21.(5).)
4.1.8.23	New in 2020	4.1.8.23	Additional Performance Requirements for Post-disaster Buildings, High Importance Category Buildings, and a Subset of Normal
			Importance Category Buildings
			1) Buildings designed in accordance with Articles 4.1.8.19. to 4.1.8.22. need not
			1/ Dumings acoigned in accordance with Articles 4.1.0.17. to 4.1.0.22. need not

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
			comply with this Article. 2) The design of post-disaster buildings in Seismic Category SC2, SC3 or SC4 shall be verified using 5%-damped spectral acceleration values based on a 5% probability of exceedance in 50 years and shall satisfy the following requirements: a) the building shall be shown to behave elastically for a specified lateral earthquake force, V, determined in accordance with Sentence 4.1.8.11.(2) using Is= 1.0 and RaRo= 1.3, b) the largest interstorey deflection at any level of the building, as determined in accordance with Sentence 4.1.8.13.(2) using Is= 1.0 and RaRo= 1.0, shall not exceed 0.005ha, and c) the connections of elements and components of the building described in Table 4.1.8.18. with Rp> 1.5 shall be shown to behave elastically for a specified lateral earthquake force, Vp, determined in accordance with Sentence 4.1.8.18.(1) using Rp= 1.5. 3) The design ofHigh Importance Category buildings in Seismic Category SC3 or SC4 shall be verified using 5%-damped spectral acceleration values based on a 10% probability of exceedance in 50 years and shall satisfy the following requirements: a) the building shall be shown to behave elastically for a specified lateral earthquake force, V, determined in accordance with Sentence 4.1.8.11.(2) using Is= 1.0 and RaRo= 1.3, b) the largest interstorey deflection at any level of the building, as determined in accordance with Sentence 4.1.8.13.(2) using Is= 1.0 and RaRo= 1.0, shall not exceed 0.005ha, and c) the connections of elements and components of the building described in Table 4.1.8.18. with Rp> 1.3 shall be shown to behave elastically for a specified lateral earthquake force, Vp, determined in accordance with Sentence 4.1.8.18.(1) using Rp= 1.3. 4) For Normal Importance Category buildings in Seismic Category SC4 with a height above grade of more than 30 m, the structural framing elements not considered to be part of the SFRS shall be designed to behave elastically for a specified lateral earthquake force, V, determined in accordance with Sentenc

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
			6) For the purposes of applying Sentences (2) to (4), elements of the SFRS and structural framing elements not considered to be part of the SFRS, when included in the analysis, shall be modeled in accordance with Sentence 4.1.8.3.(8) using elastic properties. 7) All other requirements of Articles 4.1.8.2. to 4.1.8.18. shall be satisfied in meeting the additional requirements of this Article.
4.2.4.2	Drawings 1) Drawings associated with <i>foundations</i> and <i>excavations</i> shall conform to the appropriate requirements of Section 2.2. of Division C. (See Article 2.2.4.6. of Division C.)	4.2.3.2	Preservation Treatment of Wood 1) Wood exposed to <i>soil</i> , <i>rock</i> or air above the lowest anticipated <i>groundwater</i> table shall be treated with preservative in conformance with CAN/CSA-O80 Series, "Wood preservation," and the requirements of the appropriate standard as follows: a) CAN/CSA-O80.1, "Specification of treated wood," b) CAN/CSA-O80.2, "Processing and treatment," or c) CAN/CSA-O80.3, "Preservative formulations." 2) Wood treated as required in Sentence (1) shall be cared for as provided in Clause 4 of CAN/CSA-O80.0, "General requirements for wood preservation."
4.4.1	Air-Supported Structures	4.4.1	Air-, Cable- and Frame-Supported Membrane Structures
4.4.1.1	Design Basis for Air-Supported Structures 1) The structural design of <i>air-supported structures</i> shall conform to CSA S367, "Air-, Cable-, and Frame-Supported Membrane Structures," using the loads stipulated in Section 4.1., in accordance with limit states design in Subsection 4.1.3.	4.4.1.1	Design Basis for Air-, Cable- and Frame-Supported Membrane Structures 1) The structural design of air-, cable- and frame-supported membrane structures shall conform to CSA S367, "Air-, cable-, and frame-supported membrane structures," using the loads stipulated in Section 4.1., in accordance with limit states design in Subsection 4.1.3.
4.4.2.1	Design Basis for Parking Structures and Repair Garages 1) Parking structures and <i>repair garages</i> shall be designed in conformance with CSA S413, "Parking Structures." (See Note A-4.4.2.1.(1).)	4.4.2.1	Design Basis for Storage Garages and Repair Garages 1) Storage garages and repair garages, including associated ramps and pedestrian areas, shall be designed in conformance with the performance requirements of CSA S413, "Parking structures." (See Note A-4.4.2.1.(1).)
4.4.3	New in 2020	4.4.3	Storage Racks

2015 NBC		2020 NBC	CHANGES MADE
Code Ref.	Part 4	Code Ref.	Part 4
4.4.3.1	New in 2020	4.4.3.1	Design Basis for Storage Racks 1) Storage racks, including anchorage of racks, shall be designed for loads in
			accordance with this Part. (See Note A-4.1.8.18.(13) and 4.4.3.1.(1).)
4.4.8.5	4.1.8.5. Importance Factor		4.1.8.5. Importance Factor and Seismic Category
4.4.1.1	4.4.1.1. Design Basis for Air-Supported Structures	4.4.1.1	4.4.1.1. Design Basis for Air-, Cable- and Frame-Supported Membrane Structures
	(1) [F20-OS2.1] [F80-OS2.3] [F20-OP2.1] [F22-OP2.4] [F80-OP2.3] [F22-OH4]		(1) [F20-OS2.1] [F80-OS2.3] [F20-OP2.1] [F22-OP2.4] [F80-OP2.3]
4.4.2.1		4.4.2.1	[F22-OH4]
4.4.2.1	4.4.2.1. Design Basis for Parking Structures and Repair Garages (1) [F21,F61,F80-OS2.3] [F21,F61,F80-OP2.3,OP2.4] [F21,F61,F80-OH4]	4.4.2.1	4.4.2.1. Design Basis for Storage Garages and Repair Garages (1) [F21,F61,F80-OS2.3] [F21,F61,F80-OP2.3,OP2.4] [F21,F61,F80-OH4]
Notes to Part 4 Structural design?		Notes to Part 4 Structural design?	