Biology and Control of Nuisance Aquatic Plants

GRANT GREENMAN AQUATIC BIOLOGIST - AQUATIC CONTROL 3/2/2023

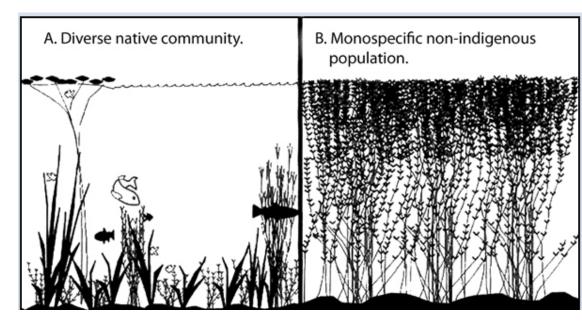
Outline

- Introduction to Weed Science
 - What is a weed?
 - What is an invasive plant?
 - Invasion Ecology
- Biology and Control of Major Invasive Aquatic Plants
 - Regionally relevant species
 - Submersed
 - ► Floating
 - Emergent

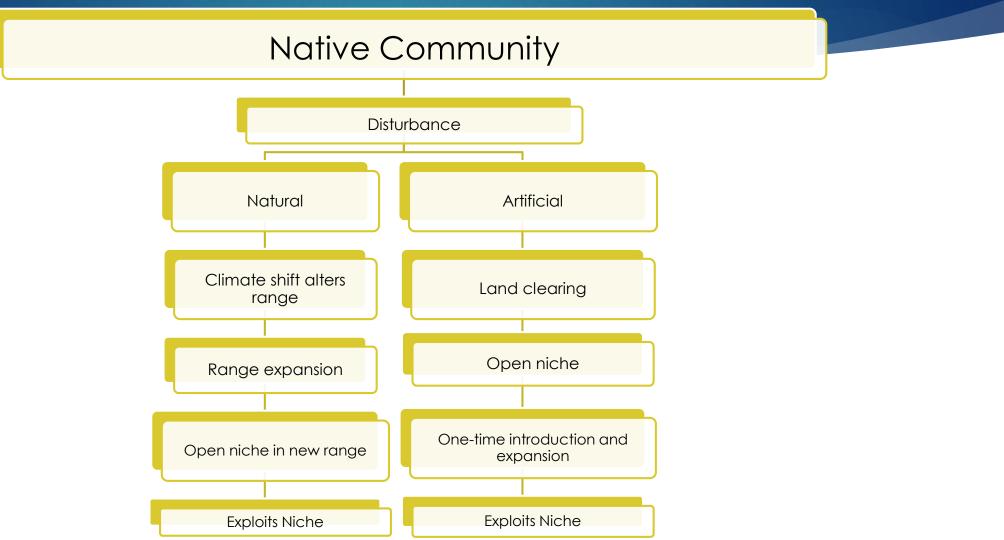
Introduction to Weed Science

What is a weed?

- Any plant that originates under a natural environment that has been imposed or disturbed and interferes w/ human activity
- Human dimension of weed science
 - Human dependence on agriculture
 - w/o humans there are no weeds
 - Individual interpretation of interference
 - One person's trash is another's treasure
 - ► Especially true in aquatics


What is an invasive plant?

- A plant that is non-native to a specific ecosystem, whose introduction causes or is likely to cause economic or environmental harm or harm to human health.
 - Can be exotic (sourced from another country) or 'native'
 - Problem since international travel and commerce
- Impacts
 - Direct competition for resources with other native plants
 - Decrease recreation opportunities
 - Degrade water quality
 - Degrade habitat


What makes a plant invasive?

- Why is the plant a problem here but not 'there'
 - Invasion Ecology
 - ▶ New field of study (~60 years)
- Numerous hypotheses
 - Escape from predation
 - Open niche
 - Evolutionary constraints (adaptive trough)
 - Natives often sub-optimally adapted for environment
 - Outcompeted by invasives in same environment.

How do plant invasions happen

Invasive Aquatic Plants of Iowa

- Brittle Naiad
- Eurasian watermilfoil
- Curly leaf pondweed
- Flowering Rush
- Purple Loosestrife
- Salt Cedar
- Yellow Floating Heart
- ▶ Hydrilla
- Water Soldier
- Water chestnut
- Starry Stonewort*

Brittle Naiad

NAJAS MINOR

Brittle Naiad (Najas minor)

Identification

- Rooted submersed plant
 - Bushy appearance, up to 4 feet long
- Long, slender leaves at end of stems
 - Green to olive in color
 - recurved
- Leaves are thin and stiff with toothed edges
 - ▶ 1-2 inches long
- Very fragile, fragments easily
- Habitat
 - Shallow, slow or non-moving water <10' deep</p>
 - May grow deeper if water is clear
 - Murky water will slow growth
 - Strong currents will slow growth

Brittle Naiad

- Biology
 - Annual plant
 - Native to Europe, west Asia, North Africa
 - Suspected ship ballast water discharge or contaminated cultivated species
- Spread
 - Primary-Seeds
 - > Flowers pollinated by water movement
 - Seed set in late Summer (August)
 - Seeds do not move in the water
 - Will regrow year after year in same place
 - Secondary- fragments
 - > Float around and can result in new patch infestations
 - Can occur at any time of growth stage
 - Caused by physical contact or disturbance
 - ▶ fish nesting (lots of carp and catfish), strong current, waterfowl feeding, boat motor contact, etc.

Brittle Naiad-Management

Cultural

- Preventive measure in place
- Mechanical/Manual harvesting
 - Spread fragments, disturb sediment
 - Difficult to collect all plant material
 - ▶ May cause seeds to germinate from disturbance
 - ▶ Will cause fragment spread
- Biological control
 - No 'classical' bio control agents
 - Grass carp 'general' bio control
 - ► May cause spread/fragmentation from feeding
 - > Eventually metabolism slows and control is reduced

Brittle Naiad-Management

- Grows very aggressively
- Not difficult to kill, long term control is challenge
- Contact Herbicides
 - Work very well in small isolated systems, or large patches
 - Reward, Clipper, Komeen/Nautique, Aquathol K
 - Fast acting
 - Need to be applied at first sign of growth and often
 - Plan on at minimum of monthly treatments from late June- August

- Systemic herbicides
 - Sonar (prevents protective pigments from forming, Chlorophyll degrades)
 - Slower acting
 - Translocated
 - May prevent seed development
 - Can be applied prior to mature growth
 - Preemergent
 - ▶ Early June, monitor and 'bump' as needed
 - Need to maintain concentration longer to control initial growth and any seed sprouting

Eurasian watermilfoil

MYRIOPHYLLUM SPICATUM



Eurasian watermilfoil (Myriophyllum spicatum)

- Submersed aquatic plant
- Long green to reddish stems, branching
 - Feather-like leaves, whorled at nodes
 - ▶ 9-21 pairs of leaflets
- Flower spikes
 - Small, white, purple, pink or reddish flowers

Eurasian watermilfoil (Myriophyllum spicatum)

Introduced from Europe in the 1940's

- Suspected aquarium trade release
- Reported in 48 states
 - Estimated 126,000 acres in IA
- Quickly spreads through fragments
 - Canopy former with peak growth of 12.5 inches/day
 - Out competes native plants
- Hybridizes with natives
 - Often more tolerant to herbicides

Eurasian watermilfoil

- Control methods
 - Cultural
 - Clean, Drain, Dry. Boat wash stations
 - ▶ Biological
 - No consistently effective biocontrol
 - Weevils have been occasionally effective in small areas
 - Small fish love to eat them!
 - Physical
 - > Drawdowns can reduce or prevent growth.
 - Benthic barriers will work in small areas



Eurasian watermilfoil

- Control methods
 - Mechanical
 - Effective for small areas
 - contribute to spread of fragments
 - Chemical
 - Many options
 - Selective: 2,4-D, Renovate, ProcellaCOR EC*, Sonar
 - Non-selective: Reward, Aquathol K, Clipper, Stingray

Curly-leaf pondweed

POTAMOGETON CRISPUS

Curly leaf pondweed (Potamogeton crisp

- Wavy leaves
- Serrated edges
 - Blunt tip
- Prominent midvein
 - Reddish in color
 - ► 3-5 veins



Curly leaf pondweed (Potamogeton crispus)

- Introduced from Europe in 1800's
- Found in 47 states
- Forms dense monocultures
 - Crowd out native species
- Reproduction by turion formation, fragmentation
 - Turions sprout in fall and winter, grow rapidly in spring, senesce in summer
 - Turions dormant for up to 5 years

Curly leaf pondweed life cycle

Source: http://www.freshwatersci.com/Blog/2014/04/30/what-happens-to-lake-plants-inthe-winter/

Curly leaf pondweed

Control methods

- Cultural
 - Clean, drain, dry. Wash boats, clean trailers
- Biological
 - No classical biocontrol
 - Grass carp
- Physical
 - dredging may help remove turions,
 - benthic barriers prevent sprouting in small areas
 - drawdowns

Curly leaf pondweed

- Control methods
 - Mechanical
 - ▶ will not remove turions.
 - Spread fragments
 - Chemical
 - Systemic: Sonar, Galleon
 - Most effective early in growth cycle
 - Can be done through the ice
 - Contact: Aquathol K, Reward, Coppers, Clipper
 - Spot treatment or large area
 - Aquathol K very effective at low doses
 - > Apply early to prevent turion formation

Flowering Rush

BUTOMUS UMBELLATUS

Flowering rush (Butomus umbellatus)

- Native to Eurasia
 - 1918 first confirmed in US
- Easiest to ID when in bloom
 - Triangular, green stems
 - Leaves, erect, spiraled at tips
 - 5' above water level
 - Stems end in umbrella shaped flower cluster
 - Each flower with 3 pink/white petals 1" across

Flowering rush

Reproduction

- Some viable seed production
- Creeping rhizomes
 - Bulblets develop and break away to form new plant
 - Spread by current, wildlife, humans
- Impacts
 - Competes with natives
 - Obstacle for boaters
 - Slows water movement
 - Hardiness capable of being highly invasive

Flowering rush control

DTIPESIZONE

Cultural

- Do not buy/plant
- Clean boats/equipment after use
- Physical
 - Draw downs will be ineffective
 - Planting open areas with native vegetation
- ► Biological
 - None currently
 - Research underway with weevils

Flowering rush control

Chemical

- Systemic: AquaPRO, Habitat, Clearcast, Renovate 3
 - Clearcast, Renovate 3 if selectivity is needed
- Contact: Reward & Stingray
- Mechanical
 - Harvesting
 - Must harvest below surface
 - slows spread
 - Hand digging
 - Isolated patches

Purple loosestrife

LYTHRUM SALICARIA

Purple Loosestrife (Lythrum salicaria)

Hardy Perennial

- Stiff stems
- 4-6 sided
- Up to 7' tall
- Purple flowers
 - Long spikes
 - June-September
 - >2,000,000 seeds
- Leaves
 - Smooth margins
 - Opposite arrangement
 - Alternate down stalk at 90* angles

Purple Loosestrife (Lythrum salicaria)

- Native to Europe
 - Introduced in 1800's ornamental planting
- Spread by seed and rhizome
 - Produces monoculture stands
 - Eliminates food and cover for many species of wildlife
 - Commonly observed in roadside ditches

Purple Loosestrife control

- Cultural
 - Do not buy or plant
 - Illegal in many states
- Physical
 - Fire, not effective (seed bank)
 - Dig small isolated patches
- Biological
 - ▶ Galerucella calmariensis, G. pusila
 - Leaf eating beetles
 - >\$ spent in testing and releases than in chemical control

Purple Loosestrife control

Mechanical

- Mowing, not effective
- Chemical
 - AquaPRO, Habitat, Renovate 3, Clearcast

Salt Cedar

TAMARIX SPP.

Saltcedar (Tamarix spp.)

- ▶ 5-20' tall
- ► Flowers
 - Petals in groups of 4-5
 - White-pink color

Leaves

- Small
- Alternate
- Scale-like

Saltcedar (Tamarix spp.)

- Temperate and tropical regions of Asia
 - 8 species listed as introduced in US
- Spread
 - Vegetative propagules
 - Adventitious roots
 - Submerged stems
 - Seed
 - ▶ Wind and water dispersal

Saltcedar control

- Cultural
 - Do not buy or plant
 - Illegal in many states
- Physical
 - Only effective if root crown is removed
 - ► Fire is ineffective
- Biological
 - Leaf eating beetle (Diorhabda elongatata)

Saltcedar control

Mechanical

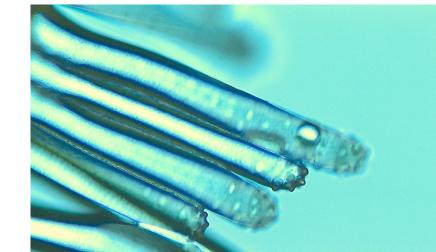
- Must remove root crown
- Chemical
 - Habitat, Renovate3, in aquatic sites
 - Possible use for ProcellaCOR
 - Milestone (aminopyralid) in terrestrial

Yellow Floating Heart

NYMPHOIDES PELTATA

Yellow floating heart (Nymphoides peltata)

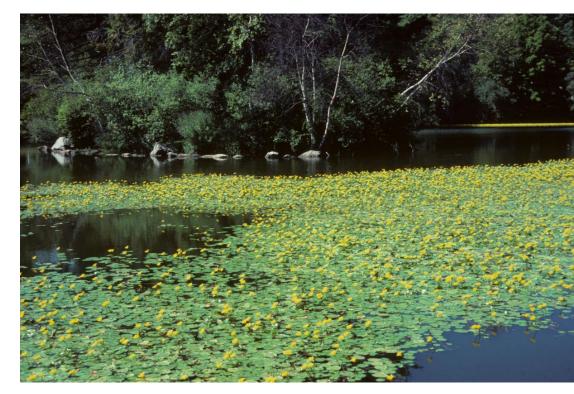
- Identification
 - Rooted in sediments
 - Long stolons
 - · Heart-shaped leaves with scalloped margins
 - Purple underside
 - Limp (challenge when using foliar applied herbicides)
 - Yellow flowers
 - Fringed



Yellow floating heart (Nymphoides peltat

- Native to Asia and Southern Europe
 - Early 1900's in US
 - ▶ Water garden industry ornamental
 - Extremely hardy
- Spread
 - Fragmentation and Seeds
 - Self compatible
 - ▶ Hollow trichomes allow seeds to float, stick to fur/feathers

Yellow floating heart control


Cultural

- Buy/Plant native lilies instead
- Physical
 - Winter draw downs
- ► Biological
 - None known

Yellow floating heart control

- Chemical
 - AquaPRO, Habitat, Clearcast, Renovate 3, 2,4-D, Galleon, ProcellaCOR
 - Reward, Aquathol K or Hydrothol 191, Clipper
 - Long term control is the largest challenge
- Mechanical
 - Harvesting/digging to remove
 - Will not remove all seeds

Hydrilla Verticillata

- Introduced from Asia to Florida in the 1950's
 - Aquarium plant trade
- ▶ The "perfect" aquatic weed
 - Multiple methods of spread
 - Fast growth
 - Peak rate of 191" total growth per day- Netherland and Glomski, 2012
 - Low light requirement
- Documented in 29 states
- Monoecious and Dioecious
 - Dioecious in the south US
 - ▶ Heavier stems, more robust appearance
 - ▶ 80% of biomass in top 2' of water column
 - Monoecious in the North US
 - ▶ Fragile appearance, thin stems
 - Biomass allocated throughout the entire water column

Hydrilla (Hydrilla verticillata)

- Leaves whorled around stem at nodes
- ▶ 5 leaves per whorl
 - Serrated margin and midvein
- Flowers form late summer from leaf axils
 - Very small

Hydrilla

Control methods

- Physical
 - Drawdowns provide temporary relief in the north
 - Tubers persist
- Biological
 - ▶ Insect options have not been successful
 - grass carp will consume, widely used in the south
- Cultural
 - Clean, Drain, Dry

Hydrilla

Control methods

- Mechanical
 - harvesters used to keep boating lanes open
 - > Spread of fragments, biomass disposal

Chemical

- Sonar, Galleon, Tradewind, ProcellaCOR,
- > Aquathol K, Copper, Reward, Clipper
- Long term control/erradication takes time

Water Chestnut

TRAPA NATANS

Water chestnut (Trapa natans)

- Native to Eurasia
 - ▶ 1874 in US, Harvard garden
 - 'naturalized' to areas of NE U.S.

ID

- rosette of floating leaves
 - \triangleright 1/2 to 1 inch long, at the tip of a long submersed stem
- The flowers have four white petals
 - ▶ 1/3 inch long.
- fruit is a black, four horned, nut

Water chestnut (Trapa natans)

Spread

- Vegetative and seed production
- Fruits fall to the sediment overwinter
- One acre of water chestnut can produce enough seeds to cover 100 acres the following year.
- Each seed can give rise to 10-15 rosettes and each rosette can produce as many as 20 seeds.
- Seeds can remain viable for up to 12 years.

Water Chestnut Control

Cultural

- Do not buy (banned)
- Do not move seeds
- Physical
 - Draw downs to expose seeds/biomass
 - Hand removal
- ► Biological
 - Some tried but unsuccessful

Water Chestnut Control

Mechanical

- Harvesting removes biomass, misses seeds
- Hand pulling, injury risk
- Chemical
 - > 2,4-D, Renovate 3, Reward, Clearcast, AquaPRO

Starry stonewort

NITELLOPSIS OBTUSA

Starry Stonewort (Nitellopsis obtusa)

- First documented in 1978.
 - Likely introduced from ballast water discharge
- Macrophytic alga
 - Long variable length branches, internodal cells
 - Forms dense beds 'pillows' up to 6' tall
 - White, star-shaped bulbils (reproductive structure)
 - Outcompetes native plants
 - Possibly creates phytotoxic conditions
 - Destroys spawning areas

The Solutions for Lake Problems

Starry stonewort

Photo by Paul Skawinski

Starry stonewort

- Control methods
 - Cultral
 - Clean drain dry, boat ramp stewards
 - Physical
 - benthic barriers will work in small areas, drawdowns expected to work
 - Biological
 - None

Starry stonewort

- Control methods
 - Mechanical harvesters can quickly reduce biomass in shallow water
 - Misses bulbils
 - ► Fragments
 - Chemical
 - Copper chelates (Cutrine, Captain), Clipper, Hydrothol 191
 - All are effective, no long term solution yet
 - Apply early and often
 - Small infestations easier than large

Summary

- Invasive species pose a serious threat to aquatic ecosystems
 - Many species of interest
 - Many important uses of water
- Effective educational efforts
 - Public awareness and support
 - Increased reporting
- Responsible, Integrated management programs
 - Reduce environmental impact
 - Maximize efficacy

Questions?

GRANT GREENMAN – AQUATIC BIOLOGIST GRANTG@AQUATICCONTROL.COM

