

SP6122C: 800 mW Driver Amplifier, 2.3 GHz – 4.2 GHz

General Description

The SP6122C is a wideband driver amplifier capable of 800mW peak power, suitable for application in FDD and TDD wireless infrastructure and general-purpose amplification over a wide frequency range of 2.3 to 4.2 GHz. The RF input and output ports are internally matched to 50 Ω for the full frequency range. This device incorporates a device enable pin with turn on/off times less than 1 us.

The driver amplifier has high gain and excellent standalone linearity. It will support the high instantaneous bandwidths required for 5G NR carrier aggregated signals. The device linearizes well in DPD systems, linearized on its own it can provide better than 55 dBc ACLR for a 20 MHz 5G NR signal.

Features

- Extremely Wideband 2.3 GHz to 4.2 GHz
- Average Output Power 15 dBm
- High Peak Power 29 dBm
- Excellent Linearity > 40 dBc ACLR
- Low Bias Current 120 mA
- High Small Signal Gain 38 dB
- Supports Carrier Aggregation for 4G/5G
- Shutdown / Enable Pin
- Single Supply +5.0 V, adjustable Icq
- Package: 3x3 mm

Applications

- 4G/5G infrastructure applications multiple 3GPP bands
- MIMO Systems
- General purpose amplification

Figure 1 Functional Diagram

Table of Contents

General Description	1
Applications	1
Features	1
Table of Contents	2
List of Tables	2
List of Figures	3
1 Pin Configuration	4
1.1 Pin Configuration Diagram	4
1.2 Pin Description	4
2 Electrical Specifications	5
3 Typical Performance Characteristics	7
3.1 Typical Performance Plots	8
4 Evaluation Board	14
5 Package Information	16
6 Recommended PCB Footprint	17
7 Tape and Reel Information	18
8 Ordering Information	19
Contact Information	20
Trademarks	20
Trademarks	20

List of Tables

Table 1 Pin Description4
Table 2 Absolute Maximum Ratings5
Table 3 Recommended Operating Conditions5
Table 4 Device Truth Table5
Table 5 Electrical Characteristics
Table 6 Typical Performance7
Table 7 Typical Performance 2600 MHz7
Table 8 Typical Performance 3600 MHz7
Table 9 Evaluation Board Bill of Materials
Table 10 Typical Iccq vs R3 Value
Table 11 Carrier and Cover Tape Dimensions 18
Table 12 Ordering Information 19

List of Figures

Figure 1 Functional Diagram	1
Figure 2 SP6122 Pin Diagram (top view)	4
Figure 3 Small Signal Gain over Temperature	8
Figure 4 Input Return Loss over Temperature	8
Figure 5 Reverse Isolation over Temperature	8
Figure 6 Output Return Loss over Temperature	8
Figure 7 Wideband Small Signal Gain over Temperature	8
Figure 8 Small Signal Gain over Icc	8
Figure 9 Large Signal Gain vs Output Power over Temperature at 2.3 GHz	9
Figure 10 Large Signal Gain vs Output Power over Temperature at 2.6 GHz	9
Figure 11 Large Signal Gain vs Output Power over Temperature at 3.6 GHz	9
Figure 12 Large Signal Gain vs Output Power over Temperature at 4.2 GHz	9
Figure 13 Large Signal Gain vs Output Power over Icc at 2.3 GHz	9
Figure 14 Large Signal Gain vs Output Power over Icc at 2.6 GHz	9
Figure 15 Large Signal Gain vs Output Power over Icc at 3.6 GHz	10
Figure 16 Large Signal Gain vs Output Power over Icc at 4.2 GHz	10
Figure 17 P1dB vs Frequency over Temperature	10
Figure 18 P1dB vs Frequency over Icc	10
Figure 19 P3dB vs Frequency over Temperature	10
Figure 20 P3dB vs Frequency over Icc	10
Figure 21 ACLR vs Frequency at 15 dBm Output Power 15 dBm (20 MHz LTE. PAR 8.5 dB)	11
Figure 22 ACLR with DPD vs Frequency at 15 dBm Output Power (20 MHz LTE. PAR 8.5 dB)	11
Figure 23 ACLR vs Bias Current at 2.6 GHz (20 MHz LTE PAR 8.5 dB)	11
Figure 24 ACLR vs Bias Current at 3.6 GHz (20 MHz LTE PAR 8.5 dB)	11
Figure 25 Efficiency vs Average Output Power over Temperature at 2.3 GHz	11
Figure 26 Efficiency vs Average Output Power over Temperature at 2.6 GHz	11
Figure 27 Efficiency vs Average Output Power over Temperature at 3.6 GHz	12
Figure 28 Efficiency vs Average Output Power over Temperature at 4.2 GHz	12
Figure 29 Current vs Average Output Power over Temperature at 2.3 GHz	12
Figure 30 Current vs Average Output Power over Temperature at 2.6 GHz	12
Figure 31 Current vs Average Output Power over Temperature at 3.6 GHz	12
Figure 32 Current vs Average Output Power over Temperature at 4.2 GHz	12
Figure 33 Noise Figure vs Frequency across Temperature	13
Figure 34 Noise Figure vs Frequency across Icc	13
Figure 35 Evaluation Board Schematic Diagram	14
Figure 36 Evaluation Board Layout	14
Figure 37 Package Drawing and Pin Details	16
Figure 38 Stencil Aperture Top View	17
Figure 39 Metalization Top View	17
Figure 40 Solder Mask Top View	17
Figure 41 Carrier and Cover Tape Dimensions	18

1 Pin Configuration

1.1 Pin Configuration Diagram

Figure 2 SP6122 Pin Diagram (top view)

1.2 Pin Description

Table 1 Pin Description

Pin No	Pin Name	Description
1	GND	Internally connected to Ground
2	RFIN	RF Input – Matched to 50Ω
3	GND	Internally connected to Ground
4	Vcc1 & 2	Collector connection to stages 1 & 2
5	GND	Internally connected to Ground
6	GND	Internally connected to Ground
7	GND	Internally connected to Ground
8	GND	Internally connected to Ground
9	GND	Internally connected to Ground
10	RF Out/Vcc3	RF Output – Matched to 50 Ω , Collector connection to stage 3
11	RF Out/Vcc3	Internally connected to Pin 10
12	GND	Internally connected to Ground
13	Vbias1	Supply for bias circuit
14	Vbias2	Control input to adjust quiescent bias current – see
15	GND	Internally connected to Ground
16	Venable	Toggles between ON state and low power state Hi=Device On, Low=Device Off
GND	Backside Paddle	This is the ground connection and should be soldered directly to ground ensuring a low inductance and ow thermal resistance connection

2 Electrical Specifications

Table 2 Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Units
Supply Voltage	Vcc1, Vcc2, Vcc3, Vbias			5.5	V
Control Pin Input Voltage	Vctrl			2.8	V
Peak RF Input Power (RFIN)	Pin			10	dBm
Maximum Case Temperature	Tcase max			125	°C
Storage Temperature		-55		125	°C
ESD voltage CDM, all pins	CDM			1000	V
ESD voltage HBM, all pins	HBM			500	V

Table 2 notes:

1. Exceeding absolute maximum ratings may cause permanent damage. Operation should only occur within the limits specified. Operating between the maximum operating range, Table 3, and the absolute maximum for extended periods may reduce the reliability of the device.

Parameter	Symbol	Min	Тур	Max	Units
Supply Voltage (VCC1,2,3, Vbias1,2)	Vcc1, Vcc2, Vcc3, Vbias	4.75	5	5.25	V
Quiescent Current (ICCQ), see notes	lccq		130		mA
Control Input High	Venable	1.5	1.8		V
Control Input Low	Venable	0		0.7	V
Control Input Currents	lctrl		1	12	μA
RF Output Power, average 5G NR 20 MHz 8.5 dB PAPR	Pout			15	dBm
Operating Temperature Range (Tcase)	Tcase	-40	25	105	°C

Table 3 Recommended Operating Conditions

Table 3 notes:

1. Operation at the maximum recommend case temperature gives an MTTF > 10^6 hours. Heatsinking requirement is to maintain case at <105 °C at 0.7 W

Table 4 Device Truth Table

Control Input (PA Enable) State	Device State		
High	Amplifier On		
Low	Amplifier Off		

Table 5 Electrical Characteristics

This table provides key electrical specifications at Tcase=25 °C, VCC = VBIAS = 5 V, Zin = Zout = 50 Ω , Venable = 1.8 V unless otherwise specified.

Parameter	Conditions	Symbol	Min	Тур	Мах	Units	
Frequency		f	2300		4200	MHz	
	P _{IN} = -35 dBm, 2300 MHz			38.1			
	P _{IN} = -35 dBm, 2600 MHz			38.4		-ID	
Small Signal Gain	P _{IN} = -35 dBm, 3600 MHz	521		38.9		dВ	
	P _{IN} = -35 dBm, 4200 MHz			39.5			
	P _{IN} = -35 dBm, 2300 MHz			-23.0		dB	
han ut Datum Lana	P _{IN} = -35 dBm, 2600 MHz	614		-12.0		dB	
Input Return Loss	P _{IN} = -35 dBm, 3600 MHz	511		-19.0		dB	
	P _{IN} = -35 dBm, 4200 MHz			-11.0		dB	
	P _{IN} = -35 dBm, 2300 MHz			-11.0		dB	
	P _{IN} = -35 dBm, 2600 MHz			-14.0		dB	
Output Return Loss	P _{IN} = -35 dBm, 3600 MHz	S22		-11.0		dB	
	P _{IN} = -35 dBm, 4200 MHz			-12.0		dB	
Reverse Isolation	P _{IN} = -35 dBm	S12		-50		dB	
Forward Isolation	Device Off; PIN = -35 dBm	S21		-50		dB	
Gain Flatness	In any 100 MHz bandwidth, Pin = -35 dBm	Gflat		0.3		dB	
	5G NR 20 MHz, 8.5 dB PAR, +15.0 dBm av. Power, F = 2310 MHz	ACLR		-53.0		dBc	
	5G NR 20 MHz, 8.5 dB PAR, +15.0 dBm av. Power, F = 2600 MHz	ACLR		-52.0		dBc	
AGEN (WILLIOUL DFD)	5G NR 20 MHz, 8.5 dB PAR, +15.0 dBm av. Power, F = 3600 MHz	ACLR		-42.0		dBc	
	5G NR 20 MHz, 8.5 dB PAR, +15.0 dBm av. Power, F = 4190 MHz	ACLR		-40.0		dBc	
	At 2.3 GHz			26.7			
Output Power at 1dB	At 2.6 GHz			27.8		dDm	
10us/100us (on/off duty cycle)	At 3.6 GHz			24.2		dBm	
	At 4.2 GHz			26.7			
	At 2.3 GHz			27.5			
Output Power at 3dB	At 2.6 GHz			28.7			
10us/100us (on/off duty cycle)	At 3.6 GHz	P3dB		27.8		dBm	
	At 4.2 GHz			27.5			
Noise Figure	At 3.6 GHz	NF		5.5		dB	
Off current	Venable = 0 V	ICCQ_OFF		0.3		mA	
Icc Quiescent	Venable = 1.8V	ICCQ_ON		125		mA	
Turn-on time	50% Venable to 90% RF Power	Ton		180		ns	

3 Typical Performance Characteristics

Operating conditions unless otherwise stated: Tcase = 25 °C, Vcc = Vbias = 5 V, Zin = Zout = 50 Ω , Icq = 125 mA, Venable = 1.8 V unless otherwise specified.

Parameter	Conditions	Typical Unit					
Frequency		2600	3600	4200	MHz		
Small Signal Gain	P _{IN} = -35 dBm	38	38.5	39.5	dB		
Input Return Loss	P _{IN} = -35 dBm	13.0	18.0	12.0	dB		
Output Return Loss	P _{IN} = -35 dBm	14.0	12.0	10.0	dB		
ACLR (without DPD)	5G NR 20 MHz, 15.0 dBm +8.5 dB PAR,	-54.4	-42.8	-40.1	dBc		
Output Power at 1dB compression.	Pulsed using 10us/100us (on/off duty cycle)	27.8	24.2	26.7	dBm		
Output Power at 3dB compression.	Pulsed using 10us/100us (on/off duty cycle)	28.5	27.5	27.8	dBm		
Quiescent current	Venable = 1.8 V		125		mA		

Table 6 Typical Performance

Table 7 Typical Performance 2600 MHz

Parameter	Conditions	Typical			Units
Quiescent current		90	125	150	
Small Signal Gain	P _{IN} = -35 dBm	36.8	38	38.2	dB
Input Return Loss	P _{IN} = -35 dBm	14.8	13.0	12.4	dB
Output Return Loss	P _{IN} = -35 dBm	13.9	14.0	16.1	dB
ACLR (without DPD)	5G NR 20 MHz, 15.0 dBm +8.5 dB PAR,	-48.6	-54.4	-56.4	dBc
Output Power at 1dB compression.	Pulsed using 10us/100us (on/off duty cycle)		27.8		dBm
Output Power at 3dB compression	Pulsed using 10us/100us (on/off duty cycle)		28.7		dBm

Table 8 Typical Performance 3600 MHz

Parameter	Conditions		Typical	Units	
Quiescent current		90	125	150	
Small Signal Gain	P _{IN} = -35 dBm	37.3	38.5	39.2	dB
Input Return Loss	P _{IN} = -35 dBm	17.5	18.0	14.8	dB
Output Return Loss	P _{IN} = -35 dBm	14.8	12.0	13.7	dB
ACLR (without DPD)	5G NR 20 MHz, 15.0 dBm +8.5 dB PAR,	-37.0	-42.8	-46.2	dBc
Output Power at 1dB compression.	Pulsed using 10us/100us (on/off duty cycle)		24.2		dBm
Output Power at 3dB compression	Pulsed using 10us/100us (on/off duty cycle)		27.8		dBm

3.1 Typical Performance Plots

4 Evaluation Board

Figure 35 Evaluation Board Schematic Diagram

Figure 36 Evaluation Board Layout

Table 9 Evaluation Board Bill of Materials

Component					
Reference	Value	Tolerance	Voltage	Manufacturer	Part Number
C1	18pF	+/-5%	50V	Murata	GJM1555C1H180JB01D
C6	3.9pF	+/-0.1pF	50V	Murata	GJM1555C1H3R9BB01D
C2, C3, C5, C9	100pF	+/-5%	50V	Murata	GCM1555C1H101JA16D
C4, C8	1uF	+/-10%	10V	Murata	GRM155Z71A105KE01D
C7	DNF				Not Fitted
R1	DNF				Not Fitted
R2, R4, R5	0Ω	+/-5%	50V	Panasonic	ERJ-2GE0R00X
R3	1.8kΩ	+/-5%	50V	Panasonic	ERJ-2GEJ182X
L1	12nH	+/-2%		Coilcraft	0402DC-12NXGRW
J1, J2, J4, J5				Johnson/Cinch	142-0701-841
J3				Harwin	M20-8760546
U1	SP6122			Spirit	SP6122C
				Semiconductor	

Table 10 Typical Iccq vs R3 Value

R3 (Ω)	0	620	1k8	3k3	DNP
lcc (mA)	210	155	125	117	90

5 Package Information

Package Dimensions shown below.

Figure 37 Package Drawing and Pin Details

6 Recommended PCB Footprint

The paste stencil has the same pad sizes the component package detailed above.

Solder Mask Pads are 50um larger per edge. as For example 300um x 250um pads are increased to 400um x 350um. Ground Paddle is defined as L3 (1.7mm)

Figure 38 Stencil Aperture Top View

Figure 40 Solder Mask Top View

Figure 39 Metalization Top View

7 Tape and Reel Information

Figure 41 Carrier and Cover Tape Dimensions

Table 11 Carrier and Cover Tape Dimensions

Package type	Pins	Pin1 Quadrant	SPQ	Reel Diameter	Reel Width	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
LGA3x3	16	Q1	TBD	178	12.4	3.3	3.3	1.1	4	12

8 Ordering Information

Table 12 Ordering Information

Ordering Part Number (OPN)	Marking	Package	Shipping Package	Temperature Range	MSL Level	Ecology
SP6122C-LMR	SP6122C	LGA 3x3	Tape and Reel	-	3	RoHS ¹

Table 12 notes:

1. This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

IMPORTANT NOTICE AND DISCLAIMER

SPIRIT SEMICONDUCTOR PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Spirit Semiconductor products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Spirit Semiconductor grants you permission to use these resources only for development of an application that uses Spirit Semiconductor products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Spirit Semiconductor intellectual property or to any third party intellectual property. Spirit Semiconductor disclaims responsibility for, and you will fully indemnify Spirit Semiconductor and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Spirit Semiconductor products are provided only subject to Spirit Semiconductor Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Spirit Semiconductor resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Contact Information

For more information visit www.spiritsemiconductor.com

For sales related information please send an email to sales@spiritsemi.co.uk

Trademarks

Spirit Semiconductor and Spirit Semiconductor Logo are trademarks of Semiconductor Limited. All referenced brands, product names, service names and trademarks are the property of their respective owners.