
TASK 
 
If you break a stick uniformly in two places, you will be left with three segments. Write an 
algorithm for computing the probability that the three segments form a triangle. This algorithm is 
supposed to employ Metropolis - Hastings ideas and serve as an independent verification of our 
theoretical calculations.  
 
 
SOLUTION  
 
First, we note that the probability can be calculated quite easily on a piece of paper...  
 
Let A and B be the two break points falling on a stick of length L. To distinguish between the break points, 
we will order then chronologically, A being the older one. Two cases are to be considered: 
 
CASE 1: 0 <= A <= B <= L; 
 
and 
 
CASE 2: 0 <= A < B <= L. 
 
The three pieces will form a triangle if none is longer than the sum of the others. In terms of A and B, the 
conditions are the following. 
 
CASE 1: 
 
A < L - A  <========>  A < L/2; 
L - B < B  <========>  B > L/2; 
B - A < A + (L - A) <========>  B < A + L/2. 
 
CASE 2: B < L/2, A > L/2 and  A < B + L/2. 
 
Now we are capable of plotting the acceptable region on the plane. We see that it consists of two small 
triangles: one triangle corresponds to case 1 and the other triangle corresponds to case 2. The area of 
the acceptable region can be calculated as 
 
1/2 * (L/2)^2 + 1/2 * (L/2)^2.  
 
The space of all elementary possibilities is the square [0,L]*[0,L]. It has the area of L^2. Since (A,B) are 
uniformly distributed on [0,L]*[0,L], the probability of the three segments forming a triangle equals 
 
(the area of the acceptable region) / (the area of the space of all elementary possibilities) = 
 
= (1/2 * (L/2)^2 + 1/2 * (L/2)^2) / (L^2) = 1/4. 
 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
Next, we are going to build an algorithm to verify our theoretical result... 
 
Now let LF = min(A,B) be the left break point and RT = max(A,B) be the right breakpoint. It is a 
straightforward exercise to determine conditional and marginal distributions of LF and RT. First we focus 
on marginal distributions: 
 
Fm_LF(x) = P(LF <= x) = 1 - P(LF > x) = 1 - P(min(A,B) > x) = 1 - P(A>x,B>x) =  
 



= 1 - P(A > x)*P(B > x) = 1 - ((1-x)/L)^2.  
 
Fm_RT(y) = P(RT <= y) = P(max(A,B) <= y) = P(A <= y, B <=y) = P(A <= y) * P(B <=y) =  
 
= (y/L)^2.  
 
And now we are ready to calculate conditional distributions. For any x <= y, 
 
Fc_LF(x | y) = P(LF <= x | RT = y) = P(min(A,B) <= x | max(A,B) = y) = 
 
= 1/2 * P(min(A,B) <= x | max(A,B) = y, A < B) + 1/2 * P(min(A,B) <= x | max(A,B) = y, A <= B) = 
 
= 1/2 * P(A <= x | A < y) + 1/2 * P(B <= x | B <= y) = x/y. 
 
Similarly, for any x <= y, 
 
Fc_RT(y | x) = P(RT <= y | LF = x) = 1 - P(RT > y | LF = x) = 1 - (1-y)/(1-x). 
 
Using functions Fc_LF() and Fc_RT(), random variables LF and RT can be simulated one from the other. 
Here we employ the rule: 
 
if F(x) is a cumulative distribution function (cdf) of a given distribution, then random variable F_{-1}(U) has 
this distribution, where U is uniformly distributed on [0,1].                                  (***) 
 
NOTE: of course, we did not have to derive conditional distributions of TF and RT to simulate the three 
random segments of the line. We could have easily simulated the marginals of A and B and seen if the 
three segments form a triangle. Focusing on LF and RT was necessitated by the requirement to use 
Metropolis algorithm. 
 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
The algorithm below employs Gibbs sampling, which says: to simulate a joint distribution of (LF,RT), we 
can simulate LF given RT and RT given LF long enough. 
 
 
% INITIALIZATION 
Counter = 0 
Random.Seed(0) 
 
for(S = 1:Sample_Number)  
 % SIMULATING INITIAL VALUES OF Z AND W 
 U = Simulated_Uniform(0,1) 
 LF = Fm^{-1}_LF(U)      % Using the marginal cdf of LF and rule (***) to simulate LF. 
 U = Simulated_Uniform(0,1) 
 RT = Fm^{-1}_RT(U)    % Using the marginal cdf of RT and rule (***) to simulate RT. 
 
 for(iter = 1:(Burn.In+1)) 
 % THE MAGIC OF GIBBS SAMPLING. 
 
 % Randomly selecting LF or RT. 
 U = Simulated_Uniform(0,1) 
 if( U <= 1/2 )  
  U = Simulated_Uniform(0,1) 
    LF = Fc^{-1}_LF(U | RT)  % Simulating LF using its conditional cdf    
       % and the current value of RT. 
  else 



  U = Simulated_Uniform(0,1) 
    RT = Fc^{-1}_RT(U | LF)  % Simulating RT using its conditional cdf   
       % and the current value of LF. 
  end 
 end 
 
 % CHECKING IF ONE CAN MAKE A TRIANGLE  
 % OUT OF THE SIMULATED SEGMENTS 
 if(LF < L/2 & RT > L/2 & RT < LF + L/2) 
  Counter = Counter + 1 
 end 
end 
 
Prob_Of_Triangle = Counter / Sample_Number. 
 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
The proposed computational algorithm uses Gibbs sampling. So how is our work related to the ideas of 
Metropolis?... It turns out that the employed version of Gibbs sampling is a particular case of the 
Metropolis-Hastings algorithm. Let us denote W = (LF,RT). 
 
• Gibbs sampling simulates a Markov chain of different realizations of W in multiple steps (just like 

in the Metropolis-Hastings algorithm).  
 

• At each step we have a current value of W and propose a new value W' [just like in Metropolis].  
 

• We propose the new value W' with the proposal density Q(w' | w), which is based on the following 
two-stage procedure. First, a single dimension i of W is chosen randomly. Second, the proposed 
value W' is identical to W, except for its value along the i-dimension W_i (which is either LF or 
RT). W_i is sampled from the conditional distribution P(W_i | W_{-i}), where W_{-i} is the other 
dimension (if W_i = LF, then W_{-i} = RT, and the other way around). Therefore 

 
 Q(W' | W) = P(W'_i | W_{-i}). 
 
• The new value is accepted with probability 
 
 ( P(W') * Q(W | W') ) / ( P(W) * Q(W' | W) ) 
 
 (just like in the Metropolis-Hastings algorithm). We note that, due to the specific  
 construction of Q(w,w'), the acceptance probability equals 
 
 ( P(W') * Q(W | W') ) / ( P(W) * Q(W' | W) ) = 
 = ( P(W') * P(W_i | W'_{-i}) ) / ( P(W) * P(W'_i | W_{-i}) ) = 
 = ( P(W_{-i}) * P(W'_i | W_{-i}) * P(W_i | W'_{-i}) ) /  
 / ( P(W'_{-i}) * P(W_i | W'_{-i}) * P(W'_i | W_{-i}) ) = 
 = P(W_{-i}) / P(W'_{-i}) = 1. 
 
 So we always accept the new realization W'.  
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