TASK

If you break a stick uniformly in two places, you will be left with three segments. Write an algorithm for computing the probability that the three segments form a triangle. This algorithm is supposed to employ Metropolis - Hastings ideas and serve as an independent verification of our theoretical calculations.

SOLUTION

First, we note that the probability can be calculated quite easily on a piece of paper...
Let A and B be the two break points falling on a stick of length L. To distinguish between the break points, we will order then chronologically, A being the older one. Two cases are to be considered:

CASE 1: $0<=A<=B<=L ;$
and
CASE 2: $0<=\mathrm{A}<\mathrm{B}<=\mathrm{L}$.
The three pieces will form a triangle if none is longer than the sum of the others. In terms of A and B, the conditions are the following.

CASE 1:

$\mathrm{A}<\mathrm{L}-\mathrm{A}$	$<========>$	$\mathrm{A}<\mathrm{L} / 2 ;$
$\mathrm{L}-\mathrm{B}<\mathrm{B}$	$<========>$	$\mathrm{B}>\mathrm{L} / 2 ;$
$\mathrm{B}-\mathrm{A}<\mathrm{A}+(\mathrm{L}-\mathrm{A})$	$<========>$	$\mathrm{B}<\mathrm{A}+\mathrm{L} / 2$.

CASE 2: $\mathrm{B}<\mathrm{L} / 2, \mathrm{~A}>\mathrm{L} / 2$ and $\mathrm{A}<\mathrm{B}+\mathrm{L} / 2$.
Now we are capable of plotting the acceptable region on the plane. We see that it consists of two small triangles: one triangle corresponds to case 1 and the other triangle corresponds to case 2 . The area of the acceptable region can be calculated as

```
1/2 * (L/2)^2 + 1/2 * (L/2)^2.
```

The space of all elementary possibilities is the square $[0, L]^{*}[0, L]$. It has the area of $L^{\wedge} 2$. Since (A, B) are uniformly distributed on $[0, L]^{*}[0, L]$, the probability of the three segments forming a triangle equals
(the area of the acceptable region) / (the area of the space of all elementary possibilities) $=$
$=\left(1 / 2\right.$ * $\left.(L / 2)^{\wedge} 2+1 / 2 *(L / 2)^{\wedge} 2\right) /\left(L^{\wedge} 2\right)=1 / 4$.

Next, we are going to build an algorithm to verify our theoretical result...
Now let $L F=\min (A, B)$ be the left break point and $R T=\max (A, B)$ be the right breakpoint. It is a straightforward exercise to determine conditional and marginal distributions of LF and RT. First we focus on marginal distributions:
$F m _L F(x)=P(L F<=x)=1-P(L F>x)=1-P(\min (A, B)>x)=1-P(A>x, B>x)=$
$=1-P(A>x)^{*} P(B>x)=1-((1-x) / L)^{\wedge} 2$.
Fm_RT(y) $=P(R T<=y)=P(\max (A, B)<=y)=P(A<=y, B<=y)=P(A<=y) * P(B<=y)=$
$=(y / L)^{\wedge} 2$.
And now we are ready to calculate conditional distributions. For any $x<=y$,
Fc_LF $(x \mid y)=P(L F<=x \mid R T=y)=P(\min (A, B)<=x \mid \max (A, B)=y)=$
$=1 / 2$ * $P(\min (A, B)<=x \mid \max (A, B)=y, A<B)+1 / 2 * P(\min (A, B)<=x \mid \max (A, B)=y, A<=B)=$
$=1 / 2$ * $P(A<=x \mid A<y)+1 / 2$ * $P(B<=x \mid B<=y)=x / y$.
Similarly, for any $x<=y$,
Fc_RT $(y \mid x)=P(R T<=y \mid L F=x)=1-P(R T>y \mid L F=x)=1-(1-y) /(1-x)$.
Using functions Fc_LF() and Fc_RT(), random variables LF and RT can be simulated one from the other. Here we employ the rule:
if $F(x)$ is a cumulative distribution function (cdf) of a given distribution, then random variable $F_{-}\{-1\}(U)$ has this distribution, where U is uniformly distributed on [0,1].
(***)
NOTE: of course, we did not have to derive conditional distributions of TF and RT to simulate the three random segments of the line. We could have easily simulated the marginals of A and B and seen if the three segments form a triangle. Focusing on LF and RT was necessitated by the requirement to use Metropolis algorithm.

The algorithm below employs Gibbs sampling, which says: to simulate a joint distribution of (LF,RT), we can simulate LF given RT and RT given LF long enough.

```
% INITIALIZATION
```


Counter = 0

Random.Seed(0)

```
for(S = 1:Sample_Number)
    % SIMULATING INITIAL VALUES OF Z AND W
    U = Simulated_Uniform(0,1)
    LF = Fm^{-1}_LF(U) % Using the marginal cdf of LF and rule (***) to simulate LF.
    U = Simulated_Uniform(0,1)
    RT = Fm^{-1}_RT(U) % Using the marginal cdf of RT and rule (***) to simulate RT.
    for(iter = 1:(Burn.ln+1))
        % THE MAGIC OF GIBBS SAMPLING.
        % Randomly selecting LF or RT.
        U = Simulated_Uniform(0,1)
        if( U <= 1/2 )
            U = Simulated_Uniform(0,1)
            LF = Fc^{-1}_\overline{LF}(U|RT) % Simulating LF using its conditional cdf
                        % and the current value of RT.
        else
```

```
U = Simulated_Uniform(0,1)
RT = Fc^{-1}_-RT(U | LF) % Simulating RT using its conditional cdf
                                    % and the current value of LF.
        end
    end
    % CHECKING IF ONE CAN MAKE A TRIANGLE
    % OUT OF THE SIMULATED SEGMENTS
    if(LF < L/2 & RT > L/2 & RT < LF + L/2)
        Counter = Counter + 1
    end
end
Prob_Of_Triangle = Counter / Sample_Number.
```

The proposed computational algorithm uses Gibbs sampling. So how is our work related to the ideas of Metropolis?... It turns out that the employed version of Gibbs sampling is a particular case of the Metropolis-Hastings algorithm. Let us denote $\mathrm{W}=(\mathrm{LF}, \mathrm{RT})$.

- Gibbs sampling simulates a Markov chain of different realizations of W in multiple steps (just like in the Metropolis-Hastings algorithm).
- At each step we have a current value of W and propose a new value W ' [just like in Metropolis].
- We propose the new value W^{\prime} with the proposal density $Q\left(w^{\prime} \mid w\right)$, which is based on the following two-stage procedure. First, a single dimension i of W is chosen randomly. Second, the proposed value W^{\prime} is identical to W , except for its value along the i -dimension W _i (which is either LF or RT). W_i is sampled from the conditional distribution $P\left(W _i \mid W _\{-i\}\right)$, where $W_{-}\{-i\}$ is the other dimension (if W_i = LF, then W_\{-i\} = RT, and the other way around). Therefore
$Q\left(W^{\prime} \mid W\right)=P\left(W^{\prime} _i \mid W _\{-i\}\right)$.
- \quad The new value is accepted with probability
($P\left(W^{\prime}\right)$ * $\left.Q\left(W \mid W^{\prime}\right)\right) /\left(P(W)\right.$ * $\left.Q\left(W^{\prime} \mid W\right)\right)$
(just like in the Metropolis-Hastings algorithm). We note that, due to the specific construction of $Q(w, w ')$, the acceptance probability equals
($\mathrm{P}\left(\mathrm{W}^{\prime}\right)$ * $\mathrm{Q}\left(\mathrm{W} \mid \mathrm{W}^{\prime}\right)$) / ($\left.\mathrm{P}(\mathrm{W})^{*} \mathrm{Q}\left(\mathrm{W}^{\prime} \mid \mathrm{W}\right)\right)=$
$=\left(P\left(W^{\prime}\right) * P\left(W, i \mid W^{\prime} _\{-i\}\right)\right) /\left(P(W) * P\left(W^{\prime} _i \mid W _\{-i\}\right)\right)=$
$=\left(P\left(W _\{-i\}\right) * P\left(W^{\prime} _i \mid W _\{-i\}\right) * P\left(W _i \mid W^{\prime} _\{-i\}\right)\right) /$
$/\left(P\left(W^{\prime} _\{-i\}\right)\right.$ * $P\left(W^{\prime} i \mid W^{\prime} _\{-i\}\right)$ * $\left.P\left(W^{\prime} _i \mid W_{-}\{-i\}\right)\right)=$
$=P\left(W _\{-i\}\right) / P\left(W^{\prime} _\{-i\}\right)=1$.
So we always accept the new realization W'.

