TASK

The arrival of new customers is modeled in the following way. Let X_t be a continuous time Markov chain, which occupies state i at time 0 . Conditional on all the future dynamics of $X _t$, process $N _t$ is a Poisson process with intensity lambda_t $=r\left(X _t\right)$. Here $r()$ is some non-negative function. Each new arrival of a customer is given by a jump of process N_t... Derive a differential equation for the probability of no customers arriving before time t. This equation can be solved by finite difference methods later on.

SOLUTION

First, let us recall that expression $E\left[Z \mid X _0=i\right]$ denotes the expectation of random variable Z under the condition that Markov chain X_t occupies state iat time 0 . We notice that saying "no customers before time t " is equivalent to saying " $\mathrm{N} \mathrm{t}=0$ ". Therefore,
$P\left(\right.$ no customers before time $\left.t \mid X _0=i\right)=P\left(N _t=0 \mid X _0=i\right)=E\left[1 _\left\{N _t=0\right\} \mid X _0=i\right]$.
In the equation (1) above, $1 _A$ is an indicator random variable which equals 1 if A is true and equals 0 otherwise. By the law of iterated expectations, equation (1) can be continued as
$P\left(\right.$ no customers before time $\left.t \mid X _0=i\right)=E\left[1 _\left\{N _t=0\right\} \mid X _0=i\right]=$
$=E\left[E\left[1 _\left\{N _t=0\right\} \mid\left\{X _s, s>=0\right\}, X _0=i\right] \mid X _0=i\right]=$
$=E\left[P\left(N _t=0 \mid\left\{X _s, s>=0\right\}, X _0=i\right) \mid X _0=i\right]=$
$=\mid$ Recall one of the properties of a Poisson process: N_t has Poisson distribution with parameter int_\{s=0\}^t lambda(s) ds. Therefore, conditional on $\left\{X _s, s>=0\right\}, N _t$ has Poisson distribution with parameter int_\{s=0\}^t $r\left(X _s\right)$ ds $\mid=$
$=\mathrm{E}\left[\exp \left\{-\mathrm{int} _\{\mathrm{s}=0\}^{\wedge} \mathrm{t} \mathrm{r}\left(\mathrm{X} _\mathrm{s}\right) \mathrm{ds}\right\} \mid \mathrm{X} _0=\mathrm{i}\right]=$
$=\mathrm{E}\left[\exp \left\{-\mathrm{int} _\{\mathrm{s}=0\}^{\wedge} \mathrm{t}\right.\right.$ lambda_s ds $\left.\} \mid \mathrm{X} _0=\mathrm{i}\right]$.

Now let us denote $\mathrm{P}\left(\right.$ no customers before time $\left.\mathrm{t} \mid \mathrm{X} _0=\mathrm{i}\right)$ as $\mathrm{g}(\mathrm{i}, \mathrm{t})$. Then by (2^{\prime})
$g(i, t)=E\left[\exp \left\{-i n t _\{s=0\}^{\wedge} t\right.\right.$ lambda_s ds $\left.\} \mid X _0=i\right]=$
$=\mid$ Let us condition on the state of the Markov chain $X _t$ at the moment of time h, where h is tiny. We will use the law of iterated expectations again. In the text below the symbol "<>" means "is not equal to". |
$=$ Sum_\{j <> i\} E[$\left.\exp \left\{-i n t _\{s=0\}^{\wedge} t ~ l a m b d a _s d s\right\} \mid X _0=i, X _h=j\right]$ * $P\left(X _h=j \mid X _0=i\right)+$
$+E\left[\exp \left\{-i n t _\{s=0\}^{\wedge} t ~ l a m b d a _s d s\right\} \mid X _0=i, X _h=i\right] * P\left(X _h=i \mid X _0=i\right)$.

Let us recall how a continuous time Markov chain jumps from one state to another. Suppose currently the chain is in state i. We are observing a collection of Poisson processes N_ij, where j <> i. Each process N_ij has intensity $A _i j$. If process $N _i k$ is the first process to jump, Markov chain X_t moves into state k.

Intensities A_ij are collected in matrix A, called the generator of Markov chain X_t. Diagonal elements of the generator are defined as

$$
\text { A_ii = - Sum_\{j <> i\} A_ij. }
$$

We will need the following property of a Poisson process: if the process has intensity mu then, for a tiny value of h,
$P($ exactly one jump in interval $[0, h])=m u * h+e(h)$,
where $e(h)$ is such function that $\lim \{h-->0\} e(h) / h=0$.
--

Now we are ready to re-write equation (3):
(3) $=$ Sum_\{j <> i\} E[exp\{ -int_\{s=0\}^t lambda_s ds \}|X_0 = i, X_h = j] * (A_ij * h + e(h)) +
$+E\left[\exp \left\{-i n t _\{s=0\}^{\wedge} t\right.\right.$ lambda_s ds $\left.\} \mid X _0=i, X _h=i\right] *\left(1-\operatorname{Sum} _\{j<>i\} A _i j * h+e(h)\right)=$
$=\mid$ by definition A_ii $=-$ Sum_\{j <> i\} A_ij $\mid=$
$=$ Sum_\{j <> i\} E[exp\{ -int_\{s=0\}^t lambda_s ds $\left.\} \mid X _0=i, X _h=j\right]$ * (A_ij * h + e(h)) +
$+E\left[\exp \left\{-i n t _\{s=0\}^{\wedge t} \text { lambda_s ds }\right\} \mid X _0=\mathrm{i}, \mathrm{X} _\mathrm{h}=\mathrm{i}\right]^{*}\left(1+\mathrm{A} _\mathrm{ii}{ }^{*} \mathrm{~h}+\mathrm{e}(\mathrm{h})\right)=$
$=$ Sum_\{j <> i\} E[exp\{ -int_\{s=0\}^t lambda_s ds \}|X_0 = i, X_h = j] * A_ij * h +
$+E\left[\exp \left\{-i n t _\{s=0\}^{\wedge} t \text { lambda_s ds }\right\} \mid X _0=i, X _h=i\right]^{*}\left(1+A _i i * h\right)+e(h)$.
In the equation (4) above notice the following:
$E\left[\exp \{\right.$-int_\{s=0\}^t lambda_s ds $\left.\} \mid X _0=i, X _h=j\right]=$
$=E\left[\exp \left\{-i n t _\{s=0\}^{\wedge} h\right.\right.$ lambda_s ds - int_\{s=h\}^t lambda_s ds $\left.\} \mid X _0=\mathrm{i}, \mathrm{X} _\mathrm{h}=\mathrm{j}\right]=$
$=E\left[\exp \left\{-i n t _\{s=0\}^{\wedge} h \text { lambda_s ds }\right\}^{*} \exp \left\{-i n t _\{s=h\}^{\wedge t}\right.\right.$ lambda_s ds $\left.\} \mid X _0=i, X _h=j\right]=$
$=E\left[\exp \left\{-i n t _\{s=0\}^{\wedge} h r\left(X _s\right) d s\right\}^{*} \exp \left\{-i n t _\{s=h\}^{\wedge} t \operatorname{lambda_ s~ds~\} |X_ 0=i,X_ h=j]=}\right.\right.$
$=\mid$ We use that fact that, for time s close to time $0, r\left(X _s\right)=r(i) . \mid=$
$=E\left[\left(\exp \left\{-i n t _\{s=0\}^{\wedge} h r(i) d s\right\}+e(h)\right) * \exp \left\{-i n t _\{s=h\}^{\wedge} t\right.\right.$ lambda_s ds $\left.\} \mid X _0=i, X _h=j\right]=$
$=E\left[\exp \left\{-r(i)^{*} h\right\}^{*} \exp \left\{-i n t _\{s=h\}^{\wedge} t\right.\right.$ lambda_s ds $\left.\} \mid X _0=i, X _h=j\right]+e(h)=$
$=\exp \left\{-r(i)^{*} h\right\}^{*} E\left[\exp \left\{-i n t _\{s=h\}^{\wedge t}\right.\right.$ lambda_s ds $\left.\} \mid X _0=i, X _h=j\right]+e(h)=$
$=\exp \left\{-r(i)^{*} h\right\}^{*} E\left[\exp \left\{-i n t _\{s=h\}^{\wedge} t \operatorname{lambda_ s} d s\right\} \mid X _0=i, X _h=j\right]+e(h)=$
$=\mid$ We use the stationarity of the Markov chain. It's like we are starting over at time h, but now the initial state is state $\mathrm{j} . \mid=$
$=\exp \left\{-r(i)^{*} h\right\}^{*} E\left[\exp \left\{-i n t _\{s=0\}^{\wedge}\{t-h\}\right.\right.$ lambda_s ds $\left.\} \mid X _0=j\right]+e(h)=$
$=\mid$ Recall the definition of function $g(i, t) . \mid=$
$=\exp \left\{-r(i){ }^{*} h\right\}^{*} g(j, t-h)+e(h)$.

All right, now let us substitute formula (5) into equation (4).
(4) $=$ Sum_\{j <> i\} E[$\exp \left\{-i n t _\{s=0\}^{\wedge t}\right.$ lambda_s ds $\left.\} \mid X _0=i, X _h=j\right]$ * A_ij * $h+$
$+E\left[\exp \left\{-i n t _\{s=0\}^{\wedge t} \text { lambda_s ds }\right\} \mid X _0=\mathrm{i}, \mathrm{X} _\mathrm{h}=\mathrm{i}\right]^{*}(1+\mathrm{A} \text { _ii * } h)^{*}\left(1+\mathrm{A} _\mathrm{ii}{ }^{*} \mathrm{~h}\right)+\mathrm{e}(\mathrm{h})=$
$=\operatorname{Sum} _\{j<>i\} \exp \left\{-r(i)^{*} h\right\}^{*} g(i, t-h){ }^{*} A_{-} i j{ }^{*} h+\exp \left\{-r(i)^{*} h\right\}^{*} g(i, t-h)^{*}\left(1+A_{-} i i{ }^{*} h\right)+e(h)=$
$=\mid$ We use a well-known property of function $\exp ()$ implied by its Taylor decomposition:
$\exp (-r(i) * h)=1-r(i) * h+e(h) \mid=$
$=$ Sum_\{j <> i\} (1-r(i) * h + e(h)) * g(i,t-h) * A_ij * h +
$+\left(1-r(i)^{*} h+e(h)\right)^{*} g(i, t-h)^{*}\left(1+A _i i * h\right)+e(h)=$
 $=S u m _\{a n y j\}(1-r(i) * h) * g(i, t-h) * A _i j * h+g(i, t-h)-r(i) * h * g(i, t-h)+e(h)$
(6).

Let us re-write equation (6).
$g(i, t)=S u m _\{a n y j\}\left(1-r(i){ }^{*} h\right)^{*} g(i, t-h)^{*} A _i j * h+g(i, t-h)-r(i){ }^{*} h * g(i, t-h)+e(h)$,
or
$g(i, t)-g(i, t-h)=S u m _\{a n y j\}(1-r(i) * h){ }^{*} g(i, t-h)^{*} A_{i} i j{ }^{*} h-r(i) * h * g(i, t-h)+e(h)$,
or
$(g(i, t)-g(i, t-h)) / h=$ Sum_\{any j\} $\left(1-r(i){ }^{*} h\right)^{*} g(i, t-h)^{*} A _i j-r(i) * g(i, t-h)+e(h) / h$.
Letting h ---> 0 on both sides of equation (7) leads to:
$d g(i, t) / d t=S u m _\{a n y j\} g(i, t){ }^{*} A _i j-r(i) * g(i, t)$,
for any state i. We also state the initial condition, which is
$g(i, 0)=E\left[\exp \left\{-i n t _\{s=0\}^{\wedge} 0\right.\right.$ lambda_s ds $\left.\} \mid X _0=i\right]=0$.
Equations (8) and (9) form the desired system of equations. This system can be solved using a finite difference method to produce the probability of no customers arriving before time t.

Statistical \& Financial Consulting by Stanford PhD

