
TASK

The arrival of new customers is modeled in the following way. Let X_t be a continuous time Markov chain, 
which occupies state i at time 0. Conditional on all the future dynamics of X_t, process N_t is a Poisson 
process with intensity lambda_t = r(X_t). Here r() is some non-negative function. Each new arrival of a 
customer is given by a jump of process N_t... Derive a differential equation for the probability of no 
customers arriving before time t. This equation can be solved by finite difference methods later on. 

SOLUTION 

First, let us recall that expression E[ Z | X_0 = i ] denotes the expectation of random variable Z under the 
condition that Markov chain X_t occupies state i at time 0. We notice that saying "no customers before time t" 
is equivalent to saying "N_t = 0". Therefore,

P( no customers before time t | X_0 = i ) = P(N_t = 0 | X_0 = i ) = E[ 1_{N_t = 0} | X_0 = i ].   (1)

In the equation (1) above, 1_A is an indicator random variable which equals 1 if A is true and equals 0 
otherwise. By the law of iterated expectations, equation (1) can be continued as

P( no customers before time t | X_0 = i ) = E[ 1_{N_t = 0} | X_0 = i ] = 

= E[ E[ 1_{N_t = 0} | {X_s, s >= 0}, X_0 = i ] | X_0 = i ] =

= E[ P( N_t = 0 | {X_s, s >= 0}, X_0 = i ) | X_0 = i ] = 

= | Recall one of the properties of a Poisson process: N_t has Poisson distribution with parameter int_{s=0}^t 
lambda(s) ds. Therefore, conditional on {X_s, s >= 0}, N_t has Poisson distribution with parameter int_{s=0}^t 
r(X_s) ds | =

= E[ exp{ -int_{s=0}^t r(X_s) ds } | X_0 = i ] =                                                (2)

= E[ exp{ -int_{s=0}^t lambda_s ds } | X_0 = i ].                                           (2')

-----------------------------------------

Now let us denote P( no customers before time t | X_0 = i ) as g(i,t). Then by (2')

g(i,t) = E[ exp{ -int_{s=0}^t lambda_s ds } | X_0 = i ] =

= | Let us condition on the state of the Markov chain X_t at the moment of time h, where h is tiny. We 
will use the law of iterated expectations again. In the text below the symbol "<>" means "is not equal to". |

= Sum_{j <> i} E[ exp{ -int_{s=0}^t lambda_s ds } | X_0 = i, X_h = j ] * P( X_h = j | X_0 = i ) +

+ E[ exp{ -int_{s=0}^t lambda_s ds } | X_0 = i, X_h = i ] * P( X_h = i | X_0 = i ).                (3)

-----------------------------------------

Let us recall how a continuous time Markov chain jumps from one state to another. Suppose currently the 
chain is in state i. We are observing a collection of Poisson processes N_ij, where j <> i. Each process 
N_ij has intensity A_ij. If process N_ik is the first process to jump, Markov chain X_t moves into state k.

Intensities A_ij are collected in matrix A, called the generator of Markov chain X_t. Diagonal elements of 
the generator are defined as 

A_ii = - Sum_{j <> i} A_ij. 



We will need the following property of a Poisson process: if the process has intensity mu then, for a tiny 
value of h, 

P( exactly one jump in interval [0,h] ) = mu * h + e(h), 

where e(h) is such function that lim_{h ---> 0} e(h)/h = 0. 

-----------------------------------------

Now we are ready to re-write equation (3):

(3) = Sum_{j <> i} E[ exp{ -int_{s=0}^t lambda_s ds } | X_0 = i, X_h = j ] * (A_ij * h + e(h)) +

+ E[ exp{ -int_{s=0}^t lambda_s ds } | X_0 = i, X_h = i ] * (1 - Sum_{j <> i} A_ij * h + e(h) ) =

= | by definition A_ii = - Sum_{j <> i} A_ij | =

= Sum_{j <> i} E[ exp{ -int_{s=0}^t lambda_s ds } | X_0 = i, X_h = j ] * (A_ij * h + e(h)) +

+ E[ exp{ -int_{s=0}^t lambda_s ds } | X_0 = i, X_h = i ] * (1 + A_ii * h + e(h) ) =

= Sum_{j <> i} E[ exp{ -int_{s=0}^t lambda_s ds } | X_0 = i, X_h = j ] * A_ij * h +

+ E[ exp{ -int_{s=0}^t lambda_s ds } | X_0 = i, X_h = i ] * (1 + A_ii * h) + e(h).                 (4)

In the equation (4) above notice the following:

E[ exp{ -int_{s=0}^t lambda_s ds } | X_0 = i, X_h = j ] =

= E[ exp{ -int_{s=0}^h lambda_s ds - int_{s=h}^t lambda_s ds } | X_0 = i, X_h = j ] =

= E[ exp{ -int_{s=0}^h lambda_s ds } * exp{ -int_{s=h}^t lambda_s ds } | X_0 = i, X_h = j ] =

= E[ exp{ -int_{s=0}^h r(X_s) ds } * exp{ -int_{s=h}^t lambda_s ds } | X_0 = i, X_h = j ] =

= | We use that fact that, for time s close to time 0, r(X_s) = r(i). | =

= E[ (exp{ -int_{s=0}^h r(i) ds } + e(h)) * exp{ -int_{s=h}^t lambda_s ds } | X_0 = i, X_h = j ] =

= E[ exp{ -r(i) * h } * exp{ -int_{s=h}^t lambda_s ds } | X_0 = i, X_h = j ] + e(h) =

= exp{ -r(i) * h } * E[ exp{ -int_{s=h}^t lambda_s ds } | X_0 = i, X_h = j ] + e(h) =

= exp{ -r(i) * h } * E[ exp{ -int_{s=h}^t lambda_s ds } | X_0 = i, X_h = j ] + e(h) =

= | We use the stationarity of the Markov chain. It's like we are starting over at time h, but now the initial 
state is state j. | =

= exp{ -r(i) * h } * E[ exp{ -int_{s=0}^{t-h} lambda_s ds } | X_0 = j ] + e(h) =

= | Recall the definition of function g(i,t). | =

= exp{ -r(i) * h } * g(j,t-h) + e(h).                                                               (5)

-----------------------------------------

All right, now let us substitute formula (5) into equation (4).



(4) = Sum_{j <> i} E[ exp{ -int_{s=0}^t lambda_s ds } | X_0 = i, X_h = j ] * A_ij * h +

+ E[ exp{ -int_{s=0}^t lambda_s ds } | X_0 = i, X_h = i ] * (1 + A_ii * h) * (1 + A_ii * h) + e(h)  =

= Sum_{j <> i} exp{ -r(i) * h } * g(i,t-h) * A_ij * h + exp{ -r(i) * h } * g(i,t-h) * (1 + A_ii * h) + e(h)  =

= | We use a well-known property of function exp() implied by its Taylor decomposition:
exp( -r(i) * h ) = 1 - r(i) * h + e(h) | =

= Sum_{j <> i} (1 - r(i) * h + e(h)) * g(i,t-h) * A_ij * h + 
+ (1 - r(i) * h + e(h)) * g(i,t-h) * (1 + A_ii * h) + e(h)  =

= Sum_{j <> i} (1 - r(i) * h) * g(i,t-h) * A_ij * h + (1 - r(i) * h) * g(i,t-h) * (1 + A_ii * h) + e(h) =
= Sum_{any j} (1 - r(i) * h) * g(i,t-h) * A_ij * h  + g(i,t-h) - r(i) * h * g(i,t-h) + e(h)               (6).

Let us re-write equation (6).

g(i,t) = Sum_{any j} (1 - r(i) * h) * g(i,t-h) * A_ij * h  + g(i,t-h) - r(i) * h * g(i,t-h) + e(h),

or

g(i,t) - g(i,t-h) = Sum_{any j} (1 - r(i) * h) * g(i,t-h) * A_ij * h - r(i) * h * g(i,t-h) + e(h),

or

(g(i,t) - g(i,t-h))/h = Sum_{any j} (1 - r(i) * h) * g(i,t-h) * A_ij - r(i) * g(i,t-h) + e(h)/h.            (7)

Letting h ---> 0 on both sides of equation (7) leads to:

d g(i,t) / dt = Sum_{any j} g(i,t) * A_ij - r(i) * g(i,t),                                            (8)

for any state i. We also state the initial condition, which is

g(i,0) = E[ exp{ -int_{s=0}^0 lambda_s ds  } | X_0 = i ] = 0.                                  (9)

Equations (8) and (9) form the desired system of equations. This system can be solved using a finite 
difference method to produce the probability of no customers arriving before time t.
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