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Abstract

A variable-mass relaxation oscillator model for the behaviour of the leaky tap is numerically investigated. Different
regions of its three dimensional parameter space have been searched and interesting dynamical behaviour has been found.
The dynamics of the system is thoroughly characterized using projections of phase space trajectories, 2 and 3 dimensional
time-delay plots, power spectra, Lyapunov exponents, Hausdorff and correlation dimensions and bifurcation diagrams.
Dynamical variables obtained from the model, like drop masses, velocities and drip-intervals, are used for reconstructing
attractors. We found several periodic, intermittent and chaotic attractors. We conclude that the rich dynamics of the model
investigated represents an improvement in describing the experimentally observed behaviour of the actual dripping faucet

system.

PACS: 02.70+d. 47.20.Tg: 03.20.+1
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1. Introduction

During the past decade much effort has been de-
voted to the study of the onset of chaotic behaviour
in non-linear systems [ 1-7]. One of the prototypical
examples of dissipative systems where this transition
occurs is the dripping faucet of which several experi-
mental investigations have been reported [8-11]. The
quantity measured in these studies is the time interval
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between successive drop detachments, the so-called
drip interval, which has been used to reconstruct the
seemingly chaotic attractors of the system. These stud-
ies have shown that this apparently trivial system ex-
hibits very complex behaviour, ranging from the sim-
ply periodic to what appears to be strange attractors
with varying degrees of complexity [12-14].
However, little has been done for modelling the dy-
namics behind the dripping faucet behaviour. The only
attempts we know are the one-dimensional feedback-
loop model of Austin [ 14], the electric analogue used
by Bernhardt [15], and the variable-mass oscillator
model of Shaw [8]; but, as far as we know, only
Bernhardt’s model has been subjected to a systematic
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investigation. In particular, Shaw’s model has never
been tested to find out whether it possesses strange
attractors and hence if it is a suitable model for the
dripping faucet behaviour, albeit some evidence for
the existence of attractors has been obtained by using
analogue simulations [8,9]. This is surprising since
the leaky tap has been even considered as the starting
point for developing a non-linear model for magneto-
spheric processes [ 16].

The purpose of this work is to describe an investiga-
tion of a modified oscillator model. As it turns out, the
change done to Shaw’s model bring it closer to the be-
haviour of an actual leaky tap. With the intention of ob-
taining evidence of strange and chaotic behaviour, we
look for attractors in different regions of the model’s
space of parameters, we analyse them qualitatively
and also quantitatively by determining their Lyapunov
exponents and Hausdorff and correlation dimensions.
Results for the periodic and the chaotic behaviour of
the model reveal the similarities and dissimilarities of
its dynamics with that of the real dripping system. We
present tables showing characteristics of some of the
attractors and their distribution in the space of param-
eters of the model. We also show bifurcation diagrams
of some regions of this space.

2. The variable-mass oscillator model

In 1984 Shaw proposed a set of differential equa-
tions for modelling the dripping behaviour of a leaky
tap. The equations are based on the image of a drop
hanging from a nozzle and eventually falling from it, as
a kind of one-dimensional oscillator [ 17,18] in which
the cohesive force in the liquid (basically the surface
tension o) is modelled by the elastic force in the os-
cillator. The oscillator can be thought as driven by the
pushing effect of the water flowing into the drop and
by its own increasing weight. To model the flow of
water feeding the hanging drop before the detachment,
the bob’s mass is assumed to increase at a constant
rate. To maintain the simplicity of the model, it is fur-
ther assumed that the breaking-off time for each drop
occurs when the oscillator reaches a certain prefixed
length / —which may be thought of as analogous to

the behaviour of an actual drop beyond the meniscus
length. The internal dissipative forces are represented
by a velocity dependent term.

With the above considerations in mind, we may see
that the (dimensionless) first-order equations of the
model are

dx

E=U, (N
de 1

E=;(X+U)—g’ (2)
dm

E:f’ (3)

where x, v and m are to be taken as the coordinates
in the phase space of the model. We may think of
x, v and m as the position, velocity and mass of the
drop respectively, g as the external force, and f as the
flow rate. Egs. (1)-(3) are to be solved together with
the following proviso for the detachment of the drop
when the position variable reaches a certain value —
in the non-dimensional coordinates we normalize to
unity the critical value x. = 1:

When x =1, then m(r +dt) = m(t) — Am, (4)
where
Am=hm(t)v(t). (5)

Here we calculate the mass of the falling drop, Am,
where & is another constant and by ¢ + dt we mean
an instant after the system reaches x = x, (dt is taken
as the integration step when solving numerically the
equations). We must remember that the dimension-
less parameters f, g and & have algebraic relationships
with the constants and parameters of the original equa-
tions for a variable-mass damped oscillator driven by
a constant force. Therefore varying the parameter akin
to an external force (g), for example, might have a
complicated physical analogy if we think in terms of
the oscillator.

Notice that whereas Shaw assumed Am to be pro-
portional to v only, we made it dependent also on the
available mass at that moment. With this change the
model gains a closer correspondence with the actual
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experiment as well as a sort of control mechanism of
the minimum mass of the drop, m, avoiding thus an
excessively large value of the force in Eq. (2) and
therefore permitting greater flexibility in the selection
of parameters. While the change keeps the model sim-
ple, our results show that it makes much richer the
dynamics of the system. As a relaxation oscillator is
fundamental for understanding the behaviour of the
leaky tap, the discontinuity imposed on the model is a
very important ingredient of the model since it gener-
ates both a threshold and a rapid depletion of the mass
accumulated in the oscillator.

The dynamics of the model was investigated by
numerically integrating Eqs. (1)-(3) with an algo-
rithm which takes into account the existence of the
discontinuity. At the moments when the dripping oc-
curs four data were always stored: the drip interval
T, (where n is the drop number), the mass of the
drop M, the velocity V, at the moment of the de-
tachment, and the mass which remains hanging from
the nozzle, Q, (which can be computed as Q, =
Qo+ fY.0, T~ >, M,). From each of the data se-
ries, the underlying attractors are reconstructed using
time-delay plots (also called return maps) in analo-
gous fashion to what is done with the drip intervals
of experimental results {9,10,13,14]. Although as far
as we know previous works have only dealt with time
intervals as a result of the difficulty to measure other
quantities experimentally, recent studies [26] analyse
certain characteristics of the system by making esti-
mations of the drops’ masses (sizes) from time mea-
surements. In this work we present most of the results
as reconstructions made from time intervals to enable
comparisons with other studies, but we also show that
the analysis of the other system variables can provide
with complementary intormation.

The model is studied in various regions of its 3-
dimensional parameter space (f, g, and h). A sum-
mary of the distribution of attractors is presented in
Table 1, while a detailed analysis of some regions
is shown with bifurcation diagrams (Fig. 12). Power
spectra, maximal Lyapunov exponents, Hausdorff and
correlation dimensions were calculated for some of
the attractors (Table 2).

3. Results

Plots of the x-v (v = x) projections of the phase
space trajectories were done simultaneously with the
integration of the equations for each set of values of
the parameters and initial conditions. The search for
attractors was done in the region of the space of pa-
rameters bounded by 0.05 < f < 2,01 < g < 1,
5 < h < 11 avoiding the zones where the system
was “saturated”. For example, when f was large and
h small, the mass was still too big after the detach-
ment of the drop and the upward force of the spring
was not enough to counteract the weight, so the sys-
tem could not “go up” again (this behaviour may be
thought of as analogous to the situation in which the
falling of drops becomes a continuous stream). As a
general procedure several sets of starting conditions
were tested Jooking for different coexisting attractors
at the same parameter values, but these were never
found.

3.1. Periodic attractors

For most of the domain of parameters investigated,
the system shows a very quick convergence to cyclic
attractors of period 1, 2, 3, 4, 5, 8 or 12. The x-v pro-
jected phase trajectories, time-delay plots of its drip
intervals (T, vs. T,41), and the corresponding power
spectrum of a period 5 attractor, are shown in Fig. 1
together with a time-delay plot of a period 8 attractor.
To illustrate the process of convergence towards the
attractor, Fig. 1b exhibits the transient state as small
dots and the final state (the attractor) as big ones
(except for some figures where we specify the oppo-
site, transient states were excluded from the plots to
avoid clutter). The power spectrum of Fig. 1c shows
the peak at the frequency % and its harmonic. Due to
the way we sampled the data, the maximum frequency
displayed in all power spectra corresponds to % (the
Nyquist frequency). As power spectra computed from
any of the series of data taken (i.e. masses, velocities,
etc.) showed the same general shape, we only present
the ones calculated from the drip interval series.

Between certain parameter values where the system
has cyclic attractors with periods 1 and 2, a third value
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Fig. 1. (a) x-r projected phase space trajectory of a period 5 attractor (without transients). Every time a loop was completed, a part of
the mass dripped from the system and the data were stored. (b} Poincaré map of the drip intervals of the same period 5 attractor (big
dots) and its transients (small dots). (¢) Power spectrum of the period 5 attractor. The maximum frequency displayed is 3, the Nyquist

1
3

frequency for this data series. (d) Poincaré map of the drip intervals of a Period 8 attractor. Notice that the shape of these reconstructed
attractors evolves towards that of attractor ECGPAR shown in Fig. 8b. This a result of the relatively smooth change of the system with

the variation of the parameters that can be observed in Table .

was sometimes found where the system appeared to
be in a period | attractor, but the trajectory eventually
splitted into two well defined cycles, i.e. it was only a
transient state for a period 2 attractor. The same kind
of transitions were found from other transient states
which could be mistaken with a periodic attractor, but
which eventually ended in an attractors with a differ-
ent period (1 — 2.2 — 1,2 —-4and 4 — 2). Fig. 2
shows some of these attractors and their apparently
periodic transient states. Notice that the broad peak
at the frequency % of the power spectrum of Fig. 2b
indicates the system does not visit exactly the same
four points, but some values in their neighbourhoods.
In the same way, the presence of all the other frequen-

cies between this peak and the high one at % are the
result of the evolution of the system from a period 4
1o a period 2 behaviour (the bifurcation diagrams of
Figs. 12e and 12f discussed below show the smooth
way in which the system passes from one periodic at-
tractor to the next).

3.2, Chaotic attractors

3.2.1. PAR

Fig. 3 shows time-delay plots made of drip inter-
vals, masses and velocities of a strange attractor with 5
well defined regions where the density of points is no-
toriously higher. All reconstructions show a thin (one-
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Table |
Attractors of the system in some regions of the space of parameters

Parameters Attractor

f 8 h

0.40 0.32 10 period 1

035 1

0.3425 - .- - 2

0.34 - - PAR

0.338 0.325 PAR-INT

0.33 0.32 period 3

0.30 3

0.20 4

0.19 4

0.18 8

0.17 - - - 5

0.15 - “ “ 5

0.14 -~ o ECGPA

0.11

0.09 - " “

0.09 0.34 7 ECG

0.10 “

0.104905 “ period 12 window

0.11 “ - ECG

0.115

0.112 .

0.112470 " intermittent ECG

0.113 - . period 2

0.12 2

0.20 2

035 2

0.40 1

0.50 1

1.00 - " “ 1

0.10 0.36 7 period 2 — ECG-INT
0.40 “ period 2
0.45 2
0.50 4 -2
0.55 4
0.65 4
0.72 “ " 2 —4
0.82 “ “ 1 —2
0.8340 . long transient period | — 2
0.85 .- period 2 — |

dimensional) line, and for the drip intervals (Fig. 3¢)
the 5 regions are contained in a parabolic curve (rea-
son why we refer to it with the nickname PAR). Notice
that due to the order in which the different regions of
the attractor are visited, drawn with lesser magnifica-
tion this attractor could be mistaken with a cyclic at-
tractor of period 5 - this also happens in experimental
data [19]. A very thick peak around the frequency 1;
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of the power spectrum (Fig. 3b), and the presence of
relatively high peaks in all frequencies show the het-
erogeneous behaviour of this 5 bands strange attractor.
Three dimensional time-delay plots show the strong
dependence of one drop on the two previous ones. In
Fig. 3f we can appreciate that the time-delay plot of
the velocities introduces a fold of the curve onto itself
that can not be seen in the other reconstructions. This
is an example of the rare cases in which one of the
reconstructions shows structural details which are not
obvious in the others.

3.2.2. ECG

Fig. 4 exhibit the chaotic attractor ECG (the nick-
name comes from the resemblance to an electrocar-
diogram). Fig. 4a shows a projection on the plane x-v
of the phase space trajectory of about a hundred drops,
while Fig. 4b presents a series of 35,000 drip intervals
of the same attractor. The power spectrum computed
from 130,000 data (Fig. 4c) shows a peak around the
frequency % corresponding to the dense accumulation
of points in the neighbourhood of two values on the
attractor shown in Fig. 4b (the system goes from one
of these regions to the other, behaving like a “coarse”
period 2 attractor). The other two protuberances next
to the frequencies % and % may indicate the same phe-
nomena described above but now for a somewhat hid-
den “coarse” period 8 behaviour.

The time-delay plot of 300,000 drip intervals of the
ECG attractor and magnifications of some of its re-
gions are presented in Fig. 5. The successive enlarge-
ments of a region shown in Figs. 5c and d exhibit some
of the substructure of the set. This kind of behaviour
was found in different parts of other strange attractors
and it is responsible for the fractal dimensions larger
than one. The self-crossing plots are a remainder of
the fact that the nth data point depends not only on
the (n — 1)th, but also on other previous values. Two
and three dimensional time-delay plots of the series
of drip intervals and masses are shown in Fig. 6. No-
tice that the reconstruction for the masses, in spite of
the complex separation of its lines, still presents the
kind of substructure shown for the drip intervals. The
hanging masses (Q,) and plots of mixed dynamical
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variables of the system at the breaking-off time are
shown in Fig. 7.

3.2.3. ECGPAR

Figs. 8 and 9 show reconstructions made from data
of attractor ECGPAR (the name was given because the
values of its parameters are a mixture of both attrac-
tors ECG and PAR). Notice the huge difference in the
complexity of the plots for the hanging mass and the
velocity, although both are reconstructions of the same
chaotic attractor. The evident heterogeneous distribu-
tion of points in this curve is characterized below by
the correlation dimension. This is a good example of
the accuracy with which this model reproduces some
of the attractors found in experiments with the real
dripping system (see Fig. 12b of Ref. [25]). Fig. 9f
was included to show the partial loss of correlation
between one drop and its third “generation” (nth vs.
(n+3)th).

3.3. Intermittence

3.3.1. ECG-INT

Varying the value of the parameters from those of
the ECG attractor, a region of the graph T, vs. T,,3
seems to approach tangentially the identity line lead-
ing to a curious kind of intermittent behaviour. Plots of
the drip intervals and some windows of this attractor
(ECG-INT), together with their corresponding power
spectra are displayed in Fig. 10. The system alternates
between three different states in a chaotic fashion: a
relatively long state (up to 100 drops), where it be-
haves like in a cyclic attractor of period 3, another
shorter state (typically of about 20 drops) where the
system appears to be in cyclic attractor of period 2
in which the two time intervals gradually got shorter
(“contracting™), and another state of variable dura-
tion where the system visits points on the curve either
in an irregular manner (chaotically) or with a brief
cyclic behaviour with a high period (like 6, for exam-
ple). In Fig. 10b we can see a succession of several
“contracting” period 2 states, a period 3, a period 2,
a period 6, and then an alternation of period 2 and ir-
regular behaviour. Both spectra shown in Fig. 10, ex-
hibit high peaks around frequencies 3 and 1, but they
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Fig. 5. (a) Poincaré map of the drip intervals of the attractor ECG shown in Fig. 4. (b) and (c) are the respective enlargements of
regions W1 and VI of (a). showing the substructure of the set present in several other regions. (d) Enlargement of region V2 of (c).
300,000 data were used for reconstructing the attractor that is partially shown here.

are enhanced in that of Fig. 10f computed from data
of Fig. 10b. The continuum of frequencies is a mani-
festation of chaotic behaviour (the positive Lyapunov
exponents found below reinforce this idea), while the
other main peaks probably are the result of the rare and
brief cyclic states with high period numbers. More tan-
gent intermittence of attractor ECG leading to tangent
bifurcations is discussed with the scan of parameters.

3.3.2. PAR-INT

The attractor PAR-INT of Fig. 11 was found by
changing a little the value of the parameters from those
of the attractor PAR. In Fig. 11a the strange kind of
cyclic behaviour of this intermittent attractor can be

clearly seen. This attractor is more interesting since
the “cyclic” regions are in fact 5 wide bands visited
successively (like in a period 5 attractor), but the ex-
act positions inside them remain chaotic. The inter-
mittent behaviour manifest when once in a while the
attractor leaves these bands to visit points in between.
The broad peaks of the power spectrum are a conse-
quence of the wide of the bands, while the presence
of all the other frequencies in a smaller proportion
are due to the windows with irregular movement. The
behaviour, and therefore the spectrum, is somewhat
similar to that of the period 5 and the PAR attractors,
shown in Figs. 1c and 3b, respectively.
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M(n+1)

Fig. 6. (a). (b) and (d) arc 3-dimensional Poincaré maps of the attractor ECG reconstructed from drip intervals (2 different views)
and masses. respectively. (¢) Poincaré map (in 2 dimensions) of the series of masses of attractor ECG. This is a projection of the
3-dimensional map of (d). Notice that by construction, 2 of the 3 projections onto planes of the 3-dimensional maps must have exactly
the same shape. All curves present the same kind of substructure shown in Fig. S.

3.4. Scan of parameters

Using bifurcation diagrams, Fig. 12 exhibits the be-
haviour of the system for some regions of the space of
parameters. In Fig. 12a we variate parameter f and ob-
serve the transition from the chaotic attractor ECG to
a period 2 and then period | attractors. Fig. 12b show
with more detail the region of the transition from at-
tractor ECG to period 2. We can appreciate the way in
which the higher density zones of the attractor evolve
with the change of f. abruptly contracting to the 2
values of the cyclic attractor. Fig. 12d shows in detail
the way in which the transition occurs. We examined
this behaviour and discovered that, as f increases, the
attractor ECG becomes intermittent and gradually sta-
bilizes into a period 2 attractor. Notice that the plot has
300 dots per vertical line, of which, most are concen-

trated in 2 dense bands that correspond to the laminar
stage of this intermittent version of the ECG attractor.
The few dots outside from these bands correspond to
the short escapes from the tangential region. As f in-
creases, these bursts become less frequent. A second
return map of the time intervals (7, vs. T,42) con-
firmed that this intermittent behaviour correspond to
a tangent bifurcation.

Fig. 12c shows in detail an irregular section of Fig.
12b. Here we can appreciate how attractor ECG gives
way to period 12 attractors in an irregular and alter-
nated manner. This diagram also makes clear that in
this region, attractor ECG has a set of definite values
(those of the period 12 attractor) and sometimes inter-
vals (or bands, as seen in Fig. 4b) visited more often
than the rest. When looking carefully at Fig. 12b, we
can track the evolution of this values as the parameter
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Fig. 7. (a) 3-dimensional Poincaré map of the attractor ECG reconstructed from the hanging masses (after the moment of the detachment).
(b) 3 dimensional plot of the drip interval, mass and velocity of each drop of attractor ECG. (c) 2 dimensional plot of the hanging
mass and the velocity of each drop of attractor ECG. (d) 3 dimensional plot of the drip interval, mass and hanging mass of each drop of
attractor ECG. Notice that these plots give us information about the evolution of the states of the system.

f changes (for example those values of the period 12
attractor can be seen as curves of different shades in
Fig. 12b).

In Fig. 12e we can follow the succession of attrac-
tors ECG, period 2, 4, 2 and | when increasing pa-
rameter g. A blow-up of the transition from period 2
to 1 (Fig. 12f) illustrates a pitchfork bifurcation and
the behaviour described in Fig. 2. This diagram was
made eliminating the first 100 time intervals for each
value of the parameter g, and plotting the next 200.
For some values of g this is enough to clear all tran-
sient states, but in the regions with a very thick curve,
transient states last more and we can see a single value
of the time intervals in their evolution towards 2 well
differentiated values. Table 1 shows a summary of the
behaviour of the system for various sets of parameters.

3.5. Hausdorff and correlation dimensions

In order to quantify the strangeness of some of the
attractors described above we evaluated their Haus-
dorff and correlation dimensions using the method de-
scribed by Grassberger and Procaccia [20,21] with

series of about 130, 000 data. Table 2 shows the val-
ues found for the series of drip intervals and masses
of these attractors. The different values of both di-
mensions obtained for a single series of data describe
the distribution of points inside the attractor: for an
homogeneous distribution the value of the correlation
dimension equals that of Hausdorff, while for hetero-
geneous distributions the correlation value will always
be smaller.

3.6. Largest Lyapunov exponents

Due to the difficulties associated with this kind of
data and to the discontinuity present in the equations
of the system, the largest Lyapunov exponent was cal-
culated in two ways, one using the system equations
and other using the series of data. From the system
equations we let a difference vector evolve [22] care-
fully handling the discontinuity [23], and we used it
to evaluate the exponent while integrating the equa-
tions, arriving to an approximate value certainly above
zero. On the other hand, using the series of data of the
reconstructed attractors with the method of Wolf [24]
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Fig. 8. (a) Series of drip intervals of the attractor ECGPAR. Notice that the several bands with higher density of dots are mostly grouped
in two regions. (b) Poincaré map of the drip intervals of figure (a). (c) Plot of the drip intervals of (a) against the second following
drip interval. This is a projection of the curve shown in the next plot. {d) 3-dimensional Poincaré map of the data of (a). (e) Power
spectrum of data shown in (a). In the same way that we mentioned for the previous attractors, protuberances in this spectrum might be

closely related to the number of bands present in (a).

we obtained the values shown in Table 2. These posi-
tive values together with the non-integer values of the
dimensions offer a very strong numerical evidence of
the existence of strange chaotic attractors in the oscil-
lator model for the leaky tap.

4. Discussion

We studied the dynamics of an oscillator model for
the leaky tap and found it to be very rich. Cyclic and
strange attractors of the system were analysed with
qualitative and quantitative methods, and evidence for
chaos has been found. Our results show that the system
of equations (1)-(5) provide a reasonable model for
the dripping system. We believe the modification to
Eq. (5) is an important ingredient in the improvement

of the model.

Since not all the analysis presented here has an
equivalent among the experiments for the real leaky
tap, we focussed on some of our results and observed
that the model reproduces many qualitative character-
istics of the real system. Various experimental studies
[ 10-12] have reported cyclic attractors of period 1, 2
and 4, and the unexpected periods 3 and 5 [12,25],
alt of them also found in the model. The transitions of
periods 1 « 2, and 2 < 4 as well as the tangent bifur-
cations and the intermittence observed in the model
have also a counterpart in the experiments of the real
system [25]. We consider the similarities in the in-
termittence phenomena found (tangent intermittence
and alternation between chaos and cyclic behaviour
of various periods) as a strong link between both sys-
tems. The strange attractors ECG and PAR are very
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Fig. 9. (a) 3-dimensional Poincaré map of the attractor ECGPAR reconstructed from the velocities. (b) Poincaré map of the velocities of
the same attractor (projection of (a)). (c¢) 3-dimensional Poincaré map of the hanging masses of attractor ECGPAR. (d) Projection of
(¢). (e) 2 dimensional plot of the mass and the hanging mass of each drop of attractor ECGPAR. (f) Plot of the masses of attractor
ECGPAR against the third following mass. Notice that the highly complicated curve shows the quick loss of correlation between data.

similar to some others found experimentally [9-11].
Complex shaped attractors found in experiments with
reduced noise conditions like that shown by Sartorelli
et al.(Fig. 12b of Ref. [25]), are very closely matched
by attractors in our model (see attractor ECGPAR,
Fig. 8b).

Inversely to what is generally thought to happen
with the leaky tap, increasing the flow parameter of

the model makes the system pass from a periodic to a
chaotic regime. Results for the real drop system show
the same kind of behaviour {25]. However, a dif-
ference between both systems is the thickness of the
time-delay plots of the attractors due to the noisy ex-
perimental systems and to the difficulties for counting
neither more nor less drops than there are (optical de-
tectors in the experiments frequently cannot count too
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small drops, and if they are sensitive enough for them,
they also count fragments of a drop as several ones
[26]. See photographs of the process in {11]). We in-
tend to address this point in the near future by adding
simulated noise to the model, and setting a threshold
for the mass of the drops.

As we mentioned before, looking at an attractor
using reconstructions made of different variables
(drip-intervals, masses or velocities) can simplify
the characterization of the attractor. We have seen
the difference in the complexity for the plots of the
hanging mass and the velocity of attractor ECGPAR
(Fig. 9). In the case of attractor PAR we found an

even more drastic difference between both recon-
structions, namely, the apparently abrupt folding of
the curve in Fig. 3f. Inspired by the smoothness of
reconstructions made from the other variables, we
magnified the region of the fold to discover that this
was not a sharp joint but a smooth bending. This is a
typical example of a characteristic that can be difficult
to see when working with one variable and obvious
when analysing another one.

After looking at the attractors substructure in mag-
nified plots we expected a somewhat larger value for
their dimensions. The values found could have been
produced by a mixed behaviour, having parts of the
attractor contained on a single line (with Hausdorff
dimension less than 1) and some others like those in
Fig. 5, pertaining to subsets with an apparent greater
dimension (between 1 and 2). At present we are cal-
culating the dimension of several different parts of
the attractors with the hope of finding different values
for each subset although it seems very likely that this
mixed behaviour is in fact present all over the attractor.

Although period doubling is a common feature of
both systems, the experiments [12] and the model
show that the succession of periods is not strictly or-
dered (i.e. not monotonously increasing with the vari-
ation of the parameters) as one would expect if the
system only were following a period-doubling route
to chaos (Table 1). On the other hand, both systems
exhibit transitions to chaos through tangent intermit-
tence. A further search in the space of parameters is
being carried out to clarify the route to chaos (we
present some results in [27]). New bifurcation dia-
grams are being analysed aiming at obtaining a more
detailed description of the attractors (like the length
of laminar regions) and the critical values of the pa-
rameters (when the system abruptly changes its be-
haviour).

We must realize that the model can be thought of
as a coupled harmonic oscillator (Eqgs. (1) and (2))
and a relaxation oscillator (Eqs. (3) and (4)), where
the solutions to the equations are continuous during
each time interval 7,. The analytical solutions can be
expressed as a map for the variables T, M, V, and
Q between steps n and n + 1. Such a treatment of
the electrical model for the leaky tap [28] has shown
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Fig. 12. Bifurcation diagrams. (a) Transition from chaotic attractor ECG to a period 2 and 1 attractors while varying parameter f. (b)
Magnification of (a) showing the evolution in the distribution of time intervals as f increases. (¢) Blow-up of a section of (b) with
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from chaotic attractor ECG 10 a period 2, 4, 2 and 1 attractors while varying parameter g. (f) Inspection of a inverse bifurcation shown
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were much longer than 100 drops, and follow a smooth divergent tendency from one to two values.
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Table 2

Correlation dimension ( Do ). Hausdorff dimension (Dy) and the largest positive Lyapunov exponent (A+4 ) for some of the reconstructed

attractors

Attractor Data Deorr Dy A++ (bits/drop)

PAR (f=034,4=032,Ah=10) drip intervals 0.941 £ 0.064 0.994 £+ 0.056 0.238 + 0.023
masses 0.938 + 0.069 1.011 & 0.062 0.2454+0.018

ECG (f=0.10.g=034,h=7) drip intervals 1.201 £ 0.057 1.236 + 0.066 0.927 + 0.021
masses 1.225 4+ 0.069 1.264 £ 0.071 0.928 + 0.021

ECGPAR (f=0.10.g =032, =10) drip intervals 0.843 + 0.051 0.955+ 0.054 0.511 £+ 0.038
masses 0.887 £ 0.053 0.972 + 0.051 0.539 £+ 0.042

ECG-INT (f=0.10,g=036,h=7) drip intervals 1.108 £+ 0.056 1.140 + 0.059 0.663 + 0.025
masses 1.110 + 0.058 1.141 &£ 0.060 0.674 + 0.035

PAR-INT ( f =0.338,¢=0.325,h = 10) drip intervals 0.882 + 0.037 0.905 £+ 0.056 0.212 £ 0.031
masses 0.881 £ 0.040 0.910+ 0.050 0.230 4+ 0.023

a map similar to the twist and flip map described in References

[29].

Given the rich dynamics found in the model, we
continue investigating the system in several areas. At
the moment we investigate the map associated to the
equations of the variable mass relaxation oscillator
presented here. In connection with the succession of
unstable periodic motion of chaotic attractors like
ECG-INT, we are applying some control concepts to
the model and to the real system.
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