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Abstract

Numerical evidence for the existence of strange chaotic attractors is found in a variable-mass relaxation oscillator model
for the dripping faucet. We exhibit bifurcation maps which illustrate the richness of the model dynamics; we also have found
simple periodic attractors up to period-12. More complex attractors exist which, after computing their fractal dimension and
maximal Lyapunov exponent, can be regarded as both strange and chaotic. We have found evidence of boundary crisis and
intermittence, as recent experimental results have shown to occur in the actual dripping system.

PACS: 02.70+d; 47.20.Tg; 03.20.+i

The dripping water faucet, also called the leaky tap,
has been studied experimentally in various ways [1-
6] as one of the paradigmatic examples of chaotic be-
haviour. These studies have not been exhaustive since
some unresolved questions on the system remain. It is
not even known what the route (if there is only one)
to chaos followed by the system is. Recent experi-
ments of Sartorelli et al. [6] have exhibited the exis-
tence of boundary crisis, intermittence related to tan-
gent bifurcations and intermittent behaviour between
even periodic attractors. Little has been done though
to model the dynamics of the dripping faucet, the
only attempts we are aware of are the one-dimensional
feedback-loop model of Austin [7], the electric ana-
logue used by Bernhard [8] and the variable mass

1 E-mail: giso@doc.ic.ac.uk.
2 E-mail: salas@Isd.uam.mx.

oscillator model of Shaw [9]. This paper presents
results of numerical investigations of a new variable
mass relaxation oscillator model for the dripping sys-
tem. The model considered is an improvement of the
model originally proposed by Shaw. The modification
introduced allows for a closer qualitative correspon-
dence with the experimental situation.

Let us note that, with the exception of Bernhard’s
model [8], none of the other models has been sub-
jected to systematic studies. In particular, Shaw’s os-
cillator model has never been thoroughly tested, look-
ing for strange attractors or chaotic behaviour. Ana-
logue simulations carried out by Shaw and collabora-
tors [9] are the only pieces of evidence for the ap-
propriateness of the model in capturing the essentials
of the dripping faucet behaviour. This is surprising,
since the dripping faucet has been used as a sort of
“role model” in modelling magnetospheric processes
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Fig. 1. A bifurcation diagram for the relaxation oscillator model for the leaky faucet. In all the bifurcation diagrams exhibited transients
were discarded unless otherwise indicated. Notice the chaotic region at lower values of the “flow rate” f. (a) The attractors (in 7,) at
g=032and h =7 as f is varied. Periodic behaviour and crisis are casily spotted in some regions of the diagram. The conspicuous gap
in the region around f = 0.35 suggests that the gap road to chaos may have some bearings with the model’s behaviour although further
analysis is required to fully understand this phenomenon. (b) Enlargement of the chaotic region at the center of (a). The gap, crisis and an
inverse cascade can be discerned. This exhibits that in some regions of parameter space, the systems follow a period-doubling route to chaos.
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[10], but also because the characteristic pattern of
chaotic relaxation oscillations might be of interest on
its own as well as for other applications. In this work,
we try to partially remedy this situation by reporting
studies of our modified oscillator model. The model
conceives the drop as a kind of one-dimensional os-
cillator [11,12]. The mechanical elastic force in the
oscillator is regarded as modelling the cohesive forces
(basically the surface tension ) of the liquid. Since
the dripping is driven by the water flow into the hang-
ing drop and by the related gradual increase of the
drop’s weight before the breaking off, we considered
the oscillator as varying its mass at a constant rate f
- which may be thought of as the water flow rate into
the drop - and as subjected to a constant external force
g. The basic non-dimensional, first-order equations of
the model are then [9,13]

dx  dy x+y
o~ & Tm
where x is the position, y the velocity and m the mass
of the oscillating drop. This set of equations has to be
supplemented with a mechanism allowing for the de-
tachment of a drop. This mechanism is quite simple:
when the x-coordinate of the oscillator reaches a pre-
fixed value x. (analogous to the meniscus length), the
mass of the oscillator is made to diminish abruptly,
thence simulating a drop, by a quantity

dm
& E_f’ (n

Am=hm(t)y(1), (2)

where £ is another constant and Am is regarded as the
mass of the falling drop. In the non-dimensional co-
ordinates we use, we normalize to unity the value of
x¢. In Eq. (2) resides the main difference with Shaw’s
model. For, in the original model, Am was considered
as proportional to y only, whereas we have made it
also proportional to the current value of m. This mod-
ification has an evident physical basis, provides better
control on the minimum size of the falling drops and
allows greater flexibility in the admissible range of nu-
merical values for the three ( f, g, #) control param-
eters. The drop-detachment mechanism also provides
the crucial nonlinear ingredient for both a threshold
and a quick depletion of the mass accumulated thus
allowing relaxation oscillations.

For gathering evidence of complex attractors in the
model, we have numerically integrated Eqs. (1) to-
gether with condition (2). Whenever a dripping oc-
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Fig. 2. Bifurcation diagram illustrating the transition from the
chaotic attractor ECG, at f = 0.1 and h =7, to period-2, -4, -2
and -1 attractors through inverse bifurcations, while varying g.

curred, we recorded the lapse of time between the pre-
vious drop and the present one, i.e. we recorded the
drip interval T, (where n is the drop number), the
mass M,, the speed at the moment of the detachment
Y,, and the mass remaining in the nozzle g, — even
though the remaining mass may be computed from the
otherdataas O, =Qo+ f Y i Ti — >y M.

We have thoroughly searched for attractors in the
region 0.05 < f<2,0.1 < g< 1,5 < h < 11 avoid-
ing the zones of “saturation” (i.e. parameter ranges
where the mass remaining after detachment is so big
as to prevent further oscillations). Results of some of
the computations are exhibited in the bifurcation dia-
grams of Figs. 1-3. As we fix two of the parameters
and vary the third (for example, in Figs. 1 and 3 f is
varied while g and 4 are kept constant), the system
shows chaotic and periodic windows, cascades and
crisis. The sudden changes in the attractors may be
related to a boundary crisis as there are no apprecia-
ble changes in the mean values [20]. In some regions
of the parameters there are chaotic and periodic win-
dows intermingled at apparently any scale in the way
fractals show substructure. This behaviour is worth a
more detailed analysis that will be presented in a forth-
coming article. The gaps appearing in the bifurcation
diagrams may be considered as reinforcing the sug-
gestion [14] that the so-called “gap” road to chaos
[15,16] might be present in models of the leaky tap
dynamics - mainly due to the discontinuities related to
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Fig. 3. Bifurcation diagram illustrating the transition from an instance of the chaotic attractor ECG at g = 0.34 and h =7, to period-2 and
-1 attractors, while varying f. (a) The whole interval 0.095 < f < 0.415 in which the transition occurs. As in Fig. la, chaos occurs at
low f values. (b) Blowup of a region of (a) clearly showing crisis and a periodic window. (c) Magpification of (b) showing crisis and
the period-12 window in the region 0.10490 < f < 0.10494. (d) Close-up of the small region (0.112466 < f < 0.112478) of (b) where

the transition from chaos to a period-2 attractor occurs through tangent intermittence.

drop detachment. However, at present we are not cer-
tain how closely related the system behaviour and the
gap road are. On the other hand, in Fig. 3d we show
a region of parameter space where the transition from
chaos to period-2 behaviour happens through tangent
intermittence [17].

In what follows, we shall employ time-delay plots
for reconstructing attractors from chaotic windows in
analogous fashion to what is done with experimen-
tal data. Apart from periodic attractors, we have un-

covered some qualitatively different types of complex
attractors, from which we will show here a particu-
larly interesting example. This suffices to ascertain the
complex dynamics of the relaxation oscillator model
for the dripping faucet and of the existence of crisis
and intermittence in the attractors. A more complete
discussion of the dynamics together with a catalogue
of the different chaotic attractors we have discovered
so far will be given in a more detailed paper [18].
A conspicuous feature of the model in the param-
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Fig. 4. The ECG attractor occurring at f = 0.10, g =034, h=7.0. (a) x-y projected phase-space trajectory corresponding to about 100
drops. (b) Time-series of drip intervals for ECG. Notice the two bands with higher density of points, corresponding to what we call a
pseudo period-2 behaviour. (¢) Power spectrum of the ECG attractor. Very broad peaks appear in the neighborhood of frequencies 1/8,

1/4, and 1/2. The Nyquist frequency is 1/2.

cter range investigated is the dominance of periodic
attractors. For most values of ( f, g, A), the system
shows a quick convergence to cyclic attractors of pe-
riod 1, 2, 3,4, 5, 8 or 12 (some of these attractors are
clearly evident in Figs. 1, 2 or 3). The last periodic
attractor is not so dominant, though, as we manage
to discover it only after analysing the bifurcation di-
agrams (see Fig. 3). We do find evidence of strange
attractors, as is also quite clear from the figures. An

example of this is presented in Fig. 4 where the attrac-
tor nicknamed ECG is shown both as a x—y projected
trajectory (Fig. 4a) and as a time series of 35x10*
of its drip intervals (Fig. 4b); we also exhibit there
the power spectrum associated with the time series
(Fig. 4c). This attractor is found at the parameter val-
ues g = 0.34, 1 = 7.0 and in the neighborhood of
f =0.10 (within the range of parameters exhibited in
the bifurcation diagrams of Fig. 3). Notice the accu-
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power spectrum

0.1 0.2

mulation of points around two values which is rather
evident in the time series of ECG (Fig. 4b). If these
were experimental results such a behaviour could be
mistaken for a noisy period-2 attractor. A similar be-
haviour may be observed in experimental data; we
have observed it in some data at our disposal [4,18]
and, with some imagination, in the results of Caha-
lan et al. [5]. Evidence for this (we call it a pseudo
period-2 behaviour) is also found in the power spec-
trum, shown in Fig. 4c, associated with this particular
attractor. This power spectrum was calculated using
not only the points shown in Fig. 2, but using drip in-
tervals totalling 1.3 x 10°. Notice the broad peak near
1/2 which corresponds to the dense accumulation of
points mentioned before and the even broader peaks
at 1/4 and 1/8 which may indicate a similar behav-
ior for a somewhat hidden pseudo period-8 behavior.
The crises occurring when either f or g vary whereas
the other two parameters are fixed are shown in Figs.
2 and 3, respectively. The transition exhibited in Fig.
3d, from chaotic to period-2 behaviour, occurs through
tangent intermittence [17].

As a further check for the existence of attractors at
these parameter values, Figs. 5 and 6 show different
time-delayed reconstructions of 3x10° drip intervals
for the ECG attractor. Fig. 5 exhibits a T, versus

0.3 0.4 0.5
frequency

Fig. 4. Continued.

T, two-dimensional reconstruction together with the
blowup of two of its regions. The existence of sub-
structure is rather evident there, this pinpoints the frac-
tal nature of the attractors which thus may be called
strange. The Hausdorff dimension associated with the
ECG attractor was found to be Dy = 1.24 + 0.07. In
these reconstructions is also noticeable the existence
of crisis, i.e. regions where chaotic attractors suddenly
become periodic attractors [20].

The ECG attractor was also reconstructed using the
variables M; and Q; (Fig. 6) and 3D time-delay plots.
Notice that the same kind of substructure is present in
both the masses and the drip-interval reconstructions,
this in spite of their apparently different global struc-
ture. The Hausdorff dimension calculated for these re-
constructions (Dy = 1.26 £0.07) serves as confirma-
tion of the fractal behaviour of ECG. The fractal di-
mensions given here were calculated using the Grass-
berger and Procaccia algorithm [21], as implemented
by Oropeza-Lépez [22], using 1 x 10° points.

We have also found a sort of, let us say, “unstable”
behaviour in some periodic attractors where, for ex-
ample, a seemingly period-4 attractor eventually and
gradually evolved toward a period-2 attractor (Fig. 7).
Since the final behaviour is a stable period-2 attrac-
tor, we have to say that the initial was the only tran-
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Fig. 5. Return map reconstructions of the ECG attractor of Fig. 4. 3 x 10° points were used for the reconstruction. The fractal dimension
of ECG is ~ 1.3. (a) Time-delay plot of drip intervals. (b) Blowup of the W region of (a). (¢) Blowup of region V. (d) Blowup of a
small region of (c) near the tip, exhibiting the substructure of the set.
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Fig. 5. Continued.
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Fig. 6. Other reconstructions of the ECG attractor of Fig. 4. The ECG attractor has an estimated Hausdorff dimension Dy ~ 1.3 and a
maximal Lyapunov exponent A+ =~ 0.9 bit/drop. (a) 3D reconstruction using drip intervals. (b) 2D time-delay plot reconstruction using the
detached-mass data M;. (c) 3D time-delay plot using the detached mass data M;. (d) 3D time-delay plot using the hanging mass data Q;.

sient state which seemed to be periodic. This process
illustrates the soft transition that takes place between
period-1, -2 and -4 attractors shown in Fig. 2, and also
has stimulated the search for a region of parameter
space where intermittence between even periodic at-
tractors may be found, as recent experimental results
have shown to occur in the actual dripping system [6].
In fact, we have also found a sort of intermittent ver-
sion of the chaotic attractor ECG, in which brief states
with periodic behaviour of periods 2, 3 and 6 alternate
in an irregular manner.

Another kind of intermittence, similar to that re-
ported in Ref. [6] - see Figs. 12 and 14 in Ref. [6]
-, has been found in the model dynamics. This is il-
lustrated by Fig. 8 where intermittence between chaos
and period-5 behaviour is exhibited. But the agreement
between Fig. 8 and the results of Ref. [6] is qualita-
tive and, at this time, based mostly on resemblances.
Further investigations are needed to ascertain whether

this is the same kind of behaviour or not.

Since fractal properties of attractors cannot guar-
antee chaotic behaviour, we have evaluated the max-
imum Lyapunov exponent A for the ECG attractor.
We did this using two methods. The first one uses the
equations of the model to follow the evolution of a
small separation vector £(t) between nearby trajec-
tories, carefully handling the discontinuity [13] and
using

HEWDN
1ECO) ||’

to evaluate the maximum Lyapunov exponent. In this
way we were able to get a value certainly above zero.
However, since some practical problems occurred dur-
ing the computation and we were not completely sure
of the reliability of the value obtained, we employed
another method using again an experimental-data ap-
proach. We analysed the series of drip-interval and

3)

= hm log
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Fig. 7. Two views of the transition from period-4 to period-2 behaviour occurring in the model at parameter values f = 0.1, g=0.5, h=7.
As the final period-2 behaviour is stable, the initial state is a transient which only seems to be periodic. (a) Series of drip intervals. (b)
Time-delay plot.
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Fig. 8. Tangent intermittence between chaos and noisy period-5 behaviour is exhibited here (f = 0.338, g = 0.325, h = 10). A similar

behaviour has been found in the experimental system [6].

mass data employing the algorithm of Wolfet al. [23]
to estimate the value of A... In this way, we were able
to obtain the value A, ~ 0.9 bits/drop for the ECG at-
tractor. Though we cannot consider the numbers given
here as definitive, we do think that our results offer a
strong numerical evidence of the existence of strange
chaotic attractors in the relaxation oscillator model for
the dripping water faucet. We are now trying to con-
vert the system (1) to an equivalent mapping which
perhaps might be the best way of modelling the sys-
tem and studying the system further on.

We conclude then that the variable-mass relaxation
oscillator presented here is a reasonable model for the
dripping faucet. Though, obviously, not all the results
of the numerical studies of the model have experi-
mental counterparts, others can reproduce qualitative
characteristics of the actual system. On the similar
features, our results show that the periods do not in-
crease in the way one would expect if it were follow-
ing the period-doubling route to chaos. The model as
well as the experimental system can reach a chaotic
state through tangent intermittence. In fact, the route
to chaos followed by the model seems to depend on
the region of the space of parameters. It is also the
case that, contrary to earlier expectations, chaos tends

to be greater at low values of the “flow rate” f. The
same is also true of the experimental realizations of
the dripping faucet [ 1-6,19]. The model also exhibits
attractors similar to some found in the experimental
system. In particular, the attractor ECG has experi-
mental counterparts found in several studies [ 1-6,18}.
However, there are also obvious differences. One of
the most conspicuous is the absence of closed-loop
attractors as those reported in Ref. [4]. We think the
model is worth further analysis [18].
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