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1 Summary 

Most Magnetic Resonance Imaging (MRI) techniques require to send and receive long electromagnetic 
pulse sequences. In order to scan regions of the body which do not remain static such as the heart, the pulse 
sequences have to be divided, and its parts sent during different heartbeats in order to capture the heart 
always at the desired phase of its cycle (this has recently been termed segmented cine MRI[1]). Therefore, 
a single image normally contains the averaged information of several heartbeats [2]. 

Electrically gated imaging techniques [3–5] employ electrocardiographic (ECG) signals in order to 
synchronise the data acquisition with a specific phase of the cardiac cycle. After detecting a peak in the 
electrical activity which corresponds to the QRS (or R) wave of the ECG, a constant time offset dictates 
the moment for collecting the data pulse in every heartbeat. In this way, the phase of the cycle to be imaged 
is selected by assigning a prefixed value to the offset. The longer the offset, the later the phase of the cardiac 
cycle. 

These methods assume that the position of the heart within the cycle is uniquely determined by the time 
elapsed since the occurrence of the QRS wave in the electrocardiogram. However, this is only an 
approximation [6–8] and since data collected to form an image proceeds from somewhat different phases 
of the cardiac cycle, the obvious consequence is the degradation of the images, particularly those of the 
late (diastolic) phases. 

Furthermore,in cases where images of the early systolic phase of the heart are required (in order to analyse, 
for instance, atrial contraction or supra-ventricular tachyarrhythmia [?]), standard (also known as 
prospective) ECG gating can not be used because it relies on the detection of the R-wave complex, and this 
takes place during ventricular contraction, after the early systolic phase. Methods such as retrospective 
gating continuously acquire MR data, which with the use of the ECG, can retrospectively be assigned to a 
phase of the cardiac cycle and hence used to form the corresponding image in the cycle. Although 
retrospective gating can be used to acquire images of the early systole, the quality of these images is inferior 
to mid-systolic images acquired with prospective gating. Another very important limitation is that 
retrospective gating cannot be used to produce tagged (SPAMM) imaging [?], probably the most reliable 
imaging technique used for the study of non-rigid motion of the heart [?,?,?,?]. 

In this work we propose a new imaging method where the time offset used for gating is not constant but 
changes from beat to beat. We will use the expected length of every cycle (basically the R-R intervals) to 
calculate an offset that can point more accurately towards the desired phase of the cardiac cycle, and which 
includes the early systolic phase that precedes the R-wave. For this purpose we need (1) to evaluate the 
existent formulas that relate R-R interval to the diastolic fraction [6–9], and then, during the time of 
imaging, (2) to predict the length of the next R-R interval using a priori knowledge of the dynamics of the 
heart and information of the data patterns obtained during the first minutes of the study. 

Several time series analysis and forecasting techniques [10–12] have been proposed and used for the study 
of financial, biological and other naturally occurring time series [?,?,13–15]. In particular, there is 
widespread interest in the study of the cardiac rhythm, with specific applications for instance to 
defibrillators and pacemakers [16,17,?]. However, the present problem perhaps requires the development 
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of a new or hybrid method in order to achieve the rapid and accurate forecast necessary to allow the 
computed time offset to be used for gating by the MR scanner [18], while at the same time exploiting the 
fact that there are virtually no limitations in terms of data storage space or computer size (which is not the 
case for pacemakers applications). 

We intend to combine all possible subject-specific data, with general knowledge about heartbeat dynamics. 
Subject specific data will mostly be extracted from the relatively short data series acquired during the set 
up of the MR scan and accumulated through the study (studies using such short data sets of heartbeats have 
been shown to yield satisfactory results [16,17]), but will also incorporate any existing prior ECG studies 
of the subject. A hierarchical inference scheme for blending general heartbeat dynamics with the subject 
specific data will be developed. 

To the best of our knowledge Predictive Gating is a completely novel and very promising technique that 
could also be used in other fields like nuclear imaging. 
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3 Background 

Motivation and main objectives OJO HERE MOVE / ADD more ? 

– Improve atrial and early-systolic ventricular imaging (without interpolation as in current te-
chiniques), 

– Achieve tagged imaging of atrial and early-systolic ventricular contraction , 
– Improve general cardiac MR image quality– Produce MR images of arrhythmic heartbeat states – 

... here ? 

3.1 Current Clinical Needs 

Atrial Arrhythmias The heart’s natural pacemaker, the sinoatrial (SA) node, is a specialized group of 
cells located high in the right side of the heart, where the electrical impulse that causes the heart to beat 
originates. The impulse travels down a pathway, first causing the atria to contract, followed by the 
ventricles. Arrhythmias are irregularities in the normal rhythm of the heartbeat that originate either in the 
atria (superventricular)or ventricles (ventricular). These alterations to the cardiac rhythm can be caused by 
a number of mechanisms and are a major cause of morbidity and mortality affecting all age groups. 

In the most common abnormal cardiac rhythm, called Atrial Fibrillation (AF), the impulses originate in a 
very fast and irregular manner and from various regions of the atria, not necessarily the SA node, causing 
the atria to quiver instead of beating. During AF, the upper chambers of the heart beat between 350 and 
600 times per minute, instead of 60 and 80 times per minute of the normal heart rhythm. Recent 
investigation shows that if a patient has high blood pressure, heart valve problems, or cardiac muscle 
damage, AF can increase the risk of heart failure [?]. Because AF impairs the pumping function of the 
heart, the blood is not completely emptied from the heart’s chambers, causing it to pool and sometimes 
clot. In about 5 percent of patients with AF, clotted blood dislodges from the atria and results in a stroke. 



The American Heart Association estimates that in the U.S. alone, AF is responsible for over 70,000 strokes 
each year [?]. Atrial flutter is a more organized but still fast arrhythmia triggered when an impulse circles 
the heart’s upper chambers instead of moving to the lower chambers. In atrial flutter the atria beats between 
240 and 300 times per minute and usually only every other flutter wave reaches the ventricles. 

Atrial and early-systolic ventricular imaging - state need for atrial imaging 

- retrostpecive intepolted images.. 

We must mention that although alternative cardiac imaging modalities for atrial contraction exist, such as 
3D echocardiographyand doppler ultrasound (which do not rely on ECG gating), the resolution and quality 
of the images is greatly inferior to that of cardiac MRI, and in particular the techinques are less suitable for 
tracking than tagged MR since they necesitate a number of, normally not present, naturally occurring 
landmarks [19,?,?]. 

- desirable to image arrhythmic heartbeat states. 

Tachyarrhythmias and RF ablation Superventricular tachyarrhythmias are pathological fast beats often 
caused by an extra conducting pathway between the atria and ventricles. These pathways can allow 
retrograde conduction from the ventricles to the atria, and in combination with the normal pathway, form 
a conducting loop. The mechanism of tachyarrhythmia is propagation of current in the loop independent of 
the heart’s natural pacemaker (atrioventricular re-entry tachycardia). A second and more difficult to treat 
form of tachyarrhythmia arises when the entire current loop lies within the atria (atrial re-entry 
tachycardias). In patients for whom antiarrhythmic drug treatment is ineffective, or leads to unacceptable 
side effects, and for patients with life threatening arrhythmias, radio-frequency(RF) ablation is the 
treatment of choice. The arrhythmia substrate is first assessed by an electrophysiological study, that is, 
using intravascular catheter electrodes placed in different position inside the heart to record intracardiac 
electrograms simultaneously with the surface electrocardiogram. This allows the electrophysiologist to 
mentally form an electrical map of the heart with which to identify the source and pathway of the 
arrhythmia. Treatment then follows by applying a RF current via an ablation electrode which induces local 
hyperthermia resulting in irreversible cellular destruction. Correctly choosing the ablation site is crucial as 
errors can damage the atrioventricular node and result in complete heart block and the need for a permanent 
pacemaker. Also, partial ablation is not only ineffective, but may even be proarrhythmic. The procedure is 
normally guided with x-rays (2D), and thus prone to errors in location and excessive radiation exposure. 

Tagged MRI (SPAMM) of atrial and early-systolic ventricular phases - limitations: atrial/ arrhythmia 
/ early systole 

In previous work (funded by EPSRC grant OJO EPSRC GRANT NUMBER ) we developed a method to 
provide pre- and intra-operative 3D MR guidance in XMR systems (combined X-ray and MRI room). In 
order to locate myocardial regions with abnormal electrical conduction pathways we aquired tagged MR 
sequences and tracked cardiac motion. We then related motion to electrical activation, solving the inverse 
electro-mechanical coupling problem and thus deriving activation isochrones to determine the locations of 
the abnormal conduction pathways [20,21,?]. A limitation found for this type of approach was the 
impossibility of acquiring tagged MR images of atrial and early-systolic contraction. Predictive gating 
overcomes this imaging limitation (see Section ??) and provides a tool for the general study of atrial 
contraction. 

We must mention that although alternative cardiac imaging modalities for atrial contraction exist, such as 
3D echocardiographyand doppler ultrasound (which do not rely on ECG gating), the resolution and quality 
of the images is greatly inferior to that of cardiac MRI, and in particular the techinques are less suitable for 
tracking than tagged MR since they necesitate a number of, normally not present, natural landmarks [19, 
?,?]. 



3.2 Cardiac ECG Gating 

One of the key challenges in cardiac imaging has long been the accurate and reliable synchronisation of the 
scan with the heartbeat. Because of the continuous movement of the heart, whenever data acquisition is too 
slow to occur during a short fraction of the cardiac cycle, synchronization is necessary to aquire data of a 
slice of the heart during a specific phase of the heartbeat. Image blurring due to cardiac-induced motion 
occurs for imaging times of above approximately 50 ms in systole, while for imaging during diastole the 
critical time is of the order of 200/300 ms. In cardiac ECG gated techinques, data acquisition is 
synchronised using the ECG signal recorded during image acquisition. 

Prospectivegating with MRI consists of initiation of the radio-frequencypulses at a fixed time in the cardiac 
cycle determined by the ECG signal. Retrospective gating consists of continuous application of the 
radiofrequency pulses and simultaneous recording of the ECG signal. Later, the data acquired at specific 
phases of the cardiac cycle, as indicated by the recorded ECG signal, are reconstructed into images 
corresponding to specific intervals of the cycle. 

Prospective ECG Gating These are techniques in which image acquisition is triggered by a start pulse 
derived from an ECG recorded from the patient while imaging. The ECG tracing is fed into a circuit which 
produces a trigger signal, to be used as a start signal for data acquisition of the imaging system. The imaging 
system then automatically acquires data for a time series of images or for a few images at different 
anatomical levels. 

In MR imaging, the acquisition of a single image line (in k space) is well possible within the limit of 20/50 
ms, however, the acquisition of an entire image in this time is only possible with using ultrafast MR imaging 
techniques.In simple cardiac gating, a single image line is acquired in each cardiac cycle. Lines for multiple 
images can then be acquired successively in consecutive gate intervals using the standard multiple slice 
imaging and a spin echo pulse sequence. Then, a number of slices at different anatomical levels is obtained. 
The MRI repetition time TR during a ECG-gated acquisition equals the RR interval, and the RR interval 
defines the minimum possible TR. If longer TRs are required, multiple integers of the RR interval can be 
selected. When using a gradient echo pulse sequence, either multiple slices at different anatomical levels, 
multiple phases of a single anatomical level or any combination of the two can be acquired over the cardiac 
cycle. Thereby up to 50 phases of a single anatomical slice can be obtained. When ultrafast imaging 
techniques are used, several image lines are acquired in the time intervals defined above. If these lines are 
recorded for a single rather than multiple images, imaging time can be shortened considerably maintaining 
an acceptable temporal resolution. As an example, the acquisition of 8 lines in each cardiac cycle for the 
same image reduces image acquisition of a 128-line image from 128 heartbeats by a factor of 8 to 16 heart 
beats, thus making image acquisition of multiple cardiac phases or anatomical slices possible in a breath-
hold. These latter techniques are termed segmented data acquisition techniques and can be used in 
conjunction with all ultrafast MRI techniques. If multiple phases of the same anatomical slice have been 
obtained over the heart cycle, playback preset Tc are then rejected by the system or a retrospective gating 
is used. Obviously, gating methods yield suboptimal results whenever the patient has an irregular heartbeat 
such as in atrial fibrillation. 

Retrospective Gating These are techniques used in nuclear and MR imaging, in which cardiac-gateddata 
is retrospectively assigned to a cardiac cycle phase and hence to the corresponding image in the cardiac 
cycle. 

In nuclear imaging the RR interval is normally prospectively divided into the desired number N of 
subintervals in standard cardiac gating, and an image is assigned to each subinterval. With the collection 
of data, the exact event time after the ECG-QRS-complex is registered and with the advent of the next 
QRS-complex the actual length of the RR interval is measured. This length varies as each individual’s heart 
rate is subject to normal RR interval variations; the so-called sinus arrhythmia. Alternatively, data are 
collected in the list mode, and the length of each subinterval for the actual RR interval is determined by 



dividing it by N, and the data previously collected (for that RR interval) are retrospectively assigned to the 
N predefined image frames. The result is that all collected data are assigned to images, but that there is a 
small variation in the length of the subintervals, which is adjusted for each RR interval. The advantages of 
retrospective gating in nuclear imaging are subject to debate, because the sinus arrhythmia-induced 
variations of the RR interval predominantly produce changes in the length of diastole, whereas the timing 
of systolic events is much less strongly dependent on heart rate. Hence, retrospective gating introduces 
additional errors into the assignment of events during systole. 

In MR imaging,one reasonto use retrospectivegatingis to avoid an undesiredsignal increase cine sequence 
than nomally appears when using standard (prospective) gating. This unwanted effect is due to the fact that 
for cine MR imaging the TR of the images are selected. Because of the sinus arrhythmia, however, the last 
subinterval before the next ventricular complex is variably prolonged. As a result, the radio-frequency 
pulses sent into the patient with the start of the next RR interval occur after a variable but somewhat longer 
TR compared to the other intervals. As longer TRs result in more signal (gradient echo pulse sequence), 
the first image of a prospectively gated MR cine loop is often noticeably brighter. In retrospective MR 
gating the repetition time TR is kept constant thereby avoiding this signal increase. The subinterval to 
which each image line belongs is then determined and the line is retrospectively assigned to the 
corresponding image data. When collecting data in this way, care has to be taken, that eventually the entire 
k space is filled, i.e. that all phase encoding steps are represented among the image lines assigned to each 
image. In cardiac gated spin-echo imaging, retrospective gating is not used, as the relative variation in TR 
resulting from the sinus arrhythmia (and thus the variation in image brightness) is much smaller than in its 
cine MR imaging. 

Another reason for using retrospective gating is for early systolic or atrial imaging. The QRS complex of 
the ECG, which corresponds to ventricular contraction, appears after atrial contraction has already started, 
hence it cant be used as a trigger for starting data acquisition in real time. Also, because of the normal 
variations of the the R-R interval (called the sinus arrhythmia), a fix offset based on the current QRS can 
not be used to acquire data before the QRS complex of the next heart beat. For this reason retrospective 
gating is used 

3.3 Non-ECG-based gating: self-gating 

The closest state-of-the-art research by other groups trying to circumvent ECG gating is the so-called self-
gating. This approach extracts gating information directly from the raw imaging data acquired, using 
interleaved radial k-space sampling, and has ben tried for cardiac [22] gating, in order to eliminate the need 
of ECG-gating, and more recently on for respiratory [1] gating, for aquiring free-breathing segmented cine 
MRI. Siemens Medical Solutions has released and recently patented [23] software based on this principle, 
although as they point out, “the information about this product is preliminary. The product is under 
development and is not commercially available in the U.S., and its future availability cannot be assured” 
[24], the approach could revolutionize the field. 

However, because this method relies on detecting motion of the heart in order to identifing the 
desired cardiac phase, it seems unlikely that the method will work well for the very early stages of 
cardiac contraction such as atrial or early-systolic ventricular contraction, and there are no 
assertions on that respect [22,1,24] 

Other limitiations of this approach are likely to be in the presence of arrhythmic heartbeat states, and 
... 

3.4 Heartbeat and Arrhythmia Detection and Forecast 

Time Series Forecast and Cardiac Dynamics Approaches to cardiac arrhythmia analysis include various 
techniques such as spectral features [25,26], hidden Markov models [27], supervised learning algorithms 
[28], complexity measures [29], neural networks [30,31], least squares-based prony modeling algorithm 



[32], autoregressive modeling for arrhythmia classification [33], and nonlinear dynamical modeling 
[34,35], among others. 

Some of the main methods used for cardiac arrhythmia analysis and forecast include various techniques 
such as: 

Frequency spectral features: Frequency-domain analyses of ECG (and R-R intervals) are widely used to 
detect, characterise and predict heart rate (HR) fluctuations and arrhythmia, using the distribution of 
frequency peaks in the power spectrum, and even achieving differentiation of general behaviour such as 
ventricular fibrillation-flutter, ventricular rhythms, imitative artifacts and predominant sinus rhythm [25, 
26,36]. 

Hidden Markov models: Hidden Markov modeling (HMM) has been successfully used to model speech 
waveforms for automatic speech recognition. Classification of supra-ventricular arrhythmias, for instance, 
often requires detection of the P wave in addition to the QRS complex. The HMM approach [27] combines 
structural and statistical knowledge of the ECG signal in a single parametric model. Model parameters are 
estimated from training data using an iterative, maximum-likelihood re-estimation algorithm. 

Machine learning algorithms: Machine learning algorithms for the diagnosis of cardiac arrhythmia from 
standard 12 lead ECG recordings use supervised and inductive learning algorithm for inducing 
classification knowledge from examples. The input training records contains clinical measurements from 
ECG signals and some other information such as gender, age, and weight, along with the decision of an 
expert cardiologist. The knowledge representation can be based on the projections of the training cases on 
each feature, and predictions seem to compare positively to other algorithms such as Naive Bayesian and 
Nearest Neighbor classifiers [28]. 

Complexity measures and nonlinear dynamical modeling: Sinus rhythm (SR), ventricular tachycardia 
(VT) and ventricular fibrillation (VF) are different nonlinear physiological processes with different 
complexity, and as such, can be detected and classified using non-linear dynamical systems and complexity 
measures, such as entropy, entropy rate, embedding dimension, frequent deterministic patterns and 
Lyapunov exponents [37,38,29,39,34,35,40]. 

Neural networks: Artificial neural network models have been proposed for the morphological 
classification of single and multichannelECG signals. These are adaptive classifiers with the capacity to 
dynamically self-organize its response to the characteristics of the input signals. Multilayer neural networks 
have also been used to classify arrhythmia QRS complexes, and for ischaemia detection, by differentiating 
between normal and abnormal ST segments using nonlinear principal component analysis feature 
extraction from ECG signals. [30,31,41,40] 

Other common approaches include: prony modeling [32], autoregressive modeling [33], principal 
component analysis [41], wavelet analysis [42] and fuzzy neural networks [40] among others. 

4 Methodology and Program 

In order to overcome the above-mentioned limitations of prospective and retrospective cardiac imaging, in 
this work we propose the new predictive gating imaging techinique, where instead of waiting for the R-
wave (QRS complex) to be detected in order to trigger image acquisition, the time of the start of the next 
heartbeat is forecasted using in-vivo and previously acquired ECG data. The time offset used for gating is 
calculated every heartbeat using both, the time of the R-wave of the current heartbeat, as time zero 
reference, and the predicted time when the next heartbeat will begin, that is, the length of the present 
heartbeat. 

In this manner we can, on the one hand, acquire images of the very early systolic ventricular and atrial 
contraction, which precede the R-wave, and on the otherhand, point more accurately toward any desired 
phase of the cardiac cycle (including those systolic phases posterior to the R-wave, since in the worst case 



scenario, the actual time of the the R-wave that is normally used as a trigger will become available as in 
standard prospective gating). Because we will have an estimate of the time of the initiation of the heartbeat, 
we will be able to produce tagged images preceeding the R-wave. 

The main benefits in terms of cardiac imaging will be: 

– improved image quality during the whole cardiac cycle 
– create images of very early systole/atrial contraction 

• this is currently not possible with prospective gating 
• retrospective gating can but with interpolation and low image quality 

∗ predictive gating could be used without interpolation 
∗ predictive gating could also be used with interpolation, but improving the ’aiming’ to the 

desired cardiac phase and hence with less image degradation than retrospective gating – create tagged 
images of very early systole/atrial contraction 

• currently there exists no cardiac imaging techinque capable of this. Given the importance of atrial 
related diseases (such as AF) and because tagged MR imaging is the best techinque currently 
available for monitoring cardiac motion [?], this objective could be an very important first step for 
cardiac disease monitoring and treatment. 

– open the possiblity to produce MR images of the heart during arrhythmic heartbeat states such as AF. 
– Predictive gating can applied to improve almost any other existing cardiac gating techinque. 

In broad terms, the main steps that we need to take in order to achieve our goals are: 

– To evaluate existent ECG formulas that relate R-R interval to the diastolic fraction, the P-wave 
(corresponding to atrial contraction), and to other relevant segments of the ECG that correspond to 
different phases of the cardiac cycle [6–9]. 

– To build a model of the heartbeat dynamics based both, on a priori knowledge of the general 
dynamics of the heart (or a population-specific behaviour), and on individual heart dynamical (or 
subjectspecific) information. The subject-specific information can be formed from (ECG) data 
obtained before the study, and (primarily) on real-time ECG data obtained durin the first minutes of 
the study and while the image acquistion takes place. 

• A hierarchical inference model for combining the above mentioned sources of information will 
be developed. 

• A system for the classification of the current dynamic state of the heartbeat will also be 
developed to differentiate between sinus rhythm, AF and other heatbeat modes. 

– Design a time series analysis and forecast technique in order to predict heartbeat intervals in sinus 
rhythm and possibly in other arhythmic beating states, in real-time, but without some strong constraints 
typically present in other applications (such as limited storage and processing capabilities as in the case 
of implanted defibrillators [?,?]). 

– Adapt currently existing standard anatomical and tagged MR imaging sequences to, during the time 
of imaging, receive one or several trigger pulses to synchronise data acquisition with the desired phase 
of the cardiac cycle. The timing of the trigger pulses will be computed in real-time from the predicted 
length of the R-R interval and the developed heartbeat dynamical model. 

4.1 Objectives and original contributions 

– Develop models for classifying the different dynamic states of the heartbeat. 
– Develop a hierarchical inference system for fusing population- and patient-specific knowledge of 

cardiac dynamics. 
– Model and predict heartbeat intervals, in sinus rhythm and some arrhythmic dynamic states. 
– Implement a new ECG-gated MR sequence using heartbeat prediction. 
– Acquire anatomical images of early-systole without interpolation. 
– Improve atrial and early-systolic ventricular imaging , 



– Acquire tagged MR images of atrial and early-systolic ventricular contraction (currently not 
possible) 

– Improve image quality in real-time aqcusition 
– Open the possiblity to acquire MR images of the heart during arrhythmic heartbeat states such as AF. 
– predictive gating can be used to improve almost any prospective and retrospective gating thechinques, 

because it introduces a better estimate of the actual times to send the pulses, instead of assuming a fix 
length for them, as the interpolation process of retrospecive gating does. 

To the best of our knowledge Predictive Gating is a completely novel and very promising technique that 
could also be used in other fields like nuclear imaging. 

4.2 ECG data acquisition 

ECG data will be acquired and fed into the computer from the moment the subject lies down in the scanner. 
Normally a few navigation scans and standard (non-tagged) acquisitions are made giving between 15 and 
25 minutes of ECG data. At least a thousand RR intervals can easily be acquired, which is a reasonable 
number of data points to start for methods based on short time series. As the scan progress, more data will 
be accumulated. 

Another source of subject-specific data could be prior ECG recordings of the patient carried out either on 
the scanner, duringconsultation or duringany other study (for instance 24 hours Holter) with prior selection 
of the relevant dynamics at rest. 

Generic data bases with the general pattern of cardiac heartbeats will also be incorporated. 

4.3 Heartbeat and Arrhythmia Detection, Classification and Forecast 

Several time series analysis and forecasting techniques [10–12] have been proposed and used for the study 
of financial, biological and other naturally occurring time series [?,?,13–15]. In particular, there is 
widespread interest in the study of the cardiac rhythm, with specific applications for instance to 
defibrillators and pacemakers [16,17,?]. However, the present problem perhaps requires the development 
of a new or hybrid method in order to achieve the rapid and accurate forecast necessary to allow the 
computed time offset to be used for gating by the MR scanner [18], while at the same time exploiting the 
fact that there are virtually no limitations in terms of data storage space or computer size (which is not the 
case for pacemakers applications). 

We intend to combine all possible subject-specific data, with general knowledge about heartbeat dynamics. 
Subject specific data will mostly be extracted from the relatively short data series acquired during the set 
up of the MR scan and accumulated through the study (studies using such short data sets of heartbeats have 
been shown to yield satisfactory results [16,17]), but will also incorporate any existing prior ECG studies 
of the subject. A hierarchical inference scheme for blending general heartbeat dynamics with the subject 
specific data will be developed. 

Parameters and approaches Some of the main parameters and approaches that we ought to consider in 
order to categorize and review the techniques to detect, classify and predict arrhythmia, are: 

– Continuous vs. Discrete ECG data 
While our interest is mostly focused on exploiting the continuous ECG signal, a brief description of 
the most relevant discrete methods that only use the R-R intervals is included for comparison of 
advantages and performance [34,35,43]. Although many ventricular arrhythmias can be classified by 
R-R intervals, some others like supra-ventricular arrhythmias often require detection of the P wave or 
the ST segment in addition to the QRS complex [27,41]. 

– Single vs. Multi-Channel ECG data 



Using several ECG lead signals (see configurations in Section ??) can provide valuable information 
for the analysis and in particular for the classification of arrhythmia. The principal features exploited 
in multi-lead analysis are the: relative size, morphology and timing of the deflections in the 
individual leads [31,26]. 

– Real-time vs. a posteriori analysis 
The aim for most applications is to perform real-time detection or forecast, for instance when using 
implantable devices such as the cardioverter-defibrillator. However slower algorithms that can analyse 
the data a posteriori and provide accurate detection, forecast or classification are also of valuable 
clinical importance [44,45]. 

– Detection and Forecast 
While identification of the QRS complex remains an essential issue for arrhythmia detection [44,46], 
a wide variety of methods (using some of the “Discerning Features” listed below) have been developed 
for detecting and predicting all types of arrhythmia, either as a first step towards classification or 
independently of it, [16,18,42,46,31,47,40,48]. 

– Discerning Features 
Several features can be extracted and used to detect, classify and predict arrhythmia, for instance: 

• Segment-based Values (RR, QRS and ST, for instance) [41,30] 
• Heart Rate Variability [48,17] 
• Frequency Spectral Features [25,26] 
• Complexity Measures [49,29,37–39] 
• Non-linearity Measures (e.g.Fractality [40] and Lyapunov exponents [34]). 

– Classification 
Important to discern between life-threatening (for instance VT, VF) and other less lethal arrhythmias 
(such as APC, PVC, SVT) [33,31]. Extraction of QRS and ST segment features has been used to 
classify ischaemic cardiac beats [41]. Other approaches use the relative timing and morphology of 
multi-lead ECG signals, for instance, one can distinguish between the monomorphic re-entrant VT, in 
which depolarization is propagated by a simple single activation wavefront, and the polymorphic VT 
(such as PVT or VF), where the pattern of depolarization is more complex and sometimes propagated 
by multiple activation wavefronts [26]. 

RR intervals vs. full ECG dynamics forecast Some studies have pointed out the potentially chaotic 
nature of some beating patterns or attractors of the heart [?,?]. In order to characterise and model or forecast 
such attractors dynamical systems analysis methods can employ either the full trajectories on the phase 
space (position and velocities variables) [?,?,?], or use a discrete variable characteristic of the system such 
as a time series [?]. Although in the case of the ECG we have the time vs. potential recording,for every 
time during the recording, because of the distortion to which the ECG is subjected we will focus on 
analysing the R-R time intervals, that is the time elapsed between the R-waves of two consecutive heart 
beats. Besides being easy to record (for it’s the highest potential and with sharper gradient), this time... 

Analysis tools - recurrence plots 

The use of Recurrence plots has been introduced for the analysis of non-stationary and rather short data 
series [37,50] and recently for the study of heart rate variability [17,51]. 

Applying these measures to the heart-rate-variability data, we are able to detect and quantify the laminar 
phases before a life-threateningcardiac arrhythmiaoccurs thereby facilitating a prediction of such an event. 
Our findings could be of importance for the therapy of malignant cardiac arrhythmias. 

- k-nearest neighbours.. 

Cardiac Rhythms - sinus rhythm, arrhythmia, tachycardia, VT, VF 



- [16] ”Ventricular tachycardia or fibrillation (VT-VF) as fatal cardiac arrhythmias are the main factors 
triggering sudden cardiac death. ... find early signs of sustained VT-VF in patients with an implanted 
cardioverter-defibrillator (ICD). These devices are able to safeguard patients by returning their hearts to 
a normal rhythm via strong defibrillatory shocks; additionally, they store the 1000 beat-to-beat intervals 
immediately before the onset of a life-threatening arrhythmia.We study these 1000 beat-to-beat intervals 
of 17 chronic heart failure ICD patients before the onset of a life-threatening arrhythmia and at a control 
time, i.e., without a VT-VF event. To characterize these rather short data sets, we calculate heart rate 
variability parameters from the time and frequency domain, from symbolic dynamics as well as the finite-
time growth rates. We find that neither the time nor the frequency domain parameters show significant 
differences between the VT-VF and the control time series. However, two parameters from symbolic 
dynamics as well as the finite-time growth rates discriminate significantly both groups.These findings 
could be of importance in algorithms for next generation ICD’s to improve the diagnostics and therapy 
of VT-VF.” - define which state (type of attractor) is the heart beating in. 

4.4 Hierarchical inference / Population and patient specific data 

- The RR interval forecast will be based on three types of data. 

Most importantly, in-vivo ECG data acquired and fed into the computer from the moment the subject lies 
down in the scanner. At least a thousand RR intervals can easily be acquired, which is a reasonable number 
of data points to start for methods based on short time series. As the scan progress, more data will be 
accumulated. 

A secondary source of data could be, when available, prior ECG recordings of the subject. 

Finally, a priori knowledge of the general cardiac dynamics will be incorporated in the form of a rule system 
and data bases with labeled cases of sinus rhythm, VT, VF and arrhythmia. 

- The above knowledge will be fused using a hierarchical inference system... 

Offset estimation - Determine current dynamical state of the heart (e.g. Sinus rhythm, VT..) 

- Forecast RR interval 

- Estimate length of the P-wave (using existent formulas, sufficient as a first approximation) in order to 
start acquisition at the beginning of atrial contraction. 

4.5 MR Imaging 

4.6 Computer processing and feedback to MRI scanner 

The in vivo ECG signal can be taken out from the scanner and processed in a standard desktop or laptop 
computer in the control room, free of magnetic interference. 

Two different approaches will be explored, one with homogeneous and one with non-homogeneous 
timesampling of the heart cycle. In the (standard) homogeneous case, the output of the computer algorithm 
will be a single trigger pulse, at the time when the cardiac cycle onset is predicted to take pleace, to initiate 
the image acquisition for that heartbeat. 

In the second case in which we will investigate the improvement introduced by using the heartbeat model 
for non-homogeneous time-sampling of the heart cycle, a series of pulses will be passed to the scanner in 
order to better accomodate the RF pulse to the desired phase of the cardiac cycle. 



Using the detected R-wave of the new heartbeat, the accuracy of the predicted length of the hertbeat can 
almost immdiately be assessed and corrected (at leats for the post R-wave part of the cycle). 

Because the actual meassurement of the time of the R-wave provides immediate feedback, statistics of the 
accuracy achieved can be derived in real-time and in cases where performance might be poor after a few 
minutes, the sequence will be able to revert to a standard prospective (or retrospective) image acquistion. 
This mechanism bounds the worst case scenario performance to that of standard propsective sequence, 
making the approacha very low risk one in terms of image acquisition time. 

The total time of image acquisition will only increase in cases where the hertbeat is very arrythmic and 
difficult to predict, because some heartbeats would have to be skipped. But given the success rate of time 
series forecast methods [?], and in particular for the heartbeat [?], we expect the time of acquisition to be 
reasonably similar to that of standard techinques. 

4.7 MRI acquisition sequence 

4.8 Validation 

Hearbeatmodelling and classification We will test ourresults using some of the largeexisting databases[?,?,?] 
that contain pre-classified and annotated R-R intervals series (as well as digitised continuous ECG signals), for 
normal subjects and also for patients suffereningdifferenttypes of disorders (e.g. atrial fibrillation, atrial flutter, 
WPW syndrome and atrial and ventricular tachyarrhythmias). 

RR intervals forecast Evaluation of the accuracy of the forecast is straight forward and will be carried 
out on several subjects and patients, verifying the percentage of error for each heartbeat (this can be done 
on a time series predicting the last time, for every time in the sequence after the minimum required to build 
the predictive system). 

Compare results on healthy volunteers and patients. Existing databases will be used to test and validate our 
results [?,?,?,?,52] 

MR image acquisition Image quality of anatomical (non-tagged) predictive gating will be tested against 
that of images produced with the equivalent prospective and retrospective gating techniques for systolic 
and diastolic phases posterior to the R-wave, and against retrospective gating for the whole cardiac cycle 
and with emphasis on the atrial and early-systolic phases preceeding the R-wave. Image quality will be 
assessed qualitatively with ’blind’ visual(!) inspection of cardiac MRI imaging experts, and quantitatively 
by direct and indirect methods. Direct quantitative methods include measuring image properties like 
sinalto-noise noise ratio and contrast [53,?], while indirect methods would include automated and manual 
segmentation [54,19,?]. 

In the case of tagged images of atrial and early-systolic phases preceeding the R-wave, image quality cannot 
be compared against that of any other imaging techinques because currently there are no other ways to 
produce such images. Validation will be done on the one hand, against that of tagged images corresponding 
to a different phase of the cycle (those immediately after the R-wave), in terms of image quality like sinal-
to-noise noise ratio, contrast [53,?], and sharpness and persistance of the taggs during the sequence [?,?], 
and on the other hand, by using the taggs to track atrial and early-systolic ventricular motion [55,?,?,?]. 
The accuracy of the later will be assessed by comparing against manually segmented anatomical images of 
atrial contraction, and perhaps also using a different cardiac imaging modality that does not rely on ECG 
gating, such as 3D echocardiography, despite the fact that tracking of the heart with ultrasound images is 
limited and not as precise as tracking carried out with tagged MRI [19,?,?]. 

For phases of the cardiac cycle posterior to the R-wave, the quality of tagged images produced with 
predictive gating will be evaluated by means similar to those described above for anatomical and early-
systolic tagged images. 



- compare image quality on healthy volunteers and patients. 

Acquisition times and other factors will also be taken into consideration when assessing the performance 
of predicted gating. 

- atrial motion tagged v. phase velocity ? 

- 

Potential problems 

- are the innaccuracy of the methode to predict sinus and other rhythms... 

- thin atrial wall for tagged MR 

- 
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