

Signall

NextGen TV Implementation & SFN's AFCCE Luncheon September 17, 2021

"We know the past but cannot control it. We control the future but cannot know it." -Claude Shannon

Great Promise for Rapid Adoption

ATSC 3.0 Hosting

- 57 stations in 41 markets
 - 48 Full power and class A
 - 9 Low power
- 19 owners
- Almost all stations host other streams (160+)

ATSC 1.0 Hosting

- 3.0 host signals distributed amongst participants
- Sufficient bandwidth is challenging

Infrastructure, technology, and business cases are being tested:

- Detroit
 - Automotive testbed available
- Phoenix
 - Technology testbed and SFN tests completed
- Dallas
 - SFN buildout and testing completed
- Raleigh
 - Technology testbed completed
- Cleveland
 - Technology testbed completed
- Baltimore
 - SFN concept and demonstration completed

iure Grou,

ATSC 3.0 Features

COFDM multi-carrier technology defies multipath

Multiple combinations of modulation and coding (mod-cods) from very robust to very high capacity

Time Division Multiplex different mod-cods for multiple pipes

Layered Division Multiplex can add even more data

High efficiency codecs – HVEC, H.264, etc.

Sroup

SIG Software Infrastructure Platform

A Complete Suite of Services and Software for New Revenue Drivers

SIG nextgent Broadcast Exchange

An Exchange is needed to monetize spectrum capacity

SIGNASTRUCTURE GROUP

- Modelled on financial markets
- Allows a platform for introducing new services
- Reallocates available bandwidth based on supply and demand
- Participation is voluntary
- Broadcasters maintain control of their spectrum

Consistent & Reliable Signal Key to New Opportunities

((•))

SIGN

Better Service with SFNs

SFNs boost signal strength:

- Overcome terrain problems
- Provide consistent indoor reception
- Provide consistent portable and handheld reception
- Provide consistent mobile reception

SFN's Maximize Bandwidth Capacity

1.5 Meter Outdoor, Main Transmitter

25 Mbps, 16K FFT, 256 NUQAM 5,597,813 POP covered

1.5 Meter Outdoor, Main, Adjusted ModCod

4.97 Mbps, 9K FFT, 16 NUQAM, 0,622,423 POP covered

1.5 Meter Outdoor, Seven-Site SFN

25 Mbps, 16K FFT, 256 NUQAM 6,463,335 POP covered

(((⊥))

(())

SFN Principles

All transmitters send the same signal at the same time on the same frequency

- Critical transmitter frequency synchronization
 - Critical timing of bit streams at all transmitters
- Critical modcod settings for network configuration
- Careful network design & planning required!

SFN Planning Factors

- Transmitter Site Selection
- Transmission Losses
- Mod-Cods

INFRASTRUCTURE GROUP

SIG

- 1.5 Meter v. 10 Meter Antenna Height
- Building Penetration Loss
- Vehicular Penetration Loss
- Indoor Receive Antenna Gain
- Handheld Receiver Gain
- Transmission Losses

Design Scenario #1

Outdoor Fixed Lighthouse Video Service

PARAMETER	Reception Scenario	UNIT	
Receiver Target	Fixed Outdoor	*	
Terrat Carrier	5 x 1080P Video	*	
Larget Service	Lighthouse Scenario**	*	
Thermal Noise Power (Ideal Receiver)	-106.2 dBm		
Frequency Band	UHF	Band	
Receiver Noise Figure	6.0	dB	
Receiver Input Noise Floor	-100.2	dBm	
Preamble Parameters:			
Symbols per Preamble	1	Symbols	
FFT Size	16K	# of subcarriers	
Guard Interval	2048 / 296	Samples / µs	
Scattered Pilot Spacing	3_1	Carriers / Symbols	
L1-Basic & L1-Detail Mode	· · ·	Mode #	
Frame Length	250.0	ms	
Pavload Symbols per Frame	92	Symbols	
FFT Size	16K	# of subcarriers	
Guard Interval	2048 / 296	Samples / us	
Scattered Pilot Spacing	3_4	Carriers / Symbols	
PLP Parameters:			
Constellation	256 QAM	QPSK or QAM	
Code Rate	10/15	- 	
Time Interleaver Mode	CTI	x total	
Enhanced Laver Injection Mode	N.A.	dB	
TOV Propagation Model: Channel Type	Ricean	*	
Minimum AWGN C/N @ TOV (Laboratory Results)	18.30	dB	
Minimum Ricean C/N @ TOV (Laboratory Results)	19.10	dB	
Data Capacity	24.45	Mbps	
Antenna gain	10.0	dB	
Downlead loss	4.0	dB	
Minimum Antenna Output Power	-87.1	dBm	
Dipole Eactor	129.8	dBuV/m-dBm	
Minimum Field Strength at Antenna Elements	42.7	dBuV/m	
Percentage of Time	90.0	96	
Percentage of Inne Percentage of Locations	50.0	04	
Polarization Discrimination Factor	50.0 %		
Fading Margin	2.0 dB		
Penetration Loss	3.0 dB		
Total Required Marsin	0.0 dB		
Peeemmended Field Strength at Antonna Element-	3.0	dBul//m	
Recommended Field Strength at Antenna Elements	40.7		
Receiving Antenna Elevation Correction (Height Loss at 1.5 meters)	0.0		
Field Strength Required at 10 meters AGL	45.7	dBµV/m	

1080P TV statistically-multiplexed services are assumed to consume ~4.5MB/sec per service on average.

** 720P TV statistically-multiplexed services are assumed to consume ~1.5MB/sec per mobile service on average

4K TV statistically-multiplexed services are to consume ~11MB/Sec per service on average

Dallas Market

Dallas 10 Meter Outdoor Maps

Single Stick - 10 Meter Outdoor

KERA - Scenario 1 Baseline 10m Population - 6,700,006 IX Free People (allotment pop: 6,922,668)

ATSC 3.0 Scenario #1 Outdoor Fixed (ATSC 3.0 Fixed, Limitations) Calcuation date: 2020-08-07 14:08:10 SYSTEM Profile Normal FFT size: 16K System bandwidth (MHz) 6 Bandwidth option: 0 - 100% Modulation 256-NUQAM Code rate: 10/15 Outer code: None LDPC frame length: 64800 Guard interval: GI7_2048 (296µs) Scattered plot pattern SP3_4 Scattered pilot boost Multi antenna type: SISO DMA.sub frame: False Frame length 250 Nore Channel bonding: Nore backatory rome 10154 -341 rate (Mbits): 2484 Required C/N (dB) Rice 19/05 Roykigh 21/75 **DT** middel NKW RECEIVER Frequency (MHg): 473 Channel: 14 Receiving condition: Fixed SFN synch method: First Tx Guard interval model TF Noise figure (dB): 6.0 Man-made noise margin (dB) Buit-up area (dB) d Other (dB): 0 Antenna gain (dBd): 10 Feeder loss (dB): 4 Amplifier gain (dB): 0 Antenna height (m): 10 impl. margin (dE) 0 funer type: Silicon Receive lower LDM level: False FOED RECEPTION Antenna direction: Strongest Tx Directivity discrimination: OET Bulletin 69 Orthogonal polarization discrimination. True Value (dB) -16 Wanted Tx polarization: Individual Rx polarization: Same as wanted Tx PROPAGATION Outdoor standard deviation (dB) 5.5 Field strength correlation: 0 CALCULATION Method: Log-normal Max number of interferens: 3 Consider receiver overlaad False Raster type: Limitations Minimum field strength (dBy/V/m) Emin 41.3 Emed at 10 m. 95 % of locations: 50.4 INPUT PS FOR WANTED TX DALLAS, TX - KERA-TV 14/90% 10ml

10 Meter Outdoor w/ SFN

KERA - ATSC 3.0 SFN 10m 2010 Outdoor Population - 6,829,979 IX Free People (allotment pop: 6,922,668)

Dallas 1.5 Meter Outdoor Maps

Single Transmitter - 1.5 Meter Outdoor

KERA - ATSC 3.0 Baseline 1.5m Population - 5,597,813 IX Free People (allotment pop: 6,922,668)

1.5 Meter Outdoor w/ SFN

KERA - ATSC 3.0 SFN 1.5m 2010 Portable Outdoor Population - 6,470,111 IX Free People (allotment pop: 6,922,668)

Dallas 1.5 Meter Indoor Maps

Single Transmitter - 1.5 Meter Indoor

KERA - ATSC 3.0 Baseline 1.5m Set Top Indoor Population - 3,661,319 IX Free People (allotment pop: 6,922,668)

1.5 Meter Indoor w/ SFN

KERA - ATSC 3.0 SFN 1.5m 2010 Portable Indoor Population - 5,991,546 IX Free People (allotment pop: 6,922,668)

Dallas SFN Population Increases

	G/		2010 Estimat	e of Total in Al	lotment Area =	6,922,688
Condition	10 M Outdoor	% of Total	1.5 M Outdoor	% of Total	1.5 M Indoor	% of Total
	Antenna	Pop Covered	Device	Pop Covered	Device	Pop Covered
KERA	6,700,006	97%	5,597,813	81%	3,661,319	53%
KERA w/ SFN	6,829,979	99%	6,470,111	93%	5,991,546	87%
Increase (pop)	129,973		872,298		2,330,227	
Increase (%)	2%		16%	()	64%	
					eG	rou,

SIGNE L

Shared Infrastructure Reduces Costs

SFN transmitter collocation provides equal reception for all stations across coverage area

Managed Infrastructure Reduces Headaches

SIG designs, procures, installs, operates and services the entire system (Transmission-as-a-Service)

((•))

SIGNA

INFRASTRUCTURE GROUP

Thank You!

Jim Stenberg EVP of SFN Infrastructure jstenberg@signalinfra.com 207-632-8973

ie Group

www.signalinfra.com