Little Traverse Lake Water Level Investigation

Goals of the Investigation

- · Actions to alleviate high water level conditions
- · Obtain data about the creek system
- Determine if the culverts have an impact on current lake levels
- Investigate a reported beaver dam about ¾ of a mile downstream of CR 669
- Analyze possible methods of lowering lake levels

Methods

- · Field survey using GPS equipment
- · Stream velocity measurements

What are the culvert sizes and the true water surface elevations?

		T/CULVERT			4/23/14)	STREAM GAGE
CULVERT LOCATION	SIZE	U/S	D/S	U/S	D/S	T/GAGE
W. Traverse Lake Road	64x43 Arch	596.49	595.68	595.75	595.46	597.8
CR 669	71x47 Arch	594.56	592.88	594.78	594.55	596.7
Laka Mishigan Daad	64x43 Arch	585.68	585.36	583.80	583.27	
Lake Michigan Road	42" Dia	585.32	585.12	583.80	583.27	
Lake Michigan					8.0	
	All elevations a	re in feet:				

Are the water surface gauges on the same datum (do they correspond to each other)?

- · No, the gauge adjustments are:
 - Add 0.8' to the gauge at WTL
 - Add 0.7' to the gauge at CR 669

What is the location, size, and water level of the beaver dam downstream of CR 669?

Water level drop7"

Second Beaver Dam

- · Discovered in June
- · Water level drop: approx. 4 feet

What is the "normal" flow rate range through Shalda Creek?

- · About 18.4 cfs "dry weather" flow
- · Cubic feet per second (cfs) = 450 gpm

Little Traverse Lake Water Balance	Rate of Flow	Percent of Total
Streams In:	15.3 cfs	71 %
Precipitation:	2.8 cfs	13 %
Ground Water In:	3.4 cfs	16 %
Total In:	21.5 cfs	100 %
Streams Out:	18.4 cfs	86 %
Evaporation Out:	2.8 cfs	13 %
Groundwater Out:	0.3 cfs	1 %
Total Out:	21.5 cfs	100 %

From "A study of Development and Water Quality within the Little Traverse Lake and Lime Lake Watersheds" – 1994, by U of M

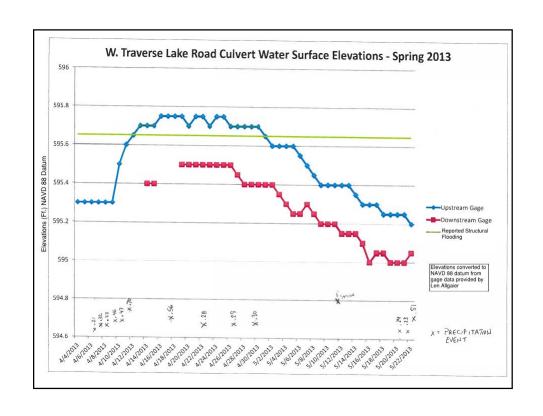
What is the range of flow rate during storm events?

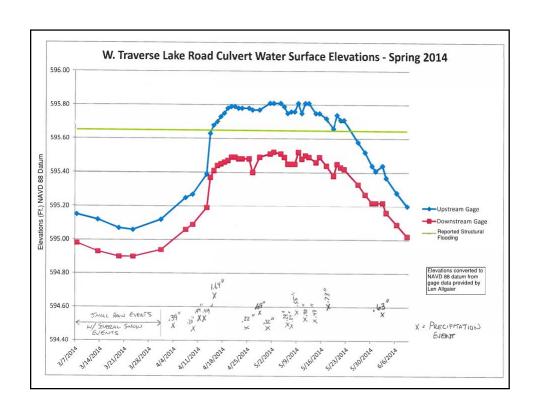
· From Michigan Department of Environmental Quality

	Total Drainage Cont. Drainage		Flow (cfs) at Frequency			
	Area (Sq. Miles)	Area (Sq. Miles)	50% (2yr)	10% (10yr)	2% (50yr)	1%(100yr)
West Traverse Lake Road	18.7	15.8	20	120	350	500
CR 669	19.2	16.3	20	120	350	500
West Lake Michigan Road	36	30.9	320	550	750	800
	2.4	3.25	4.2	4.67		

What is the range of flow rate during storm events?

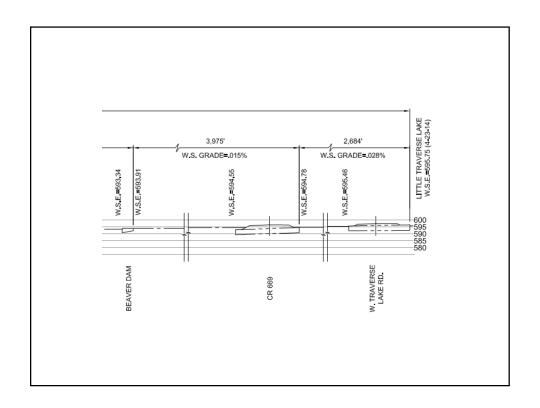
· Spring, 2014 approx. 70 cfs

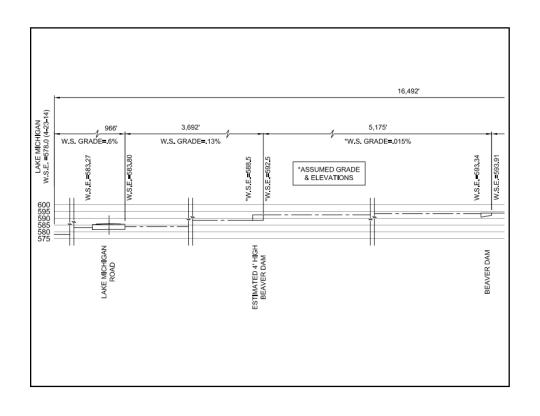

May 7, 2014 Velocity N	/leasurement	s - Flow Ca	Iculation	IS								
			T/CUL	VERT	WSE (5	7/14)	FLOW ARE	EA (SFT)	MEASURED	VEL. (FT/S)	FLOW	(CFS)
CULVERT LOCATION	SIZE	AREA (SFT)	U/S	D/S	U/S	D/S	U/S	D/S	U/S	D/S	U/S	D/S
W. Traverse Lake Road	64x43 Arch	15.08	596.49	595.68	595.7	595.45	12.34	14.6	5.9	6.6	72.8	96.4
CR 669	71x47 Arch	18.18	594.56	592.88	594.72	594.48	18.18	18.18	3.3	6.5	60.0	118.2
Lake Michigan Road	64x43 Arch	15.08	585.68	585.36	583.43	583.19	6.07	6.52	10.0	8.5	60.7	55.4
	42" Dia	9.62	585.32	585.12	583.57	583.29	4.81	4.51	6.0	7.0	28.9	31.6

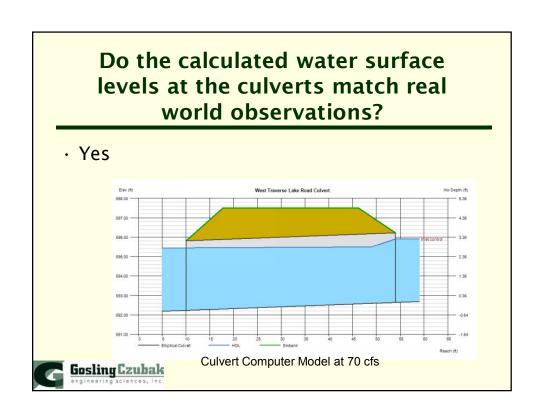


Rainfall and Water Level Gauge Readings

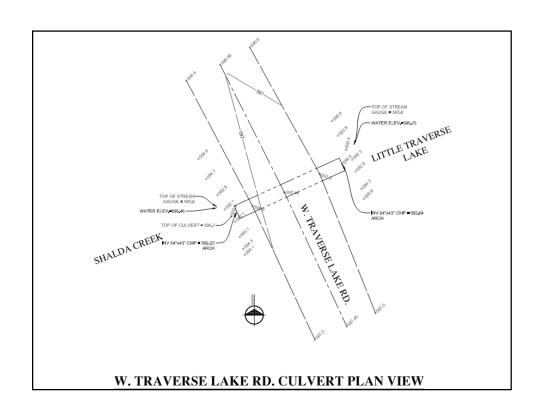
- · 2013 and 2014 lowest water level was about 595.2.
- In April, 2014, a rainfall event of 1.64" raised the water level from 595.3 to 595.8.
- · Shoreline erosion damage occurs at 595.2
- · Crawl space flooding at 595.65.

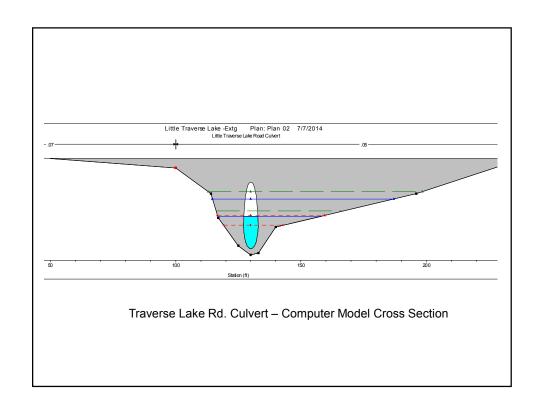


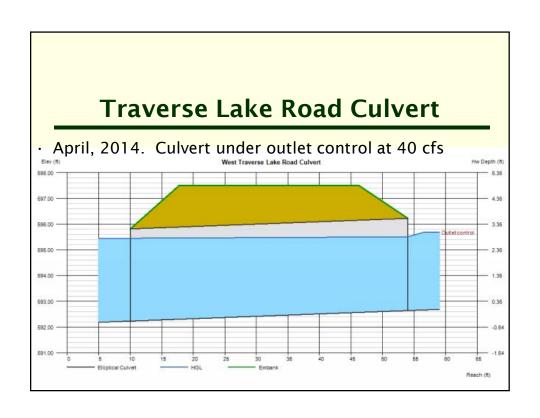


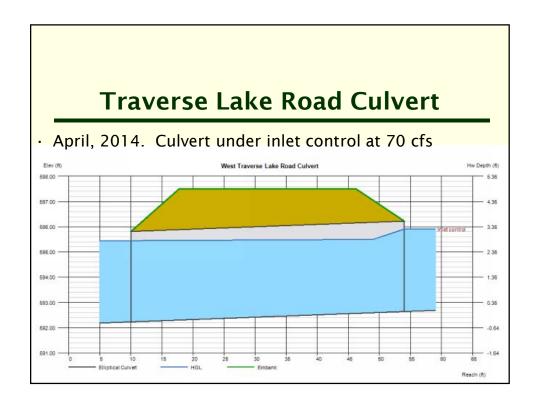

Shalda Creek Water Surface Slope

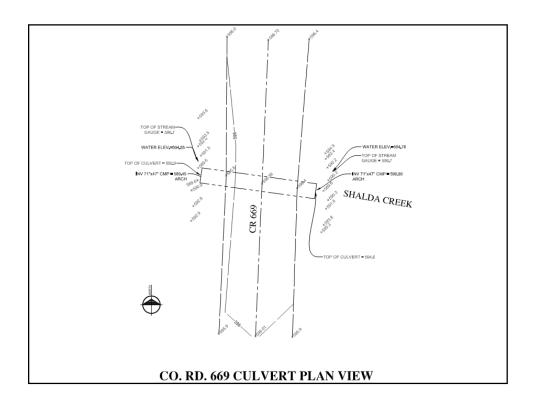
 Upstream sections are 2 to 7 times shallower than down stream sections

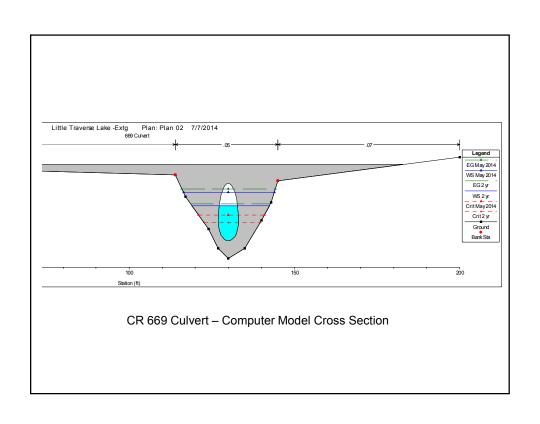

Does the culvert at Traverse Lake Road impede creek flow or impact Little Traverse Lake levels?


- · Yes
- · Outlet control capacity approx. 60 cfs


Upstream Downstream





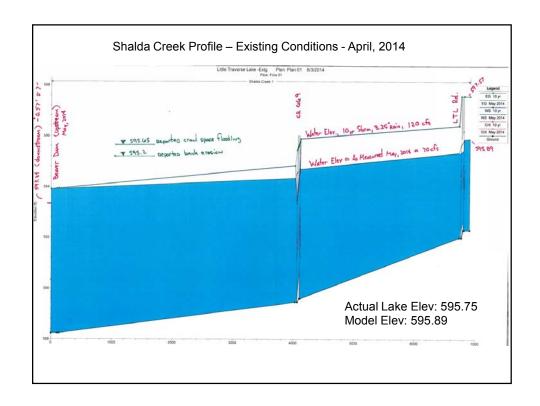


- · Yes
- \cdot High tailwater condition capacity 120 cfs

Upstream

What is the size and capacity of the culvert on West Lake Michigan Road?

- · Two culverts
- Inlet control capacity of 140 cfs

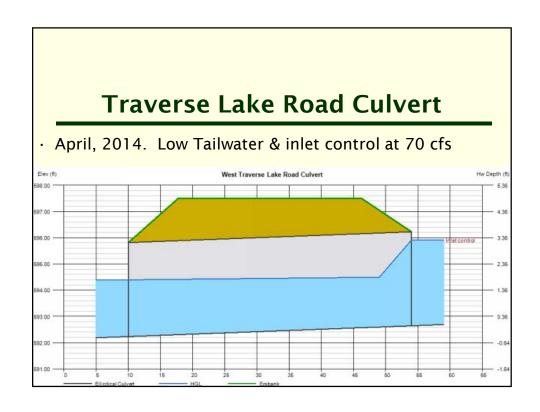


If the culvert(s) were removed or increased in size, how would lake levels change?

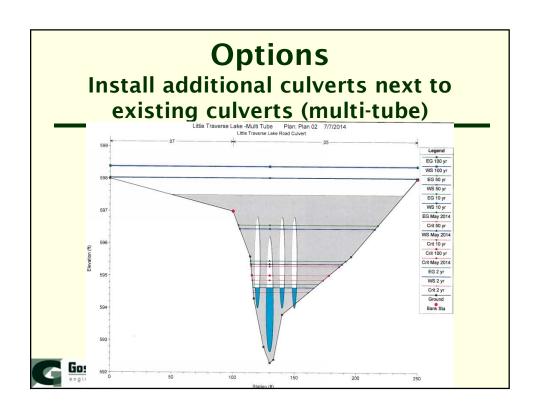
- · At 70 cfs
- · Tailwater condition from April, 2014
- Removing culverts could lower lake levels up to 0.6 feet (595.3)
 - Erosion damage at 595.2
 - Crawl space flooding at 595.65

If the culvert(s) were removed or increased in size, how would lake levels change?

- · water level in June, 2014
- . 595.35
- Tailwater condition reduced at beaver dam
- · Estimated flow 15-30 cfs
- Removing culverts could lower lake levels up to 0.3 feet (595.05)



Does the beaver dam impact lake levels?


- · Yes, depending on flow
- · Low flow
 - beaver dam creates a high tailwater
 - Removal would lower lake levels
- · High flow
 - Inlet control, so less impact from beaver dam removal
 - Lower tailwater could reduce duration of high lake levels
- · Dam removal doesn't always translate upstream

Options Install additional culverts next to existing culverts (multi-tube) Impact to Lake Levels Relative **Advantages** Disadvantages Cost -Doesn't 0.4 feet lower at 70 cfs -Lower cost lowest dramatically reduce -No change to high water low water level -Generally not preferred by MDEQ - mimics full width flow Gosling Czubak

Options Remove existing culverts and replace with higher capacity culverts **Advantages** Disadvantages Impact to Lake Levels Relative Cost -Provides less -May lower "normal" Lower lake levels by less moderate high flow lake level than 0.6 feet restriction - Doesn't -mimics full width dramatically reduce flow high water - lower cost than bridge Gosling Czubak

Options

Remove existing culverts and replace with clear span bridge

-Provides no high flow restriction -May lower "normal" Lower lake levels by approx. 0.6 feet -Provides full vidth flow -Doesn't dramatically reduce high water	Advantages	Disadvantages	Impact to Lake Levels	Relative Cost
-Lake levels may still be impacted by beaver dams	flow restriction -Provides full	-Doesn't dramatically reduce high water -Lake levels may still be impacted by		highest

Options

Keep existing culverts but remove all beaver dam restrictions

Advantages	Disadvantages	Impact to Lake Levels	Relative Cost
-Lower cost - Lower lake levels during normal flow	-May lower "normal" lake level - Culverts still impede flow during high flow -Lake levels still impacted by beaver dams in future - Requires regulatory approval from NPS	Likely lower, but total change uncertain under low flow. Under high flow, lower lake level by a negligible amount	low

Options

Replace all culverts with bridges and remove all beaver dam restrictions

Advantages	Disadvantages	Impact to Lake Levels	Relative Cost
-Provides no high flow restriction -Provides full width flow	-May lower "normal" lake level -High water level difficult to predict -Lake levels still impacted by beaver dams in future - Requires regulatory approval from NPS	Greater than 0.5' at 70 cfs, maybe considerably more	Highest

Summary

- Replacing the existing culverts with higher capacity culverts or a clear span bridge may not produce the desired lake level reduction unless it is coupled with some form of beaver dam control.
- Beaver dam control without culvert modifications will continue to produce high lake levels at flows near or above 70 cfs.

Questions

