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Unplanned institutions appear to play an important role in economic activity but we lack a good

understanding of how they emerge. Also, can legal rules enable the endogenous emergence of

these types of institution, i.e., can they be planned? This seems paradoxical but we find that it

is possible.

These issues are important because collective behaviour, of which institutions are one type, can

be viewed as the other side of the coin to competitive behaviour in economies; however, far fewer

research resources have been devoted to the former than the latter over the past two centuries.

The approach taken in this thesis is to apply the recent advances in Complexity Economics and

Agent-Based Computational Economics to the questions of unplanned institutional emergence

and the potential role of legal rules.

More specifically, agent-based models are developed that approximate the ontology of complex

economic systems (the resulting gap between theory and models is much narrower than equivalent

work in game theory). These models are then used to explore unplanned institutional emergence

and the impact of legal rules.

The resulting simulations show that unplanned institutions can emerge from co-adaptive re-

inforcement learning and that habits subsequently form. However, the environment has to be

sufficiently enabling of such emergence. Legal rules can be used to foster an enabling environment

when institutions do not emerge endogenously but any corruption must first be overcome.

The ultimate aim of this thesis is to improve our understanding of unplanned institutional

emergence (and the role of legal rules) in order to help foster solutions to real-world institutional

problems.
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Chapter 1

Introduction

Ford! There’s an infinite number of monkeys outside who want to

talk to us about this script for Hamlet they’ve worked out.

– The Hitchhiker’s Guide to the Galaxy by Douglas Adams

This thesis is focused on identifying the mechanisms by which ‘organic’ (or ‘unplanned’)

economic institutions might emerge, and the conditions under which this emergence

might occur.

The definition of ‘institutions’ adopted in this thesis is that of “durable systems of

established and embedded social rules that structure social interactions.” (Hodgson,

2006a, p. 13). This definition is unpacked further below. Moreover, the category of

organic institutions, following Menger [1890] (1981), refers to institutions that emerge

without any intentional design1.

The thesis also considers the role of legal rules (defined in Section 1.4 below) as potential

enablers of institutional emergence.

These matters are considered in the context of the literature focused on ‘spontaneous

order’. The meaning of this term that is adopted by the thesis follows Adam Ferguson

who refers to order that is “the result of human action, but not the execution of any

human design” (Ferguson, 1767, p. 205)2.

1The types of organic institutions most commonly referred to in the literature are conventions
and social norms.

2The term ‘spontaneous order’ is attributed to Michael Polanyi who writes that when “order
is achieved among human beings by allowing them to interact with each other on their own
initiative ... we have a system of spontaneous order in society.” (Polanyi, 1951, p. 159).

1



2 Chapter 1 Introduction

The rest of this chapter is divided into five sections:

1. Motivation for the research;

2. Two research questions;

3. An executive summary of the thesis;

4. Some definitions and assumptions; and

5. A summary of the added value of this thesis to the literature.

1.1 Motivation

The main arguments of this section are that: (i) organic institutions have been and

continue to be important for economic activity; and (ii) our understanding of the process

of organic institutional emergence is under-researched. These two combine to provide

powerful motivations for this thesis, which focuses on the mechanisms of institutional

emergence and the conditions under which this occurs.

In this section, we first look at the importance of institutions in economics (Section

1.1.1). We then consider challenges in the literature (Section 1.1.2). The third sub-

section (1.1.3) looks at relevant material from the social simulation literature, notably

cognitive emergence and immergence, both of which are defined below.

1.1.1 The Importance of Economic Institutions

There is now a substantial body of research showing that institutions are fundamentally

important in economic activity. One prominent (though contentious) example is North

and Thomas (1973) who state “the factors we have listed (innovation, economies of scale,

education, capital accumulation, etc.) are not causes of growth; they are growth” (p. 2,

emphasis included). North and Thomas go on to argue that factor accumulations and

innovation are proximate causes of growth and that differences in economic performance

are due mainly to institutions.

The literature that supports this point can be broadly divided into empirical and theo-

retical. Both are now voluminous. Douglass North in particular published a considerable

amount of empirical work that places institutions at the heart of economic behaviour3.

At the same time, there has been a substantial amount of work concerned with the

theory of institutions, notably since the mid-1970s4.

3See Hodgson (2017) for a summary of North’s work.
4It is worth noting that Institutional Economics originally appeared at the turn of the 20th

Century, including the work of Thorstein Veblen, John R. Commons, Wesley Mitchell, and
Clarence Ayres. The field appeared to decline (but not disappear) after the 1930s before re-
emerging in the 1970s.
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Related to this, a search of articles in the Web of Science database5 using the phrase

‘Institutional Economics’ (IE) indicated that 262 related articles were published in 1980,

503 in 1990, 1,084 in 2000, 3,347 in 2010, and 9,634 in 2020. Related to this, the Journal

of Institutional Economics was first published in 2005; and the World Interdisciplinary

Network for Institutional Research (WINIR) was launched in 2012.

Furthermore, the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred

Nobel has been awarded to several researchers focused on institutional research, includ-

ing Ronald Coase (1991), Douglass North (1993), Robert Fogel (1993), Elinor Ostrom

(2009), and Oliver Williamson (2009).

The importance of institutions in economics can perhaps be most easily understood by

referring to property rights and markets, possibly the two most important institutions

in economies based on free markets6. These institutions appear to have been crucial for

the economic success of Western countries over the past two centuries.

If we look more specifically at organic institutions, which include conventions and social

norms, we can appreciate that these have been pervasive in human activities for possibly

millions of years. For example, hunting parties typically include rules that coordinate

groups in order to maximize the likelihood of success7.

In an equivalent way, modern corporations typically include workers who adopt a wide

variety of conventions and norms.

Present Day Challenges

As an economy changes, it throws up new institutional challenges. Arguably, an impor-

tant role of IE is to help inform or enable new institutions that will meet these challenges,

for the betterment of human welfare. This is not only about policy prescriptions for the

state, it can also mean advice for corporations and civil society groups.

One of the features of Complexity Economics (CE) is the recognition that economies

change non-ergodically (North, 2005). This is discussed further in Chapter 2 but here

we can summarise this feature as recognising that economies re-pattern themselves over

time in an open-ended process of change.

Non-ergodic change can give rise to new collective action challenges (below we describe

two types that are described in Schultz, 2001). In some scenarios it might be helpful

to catalyse an enabling environment which helps organic institutions emerge. In others,

some type of legal rule (which is known to people and known to be enforced) might

5Dated 6 February 2023.
6One could argue that both are enabled by language so perhaps this is more important.
7The oldest archaeological evidence of Homo Sapiens and their ancestors hunting dates to

approximately 2 million years ago.
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be beneficial. Having a firm grip on how institutions emerge and evolve is essential for

providing useful advice in these areas.

A good example of a present-day institutional challenge concerns the use of cryptocur-

rencies. This is a particularly relevant example given the important role played by the

institution of money in modern economies and because money is a recurring theme in

this thesis. Also, money is viewed as one of the ‘paradigm cases’ of spontaneous order.

To date, many cryptocurrencies have been created by people in civil society as an al-

ternative to traditional currencies that are issued (or backed) by the state8. They are

typically based on blockchain - or equivalent - technologies.

These new currencies have thrown up a number of challenges. Most notably, there have

been cases of fraud (such as individuals selling cryptocurrencies9 that are immediately

worthless), theft via hacking, and price volatility (because of the lack of an effective peg

to the real economy)10.

How we deal with these challenges depends on how we frame the subject (the ‘quality

problem’ of money, which is discussed in more detail in Chapter 3, is helpful here). If we

align cryptocurrency challenges with Schultz’s (2001) first type of scenario (coordination

situations), then the problem is one of coordinating behaviour and we would expect any

outcome to be self-sustaining.

However, if the ‘problem space’ appears more aligned with Schultz’s (2001) second type

of scenario (collective action situations) then we recognise that these currency systems

provide opportunities for people to cheat others. How we proceed will depend on the

nature of this cheating.

There has been an enormous amount of progress made in our understanding of the

nature of institutions as well as a substantial amount of empirical work. This can

help institutional economists to advise in general terms but the lack of a consensus

understanding of how organic institutions emerge (and the potential role of legal rules)

is an important problem in the face of new institutional challenges. Contributing to this

literature, in order to help solve real-world problems, is the ultimate goal of this thesis.

1.1.2 Challenges in the Literature

Here we focus on the ‘gap’ in the literature concerning institutional emergence.

8At the time of writing, some central banks (e.g., The Bank of England) are exploring digital
currencies similar to cryptocurrencies but these would be exchangeable for fiat money issued by
the same central banks.

9in exchange for traditional currencies.
10We can add the enormous energy and environmental costs of operating Bitcoin.
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A particularly helpful paper is Hodgson (2002a), which is entitled The Evolution of

Institutions: An Agenda for Future Theoretical Research. This article contains a number

of important arguments regarding research concerned with the emergence of new - and

the evolution of existing - organic institutions.

Some good progress regarding organic institutional emergence has been made since the

publication of this paper, e.g., Hodgson and Knudsen’s (2004) simple traffic convention

model. However, the need for the research it promotes appears equally relevant at the

time of writing.

Before we look more closely at this paper, however, let us briefly consider the literature

concerned with spontaneous order. Chapters 3 and 4 below contain detailed discussions

of this (mostly theoretical) literature.

The earliest known reference to spontaneous order was from the fourth century BC Chi-

nese Philosopher Zhuang Zhou who observed that “good order results spontaneously

when things are let alone” (Hamowy, 1987, p. 6). Several Enlightenment figures, includ-

ing David Hume, Adam Ferguson, and Adam Smith were focused on spontaneous order

avant la lettre; and, more recently, Friedrich von Hayek wrote extensively about it.

Chapter 4 is focused on Hayek’s framing of spontaneous order. Hayek is generally

regarded as “the most famous and systematic spontaneous order theorist” (Luban, 2020,

p. 69). We discuss in that chapter how, despite the impressive ontology on which it is

based11, Hayek’s framing of social evolution has been heavily criticised, both due to its

conceptual weaknesses and its limited ability to explain empirical observations.

In what follows we focus on five points made in Hodgson (2002a), which helped guide

the computational research reported in this thesis. Moreover, these points also heavily

influenced the research questions stated in the next section.

Institution-Free World and Infinite Regress

Geoffrey Hodgson notes an important criticism of some New Institutional and game

theoretic explanations of institutional emergence, which was provided by Alexander

Field (1979, 1981, 1984). Field argues that “game theory must be used to explain the

emergence of some institutions, but to do so it has to assume a significant number of

rules and constraints at the outset.” (Hodgson, 2002a, p. 114).

The problem Hodgson points to is that pre-existing institutions have to be explained,

which gives rise to an infinite regress problem.

11We also discuss how this ontology is broadly consistent with CE.
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This problem, however, does not necessarily negate attempts to theorise about or model

the emergence of new institutions. Rather, the crucial question is whether the mecha-

nisms that explain how a new institution emerges have any explanatory power for how

any assumed institutions came about.

In Chapter 5 we discuss Field’s points in more detail. The approach taken in this

thesis is to fully accept that new institutions can emerge in part due to pre-existing,

enabling institutions. This is linked to one of the features of CE discussed in Chapter

2: openness to stratified ontologies. For now this can be understood as accepting that

emergent structures (which represents a single ‘stratum’) within a population can give

rise to further emergent structures (additional strata). Such stratified ontologies are not

uncommon in the complexity sciences.

Furthermore, the models developed for this thesis allow space for (but do not intention-

ally design) new social structures (including institutions) that can emerge from previ-

ously emerged social structures. Indeed, simulations based on the second model show

four emergent strata: (i) agents learn to defend their resources from attempts at theft;

(ii) this then (in part) enables property rights to emerge; (iii) efficient markets are then

enabled by property rights; and (iv) agents specialise as a result of being confident of

trading (because of the market).

The question remains, however, as to whether the mechanisms identified in institutional

emergence in (ii) and (iii) above are relevant for understanding prior institutions. This is

discussed in the Conclusion: we cannot be absolutely certain but there are some features

common to both (ii) and (iii) which might explain these pre-existing institutions.

In his paper, Hodgson also promotes the idea of “a more evolutionary and open-ended

framework of analysis. Instead of focusing on just two points in time - the given starting

point and the evolved outcome - the next step is to develop an evolutionary approach,

in which the emphasis is on the ongoing process of change.” (Hodgson, 2002a, p. 116)

The approach taken in the models developed for this thesis is to employ CE as an

overarching ontology and agent-based modelling. Both of these are compatible with

Hodgson’s open-ended framework and they give rise to the four strata noted above,

which seem consistent with Hodgson’s open-endedness.

Malleable Preferences / Mental Models

As Hodgson (2002a) states, “most economists recognise that preferences are malleable

in the real world [but] they have often taken the assumption of fixed preferences as a

reasonable, simplifying assumption.” (p. 116). In this paper, Hodgson argues the case

for treating preferences as malleable and hypothesises that such malleability plays a role

in institutional emergence.
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This emphasis sits neatly alongside a general acknowledgment of mental model flexibility

in the complexity sciences, including CE. Within IE, the importance of mental models

is explored in Denzau and North (1994) where the process of co-adaptation of agents’

mental models is discussed12. Furthermore, examples of computational research that

feature such co-adaptation in CE include Arthur (1994), Kirman and Vriend (2000),

and Vriend (2002). An example from within IE is Hodgson and Knudsen (2004), which

is analysed in detail in Chapter 5.

The approach taken in this thesis is to build mental model flexibility into both the

theory and the computational models. Most notably, in Chapter 2 we discuss the idea

of ‘semi-permeable agents’ who exchange information across their ‘boundaries’, resulting

in mutual influence and co-adaptation. Moreover, the agents in the two computational

models developed for this thesis are endowed with mental models that can change as a

result of reinforcement learning and habituation (both of these are defined in Section

1.4 below).

The simulation results of both models do indeed show, consistent with the results of

Hodgson and Knudsen’s (2004) simple traffic convention model, that the co-adaptation

of the agents’ mental models does play a role in organic institutional emergence.

Habits

When we consider the enactment of well-established institutions in our every day lives,

it is clear that habits play an important role. For example, when beginning a car

journey in the UK, in general we drive on the left side of the road without consciously /

deliberatively choosing that side. We generally do not think about the Highway Code,

nor the possibility of punishment if we are caught driving on the right13.

There is a now a large body of research concerned with the role played by habits in human

cognition. This is emphasised by pragmatist philosophers, notably Charles Sanders

Peirce, William James, George Herbert Mead and John Dewey; and also by the original

institutionalists, especially Thorstein Veblen14 and Walton Hamilton. Other notable

proponents of habits within human cognition include Hayek, Gary Becker and, within

IE, Hodgson.

The source of contention among a number of these researchers is less about the impor-

tance of habits than it is about the precise mechanisms at play. For example, Becker

(1992) frames habits as “sequentially correlated behaviour” (Hodgson, 2004b, p. 653)

12Denzau and North (1994) use the phrase ‘co-evolution’ to refer to agent-to-agent adaptations.
This thesis uses ‘co-adaptation’ instead, and uses ‘co-evolution’ to refer to the simultaneous
evolution of two or more groups of agents (consistent with Janzen, 1980).

13We can say the same thing about institutions like money and language: in most transactions
in the UK we do not think about which currency to use, and the same is true of speaking English.

14Veblen even included the term in his definition of institutions, which he viewed as “settled
habits of thought common to the generality of men.” (Veblen, 1919, p. 626).
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which mitigates information search costs (see also Stigler and Becker, 1977); whereas

Hodgson emphasises our propensity to repeat previous thoughts or action (discussed

further below).

Looking again at Hodgson’s (2002a) Agenda, he writes that a “pressing issue for future

research is the extent to which these mechanisms of habituation play a role in differ-

ent cases of institutional evolution.” (Hodgson, 2002a, p. 117). This thesis explores

whether habituation plays a role in institutional emergence by including both reinforce-

ment learning and habituation in the agents’ mental models, and then observing the

effects of both.

Role of the State and Legal Rules

Some researchers in IE refer to ‘formal institutions’ and ‘informal institutions’ as if the

two are fully distinguishable, e.g., Williamson (2000) writes about “institutions (formal

and informal)” (p. 597). It is a tempting distinction, that we should think of social

norms and conventions as a different category to legal rules like laws and regulations.

However, we find that on closer inspection this distinction is confusing. Most notably,

laws do not exist ‘outside’ of the human mind - they influence mental models in a way

that blurs the above neat distinction.

This raises a number of questions, one of which is “whether, and if so in what cir-

cumstances, the state or other powerful organisations can facilitate the emergence and

stability of other institutions.” (Hodgson, 2002a, p. 113). This is an important question

for the thesis: the two models developed focus on the endogenous emergence of organic

institutions but, using the second model, we can also question whether legal rules might

enable such institutions when they do not emerge endogenously.

To that end, four experiments are set out in Chapter 12, each of which starts with a

set of conditions when it is known that property rights do not emerge endogenously.

We find that in all of these, legal rules can indeed facilitate the emergence of property

rights.

Moreover, when the results of these experiments are analysed, we can understand the

impact of the legal rules on the agents’ mental models in the context of the mechanisms

identified when property rights emerged spontaneously. We see that this is mainly about

the impact of legal rules on reinforcement learning.

A Paucity of Agent-Based Models

The main point to note here is the lack of agent-based models focused on institutional

emergence. This was true in 2002, when “in the twenty years since the first mass

production of the cheap microcomputer, very few agent-based computer simulations
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exhibiting the emergence of an institution along Mengerian lines have been published.”

(Hodgson, 2002a, p. 112). It also appears to be broadly true at the time of writing.

The models developed for this thesis are attempts to add to the literature here but not

for its own sake: as Gräbner (2016) argues, Agent-Based Models (ABMs) appear well

suited to institutional research. Included in this thesis is a discussion of how ABMs are

sufficiently flexible to enable a pragmatic, bottom-up focus on mechanisms that give rise

to organic institutions.

In Chapter 5 we describe and evaluate a few notable exceptions to this lack of ABMs.

The most important are those of Hodgson and Knudsen (2004) and the four EMergence

In the Loop (EMIL) models. The latter were reported in 2010 as part of the EMIL

Project, a 3-year, multi-million Euro project funded by the European Union. In that

chapter we also look at some game theoretic models as well as various models of monetary

emergence, e.g., Marimon et al. (1990).

While the computational models critiqued in Chapter 5 have contributed to the liter-

ature, there remains a remarkable lack of such models (relative to, say, the enormous

body of work based on game theory). Three fairly recent papers (co-) authored by

Claudius Gräbner15 confirm this point: several ABMs in IE are discussed but the only

model concerned with the emergence of organic institutions referred to is Hodgson and

Knudsen (2004).

1.1.3 Social Simulation Literature: Emergence and

Immergence

While in this thesis we focus on economic institutions, we should note some significant

advances in our understanding of social norm emergence within the social simulation

(and related) literatures. Most notably, the EMIL Project Report was published in

2010 and this has been followed by a number of related papers, e.g., Andrighetto et al

(2010), Andrighetto, Campenǹı and Conte (2010), Castellani (2010), and Conte et al

(2013).

This work goes beyond the ‘Beliefs, Desires, and Intentions’ (BDI) and ‘Beliefs, Obliga-

tions, Intentions, and Desires’ (BOID) architectures, and is heavily influenced by Conte

and Castelfranchi’s (1995a) idea of cognitive emergence.

The body of work concerned with social norms in the social simulation literature is

enormous. A detailed evaluation of this work is beyond the scope of this thesis; how-

ever, two components of the ‘norm emergence’ strand are particularly important for our

purposes (one conceptual and the other related to models). The conceptual component

15Gräbner and Kapeller (2015), and Gräbner (2016, 2018).
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is the idea that social norms simultaneously emerge among agents and immerge “in the

agents’ minds” (Andrighetto et al, 2007, p. 11). This concept of immergence is defined

below.

The modelling component is the set of four computational models contained in the EMIL

Project Report: the simulation results indicate that norms ‘immerge’ via reinforcement

learning16. These models are evaluated in Chapter 5.

Cognitive emergence (Conte and Castelfranchi, 1995a) occurs “when agents become

aware, through a given ‘conceptualisation’, of a certain ‘objective’ pre-cognitive (un-

known and non-deliberative) phenomenon that is influencing their results and outcomes,

and then, indirectly, their action.” (Castelfranchi, 1998, p. 27, emphasis removed).

Gilbert (2002) helpfully distinguishes between two different types of cognitive emer-

gence. The first is when some phenomenon arises in the minds of agents while not

being recognised as a distinct concept. By contrast, ‘second order’ cognitive emergence

occurs when agents explicitly identify some emergent phenomenon, like a ‘club’ or ‘so-

ciety’. This recognition of a new cognitive phenomenon can then influence the agents’

behaviour, e.g., by treating people ‘inside’ and ‘outside’ of some club differently17.

The notion of ‘immergence’ is closely related to Gilbert’s (2002) first type of emergence.

Immergence is defined here as “the process through which the macro-level emerging

structure or global result ‘feedbacks’ [sic] into the micro-level re-shaping the ‘elemen-

tary’ behaviours.” (Castelfranchi, 1998, p. 26). We will see below that this closely

resembles the idea of downward causation / effects in, e.g., Sperry (1969), Campbell

(1974), Hodgson and Knudsen (2004), and Hodgson (2011).

In this thesis we are interested in Gilbert’s (2002) first type of emergence described

above, which is closely associated with our definition of ‘immergence’. The second form

of emergence seems fascinating and important in a general sense but it is outside of the

scope of this thesis.

16The Report indicates that norms emerge via reinforcement learning, imitation, and “nor-
mative learning” (Lotzmann and Mohring, 2010, p. 98). A closer look at the second of these,
however, indicates that it is essentially an indirect form of reinforcement learning (relating to
other agents’ experiences). The third concerns agents learning about pre-existing norms, which
is more about norm diffusion than emergence. These issues are discussed further in Chapter 5.

17Related to this, in the simulations based on the two models developed for this thesis, the
agents might meet to transact at the same location in a geographic space without understanding
the concept of a ‘market’; and they might choose not to steal each other’s resources without
knowing what ‘property rights’ are. We can think of ‘markets’ and ‘property rights’ here as
resulting from reification, which adds a new ‘cognitive category’ to the agents’ mental models.
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Cognitive Institutional Economics

Before we move on to discuss the research questions, we should note a strand of the IE

literature that seems highly compatible with the above discussions of cognitive emergence

and immergence. It also appears to sit comfortably alongside Hodgson’s (2002a) Agenda.

Cognitive Institutional Economics (CIE) “investigates the cognitive processes underlying

the genesis and evolution of economic and social institutions” (Ambrosino, Fontana, and

Gigante, 2018, p. 769). Papers in this field include Rizzello and Turvani (2000); Rizzello

and Turvani (2002); Ambrosino (2016); and Ambrosino, Fontana, and Gigante (2018).

Consistent with our interest in real world institutional problems, Rizzello and Turvani

(2000) argue that attempts “to translate theory into suggestions for the design of institu-

tions and their reform have generally yielded poor results. Underlying these difficulties

is a lack of interest in and a poor understanding of the institutional behavior of the

individuals.” (p. 177). Furthermore, “we have no theory of the interplay between the

individual and the creation of norms.” (ibid).

Rizzello and Turvani (2000) argue for a better understanding of institutions as “the

expression of the capabilities of the mind, which are not innate but develop and are

organized in connection with other individuals” (ibid).

It is worth noting also that this strand of research is “characterized by the dynamic

and expanding forces of evolving complex systems.” (Ambrosino, Fontana, and Gigante,

2018, p. 780).

However, one of the curious features of this literature is that it has not developed any

formal models to explore its terrain.

Overall, the aims of this literature sit well with the orientation of the research presented

in this thesis. With this in mind, let us look more closely at the research questions

addressed by the thesis.

1.2 Research Questions

Here we first look at the research questions and then discuss why CE and ABMs are

suited to answering these question. There are two questions:

1. Can organic institutions emerge spontaneously across a population while also im-

merging within individuals’ mental models via reasoning, learning, and habitua-

tion? and

2. Can ‘liberal legislation’ catalyse institutional emergence when it does not occur

endogenously?
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These questions are discussed and analysed in Chapter 6 so here we discuss them briefly.

The first point to note is that the hypotheses that correspond to these research questions

can be easily inferred from them, that: (i) organic institutions emerge spontaneously

while also immerging within mental models via reasoning, learning, and habituation; and

(ii) liberal legislation (as legal rules in the experiments below) can catalyse institutional

emergence when this does not arise endogenously.

The first research question focuses on the spontaneous emergence of organic institu-

tions. The question asked is can they emerge because the presupposition is that they

do so only when the environment is sufficiently enabling.

The question also refers to both emergence and ‘immergence’. In the discussion of the

main results in Chapter 6, the former term is aligned with emergence ‘outside’ of the

agents’ boundaries but which results from their actions. The word ‘immergence’ was

defined above.

Interestingly, the simulation results presented below suggest that the emergent and im-

mergent processes observed are the ‘process’ counterparts to Hodgson’s (2006a) analogy

of a Klein bottle for institutions, for which “the subjective ‘inside’ is simultaneously the

objective ‘outside’ ” (p. 8). This is discussed further in later chapters.

In answering the first research question we focus on the combination of reasoning, learn-

ing, and habituation. The CE framing set out in Chapter 2 includes an emphasis on

uncertainty and in the computational models set out below, the agents attempt to rea-

son under conditions of uncertainty. This draws on work in the complexity sciences and

CE, notably Holland et al (1986) and Arthur (1994).

The reference to ‘learning’ in the first research question is specifically about reinforce-

ment learning, which is defined in Section 1.4.6 below. Does this type of learning play

a role in institutional emergence? This follows Erev and Roth (1998) but we should

note that this process is well now established in various fields, including the complexity

sciences and artificial intelligence.

Inclusion of habituation in the first research question follows from the discussion of

habits in the previous section.

We should note that the combination of reinforcement learning and habituation in the

agents’ mental models extends the research of Hodgson and Knudsen (2004) and the

EMIL Project. Hodgson and Knudsen’s (2004) simple traffic convention model includes

agents whose mental models contain instincts and habituation. Hodgson and Knudson

conclude that habituation plays a role in institutional emergence. In this paper, the
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authors mention that their model could be usefully extended to include forms of rein-

forcement learning. In effect, the models developed for this thesis meet this challenge,

with a focus on property rights and markets.

We will see in Chapter 5 that institutions emerge in the simulations based on the four

EMIL models via reinforcement learning (habituation was absent). Two problems with

the reported simulation results are identified in Chapter 5: (i) it is difficult to identify

the precise mechanisms at play; and (ii) there was almost no attempt to explore the

parameter spaces of these models. The two models created for this thesis are partly

an attempt to develop this EMIL research, to explore how habituation might work

alongside reinforcement learning, and to better identify the mechanisms of emergence

and immergence.

The final point to make concerning the first research question is that the focus on re-

inforcement learning and habituation is not meant to suggest that these are the only

mechanisms that play a role in organic institutional emergence. For example, Elsenbri-

och and Gilbert (2014) discuss how conformity, obedience, and compliance all seem to

influence pro-social behaviour. As mentioned in the Conclusion, these could be added to

the models developed for this thesis to explore their impact on institutional emergence.

The second research question is focused on the issue noted in the previous section:

can legal rules help catalyse or enable institutional emergence?

‘Liberal legislation’ is referred to in this second question, which is a term used by Hayek

to refer to laws that help enable and support an economy based on free markets. Vanberg

(1994a) notes that Hayek’s reference here is related to his defence of classical liberalism

(his focus during much of his career). As Vanberg notes, ‘liberal legislation’ should not

be viewed as direct intervention in the economy that has the aim of bringing about

specific outcomes; rather, it is supportive of markets.

As a final note, it is perhaps worth mentioning that there is overlap between the first

and second questions. In fact, we could subsume the second question in the first by

framing legal rules as part of enabling environments. However, while a single research

question has value, the subject of legal rules seems sufficiently distinct to warrant a

second research question that is focused on this subject.

1.2.1 Complexity and Computational Modelling

In this sub-section we briefly discuss why CE and ABMs are employed in this thesis

to address the above research questions. This subject is considered in more detail in

Chapter 2.
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The complexity sciences have proven to be well suited to investigating emergent phe-

nomena across multiple fields over the past few decades (e.g., Kauffman, 1993; Cowan,

Pines and Meltzer, 1999; Rosser, 2009). In fact, the affinity between emergence and the

complexity sciences is such that the former is viewed by many as the sine qua non of the

latter (e.g., Mitchell, 2011) even if the first use of ‘emergence’ preceded the complexity

sciences by about a century (Hodgson, 2000c).

It is important to emphasise, also, that CE (the application of the complexity sciences to

economics) now appears mature enough to help us answer the above research questions.

This maturation is important because, as discussed in Chapter 2, we need to be careful

when mapping from a field that has mostly arisen from the natural sciences into the

social sciences. Complexity Economics, which is defined in Chapter 2, helps us with this

mapping.

On the value of the complexity sciences in researching economic institutions, the follow-

ing quote from Hodgson is worth noting:

Although the possibility of general principles of complexity is sometimes

exaggerated, the impact of the new ideas on complexity is profound. Not

only is the common obsession with precise prediction confounded; the whole

tradition in science of attempting to reduce each phenomenon to its compo-

nent parts is placed into question. A reconstructed institutional economics

can usefully build on this literature. (Hodgson, 2004a, p. 408)

Turning to agent-based modelling, there is also now a large body of work in which ABMs

have been used to investigate complex phenomena (e.g., Railsback and Grimm, 2011;

Miller and Page, 2007; Elsenbrioch and Gilbert, 2014). This work indicates that ABMs

are likely to be well suited to the modelling of organic institutional emergence, a point

that is supported by the successful use of an ABM in Hodgson and Knudsen (2004).

This point is also supported by a number of the arguments made in Gräbner (2016),

which carefully evaluates ABMs in the context of institutional research more generally.

Gräbner argues that ABMs are a good fit with “the core principles of institutionalist

methodology” (p. 252), noting, in particular, that ABMs allow us to model:

• mutually interdependent systems, including ‘downward effects’;

• the dynamics of economic systems, including self-organising processes, stating that

“[t]his is exactly what ABMs were invented for.” (p. 248);

• the structures and networks we typically see in economic systems;
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• the economy as an evolutionary system18, and agency within agents’ mental mod-

els; and

• agents’ “habits, heuristics, and cognitive abilities.” (p. 253).

One additional point worth emphasising is that Gräbner (2016) mentions how ABMs

are particularly helpful in identifying causal mechanisms, including how different initial

conditions within a complex system can generate different results. This theme of causal

mechanisms is discussed further in Chapter 5 where some of the limitations of game

theoretic models are set out.

We can add to Gräbner’s (2016) list of points the idea that both Complexity Economics

and ABMs can help us better understand the principle of formation in the economy

(Arthur, 2013), including institutional emergence. Arthur (2013) argues that orthodox

economics has historically focused on the allocation of resources and has paid far less

attention to how an economy structures and restructures itself over time. W. Brian

Arthur refers to the examples of “institutions, arrangements, and technological innova-

tions” (p. 1). Complexity Economics and ABMs both appear well suited to the study

of institutional emergence as economic formation.

Finally, we should note that Gräbner (2016) identifies three risks with using ABMs:

1. the temptation for researchers “to take a constructionist-instrumental standpoint”

(p. 255), which would lead them to “not try to describe ... reality accurately but

consider their theories to be mere instruments replicating observed data.” (ibid);

2. adopting an “[i]mplicit focus on predictive power” (p. 256), in line “with Fried-

man’s methodological instrumentalism.” (ibid);

3. “[o]verparamerisation and decreased transparency.” (p. 256). This is the risk of a

researcher “adding variables, processes, and methods until one gets ... the patterns

one wishes to explain.” (p. 256).

These risks, and how they were mitigated in the ABMs developed for this thesis, are

discussed in more detail in Chapter 6.

1.3 Executive Summary

In this section we provide a summary of the thesis to help with orientation.

Before proceeding, we should note that the assumed audience for this thesis includes

researchers interested in IE and CE. Importantly, however, the thesis has been written

18In the sense of ‘generalised Darwinism’, as defined in Chapter 2.
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so it is also accessible to people interested in self-organisation in the complexity sciences

more generally. The models and simulation results ought to be of interest to that group

too.

Chapter 2 - Complexity Science and Complexity Economics develops the onto-

logical foundations on which the rest of the thesis is based.

It starts by describing the complexity sciences. A distinction is made between defining

features and conceptual features. The latter include concepts that are associated with

the field (e.g., emergence) but do not define it.

An argument is then made that economies fit the definition of complex systems. How-

ever, as mentioned above, we must be careful when mapping from a domain that has

mostly grown out of the natural sciences, to the social science of economics. Eleven

principles are outlined that represent this mapping and which also help to define the

ontology of a complex economic system, e.g., the use of a stratified ontology where

emergent properties are formed ‘from below’.

Chapter 3 - A History of Spontaneous Order sets out a summary of the history

of this term.

This chapter looks specifically at the framing of the concept of spontaneous order prior

to the Enlightenment, by various thinkers during the Enlightenment, and then post-

Enlightenment. The chapter finishes by describing the historical influences on Hayek.

Chapter 4 - Hayek’s Spontaneous Order focuses specifically on Hayek’s work,

including his theory of cultural evolution.

As mentioned above, Hayek’s framing of spontaneous order is generally viewed as the

most extensive and sophisticated. We discuss his general ontology (including his theory

of mind, his emphasis on dispersed knowledge, and a paper he wrote on ‘complexity’);

his reference to ‘catallaxy’ and the ‘market order’; his theory of cultural evolution, and

various criticisms of this, particularly those of John Gray, James Buchanan, and Victor

Vanberg.

In addition, we discuss Ullmann-Margalit’s (1978) invisible-hand explanations as back-

ground to understanding Hayek but also because her paper dovetails neatly into the

two computational models developed for this thesis. We also focus on Vanberg’s discus-

sions of Hayek’s ‘liberal legislation’ to contextualise the second research question and to

motivate the experiments discussed in Chapter 12.

Chapter 5 - Models of Organic Institutional Emergence evaluates models that

are related to the first research question.
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The first model discussed is Hodgson and Knudsen’s (2004) simple traffic convention.

This model and the simulation results are extremely helpful; however, there is one

important criticism (which is recognised by the authors): the habituation variable in

the agents’ mental models can also be interpreted as a proxy for reinforcement learning.

This criticism does not negate Hodgson and Knudsen’s conclusions but it leaves open

the question of whether the traffic convention observed emerged because of habituation

or reinforcement learning (or both).

Models of institutional emergence / immergence from the Social Simulations literature

are also discussed. The most significant models for our purposes are the four EMIL

Project models. These are critiqued in detail: they indicate that organic institutions

emerge via reinforcement learning. Some of the criticisms of these models were men-

tioned above.

Game theoretic models are also discussed, including how such models are used to define

institutions either as equilibria or as correlating devices that achieve equilibria (research

concerned with rules-as-equilibria is also considered). The main criticisms of these mod-

els include: (i) those taken from Field (1979, 1981, 1984), as discussed above; and (ii)

questions about the assumption of utility maximization, which means that they cannot

and do not help identify the mechanisms by which institutions emerge in the real world.

This criticism follows Hodgson (2012) in particular. In this thesis we are interested in

what these mechanisms are.

Finally, this chapter looks in some detail at the strand of literature focused on the emer-

gence of money. The papers discussed include Kiyotaki and Wright (1989), Marimon

et al. (1990), Brown (1996), Duffy and Ochs (1999), and Duffy (2001). One of the fas-

cinating characteristics of this literature is the mixture of game theory, computational

models, and empirical evidence. Most notably, the empirical studies highlight how the

Nash equilibria identified by Kiyotaki and Wright (1989) are not observed among live

subjects.

Chapter 6 - Models: Rationale, Design and Results bridges the theoretical ma-

terial and models discussed in the previous four chapters and the computational models

and results set out in chapters 7 to 12.

The chapter begins by rationalising and decomposing the two research questions, drawing

heavily on the previous four chapters. We then discuss various factors that influenced

the design of the two computational models presented in chapters 7 and 9; and then an

overview of the models is provided.

The final section of this chapter discusses the main results of the simulations presented
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in subsequent chapters. The computational research proceeded in an iterative and ex-

ploratory way and the main results are presented in lieu of some pre-conceived hypoth-

esis. Also, the models and simulations are relatively large so these results help with

general orientation.

Chapter 7 - Market Emergence Model describes the first computational model.

We develop a rudimentary economic system in which agents forage for resources and

then attempt to find each other (within a geographic space) to trade. In this model,

agents are assumed to respect each other’s property, i.e., the agents do not steal from

each other.

This chapter also sets out the results of five sets of simulations: three ‘null’ experiments;

one that uses the ‘default parameters’ (where mental models change via reinforcement

learning only); and then a set that adds habituation to the default set. The main results

are: (i) we observe that the agents’ mental models co-adapt in such a way that markets

emerge, i.e., single locations where all the agents congregate in order to trade; and (ii)

habituation can obstruct ‘immergence’ but it also ensures, over time, that these locations

are firmly embedded in the agents’ mental models.

Furthermore, the agents begin life as generalists foraging for two resources but they

specialise after the market emerges, i.e., specialisation is contingent on the existence of

a market. Productivity then increases, as does the total population.

Finally, we compare the single emergent markets with Hodgson’s (2006a) definition of

institutions (see Section 1.4.1 below): the markets appear to be a close fit with this

definition.

Chapter 8 - Market Emergence Model: Exploring the Parameter Space in-

cludes a summary of a range of experiments that adjust each of the parameters in the

first model. Detailed results and analysis are set out in Appendix B.

It is commonplace to explore a parameter space to understand the robustness of some

results; however, here, the results are more helpful than this. They make it clear that the

market institution only emerges when the environment is sufficiently enabling. Markets

do not necessarily emerge but they can under specific conditions.

Chapter 9 - Property Rights Model presents the second model, which is a variation

of the first. Now, agents can steal from each other. This is done by giving agents a

propensity to steal others’ resources and a propensity to defend their own resources.

These propensities are metrics which vary via reinforcement learning and habituation.

Chapter 10 - Property Rights Model: Simulations and Discussion presents the

results of simulations based on the second model, including four ‘null’ experiments; the

new default parameter set (based on reinforcement learning); and a set that includes
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habituation. In the default simulations we find that defence of property emerges among

the agents but this becomes obsolete after property rights emerge. The latter is sustained

across the population until the end of the simulations. Also, this organic institution

enables the emergence of efficient markets and then specialisation, i.e., the results of the

first model’s default simulations are replicated.

When habituation is added to the default parameter set, we find on the whole it catalyses

the emergence of property rights. Also, the results indicate that reinforcement learning

is essential if property rights are to emerge but, like the first model, habituation helps

to embed the institution of property rights in the agents’ mental models.

Finally, we compare the property rights observed with Hodgson’s (2006a) definition of

institutions (set out below): they appear comfortably consistent with this definition.

Chapter 11 - Property Rights Model: Exploration of the Parameter Space

includes a summary of a range of experiments that adjust each of the parameters in the

second model. Detailed results and analysis can be found in Appendix C. As with the

first model, the results indicate that the institution of property rights only emerges if

the conditions are sufficiently enabling.

Chapter 12 - Liberal Legislation is focused on the second research question.

Legal rules are applied to the three experiments set out in Appendix D in which property

rights do not emerge. In addition, they are applied in a fourth scenario, when we know

from exploring the parameter space that institutions do not emerge endogenously (when

the ‘cost of fighting’ is below a specific threshold).

In all four experiments we identify legal rules that enable the emergence of property

rights.

Furthermore, in all four experiments we explore whether corruption undermines the

efficacy of legal rules. We find, perhaps unsurprisingly, that corruption does indeed

have a detrimental impact on the emergence of institutions.

Chapter 13 - Conclusion summarises the thesis.

In this chapter we first address the two research questions. In discussing the first we

identify the mechanisms observed in the emergence (and immergence) of property rights

and markets. We find: (i) there are mechanisms common to both institutions; but (ii)

for the second model an additional mechanism is observed, that of selection within a

generalized Darwinian process. The common features are set out in the description of

a generalised framework: we use this to discuss emergence/immergence of both organic

institutions and to highlight idiosyncrasies.
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In discussing the second research question, we highlight how legal rules influence the

mechanisms observed within the above generalised framework.

In addition, the chapter revisits the question of an ‘institution-free state of nature’,

discussed above; sets out the lessons learned from the process of research which preceded

this thesis; and, finally, potential future research is discussed.

Appendix A - Interaction Typologies considers, briefly, different typologies of in-

teraction types. It looks at on Schotter’s (1981) framing, which developed Ullmann-

Margalit (1977), and that of Schultz (2001). As discussed in Section 1.4.9 below, this

thesis adopts Schultz’s (2001) typology.

Appendix B contains detailed discussions of the exploration of the parameter space of

the first model (summarised in Chapter 8).

Appendix C explores the parameter space of the second model. A summary of this

work is included in Chapter 11.

Appendix D - Property Rights Model: Experimentation sets out three exper-

iments that are based on the second model. These three scenarios are designed to be

used in the ‘liberal legislation’ experiments of Chapter 12. The first experiment assumes

agents never defend their resources when challenged by other agents, and the last two

explore different forms of ‘power’ (used to determine the outcome of conflicts between

agents). In versions of all three of these experiments, property rights never emerge

endogenously.

1.4 Assumptions and Definitions

The research conducted for this thesis can be split in two dimensions. The first is

between computational modelling and theoretical work (approximately 50% of research

time was spent on each); and within the theoretical content, there is a split between

the three overlapping subjects of IE (incorporating spontaneous order), the complexity

sciences (including CE), and published computational models. Here, the research time

was split approximately 40-40-20 (respectively).

Moreover, the study of institutions spans multiple literatures, including sociology, psy-

chology, philosophy, and economics.

The tension between the limited research time available and the enormity of the literature

was dealt with by narrowing the scope of the research in specific ways. One of these was

to use specific definitions of various concepts that are important in this thesis: these are

set out below.
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Each of these concepts is located in a large literature. In what follows we specify the

definition used and, where appropriate, briefly discuss aspects of the related literature.

1.4.1 Institutions

Gräbner and Ghorbani (2019) provide a helpful summary of the various definitions of

institutions used across different literatures, identifying a total of eleven19.

Other useful overviews of the large literature concerned with defining institutions include

Hodgson (2015), which discusses the difference between institutions-as-rules, institutions-

as-equilibria, and rules-in-equilibrium (Hindriks and Guala, 2015); and Hodgson (2019),

which discusses definitions of institutions in the context of taxonomic definitions in gen-

eral.

The focus of the models developed for the thesis is partly on the cognitive mechanisms

of institutional emergence: the origination of new rules is a part of this so a definition

of institutions as rules (rather than equilibria) seems more appropriate. Furthermore,

being “outcomes of individual interactions, equilibria are secondary to the relational

framework that generates their possibility.” (Hodgson, 2015, p. 500). This thesis focuses

on the ‘primary’ mechanisms by which organic institutions emerge.

As stated above, in this thesis we adopt Hodgson’s definition of institutions as “durable

systems of established and embedded social rules that structure social interactions.”

(Hodgson, 2006a, p. 13). This definition is commonly cited in the IE literature and sits

comfortably in the institutions-as-rules category.

Looking more closely at this definition:

• ‘durable’ means that there are processes in place that maintain the institution

over time, including the idea that the institution “can usefully create stable ex-

pectations of the behavior of others” (Hodgson, 2006a, p. 2);

• ‘systems’ points to the idea that institutions can include features that are cognitive

and external (to the agent), including ‘artefacts’;

• ‘established’ and ‘embedded’ convey a sense of the institution being manifested in

the population in a stable way;

• ‘social’ helps to distinguish these types of rule from personal rules (which are

about choices made when there is no interaction, e.g., tying one’s own shoelaces);

19The authors also provide a synthesis definition which is not too far from that used in this
thesis: institutions are “codifiable systems of social structures (in particular norms and rules)
that lead to inclinations for people to act in specific ways.” (Gräbner and Ghorbani, 2019, p. 1)
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• ‘rules’ is an important word in this definition and is discussed in more detail below;

and

• ‘structure social interactions’ refers to the organisation of the parts of an institu-

tion system (including artefacts) and the agents in the interaction.

Let us now focus on the word ‘rule’ in this definition:

The term rule is broadly understood as a socially transmitted and cus-

tomary normative injunction or immanently normative disposition, that in

circumstance X do Y . (Hodgson, 2006a, p. 3)

The idea that a rule is socially transmitted “means that the replication of such rules

depends upon a developed social culture and some use of language ... they depend upon

contingent social structures” (ibid).

The definition requires that a rule either be a “customary normative injunction” or

an “immanently normative disposition”. The normative component of both requires

alternatives to option Y , e.g., Y ∗. If Y was the only option available to an agent then

there would be no need for a norm.

The former term points to some type of social pressure that is directing of agents in

some way (to do Y and not Y ∗) whereas the latter appears to be more about cognitive

tendencies to behave in a particular way. In addition, “immanently normative requires

that if the rule is scrutinized or contested, then normative issues will emerge” (ibid).

In terms of the types of rules, Hodgson (2006a) refers to three: social norms, social

conventions, and legal rules.

One distinction between these three is that legal rules are typically formalised, i.e., writ-

ten down and enforced by designated third parties; whereas social norms and conventions

are typically neither written down nor enforced by a designated third party (although

they might still be enforced in some way, e.g., by those who observe a transgression).

1.4.2 Organic Institutions

These are unplanned institutions. In this thesis we mostly use ‘organic’ but the two

words refer to the same thing.

This idea of organic institutions is linked to Carl Menger, notably Menger [1890] (1981)

and Menger [1883] (1985). His account of monetary emergence is an archetypal example

which is discussed in more detail in Chapter 3.
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These types of institution fall within Ferguson’s definition of spontaneous order stated

above: they result from human action in that they emerge endogenously in a population

but they are not intentionally designed.

There are other ‘classical’ types of spontaneous order. Those most often referred to in

the literature are language, money, and the order brought about by markets. Some,

notably Hayek, claim that English common law is also an example of spontaneous order

but this is contested (and is discussed in more detail in Chapter 4).

Moreover, organic institutions stand in contrast to planned institutions (legal rules are

the most obvious example of this). Here, there is intent behind the creation of the rule.

1.4.3 Order

We use Ferguson’s (1767) definition of spontaneous order in this thesis; however, we

should also be clear about what is meant by ‘order’. Luban (2020) summarises well the

problems we face when attempting to do this:

‘Order’ is an ambiguous term. It can refer to any system exhibiting regu-

larities of any kind; alternately, it can be restricted to only those systems

exhibiting certain normatively desirable regularities. A social order, for in-

stance, might be defined either by the mere existence of ‘predictable patterns

of behavior,’ or more strongly by the prevalence of ‘cooperative behavior’

(Elster, 1989, 1). Others draw a different distinction between ‘normative or-

der’ and ‘factual order’ that depends on how order is produced: whether by

subjective consensus, or by unintended consequences occurring behind the

backs of actors themselves (Parsons, 1968, 91–2). (Luban, 2020, p. 69-70,

footnote 5 removed)

There are a variety of definitions of order we might use but there is no consensus in the

literature regarding which is preferable. Here we adopt Hayek’s definition, stated below,

as a working definition because it seems more compatible with this thesis than others.

There are two parts to this. First, Hayek’s definition makes no normative commitment,

i.e., it is more generalised than those focused on ‘good’ outcomes. We will see that

in some of the simulation results presented below that ‘bad’ institutions emerge under

certain circumstances and ‘good’ institutions emerge under others.

The second reason is that Hayek’s definition includes the important concept of expec-

tations, which fits with many other researchers’ references, e.g., North (1990), Ostrom

(1991), Aoki (2001), Hodgson (2006a), and Gräbner and Ghorbani (2019). We observe

in the simulations reported below that ‘good’ and ‘bad’ order are both associated with

expectations fulfilment.
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Hayek’s definition of order is:

a state of affairs in which a multiplicity of elements of various kinds are so

related to each other that we may learn from our acquaintance with some

... part of the whole to form correct expectations concerning the rest, or

at least expectations which have a good chance of proving correct. (Hayek,

1973, p. 36, emphasis excluded)

Spontaneous Order Enabled by Planning

As stated above, in this thesis we adopt Ferguson’s definition of spontaneous order,

which includes the words “not the execution of any human design”. For the second

research question, it is important to understand how spontaneous order can result from

planning, which might appear counter-intuitive. The point is that forms of planning

can enable order to emerge spontaneously, including organic institutions, rather than

directly causing it.

In this context, Hayek (1973) writes “it is at least conceivable that the formation of a

spontaneous order relies entirely on rules that were deliberately made.” (p. 45). This is

perhaps surprising given his vociferous arguments against central planning as ‘construc-

tivist rationalism’, e.g., in Hayek (1945, 1988). However, Hayek’s words “relies ... on”

does not mean “deliberately caused by”, which is an important distinction.

Similarly, Boehm (1994) writes that it “is certainly feasible that a spontaneous order

may arise from deliberately designed rules.” (p. 299, emphasis added). Consequently,

Hodgson (1994) argues that this “suggests that there is no complete bifurcation be-

tween organic and pragmatic institutions: even spontaneous orders may have designed

elements” (p. 584).

The ‘liberal legislation’ experiments of Chapter 12 help us understand how forms of

planning (specifically, legal rules) can enable subsequent organic institutions as sponta-

neous order. Legal rules are imposed on the agents, and these enable the emergence of

property rights (this is planned). However, markets subsequently emerge, which can be

interpreted as spontaneous order that was enabled by planning.

1.4.4 Legal Rules

These are included in the three types of rules mentioned in Hodgson (2006a), noted

above. In the ‘liberal legislation’ experiments reported in Chapter 12, legal rules are

applied to agent interactions so it is helpful to be clear what these are:

For laws to become rules in the sense discussed here, they have to become

customary ... there are examples of laws that are widely ignored and have
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not acquired the customary or dispositional status of a rule. Ignored laws

are not rules. For new laws to become rules, they have to be enforced to the

point that the avoidance or performance of the behavior in question becomes

customary and acquires a normative status. (Hodgson, 2006a, p. 6)

The customary nature of legal rules means they are both codified and known to the

agents in a population. Furthermore, these rules are enforced by a third party.

1.4.5 Habits

In this thesis we define a habit as:

...a largely non-deliberative and self-actuating propensity to engage in a

previously adopted pattern of behavior. A habit is a form of self-sustaining,

nonreflective behaviour that arises in repetitive situations. (Hodgson, 1998,

p. 178)

In Hodgson and Knudsen’s (2004) computational model, this definition is translated into

code by the creation of a habituation variable. This variable quantifies past decisions

and is applied within the agents’ mental models as part of decision making.

The habituation experiments conducted using the two models developed for this thesis

(sections 7.6 and 10.3) mimic both the above definition and Hodgson and Knudsen’s

(2004) approach.

Moreover, it is worth highlighting here that in the models developed for this thesis,

changes in the agents’ mental models (referred to as ‘reconstitution’) occur via two

mechanisms: reinforcement learning and the process of habituation. We can think of

the former as being sensitive to the agents’ perception of the success or failure of its

actions, relative to some goal(s); whereas the latter is insensitive to success and failure.

A final point is to differentiate between the approach to habituation above and that of

Becker (1992). Becker sees habits as arising from people repeating previously ‘rational’

decisions, i.e., habits are linked to a type of reasoning. The models developed below allow

us to explore the combination of reasoning under conditions of uncertainty, reinforcement

learning, and habituation that is independent of reasoning and learning.

1.4.6 Reinforcement Learning

This form of learning has been studied and used in a variety of literatures, notably in

the complexity sciences, psychology, and artificial intelligence.
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Here we adopt Erev and Roth’s (1998) framing (see also Roth and Erev, 1995). In

their 1998 paper, Erev and Roth write that reinforcement learning is linked to three

principles. The first is Thorndike’s (1898) Law of Effect, which is when choices “that

have led to good outcomes in the past are more likely to be repeated in the future.”

(Erev and Roth, 1998, p. 859).

The second principle is Blackburn’s (1936) power law of practice, which indicates that

learning curves “tend to be steep initially, and then flatter.” (Erev and Roth, 1998,

p. 859).

The third principle, which is implicit in the first, is that “choice behavior is probabilistic.

This is one of the basic assumptions of most mathematical learning theories proposed

in psychology.” (ibid, emphasis included). Here, Erev and Roth cite, inter alia, Estes

(1950).

In this thesis, the first and third principles are firmly employed in the reinforcement

learning by the agents in both models. Also, the first principle is assumed to apply

symmetrically, i.e., choices that have led to bad outcomes are less likely to be repeated

in the future.

The second principle turns out to be irrelevant in the first model and problematic in the

second (this is discussed further below). This principle is, however, applied to changes

in the agents’ foraging skills.

Note, also, that reinforcement learning in the models below occurs in the context of

agents reasoning under conditions of uncertainty in a complex economic system. This

should be viewed as very different to Becker’s use of substantive rationality from which

habits (supposedly) arise, e.g, in Becker (1992).

1.4.7 Property Rights

The following definition is taken from the Concise Encyclopedia of Economics:

A property right is the exclusive authority to determine how a resource

is used, whether that resource is owned by government or by individuals.

Society approves the uses selected by the holder of the property right with

governmental administered force and with social ostracism. Alchian (2023)

In the second model described below (Chapter 9), agents have ‘propensities to steal’

that determine whether they attempt to steal from or trade with other agents. In the

resulting simulations, we say that property rights are established when all of the agents’

propensities to steal are below zero20.

20The precise mechanics of this are described in Chapter 9.
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1.4.8 Downward and Upward Causation / Effects

In this thesis, downward causation “refers to possible effects of higher-level properties

on lower-level components. The term ‘downward causation’ originates in psychology in

the work of Sperry (1969).” (Hodgson and Knudsen, 2004, p. 38).

In Chapter 5 we discuss strong and weak forms of downward causation, following Sperry

(1969) and Campbell (1974), respectively. These are referred to in Hodgson and Knudsen

(2004).

Equivalently, upward causation refers to the effect a lower-level components has on a

higher-level property.

We should note, also, Hodgson (2011) who proposes a change to the language here:

“causation” seems inappropriate in light of the relationship between different levels in

a stratified ontology. Higher level properties do not ‘cause’ lower-level components to

act in certain ways. Hodgson’s suggestion is to replace ‘causation’ with ‘effects’. We

generally follow this terminology in the thesis.

The final point to note is that while upward and downward effects are “largely unfamiliar

to economists” (Hodgson and Knudsen, 2004, p. 38) in general, they sit comfortably

within CE as described in Chapter 2.

1.4.9 Types of Interaction Challenges

Here we note and define two types of challenge observed when people interact, both

of which are relevant for the models developed for the thesis. The literature can be

somewhat unclear and incomplete when it comes to the types of interactions people face,

e.g., Vanberg and Buchanan (1988) distinguish between “coordination” and “prisoners’

dilemma situations”.

In this thesis we adopt Schultz’s (2001) framing as it seems more comprehensive than

others, e.g., Schotter (1981) (see Appendix A for a more detailed discussion).

As mentioned above, Schultz (2001) refers to two types of interaction: (1) coordination

situations; and (2) collective action situations. The former includes situations where the

agents in an interaction share some preferences over states21 of the world and where a

Nash equilibrium exists at the agents’ jointly preferred state22. This first category aligns

with coordination games (both pure and non-pure) in game theory and ‘solutions’ are

self-sustaining.

21Preferences need not be identical but there must be some commonality of ranking between
all the agents in the interaction so that some outcomes are jointly preferred by the agents over
others.

22Schultz uses different terminology, referring to whether strategies “coordinate” or “conflict”
but the meaning of the former appears to be identical to that of a Nash equilibrium.
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Schultz’s collective action situations also includes overlapping preferences but a Nash

equilibrium does not exist at the jointly preferred state. This includes the Prisoners’

Dilemma but accommodates a much broader range of interaction types where an institu-

tion could help bring about a pareto superior outcome (when the agents would otherwise

not bring this about). Unlike the first category, ‘solutions’ are not self-sustaining without

mechanisms that help achieve them23.

Let us also be clear about nomenclature regarding ‘problems’ here. We will refer to

problems in Schultz’s first category as ‘coordination problems’ and to those in his second

category as ‘free-rider problems’. Strictly speaking, the origins of the latter lie with a

particular class of collective action situation, that of public goods; however, we will

use the term more generally, to apply to the wider category24. This appears consistent

with other researchers in the literature, e.g., Vanberg (1986), and also the Stanford

Encyclopedia of Philosophy (2023).

The final point to note here is that the first model described below (Chapter 7) broadly

aligns with Schultz’s (2001) first category and the second model (Chapter 9) gives rise

to a wide range of interactions that fit into Schultz’s second category, including the

Prisoners’ Dilemma.

1.5 Added Value

The value added by this thesis should be viewed in the context of various computational

and theoretical foundations established by other researchers. As mentioned above, the

most significant computational models are those of Hodgson and Knudsen (2004) and

the four EMIL Project models, which are discussed in Chapter 5. The two models

developed for this thesis extend this work, notably the reinforcement learning of the

EMIL models and the emphasis on habituation in Hodgson and Knudsen (2004).

The theoretical parts of this research build on the notions of upward and downward

effects, including reconstitution, discussed by Hodgson and Knudsen (2004) and in var-

ious papers written by Hodgson, e.g., Hodgson (2002c, 2003c, 2006a, 2006c, and 2011).

The work also builds on CE, especially the work of W. Brian Arthur; and on the idea

of immergence.

23Note that Schultz’s (2001) framing is not exhaustive: he refers to interactions where no
shared preferences exist as “moot” (p. 64).

24If collective action situations are defined by the lack of Nash equilibrium, this implies at
least one agent would prefer to adopt a different strategy, which would be to their benefit at the
cost of at least one other agent. In a more general sense, therefore, the agent would free-ride on
others.
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The claim here is that there are four ways in which the research adds value to the

literature (with some overlap between them). The first two should be viewed as stronger

claims than the third and fourth.

The first value added point is about the relevance of both reinforcement learning

and habituation in the emergence of organic institutions (and is tied to the first research

question).

Various experiments were conducted using both models but the main conclusions are:

• co-adaptive reinforcement learning is essential in the emergence of organic institu-

tions in both models’ simulation results (this supports the EMIL models’ results);

and

• while (co-adaptive) reinforcement learning is generally more important in the

emergence of markets and property rights, over time habituation dominates agents’

mental models such that by the end of simulations, these institutions simply look

like habits (this is observed in experiments using both models when the habitua-

tion parameter is relatively small).

The second value added point is concerned with ‘liberal legislation’ (and is related

to the second research question). The simulation results indicate that in situations

when property rights do not emerge endogenously, legal rules can help to enable this

emergence; however, this result is conditional on any corruption being overcome.

The mechanisms by which legal rules enable property rights must be understood in the

context of mechanisms observed when organic institutions emerge endogenously. Most

notably, reinforcement learning was essential to ensure agents co-adapted in a way that

was consistent with the legal rule. This rule created an immergent feedback loop that

would have been missing otherwise. This links directly to Hodgson’s (2002a) query as

to whether state organisations can facilitate the emergence of institutions, noted above.

The third value added point relates to the identification of a general framework

that includes features that appear common to the simulations based on the two models

developed for this thesis. These also appear common to the simulation results of Hodgson

and Knudsen (2004) and those of the four EMIL models25.

Note that this general framework is presented here as a minor value added point because

it extends work developed by other researchers.

The general framework, which is discussed in detail in the Conclusion, contains the

following seven features:

25We should note that the correspondence between this framework and the EMIL simulation
results is less clear because the descriptions of these results are extremely brief.
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1. an emerging property, which is ‘external’ to the agent;

2. downward effects;

3. upward effects;

4. emergence via positive feedback;

5. reconstitution of mental models by reinforcement learning and habituation;

6. immergence as positive feedback related to reinforcement learning and habitua-

tion; and

7. an enabling environment.

The first five of these features are discussed in Hodgson and Knudsen (2004) and various

other parts of Hodgson’s work (cited above). The sixth is related more to the work of

Conte and Castelfranchi (1995a), the EMIL Project Report, and various papers dis-

cussing immergence, e.g., Andrighetto, Campenǹı and Conte (2010), Castellani (2010),

and Conte et al (2013); and the seventh is fairly common in the complexity sciences.

Nonetheless, the value of this framework arises from two sources: the combining of these

various features; and the coherence of these features when considered together. These

points are discussed in more detail in the concluding chapter.

Two (related) points are worth emphasising: first, this framework should not be viewed

as a completed general theory of organic institutional emergence. It should be viewed

as a contribution that moves the literature further in the direction of such a theory.

The second point is that in the simulations results based on the second model we ob-

serve an additional (eighth) feature related to selection pressure within a generalized

Darwinian process26. This is discussed further in the concluding chapter.

Note that in the simulation results of both models, the organic institutions observed are

consistent with Ferguson’s spontaneous order, as stated above.

Finally, the fourth value added point is that the models developed for this thesis

add to the body of ABMs in IE. Most significantly, the simulations showed relationships

between property rights, markets, and the division of labour within a stratified ontology.

Furthermore, the code will be made freely available online after the completion of the

PhD programme27.

26This is when the principles of variation, selection, and inheritance / durability are considered
in a general sense (discussed in more detail in Chapter 2).

27See https://github.com/gregjfisher/PhD Code Final.

https://github.com/gregjfisher/PhD_Code_Final


Chapter 2

Complexity Science and

Complexity Economics

I think the next century will be the century of complexity.

– Stephen Hawking (January 2000)

This chapter provides overviews of the complexity sciences and its manifestation in

the field of economics, Complexity Economics (CE). These descriptions provide the

conceptual foundations on which the rest of the thesis is built.

The first section below (2.1) sets out a number of ‘defining features’ of complex systems,

which are the main concern of the complexity sciences. These features describe the

general characteristics of such systems, including agents, interdependence, and time.

Following this, Section 2.2 outlines some of the ‘conceptual features’ of the complexity

sciences. These differ from defining features because they are concepts and principles

that have either arisen out of the study of complex systems or that preceded the subject

but are emphasised by it, e.g., ‘emergence’.

This second section focuses on concepts that are the most relevant to the research

presented here and are described in a manner that dovetails with the material discussed

in later chapters. The section is not exhaustive: a sub-set of the concepts emphasised

in the complexity sciences are included.

The third section (2.3) focuses on CE. We must be careful when mapping from an

abstract conceptual framework that has arisen mostly in the natural sciences, to the

social sciences “without a rigorous process of testing for appropriateness and relevance.”

(Mitleton-Kelly, 2003, p. 25). For example, an important difference between complex

31
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systems involving simple, myopic agents and those with humans is that agents in the for-

mer are often reactive whereas those in the latter have a greater capacity for imagination

and anticipation.

This section describes the overall approach taken in CE and it lists eleven key char-

acteristics of that perspective, e.g., the idea of a stratified ontology owing to emergent

properties.

Each of these eleven characteristics are discussed and contrasted with the equivalent

approach taken in Neoclassical Economics (NCE), which has been the dominant school

of thought in economics for decades.

This third section ends by contrasting CE and Neoclassical theory in a particular way: by

focusing on the different internal consistencies (between their micro and macro features)

of the two approaches.

Section 2.4 considers and responds to some of the criticisms of the complexity sciences,

including CE; and Section 2.5 concludes.

As a final point, this chapter refers to several researchers in the complexity sciences but

it places a greater weight on the work of W. Brian Arthur. Arthur was one of the first

economists to consider the implications of the study of complex systems not only for

economics but for the social sciences more generally. He led the economics department

of the Santa Fe Institute for several years after its inception and has been a leading

thinker in this field since1.

2.1 The Complexity Sciences: Defining

Features

When describing or defining the complexity sciences we are faced with three problems:

(i) it is a relatively new subject; (ii) it is studied by researchers in different disciplines;

and (iii) it has evolved since it emerged in circa the 1970s. These issues make the field

somewhat difficult to define.

Moreover, Arthur (2013) describes the complexity sciences not as a distinct field or

academic discipline but as a movement in academia. This seems apt because it is used

by - and applied to - a wide variety of disciplines, e.g., quantum mechanics, chemistry,

biology, evolution studies, and the social sciences.

1It is perhaps worth noting here that Hayek wrote a paper (Hayek, 1967) which is broadly
compatible with the description of CE in this chapter. This paper is discussed in more detail in
Chapter 4.
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Despite the difficulties of defining the complexity sciences, what follows is a summary

of what are typically viewed as the main features of complex systems at the time of

writing. The defining features are organised in to three themes, which are discussed in

more detail in the first three sub-sections below:

1. Multiple (heterogeneous) agents;

2. Interdependence; and

3. Time.

2.1.1 Multiple Heterogeneous Agents

Complex systems typically contain ‘agents’ as the primary focus of analysis, e.g., sub-

atomic particles in quantum mechanics, planets within solar systems, stars in their

constitutive galaxies, ants in ant colonies, and people in social systems. Moreover, com-

plex systems typically contain multiple agents that are often viewed as heterogeneous,

i.e., where each contains unique features2.

Furthermore, these agents can themselves be viewed as: (i) complex systems of nested

complex systems; (ii) having semi-permeable boundaries; (iii) using internal models to

make sense of their reality; and (iv) existing in broadly decentralised systems.

2.1.1.1 Nested Complex Systems

It is easy to interpret the above description as implying agents in complex systems are

‘atomized’ (in the philosophical sense). In Greek Philosophy atomism was the idea that

atoms are the most basic and indivisible particles that make up the whole universe.

Equivalently, in sociology, atomism refers to “the tendency for society to be made up of

a collection of self-interested and largely self-sufficient individuals, operating as separate

atoms.” (Heyward, 2015, Glossary).

Either of these descriptions of atomism would lead us to believe that agents: (i) were

simple, single points of reference; and (ii) have impermeable boundaries. However,

this thesis takes the view that agents can themselves be complex systems with semi-

permeable boundaries that render them open to flows of matter, energy, and information.

The idea that agents are themselves complex systems is not difficult to imagine if we

consider organisms like ants and people. The word ‘organism’ implies a system of organs

and these can be viewed as complex because they fit the features described in this sub-

section. Furthermore, organs themselves can be viewed as complex systems, and this

2It is possible to imagine complex systems of homogenous agents but, in general, agents in
complex systems are viewed as heterogeneous.
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can continue ‘downwards’ until we consider atoms as complex systems of subatomic

particles. All of this presents a picture of complex systems of nested complex systems

(this is related to the idea of a stratified ontology which is discussed further below).

When modelling (cognitively or formally) these systems, abstraction often requires sim-

plification so agents might be presented in an abbreviated way. With complex systems

of nested complex systems, this must be done carefully.

2.1.1.2 Semi-Permeable Boundaries

The atomistic view is also criticised here because of its association with impermeable

boundaries: agents are viewed as isolated entities. Holland (2014) explores the issue

of boundaries in complex systems, referring to the idea of ‘semi-permeable’ boundaries.

For agents, this means their boundaries would be impermeable enough for an agent to

be identifiable but permeable (open) enough for flows to occur between the agent and

its environment (including other agents).

Consistent with Holland (2014), this thesis assumes that agents are semi-permeable in

nature, notably with regard to flows of information. This is especially important in the

context of agents’ mental models co-adapting to each other via interaction.

2.1.1.3 Internal Models

Related to information flows, a number of researchers in the complexity sciences (e.g.,

Holland et al, 1986, and Arthur, 1994) have emphasised the idea that agents use in-

ternal models to make sense of their environments and to make decisions by processing

information in a structured way.

This idea that agents use internal models is of course not unique to the complexity

sciences, e.g., in orthodox economics, firms seek to maximize profit and people seek

to maximize utility. Maximization algorithms like this, which are forms of substantive

rationality, are equivalent to internal models where the agents are firms or people.

Internal models can be highly simplistic in nature, e.g., cellular automata that switch

between 0 and 1 depending on the state of their neighbours; or they can be highly

complex, e.g., containing large neural networks. Indeed, we can think of neural networks

as complex systems themselves - this brings us back to the idea of nested complex

systems.

It is helpful to distinguish between simpler internal models that are generally reactive

to information and events (information is collated and then some decision made); and

sophisticated internal models that include anticipation of potential events, i.e., the imag-

ination of future scenarios. The cognitive ‘depth’ of human agents leads to particular
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challenges in human social systems, e.g., mutual contingency in which people try to

anticipate the actions of others who are, in turn, anticipating them.

Finally, to be clear about nomenclature, in this thesis the phrase “internal models” is

used to refer to all forms of agents, including non-biological types like atoms; whereas

the phrase “mental models” is used for biological organisms, including humans.

2.1.1.4 Decentralised Control / Bottom-Up Focus

Arthur (2013) referred to the economy as a “parallel system of concurrent behavior”

(p. 2). This description can be applied to complex systems in general: the idea that

there is no master controller and that agents make decisions synchronously. Control of

the system - if there is such a thing - is devolved to the agents.

This does not imply, however, that agents are equal with respect to the influence they

have vis-à-vis other agents or the system as a whole. This relates to the concept of

power, which is defined here as the ability to influence future events.

Furthermore, this emphasis on local behaviour does not mean that patterns and struc-

tures do not emerge within the system. Indeed, this thesis focuses on structures that

immerge within the agents’ mental models.

Given this focus on devolved behaviour, researchers in the complexity sciences tend to

focus their attention at the local level when trying to understand complex systems. The

‘bottom-up’ approach to making sense of complex systems is often emphasised in the

complexity sciences, e.g., Epstein (2012) refers to “growing” phenomena of interest via

computational modelling.

2.1.2 Interdependence

If the agents in complex systems are equivalent to (semi-permeable) nodes in a network,

here we focus on the links in that network, i.e., the connections between the agents.

In complex systems, agents typically have relationships with other agents, e.g., parents

and children, planets in the same solar system, and electrons in the same atom. If we

imagine each agent as having a set of bilateral relationships, we can appreciate that

multiple agents will exist in a larger network of ties.

Clearly, this picture of a network with nodes and links is highly abstract - agents and

how they relate to each other will vary considerably between types of complex system.

For example, the relationship between planets in the same solar system will be mostly

gravitational in nature; the relationship between a predator and its prey will be one

of hunting and avoidance; and the relationship between parents and children is often

emotional, with children being initially dependent on their parents.
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Regarding the relations between agents, the nature of mental models is important here

also. When agents have simple (non-anticipatory) mental models, the ties between the

agents might simply reflect one agent affecting another on a systematic basis. The

effected agent might then respond in some way that then affects the agents it is linked

to. Here, interdependence will be reactive in nature (the term reactive agents is used

here to denote the actors in such networks). For an example of this type of phenomena

and how change can propagate across entire networks, see Watts (2002).

By contrast, sophisticated mental models might include perceptions of other agents, e.g.,

expectations of other agents’ behaviour in particular circumstances. This awareness will

help agents to anticipate the actions of others (the term anticipatory agents is used

here to denote such actors). Therefore, we can see that with human agents, agent

interdependence can be anticipatory in nature and not only reactive.

2.1.3 Time

The third defining feature of complex systems is that they are dynamic. There are

a number of related concepts worth mentioning here: adaptation; evolution and co-

evolution; and path-dependence.

In complex systems, adaptation is the characteristic that an agent will adjust to its

environment, e.g., by reacting to others’ actions. An example would be some prey

avoiding a predator.

The concepts of evolution and co-evolution are discussed in more detail in Section 2.3.3.5

below. Evolution is viewed as including the processes of variation, inheritance, and

selection; and co-evolution is interpreted as reciprocal changes between two or more

groups of agents.

In terms of history, an important concept in the complexity sciences is path-dependence.

This is the idea that the current state of a system reflects its past, and that its current

state will influence its future. Hence, the past, present and future of the system are

inherently connected. See David (2007) for a detailed discussion of this concept and its

use (and misuse) in economics.

The mapping of the past in to the present can occur in two broad ways, via: (i) agents’

mental models (either because of memories or because knowledge / learning from pre-

vious experiences is carried forward in some way); and/or (ii) the relationships between

the agents. Both of these can be understood as historical patterns brought forward from

the past in to the present.
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We can infer from this that some complex systems will not exhibit path dependence.

This will be true if agents have no memories and/or they do not learn; and/or if any

form of relationship between the agents is not carried forward over time.

2.2 The Complexity Sciences: Conceptual

Features

The previous section looked at the three main defining features of complex systems:

agents, interdependence, and time. In this section we focus on analytical features.

As mentioned previously, these are features that are emphasised by the complexity

sciences but either pre-date the movement or have arisen from the study of such systems.

Furthermore, the list includes those features that are most relevant to this thesis. An

open-source and more extensive list can be found on-line at Santa Fe Institute (2023).

2.2.1 Feedback

Feedback is defined in The Oxford English Dictionary (OED) as “The modification,

adjustment, or control of a process or system (as a social situation or a biological mech-

anism) by a result or effect of the process.” (OED, 2021, Definition 2).

In the complexity sciences, there are generally two types of feedback: positive and

negative.

Positive feedback is viewed as amplifying change, e.g., if a variable related to an agent

(say, temperature) is increased then positive feedback will further increase that variable.

By contrast, negative feedback is seen as moderating change, e.g., if the same variable

increases then negative feedback will reduce it, and vice versa.

2.2.2 Non-Linearity

Non-linear is defined in the OED as “involving or possessing the property that the

magnitude of an effect or output is not linearly or proportionally related to that of the

cause or input.” (OED, 2021, Definition 1a).

With linear systems, the impact (∆y) of any perturbation (∆x) will be proportional to

the magnitude of the perturbation, i.e., ∆y = β∆x where β is a constant3. By contrast,

non-linear systems will see perturbation having a disproportional (large or small) effect,

e.g., ∆y = (∆x)β when β ̸= 1.

3and β ̸= 0.
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2.2.3 Space of Possibilities

In the complexity sciences (and elsewhere) it is common to consider the ‘state space’ of

a system, which is the complete set of potential states the system could be in. For our

purposes this will include every possible location and trajectory of every agent in the

system and all of the possible configurations of their mental models.

If we consider that a specific agent will have limited knowledge of the system in which it

finds itself, the ‘space of possibilities’ for this agent will be the sub-set of the state-space

it can imagine4. Moreover, an agent can improve its limited knowledge of the wider

system by exploring it, e.g., by moving around a geographic region and/or interacting

with other agents. This exploration would also increase the agent’s range of states it

can imagine, hence the phrase used by some complexity scientists, of agents “exploring

the space of possibilities.”

This will be important in the computational simulations when agents explore their en-

vironment: do institutions emerge during this exploration?

The idea of exploring the space of possibilities is discussed in Mitleton-Kelly (2003). The

following quote gives us a sense of the challenging localised dynamics faced by agents in

complex systems:

Complexity suggests that to survive and thrive an entity needs to explore

its space of possibilities and to generate variety. Complexity also suggests

that the search for a single ‘optimum’ strategy may neither be possible nor

desirable. Any strategy can only be optimum under certain conditions,

and when those conditions change, the strategy may no longer be optimal.

(Mitleton-Kelly, 2003, p. 14)

This quote also helps us understand that complex systems might never reach an opti-

mum, nor an equilibrium: agents might have to continuously explore the system they

occupy, allowing their mental models to adapt, and adjusting strategies as other agents

adjust to theirs.

2.2.4 Far-From-Equilibrium

This is the idea that complex systems could be forced away from equilibrium condi-

tions, or might never experience these conditions at all. Chan (2001) describes how this

phenomenon was explored in Nicolis and Prigogine (1989):

4It is possible the agent will not be aware of many parts of the system so it will only be able
to imagine a localised part of the sub-set of the whole state-space.
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In 1989, Nicolis and Prigogine showed that ... [t]he “far from equilibrium”

phenomenon illustrates how systems that are forced to explore their space of

possibilities will create different structures and new patterns of relationships.

(Chan, 2001, p 6)

We will explore the ideas of non-equilibrium and dis-equilibrium further in Section 2.3.3.2

below when we discuss CE. These are also related to non-ergodicity, which is the subject

of Section 2.3.3.6.

2.2.5 Emergence

As stated in the Introduction, emergence is defined by the Santa Fe Institute (2023) as a

“process by which a system of interacting subunits acquires qualitatively new properties

that cannot be understood as the simple addition of their individual contributions.”

This feature of complex systems is essential for differentiating the complexity sciences

from reductionist strategies for making sense of such systems. Classic examples of emer-

gence are the properties of water from its constituent atoms (like ‘wetness’): these

properties are not reducible to hydrogen or oxygen.

Hodgson (2000c) includes a helpful discussion of the history of the term ‘emergence’,

noting that it was first suggested by the philosopher George Lewes in 1875. We can

appreciate, therefore, that this term precedes the complexity sciences by about a century

so while it is associated with that field, it is not attributable to it.

In discussing non-reducibility, Hodgson (2000c) quotes Morgan (1932) who explains:

the hypothesis is that when certain items of “stuff,” say o p q, enter into

some relational organization R in unity of “substance,” the whole R(o p q)

has some “properties” which could not be deduced from prior knowledge of

the properties of o, p, and q taken severally. (Morgan, 1932 as quoted in

Hodgson, 2000c, p. 65)

Furthermore, in terms of emergence, Hodgson (2000c) quotes Morgan (1925):

the emphasis is not on the unfolding of something already in being but on

the outspringing of something that has hitherto not been in being. It is in

this sense only that the noun may carry the adjective “emergent.” (Morgan,

1925 as quoted in Hodgson, 2000c, p. 66)

Hodgson (2000c) also notes that interest in emergence “re-emerged” after the late 1960s,

which coincided (approximately) with the formation of the complexity sciences.
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Consistent with this, Axtell (2007) notes “[t]here is a large and growing literature on

the idea of emergence in physical, biological, and social systems (cf. Haken (1987), Baas

(1994), Morowitz (1998), Howitt and Clower (2000), Johnson (2001), Sawyer (2001),

Morowitz (2002), Sawyer (2002)).” (p. 111).

Finally, it is common among researchers to discuss emergence as if it were external to

the agents, e.g., Arthur (2013) refers to traffic jams as forms of emergence among driver

agents. The ensuing traffic problem is a result of agents reacting to each other’s actions

but the emergent pattern can be thought of as essentially external to each agent.

However, it is also possible for emergence to involve the adjustment of mental mod-

els, i.e., for the emergent pattern to be internal to the agents. As mentioned in the

Introduction, Conte and Castelfranchi (1995a) refer to ‘cognitive emergence’, which is

related to ‘immergence’ in the social simulation literature. Once again, if we think of

an agent (including its mental model) as a complex system, we can imagine a pattern

of behaviour having immerged from the agent’s interaction with other agents. This idea

of immergence being endogenous ‘within’ agents’ mental models is explored further in

this thesis.

2.2.6 Self-Organisation

This concept is a type of emergence: self-organisation is the process in which patterns

emerge spontaneously in a way that is helpful to the agents, e.g., by enhancing their

likelihood of survival. An example would be the practice of wolves hunting in packs.

This skill is not reducible to individual wolves because it requires coordination between

them but, also, it is not achieved through some kind of centralised command and control

process. It arises from agent-to-agent interaction. Furthermore, it enhances the ability

of the pack to survive because hunting is more effective this way.

We should note here that Sheehan and Wahrman (2015) date the origins of this concept

to the Mississippi and South Sea financial bubble of 1719-1720 so it clearly precedes the

complexity sciences. Furthermore, as mentioned in the Introduction, the related (but not

identical) idea of ‘spontaneous order’ pre-dates that of self-organisation by millennia5

(even if the phrase was coined in the 20th Century).

The complexity scientist most known for promoting ‘self-organisation’ is Stuart Kauff-

man. Kauffman (1993) argues that evolution by natural selection is not the only ‘force’

that determines the likelihood of a species surviving. Kauffman writes “[i]t is this single

force view which I believe to be inadequate, for it fails to notice, fails to stress, fails to in-

corporate the possibility that simple and complex systems exhibit order spontaneously.”

(p. xiii).

5Recall from the Introduction that the earliest known reference is from the fourth century
BC Chinese Philosopher Zhuang Zhou (Hamowy, 1987, p. 6).
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Another way of describing self-organisation is that it is the endogenous creation of new

order in some system. Indeed, a useful way of understanding self-organisation is to

contrast it with order imposed from outside of that system.

Other examples include swarming behaviour of animals such as birds, insects, and fish;

and communication within human systems: language can only have emerged endoge-

nously, it could not have been imposed from outside. Luhmann (1995) emphasises this

point, noting also that a social system can only reproduce itself if there is communication

between people.

Moreover, this thesis is concerned with the emergence of organic institutions as types

of ‘spontaneous order’. This is closely related to the concept of self-organisation within

complex systems, and is discussed in greater detail in chapters 3 and 4.

Finally, while the idea of order emerging spontaneously in complex systems is helpful,

this thesis attempts to be more concrete in identifying mechanisms by which organic

institutions emerge and immerge in complex economic systems.

2.2.7 Lock-In

This idea is related to the concept of path dependence, which was mentioned in Section

2.1.3 above. It refers to some pattern of behaviour that is maintained in some system

through endogenous factors.

The classic (though contested) example of lock-in is the QWERTY keyboard. The

narrative goes that this design was originally intended to slow typists down - engineers

thought that mixing the letters in a relatively random way would achieve this task.

However, typists became familiar (and efficient) with the new layout so manufacturers

sold keyboards with this design. In turn, new users of this layout learned to type with

the same design. Over time, the QWERTY keyboard became ‘locked in’.

David (2007) provides additional examples of what he believes are “sub-optimal equi-

libria” that have been “ ‘selected’ by a dynamic process” (p. 130). He refers to “640K

lower memory in the IBM PC, AC vs. DC electrical current, light-water reactors, and

VCR formats” (ibid, p. 136).

More broadly, Foxon (2002) discusses how in economics increasing returns to scale can

ensure certain technologies can be locked in place, citing four ‘forces’ as developed in

Arthur (1994b): scale economies, learning effects, adaptive expectations, and network

economies. Foxon also mentions North’s references to institutional lock-in: the same

four forces can sustain an institution within a population.

To understand the points of contention here, let us first differentiate between the lock-

in of behavioural patterns in general and a sub-group of such patterns that lead to
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sub-optimal outcomes. Liebowitz and Margolis (1990), for example, do not dispute the

idea that QWERTY has become locked in; rather they dispute the inefficiency aspect,

as argued by David. They state that “the continued use of Qwerty is efficient given

current understanding of keyboard design” (p. 2); and that the “trap constituted by

[this] obsolete standard may be quite fragile” (p. 21), i.e., the lock-in effect is relatively

weak.

Clearly, the issue here is not so much about keyboard designs. Rather, there are im-

portant questions about whether pareto inferior outcomes can become locked in and,

if so, how prevalent they are in economic systems. This is particularly important in

free market economics because locked-in sub-optimal equilibria are examples of market

failures that are durable by nature6.

This is not the place to answer the above question of the prevalence of sub-optimal

‘traps’. Instead, we can simply state that, from a complexity sciences point of view, we

should keep an open mind to such phenomena. Moreover, David’s (2007) framing of the

issues at play here is particularly helpful so let us briefly look at this.

David refers to positive feedback effects that move agents into a “trapping region - the

basin of attraction that surrounds a locally (or globally) stable equilibrium.” (David,

2007, p. 131). The problems of “escaping from lock-in of the system to a globally inferior

(but locally stable) attractor are rooted in ‘pure’ coordination costs.” (ibid, p. 132)7.

The sides of the attractor basin (steepness and length) correspond to the stability of the

locked-in phenomenon and how difficult (or expensive) it is to escape. This gives rise

to context-specific practical problems and questions about the net present value of the

costs and benefits of changing to a globally preferred outcome, if this is even feasible.

However, it is important to consider that such “trapping regions” do not necessarily

persist. In Section 2.3.3.6 below we discuss how economies can be re-patterned over

time, which means that following “ ‘exogenous [to the attractor basin] innovations’ (in

the state of relevant knowledge, or in the regulatory institutional regime), the previous

attractor(s) may be destroyed, freeing the system to endogenously begin to evolve some

new configurations.” (ibid, p. 132). David (2007) gives the example of deregulation

in the US’s telecommunications networks in the 1950s, which “formed new ‘attractive

paths’ ... for the evolution of digital telecommunications technologies.” (p. 133).

In addition, David argues that by being aware of positive feedback effects that result

in sub-optimal trapping regions, we can take pre-emptive, ameliorative actions if we

observe them playing out. This can be linked to the discussion in the Introduction of

6This very much relates to Luban’s (2020) reference to spontaneous processes giving rise to
positive and negative outcomes - this is discussed further in Chapter 3.

7Note that this framing corresponds to Schultz’s (2001) coordination situations and not his
collective action situations.
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Institutional Economics being used to advise on present day institutional challenges such

those related to cryptocurrencies.

The final point to note here is that David (2007) uses his framing of lock-in to describe

the state of orthodox economics itself. “For many economists, their own sunk cost in

mastering that discipline have produced a facility for reasoning that suppresses natural,

human intuitions about historical causation.” (p. 138). He refers to this as “intellectual

sunk cost hysteresis” (ibid), which is analogous to an attractor basin. This thesis can

be interpreted as a contribution to attempts to move out of that trapping region.

2.2.8 State of Paradox

This is the idea that complex systems can exist in states that exhibit seemingly contra-

dictory phenomena. Chan (2001) writes “[t]his reinforces the idea of bounded instability

or the edge of chaos that is characterised by a state of paradox: stability and instability,

competition and cooperation, order and disorder.” (p. 6).

For this thesis, the paradox that is perhaps most relevant is that of order and disorder

(recall from the Introduction that we adopt Hayek’s definition of order8 in this thesis).

A simple example of the co-existence of order and disorder is a professional football

league. The rules of the league are typically codified and known to all the teams, and

games tend to be agreed months in advance. Furthermore, the ‘rules of the game’ are

also generally known by the players.

However, individual football games tend to exhibit a considerable amount of disorder

(even if the rules are followed perfectly): notably, a team’s tactics, as well as those

of individual players, will generally seek to confound the expectations of their oppo-

nents. Furthermore, the tactics of both teams often co-evolve during a game. Hence, in

professional football leagues we tend to observe a co-existence of order and disorder.

Looking at economics, Hayek viewed ‘the market order’ as the coexistence of order and

disorder. Certain phenomena, notably entrepreneurial behaviour and ‘liberal legislation’,

would support a broadly ordered system. However, within this ‘order’, phenomena like

new technologies and changing consumer preferences would create a degree of disorder.

Hayek’s market order, as well as Vanberg’s (1994b) reference to “conditional evolution”,

are discussed further in Chapter 4 below. These help add to our understanding of order

and disorder as a state of paradox.

In the simulations based on the Agent-Based Models developed for this thesis, a rudi-

mentary economic system starts from a state of disorder in which no markets have

8See Section 1.4.3.



44 Chapter 2 Complexity Science and Complexity Economics

emerged (and property rights do not exist in the case of the second model)9. New or-

ganic institutions (markets and property rights) represent new order; however, we find

that the agents, while competing for resources when foraging, also act in a beneficial

and collective way when trading resources (after appropriate organic institutions have

emerged). Hence, order co-exists with disorder in these simulations.

2.2.9 Sensitivity to Initial Conditions / Predictability

The idea that the future path of a complex system is sensitive to its initial conditions was

famously observed by Edward Lorenz when he developed a set of differential equations

in the 1960s to approximate the state of - and changes in - the weather.

This concept is related to non-linearity: Lorenz noticed that infinitesimally small changes

in initial conditions meant that, over time, a system exhibits significantly different out-

comes. Lorenz first conducted his experiment in 1960 where the initial conditions of his

state variables were measured to 6 decimal places. When he repeated the experiment in

1961, these initial conditions were measured to 3 decimal places (see New York Times,

2008). Lorenz had expected the results of the two experiments to be essentially the

same; however, they were not. Over a sufficiently long enough time horizon, the results

were significant different.

Lorenz’s experiments were conducted using (deterministic) differential equations; how-

ever, the same effect can also be observed in any complex system that exhibits non-

linearity (e.g., due to positive feedback effects).

This idea that outcomes are sensitive to initial conditions when non-linearity exists is

one factor that warns us about the ability to predict outcomes. If we are unsure about

initial conditions and / or the patterns that describe some system, how confident should

we be that we can predict the outcome?

2.2.10 Symmetry Breaking

As the name suggests, symmetry breaking occurs when a type of equilibrium, balance,

or symmetry in some system is changed or broken.

In this thesis we will use the following definition, which appears in Castellani (2010):

...the process by means of which the considered symmetry is broken and

is therefore usually ascribed a “dynamic” character in the literature (in

9Note, however, that certain institutions like language are assumed. As stated in the Intro-
duction, the focus of the models is on the emergence of new institutions: we do not assume that
we start from an institution-free state of nature.
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contrast with the “static” character attributed to a situation of symmetry).

(Castellani, 2010, p. 321-322)

Now that we have discussed the defining features and some of the analytical features of

complex systems, let us turn our attention to CE.

2.3 Complexity Economics

CE is the study of economic behaviour from a complexity science perspective. For books

and papers written on this general approach, see, for example, Rosser (1999), Colander

(2000), Judd (2006), Tesfatsion (2006), Epstein (2012), Axtell (2007), Colander et al

(2009), Kirman (2011), Colander and Kupers (2012), Farmer (2012), Gallegati and

Kirman (2012), Arthur (2013), and Arthur (2021).

In the first sub-section below we ask whether the complexity sciences are applicable to

economics. The second sub-section discusses the overall approach taken in CE, focusing

on eleven general principles (for each we contrast the approach taken in Neoclassical

theory).

2.3.1 Should Economies be Viewed as Complex Systems?

One way of framing this question is to ask whether economic systems include the three

defining features listed in Section 2.1: multiple heterogeneous agents, interconnectivity,

and time.

It should be clear from the discussions in that section that economies can indeed be

described by these three features: people, firms, and other organisations are typically

thought of as economic agents; they exist in networks of relationships; and, in general,

they evolve and adapt to each other over time.

From a logical point of view, the statement that economies should be thought of as

complex systems represents a syllogism: (i) systems with the three defining features are

defined as complex systems (the major premise); (ii) economies include these defining

features (the minor premise); therefore, (iii) economies are complex systems.

It would be a mistake, however, to apply the conceptual features of the complexity

sciences to economics in an unquestioning way because the former emerged, broadly

speaking, from the natural sciences. One must be cautious when mapping from one

domain to another.

Most notably, the idea that human agents are different to agents in natural complex

systems (atoms, stars, bees, etc.) was mentioned several times in sections 2.1 and

2.2 above, especially the idea that “humans have the capacity to reflect and to make
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deliberate choices and decisions among alternative paths of actions.” (Mitleton-Kelly,

2003, p. 25). Moreover, the fact that a ground-up view of complex systems is generally

advocated by complexity scientists means that if human agents have features that are

different to agents in natural systems then it is likely that whole systems of these agents

will too: different patterns might emerge.

2.3.2 Dealing with Mapping and Other Challenges

There are a variety of ways in which this mapping challenge could be handled in a thesis

but it would be sensible to consider any other related challenges at the same time.

One such challenge is to articulate clearly the nature of CE given this is an important

part of the thesis. Another is to set out in detail some fundamental principles that will

act as premises in arguments made later on. Yet another challenge is to compare and

contrast a CE approach to that of Neoclassical theory.

A good solution to all of these challenges is to describe a list of principles that together

make up what is defined here as CE. Some of these principles help to overcome the

mapping challenge because they represent what the complexity sciences mean in the

context of economics, e.g., being open to a stratified ontology. Others represent premises

that will be used in subsequent arguments.

2.3.3 The Eleven Principles of Complexity Economics

In this sub-section we set out eleven general principles that will help us understand

better what a CE approach means in this thesis.

These principles are:

1. Economies are computational in nature;

2. Economies exhibit non-equilibrium and dis-equilibrium features;

3. Economies include the processes of formation and allocation;

4. Economies have a stratified ontology, resulting from emergence;

5. CE is open to a ‘generalized Darwinian’ approach;

6. Economies are non-ergodic;

7. Uncertainty is an important feature in economic behaviour;

8. Agents use mental models to make decisions;

9. CE is open to inter-disciplinarity;
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10. CE values realism and is sympathetic to instrumentalism; and

11. CE has an affinity with pragmatism.

Each principle is discussed below and then contrasted with the Neoclassical approach.

For general criticisms of Neoclassical theory see, e.g., Eichner and Kregel (1975), Nelson

(2001), Stiglitz (2001), Blaug (2002), Arnsperger and Varoufakis (2006), and Colander

et al (2009).

Before proceeding, it is worth noting that Complexity Economics is a maturing field

of study, which means that different interpretations and emphases are bound to exist.

What follows is one interpretation although it is probably reasonable to say that the only

possibly contentious principle listed below is the last, that related to pragmatism. The

argument here is that this seems to be a natural extension of the bottom-up orientation

of the complexity sciences, and it appears to be implicit in much of Arthur’s work, e.g.,

Arthur (2013).

2.3.3.1 Economies are computational in nature

In response to the stable, equilibrium-focused world of Neoclassical theory, Arthur wrote:

A better way forward is to observe that in the economy, current circum-

stances form the conditions that will determine what comes next. The

economy is a system whose elements are constantly updating their behavior

based on the present situation. To state this in another way, formally, we

can say that the economy is an ongoing computation — a vast, distributed,

massively parallel, stochastic one. Viewed this way, the economy becomes a

system that evolves procedurally in a series of events; it becomes algorith-

mic. [Emphasis included] (Arthur, 2013, p. 6)

This quote raises the question of how we define computation, which is an open question

even in the field of computational science.

Denning (2010) discusses the history of definitions of computation and offered a “Trans-

formation of Representations” version, which appears compatible with the general usage

of the term at the time of writing.

A representation is defined by Denning as “a pattern of symbols that stands for some-

thing” (Denning, 2010, p. 7). His proposed definition of computation is of an information

process driven by a representation, i.e., information is transformed in the act of compu-

tation.

In economics we can think about economic agents who receive information that is then

processed (transformed) by their mental models. The output might be information also
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(e.g., a signal to another agent) or actions performed by the agent (including forms of

work). These agents need not be humans - they might also be machines, firms, trade

unions, etc.

The idea that economies are parallel systems of concurrent computation is compatible

with a complex systems approach because it fits well with the architecture of multiple

agents interacting over time. In fact, computation provides a framework for describing

how agents in the system process information, which is based on a mature body of work.

Computation and Closed Form Solutions

In discussing computation, Arthur (2013) refers to Alan Turing’s halting problem theo-

rem (Turing, 1936). The result of this theorem is that:

...there is no analytical method to decide in advance what a given algorithm

will do. All we can do is follow the computation and see what it brings.

Of course, with simple algorithms we can often see they will settle down

to a given outcome. But algorithms don’t have to be particularly compli-

cated before we cannot decide their outcomes (Wolfram, 2002, as quoted in

Arthur, 2013, p. 6).

This point has substantial implications for the analysis and modelling of computational

processes, which Arthur argued included economies. It means that, in general, we must

be sceptical about closed form solutions of such processes; rather we must “follow the

computation and see what it brings” (ibid).

Implications for Economics

There are two broad implications worth highlighting here. First, when framing or mod-

elling economic systems, we must account for their computational nature. If we fail to

do this then we run the risk of a framing error.

Indeed, this point seems particularly important for the economics profession which has

become highly mathematized in recent decades. A mathematical framing of computa-

tional systems represents information compression, which Turing warned against.

Second, the halting problem has significant implications for our understanding of how

agents process information, including questions about ‘rationality’. We must ask our-

selves how agents process information and achieve any goals if the environment in which

they exist is not ‘solvable’ in any way.
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Comparison with Neoclassical Theory

Historically, NCE has not treated economic systems as computational in nature. There

is a substantial literature looking at the formal approach taken by Neoclassical theory,

e.g., Arthur (2013) discusses this and how it relates to equilibrium conditions.

Arthur (2013) argues that for certain features of the economy, equilibrium-like condi-

tions might well exist. Furthermore, “[w]e can often do much useful pre-analysis of the

qualitative properties of nonequilibrium systems” (ibid, p. 6). As a result, the standard

analytical techniques in Neoclassical theory can be useful. However, for

highly interconnected systems, equilibrium and closed-form solutions are not

the default outcomes; if they exist they require justification. And computa-

tion for such systems should not be regarded as the avoidance of analytical

thinking; rigorously speaking, it may be completely necessary. (Arthur,

2013, p. 6)

Here, Arthur is arguing that if the economy is a computational process then compu-

tational modelling is a suitable technique for analysing such systems. The standard

mathematical techniques of Neoclassical should be viewed as approximations that are

useful only under certain conditions. To reinforce this point, Arthur writes “compu-

tation ... allows us to see phenomena that equilibrium mathematics does not.” (ibid,

p. 8).

This point should also lead us to query the assumption of substantive rationality in

computational systems: historically, NCE has been oriented around agents solving a

utility maximization problem under known conditions. The halting problem means that

in computational systems, this type of maximization is questionable.

2.3.3.2 Economies exhibit non-equilibrium and dis-equilibrium

features

The computational view of economics described above helps us appreciate how the econ-

omy, or parts of it, can exist in states of non- or dis-equilibrium. This perspective “shows

us an economy perpetually inventing itself, perpetually creating possibilities for exploita-

tion, perpetually open to response. An economy that is not dead, static, timeless, and

perfect, but one that is alive, ever-changing, organic, and full of messy vitality.” (Arthur,

2013, p. 19).

This dis-equilibrium view was emphasised in Farmer’s (appropriately entitled) paper,

‘Economics Needs to Treat the Economy as a Complex System’:



50 Chapter 2 Complexity Science and Complexity Economics

...in many situations there is no unique equilibrium. When there are mul-

tiple equilibria it may be difficult to predict which agents will converge to;

in other circumstances they may fail to converge to any equilibrium at all.

(Farmer, 2012, p. 8)

Comparison with Neoclassical Theory

Arnsperger and Varoufakis (2006) argue that NCE was comprised of three underling

axioms. One of these was ‘methodological equilibration’, which is the idea that markets

(and economies more generally) tend to equilibrium.

There is an important question here about why Neoclassical theory has taken this ap-

proach. One explanation, shared by many of NCE’s critics, is due to the analytical

techniques available to economists for most of the 20th Century that for the most part

were mathematical in nature. Economists looking to formally determine how economies

worked, who were restricted to these analytical techniques, built models orientated

around equilibrium outcomes and microeconomic behaviour that was consistent with

equilibrium. This approach has been taken in various parts of Neoclassical theory, in-

cluding the theory of the firm, international trade, and financial markets (Arthur, 2013,

p. 2).

It should be clear, however, that the development of computational approaches and

the acceleration in processing power since the 1970s, both mean that these restrictive

mathematical techniques are no longer the only tools available to economists. Compu-

tational modelling of economies offers a way of increasing our understanding of non- and

dis-equilibrium phenomena.

2.3.3.3 Economies include the processes of formation and allocation

Economics is often defined as the study of the allocation of scarce resources. Moreover,

Neoclassical theory has focused heavily on this issue to the extent that Arthur (2013)

writes that of the two great problems in economics, “[t]he allocation problem is well

understood and highly mathematized.” (p. 17).

The second major problem in economics Arthur refers to is about formation within the

economy. It is tempting to think of this in a conventional way, as being about stocks

of assets, including capital, labour, and natural resources. However, Arthur argues that

the issue is more about how the economy structures and re-structures itself over time.

Formation is about:
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how an economy emerges in the first place, and grows and changes struc-

turally over time. This is represented by the ideas about innovation, eco-

nomic development, structural change, and the role of history, institutions,

and governance in the economy. (Arthur, 2013, p. 17)

This reference to ‘economic patterning’ mimics the language used by other complexity

scientists. It is often used to refer to the relationships between parts of systems: the

network of relationships in an organisation, circuit board designs, how the various parts

and processes of an organism work to sustain its life, etc. (e.g, Boulton, 2019).

Moreover, if we stand back and consider the economy as both formed / re-forming

patterns and allocation, this helps us visualise the economy as both a stock of networked

(or patterned) resources and as a flow of resources across that network.

When it comes to understanding what types of pattern exist in the economy, Arthur

(2013) refers to “institutions, arrangements, and technological innovations.” (p. 1). Insti-

tutions include social norms; arrangements can refer to a variety of phenomena, including

management structures in organisations; and technological innovations are about how

materials and energy are arranged to achieve tasks. Of these three patterns, Arthur’s

own research has been focused on technology, e.g., Arthur (2009).

Comparison with Neoclassical Theory

Arthur’s view is that Neoclassical theory has focused on the allocation problem at the

expense of understanding formation.

If we consider the formal modelling technology on which Neoclassical theory has relied,

this is not surprising. Formation is not simply about the accumulation of stocks of

resources, which can be handled by differential equations; it is about two important

issues: the creation of networks of relationships and how matter, energy, and information

are processed across those networks.

The standard analytical techniques of Neoclassical theory, which are largely based on

classical physics, are not well suited to modelling patterned phenomena. However, they

can be modelled computationally, including via agent based modelling. This approach

has been used for decades in the complexity sciences to model patterns of relationships

and how resources and information can be processed across such networks.

2.3.3.4 Economies have a stratified ontology

This principle arises from the concept of emergence, which was discussed in Section

2.2.5.
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The reference to ‘stratified’ comes from the idea that system-wide phenomena can emerge

from the interaction of the system’s parts. These system-wide phenomena are framed

as if they are ‘above’ the parts / agents in some hierarchy, hence ‘stratified’.

An important point that distinguishes the complexity sciences, which are open to emer-

gent properties, and reductionist perspectives (‘reductionism’ is defined below) is the

view of the former that accords a different ontological status to emergent properties.

For complexity scientists, emergent properties are ontologically ‘new’ and the properties

of these phenomena are not reducible to the parts / agents from which they arose. Fur-

thermore, the ontological ‘newness’ of emergent properties allows for ‘downward effects’

whereby these properties act on the very agents that gave rise to them.

A classic way of describing this stratification in the complexity sciences is to point out

that atoms emerge from the interaction of sub-atomic particles; chemicals emerge from

the interaction of atoms; biological entities emerge from the interaction of chemicals;

and so on, until the properties of galactic superclusters emerge from the interaction of

their constituent galaxies.

Researchers who take a reductionist approach to analysis can also recognise a type of

stratification in the sense groups of agents can give rise to system-wide properties. The

difference, however, is that these properties are not seen as ontologically ‘new’ - they

are reducible to the parts / agents of the system.

For the purpose of this thesis, we are most interested in how social phenomena - like

organic institutions - emerge from the behaviour of ‘individual’ agents. In addition, we

look at how the division of labour can be viewed as an emergent phenomenon.

One point worth emphasising is that the claim here is not that all phenomena must be

explained through the concept of emergence. There are a wide variety of phenomena

that are explainable through reductionism, e.g., if we wish to understand the trajectories

of balls on a snooker table; or if we wish to model a satellite in orbit around the Earth.

A stratified ontology means we are open to the idea of emergence; it does not mean we

reject all reductionist explanations.

Reductionism

In this thesis we adopt a definition of reductionism as the “practice of describing or

explaining a complex (esp. mental, social, or biological) phenomenon in terms of rela-

tively simple or fundamental concepts, especially when this is said to provide a sufficient

description or explanation...” (Oxford English Dictionary, 2023).

This is a relatively simple definition which is sufficient for our purposes here. The subject

is, however, much deeper than this definition implies and it is an important topic in the
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philosophy of science. See, for example, the discussions of ontological, methodological,

and epistemic reductionism in the Stanford Encyclopedia of Philosophy (2023).

Comparison with Neoclassical Theory

Neoclassical economists have historically taken a reductionist stance while also acknowl-

edging that “social variables, not attached to particular individuals, are essential in

studying the economy or any other social system” (Arrow, 1994, p. 8).

Arnsperger and Varoufakis (2006) point to NCE’s reductionist leanings in the first of

the three axioms they associate with Neoclassical theory:

To the neoclassical economist ... individual agents ... are to be studied, like

the watchmaker’s cogs and wheels, independently of the social whole their

actions help bring about. (Arnsperger and Varoufakis, 2006, p. 8)

This axiom is referred to as Methodological Individualism in Arnsperger and Varoufakis’

paper but it also corresponds to the definition of reductionism stated above.

NCE has followed a reductionist strategy in a number of ways. First, the interaction of

agents in Neoclassical models is typically very limited; and, second, the mental models

of the agents have historically been restricted to substantive rationality and exogenous

preferences. These two features are typically combined within a mechanistic framing

(and mathematics) that exist at the same ontological ‘level’: there are no emergent

properties and the agents behave in a deterministic way.

We should ask, in the context of the quote from Arrow (1994) above, how Neoclassical

theory explains social structures if, as Kenneth Arrow states, “such categories are in fact

used in economic analysis all the time.” (p. 1). In this paper, Arrow uses the examples of

prices in general equilibrium analysis and the rules assumed in game theoretic analyses

to support his point.

Game theory, which Arrow (1994) describes as “[t]he current formulation of methodical

individualism” (p. 4), has been used by Neoclassical economists to model how organic

institutions arise in economics. Hodgson (2007) points to Field (1979, 1981, 1984) as

providing crucial arguments for why such explanations are insufficient. This important

subject is discussed further in Chapter 5 where criticisms of game theoretic models are

discussed.
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2.3.3.5 Complexity Economics is open to ‘generalized Darwinism’

In this thesis, ‘Darwinian’ is defined by the three features of variation, selection, and

durability10.

There is a substantial literature concerned with whether Darwin’s theory of evolution by

natural selection applies to social systems, and a comprehensive survey of it is beyond

the scope of this thesis. Nonetheless, an important question in this literature is whether

or not to interpret the above three principles in a very narrow sense, where variation is

due to random genetic mutation; selection is about the survival of an organism in some

environment; and durability is viewed as inheritance from parent to offspring. If we

accept this interpretation then we would clearly reject the use of Darwinian evolution,

so defined, for explaining social phenomena.

However, these three principles can be generalized in two broad ways (consistent with

“generalized Darwinism” as discussed in Hodgson and Knudsen, 2006): regarding ab-

straction in the meaning of the three principles, and the ‘level’ of any Darwinian expla-

nation.

In terms of the first generalization, the three principles can be interpreted as follows:

• variation includes adaptation on behalf of some agent for whatever reason, includ-

ing via reinforcement learning or conscious deliberation;

• selection refers to “a process of sifting and preservation of fortuitous adaptations.”

(Hodgson, 2003a, p. 89); and

• durability is related to the concept of path dependence, which ensures “that much

of the pattern and variety is passed on from one period to the next.” (Hodgson,

2003a, p. 89).

Consistent with this higher level of abstraction, Hodgson and Knudsen (2006) write “[i]t

is not that social evolution is analogous to evolution in the natural world; it is that at a

high level of abstraction, social and biological evolution share these general principles.”

(p. 14).

These three principles are discussed in more detail when Hayek’s theory of cultural

evolution is considered in Chapter 4; and in the discussion of simulations based on the

second model in Chapter 10.

10Different versions of these three principles exist. For example, Hodgson (2002a) and Hodg-
son and Knudsen (2006) use variation, selection, and inheritance; and Stoelhorst (2007) uses
“retention” in place of inheritance because it “takes us further away from the genetic overtones
of the term inheritance.” (Endnote 1, p. 251). Durability is used here for the same reason and
because it is consistent with Hodgson’s (1991) use in the context of Hayek’s theory of cultural
evolution (discussed further in Chapter 4).



Chapter 2 Complexity Science and Complexity Economics 55

The second dimension in which the three principles of Darwinism can be generalized re-

lates to the stratified ontologies discussed above. Consistent with this, Hodgson (2002b)

writes that it “is possible that some of the reaction against ‘biological analogies’ is

grounded on a mistaken view that theories operate on the one level only.” (p. 273).

Instead, “Darwinism biology invokes multi-levelled explanations, in which the theory of

natural selection is the over-arching and organising theoretical framework.” (ibid). This

includes the notion of “group selection”, which is relevant when we discuss Hayek (his

theory of cultural evolution hinges on this principle).

This thesis is open to the idea of generalized Darwinism, which includes both the abstract

interpretation of Darwin’s three principles and multi-level explanations.

However, as was the case with emergence above, this use of a Darwinian perspective

does not mean that every aspect of an economic system should be explained by these

forces. Rather, our analysis is open to framing agent behaviour and social change in

this way. Also, as Hodgson and Knudsen (2006) argue, generalized Darwinian theories

should be viewed as necessary but not sufficient for explaining certain phenomena: we

also require a coherent explanation of them.

Comparison with Neoclassical Theory

In addressing this issue, it is important to distinguish between free market economics

and Neoclassical theory.

The broader approach to Darwinian evolution as outlined above is compatible with the

idea that firms operate in competitive free markets. Firms could be viewed as equivalent

to organisms in an ecosphere; they might intentionally adapt to changes in consumer

demand; these changes might be sustained for some time; and a firm will ‘win’ relative

to other firms if its adaptation is commercially successful. Firms that do not adapt will

‘lose’ and might therefore fail.

However, Neoclassical theory is not the same as free market economics. Broadly speak-

ing, NCE’s emphasis on stable, equilibrium conditions means it sits awkwardly with

generalised Darwinism. As mentioned above, Arthur referred to the Neoclassical ap-

proach as “dead, static, timeless, and perfect.” (Arthur, 2013, p. 19)11.

Furthermore, we might also mention how the Austrian School of Economics, instituted

by Menger, supports a broadly free-market view of economics while not accepting many

of the premises of Neoclassical theory. Hayek12 is discussed in some detail in Chapter

4, including a focus on what he meant by ‘the market order’.

11Related to this, Veblen wrote a paper that asked (and was entitled) “Why is Economics Not
an Evolutionary Science?” (Veblen, 1898).

12Hayek is generally viewed as an economist from the Austrian school (as well as an economist
who was born in Austria!). However, as we discuss briefly in chapters 3 and 4, he differed from
Menger and von Mises (two of the most prominent Austrian economists) in certain respects.
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Moreover, it is curious that a number of economists associated with the Neoclassical

school had affiliations with socialism. For example, Kenneth Arrow states in Klein

(2013) that he had been a socialist in his youth and sustained these views until he

entered graduate school, after which “his work was shaped by a deeply leftist sensibility”

(p. 268). Furthermore, Klein and Daza (2013) refer to the “market socialists of Abba

Lerner and Oskar Lange”, two economists who took a broadly neoclassical stance in

their work. Lange and Taylor (1938) went as far as to equate Marxist Economics with

Neoclassical theory.

Co-Evolution and Co-Adaptation

In the context of ‘evolution’, it is helpful to be clear about the meaning of co-evolution

in this thesis as well as the similar notion of co-adaptation.

Janzen (1980) writes that co-evolution “may be usefully defined as an evolutionary

change in a trait of the individuals in one population in response to a trait of the

individuals of a second population, followed by an evolutionary response by the second

population to the change in the first.” (p. 611).

Janzen’s definition pertains to multiple groups of organisms evolving in response to each

other.

Equivalently, let us refer to co-adaptation as the adaptation of two or more agents to each

other. More specifically, let us define co-adaptation as “adaptation involving reciprocal

changes in two or more agents that affect their interactions.”

The word “reciprocal” is used in this definition to emphasise the iterative nature of

co-adaptation.

In the complexity sciences it is common to refer to agent-to-agent co-adaptation as ‘co-

evolution’. However, it seems preferable, in a general sense, to distinguish between these

two processes in order to minimise confusion and to sustain two different mechanisms

in our lexicons.

2.3.3.6 Economies are non-ergodic

As mentioned in Davidson (1996), “[e]rgodic theory was explicitly expounded as part of

the development of the theory of stochastic processes ... In a broader sense, however,

ergodicity means the presumption of a preprogrammed stable, conservative system where

the past, present, and future reality are predetermined whether the system is stochastic

or not.” (p. 480).

North (2005) takes an equivalent view, stating explicitly that the economy is non-ergodic

in nature:
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An ergodic economy is one in which the fundamental underlying structure

of the economy is constant and therefore timeless. But the world we live in

is non-ergodic - a world of continuous novel change; and comprehending the

world that is evolving entails new theory, or at least modifications of that

which we possess. (North, 2005, p. 16)

North’s reference to the economy being non-ergodic can be linked to Arthur’s (2013)

emphasis on how the economy is a combination of micro-economic behaviour and pattern

formation and re-formation.

It would be a mistake, however, to believe that complex systems are always re-patterning

themselves in an unstable way. Such systems can exhibit epochs of stability, with any

re-patterning occurring infrequently.

Comparison with Neoclassical Theory

North’s view was that Neoclassical theory is strictly ergodic in nature, stating “the

ergodic hypothesis is implicit in much of current economic theory.” (North, 2005, p. 19).

For North, this meant that “the ergodic hypothesis is a-historical” (ibid), i.e., it runs

counter to empirical evidence.

2.3.3.7 Uncertainty is an important feature in economic behaviour

In economics, the traditional way of describing uncertainty is to refer to Frank Knight’s

distinction between risk and uncertainty in Knight (1921):

For Knight, risk was a condition in which it was possible to derive a prob-

ability distribution of outcomes so that one could insure against such a

condition. Uncertainty according to Knight was a condition in which no

such probability distribution existed. Theorizing under the condition of un-

certainty therefore was not possible, according to eminent theorists such as

Kenneth Arrow (1951) and Robert Solow (1981). (North, 2005, p. 13)

This distinction between risk and uncertainty is useful but the idea that the latter

is concerned only with a lack of probability distribution is not sufficient if we wish to

examine how uncertainty arises in complex social systems. For example, is a distribution

knowable in principle but we just do not know what it is now? Or is the distribution

not knowable in principle?

We can also consider different ‘sources’ of uncertainty. In his research, North referred

to three information-based sources: data, knowledge, and limited human cognition. We

might also add a fourth, which is when agents’ decisions are mutually contingent and an
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infinite regress problem exists as a result of the agents trying to anticipate each other’s

actions.

In this thesis we take the view that CE is open to all forms of uncertainty that exist in

the economy.

Comparison with Neoclassical Theory

In the quote above, North (2005) refers to Arrow and Solow who believed that theorizing

“under the condition of uncertainty ... was not possible.” (p. 13). Furthermore, regarding

uncertainty, North wrote:

Economists have themselves displayed a good deal of ambiguity on the sub-

ject, largely proceeding as though uncertainty was an unusual condition and

therefore the usual condition, certainty, could warrant the elegant mathe-

matical modelling that characterizes formal economics. But uncertainty is

not an unusual condition; it has been the underlying condition responsible

for the evolving structure of human organization throughout history and

pre-history. (North, 2005, p. 14)

While North refers to ‘Economists’ here, his critique appeared to be directed at Neo-

classical economists.

Note that North’s reference to “elegant mathematical modelling” points to a conflation

about theorizing and the use of mathematics in Neoclassical economics. In general,

mathematical techniques can incorporate risk (including stochasticity and probability)

but they are not compatible with uncertainty, which might explain why Arrow and Solow

thought uncertainty prohibited any theorizing.

However, theorizing does not necessarily have to involve mathematics: it can be concep-

tual in nature and it can also involve computational models. As Arthur noted, “[t]he

objective, we should remember, is not necessarily to formulate equations or to arrive

at necessary conditions. The objective, as it is with all theory, is to obtain general

insights.” (Arthur, 2013, p. 7).

2.3.3.8 Agents use mental models to make decisions

The complexity sciences generally focus on localised behaviour by agents in complex

systems, which means there is typically a focus on how agents receive and process infor-

mation and make decisions. As a result, complexity scientists are interested in agents’

mental models (this was discussed in Section 2.1.1 above). CE adopts the same approach

and in this thesis we focus on people as agents, i.e., we are interested in human mental

models.
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Furthermore, the economic ontology we are interested in includes uncertainty, hence in

this thesis we take a strong interest in human mental models working under conditions of

uncertainty. Moreover, North viewed the mitigation of uncertainty as one consequence

of institutions, which further motivates our interest in mental models under conditions

of uncertainty.

In Neoclassical theory, the standard assumption is that agents use substantive rationality

to make decisions. The problem we face is that such reasoning is not suitable under

conditions of uncertainty:

To the degree that outcomes are unknowable, the decision problems they

pose are not well defined. It follows that rationality — pure deductive ratio-

nality — is not well-defined either, for the simple reason that there cannot

be a logical solution to a problem that is not logically defined. It follows

that in such situations deductive rationality is not just a bad assumption;

it cannot exist. (Arthur, 2013, p. 4)

This raises the question of how human agents reason under conditions of uncertainty.

For Arthur, the answer is that people use pattern recognition and simple models to help

them make decisions when uncertainty is prevalent:

Indeed, as Shackle (1991) puts it, “The future is imagined by each man for

himself and this process of the imagination is a vital part of the process

of decision.” One way to model this is to suppose economic agents form

individual beliefs (possibly several) or hypotheses — internal models —

about the situation they are in and continually update these, which means

they constantly adapt or discard and replace the actions or strategies based

on these as they explore. They proceed in other words by induction (Holland

et al (1986); Sargent (1993); Arthur (1994)). (Arthur, 2013, p. 4)

It is important to note here that the word ‘induction’ has a variety of meanings across

different literatures. Arthur (1994) very clearly aligns this word with the broad notion

of pattern recognition, which is different to (for example) induction as ‘making gener-

alizations from the particular’ and from making inferences from data alone. Moreover,

Arthur’s meaning appears consistent with Holland et al’s (1986) use of the term.

Given the different meanings of ‘induction’ which exist, this thesis will generally avoid

using the term and will refer instead to pattern recognition when discussing Arthur and

Holland et al’s research.
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Comparison with Neoclassical Theory

The approach taken in Neoclassical theory was mentioned briefly above: the default

assumption is that agents use substantive rationality to make decisions. This can be

viewed as a form of mental model.

Here it is useful to distinguish between two different forms of reasoning: substantive

rationality and procedural rationality, following Simon (1976).

Substantive rationality is used “when it is appropriate to the achievement of given goals

within the limits imposed by given conditions and constraints” (ibid, p. 66). This ap-

proach is suitable when agents have fixed preferences and a goal like utility maximization:

substantive rationality deduces the agents’ choices that achieve their goals. In this type

of challenge there is no uncertainty.

By contrast, “[b]ehaviour is procedurally rational when it is the outcome of appropriate

deliberation. Its procedural rationality depends on the process that generated it.” (ibid,

p. 67). Herb Simon noted that when psychologists use the term ‘rational’, they are

typically referring to procedural rationality. Note also that this type of rationality can

work under conditions of uncertainty.

The mental models used in the computational models developed for this thesis fit what

Simon meant by procedural rationality. The agents use simple models to make decisions

under conditions of uncertainty.

Simon used the assumptions of Neoclassical economics to show how the field achieved

analytical reductionism:

... the assumptions of utility or profit maximization, on the one hand, and

the assumption of substantive rationality, on the other, freed economics

from any dependence upon psychology. (Simon, 1976, p. 66)

Arnsperger and Varoufakis (2006) referred to substantive rationality as methodological

instrumentalism. This was the second of the three axioms of Neoclassical theory they

identified.

2.3.3.9 Complexity Economics is open to inter-disciplinarity

One rationale for an inter-disciplinarity strategy is its link to stratified ontologies, which

were discussed in Section 2.3.3.4 above. With this in mind, we find that, unlike Neo-

classical theory, complexity economists take an interest in psychology, e.g., when under-

standing agents’ mental models. The interest would not stop there: neuroscience and

the cognitive sciences would also be of interest in making sense of how people process

information, including under conditions of uncertainty.
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Equivalently, if economics is (or should be) about identifying social phenomena like

institutions, it would be natural to look at how sociologists think about such things.

In the context of a stratified ontology, we might consider the rationale for looking at

psychology, cognitive science, neuroscience, and sociology as ‘vertical’ in nature.

However, we can think of inter-disciplinarity in the ‘horizontal’ sense also. As mentioned

previously, the complexity sciences grew out of the natural sciences, and this has included

a range of abstract concepts that relate to complex systems in different disciplines. As

emphasised above, we should be careful mapping between domains but abstract concepts

like self-organisation can be useful even if they merely provide inspiration to ask different

questions.

Furthermore, other disciplines can be used to help us understand how other researchers

have looked at the same - or similar - phenomena. For example, the agency / structure

debates in philosophy and sociology appear related to how economists have looked at

institutions in economics.

Comparison with Neoclassical Theory

This has been covered in earlier sections: Neoclassical theory is essentially reductionist

in nature. Recall the quote from Simon above that showed how utility maximization

and substantive rationality have been used to “free” economics from any dependency

on psychology. As a result, NCE has historically taken relatively little interest in other

fields of study.

2.3.3.10 Complexity Economics values realism and is sympathetic to

instrumentalism

We argue here that in complex, non-ergodic systems, instrumentalism has a place but

theories that emphasise realism are (i) necessary if we want to bring about change in

the real world; and (ii) more likely to prove accurate when faced with novel change than

theories that do not.

The debate concerning instrumentalism and realism is extensive within the philosophy

of science literature and a detailed evaluation of the many arguments is beyond the scope

of this thesis. This debate extends as far back as Dewey who developed instrumentalism

in the late 19th Century / early 20th Century as part of his pragmatist philosophy13.

The Stanford Encyclopedia of Philosophy (2023) contains a more detailed discussion of

these origins, under the entry “John Dewey”.

It is, nonetheless, helpful to understand some parts of this debate and to consider them

in the context of the complexity sciences.

13Pragmatism is discussed further below.
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Let us start the discussion by defining what we mean by instrumentalism and realism.

The instrumentalist thesis states that theories should be properly consid-

ered as just tools or instruments for making observable predictions. Thus,

the question of whether a predictive theory is true or false or whether its

theoretical terms refer is of little moment for the pure instrumentalist. The

usefulness of a theory is determined, therefore, by its predictive scope or

range of applicability. (Keita, 1983, p. 79-80, emphasis added, footnote 2

removed)

By contrast:

The realist thesis ... states that science aims at giving a true picture of

the world, and that the theoretical terms of successful and well-confirmed

theories which purport to refer to existent entities actually refer to existent

entities. Furthermore, acceptance of a scientific theory implies that what

the theory states is true. (Keita, 1983, p. 80, emphasis added, footnote 3

removed)

Instrumentalism

Dewey’s instrumentalism originated in part from his emphasis on each individual’s lim-

ited range of experiences in the world, e.g., in Dewey (1925), which is entitled Experience

and Nature.

We can add to this two further limitations, due to cognition and observation. The former

emphasises the distance between restricted human cognition and reality14. The latter

recognises that many phenomena are beyond our ability to observe, e.g., atoms prior

to the invention of powerful microscopes; and neurological processes prior to Magnetic

Resonance Imaging.

We can contrast these limitations with a reality that is, from a complexity science point

of view, fine-grained15 and non-ergodic.

This tension between myopic, subjective agents and a complex reality means that sim-

plifications are inevitable in human cognition, e.g., narratives, metaphors, reifications,

heuristics, and abstract concepts are all simplified forms of sense making. Furthermore,

in his earlier work, Dewey argued that a broadly Darwinian process (which appears to

14Heiner (1983), for example, discusses this gap in the context of an agent’s competence versus
the difficulty of selecting between preferred alternatives (his ‘CD gap’)

15Related to this, Gell-Mann and Hartle (2007) refer to coarse-grained cognition in contrast
to a fine-grained reality.
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fit with the generalised Darwinism described above) exists within the mind, resulting in

the selection of those simplifications that prove the most accurate16.

Given the discussions in previous sections of the subjectivity of mental models, non-

ergodicity, generalised Darwinism (and the discussion of pragmatism below), we can

state that, overall, CE should be sympathetic to instrumentalism as described by Dewey.

Furthermore, it should be clear that the combination of simplification and the value of

prediction is as relevant in scientific research as it is in our daily lives. All theories are

heuristics to some degree.

Before we discuss realism in more detail, it is helpful to frame the difference between

instrumentalism and realism via a black box analogy.

Instrumentalism means that the aim of theories is to generate accurate predictions: the

patterns within (or components of) the theory, which is like a black box, do not have to

correlate with the patterns of the target domain; only the theory’s predictions do. We

can contrast this instrumentalism with realism by adjusting the black box analogy: the

patterns inside the box should describe (thereby correlating with) reality17.

Realism

Here we look at two arguments in support of realism in economics (and the social sciences

more generally).

The first argument is that if a theory is used to bring about change in real world human

social contexts, then it is strongly preferable for the corresponding theory to be realistic.

The problem with instrumentalism in this regard is mixing causation with correlated

patterns.

Consider game theoretic explanations for organic institutional emergence, including one

group that frames such institutions as equilibria in games, e.g., Calvert (1995), which

is discussed in Chapter 5. The equilibrium ‘output’ of such games appears to correlate,

approximately, with organic institutions we see in the real world; however, the mech-

anisms assumed within Calvert’s (1995) equilibria include substantive rationality as a

mental model in addition to a range of game-related constraints18.

16This appears to overlap with both Hayek’s theory of mind and Holland’s classifier systems,
which are discussed in Chapter 4.

17This raises the question of whether it is possible to directly describe reality. Addressing
this question in detail is beyond the scope of this thesis; however, let us agree that we can
recognise degrees of realism by common sense, e.g., describing a ‘lion’ as a cat is more realistic
than referring to it as a ‘planet’.

18In the case of Calvert (1995) the problem is more serious because his model only demonstrates
the conditions under which equilibria exist. He is clear that his model is not concerned with the
mechanisms of emergence but this does not stop him from declaring that “Institution is just a
name we give to certain kinds of equilibria.” (p. 74, emphasis included).
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Now consider cryptocurrencies, which were mentioned in the Introduction, as a live

example of an institutional ‘problem space’. A theory of institutions as equilibria is

surely of no use to people managing and developing cryptocurrencies who want pragmatic

institutional solutions to the various ‘quality’ problems identified in the Introduction.

What is required instead is a theory that is grounded in realistic mechanisms that explain

how institutions emerge, to help guide change in that domain.

We can reflect further on the problem here in the context of the black box metaphor

above: attempting to bring about change in a social context is like tinkering inside the

black box.

If the box contains reasonably realistic mechanisms, we stand some chance of predicting

the likely (and desired) outcome but if the mechanisms are non-realistic then we run a

risk related to trying to use correlated relationships in a causal manner. This resembles

Goodhart’s law, which states that “when an empirical regularity starts to be exploited as

a basis for economic policy, it is liable to break down” (Black, Hashimzade, and Myles,

2009).

Attempting to bring about change in the real world requires real causal mechanisms.

The sensible response to the above argument is that non-realistic theories should not be

used in this way. Unfortunately, however, the use of such theories and models (notably

those employing substantive rationality) is widespread in Western public policy. See

Colander et al (2009) for a discussion of this point. We might note, also, that Goodhart’s

law originated precisely because of the attempt to exploit correlated relationships to

determine some output (inflation).

The second argument in favour of realistic theories is that, from a complexity science

point of view, the value of instrumentalism is limited by the problem of prediction in

complex systems. This probably applies less to realistic theories (provided, of course,

they are accurate to some degree).

Instrumentalism is compatible with ergodic systems (as defined by North above) because

the patterns of such systems do not change, which makes prediction reliable19. We can

imagine a competitive, scientific, process in which the best predictors are selected over

time.

A fundamental problem arises with instrumentalism when a system changes in a novel

way, which is to say it is re-patterned in an unpredictable manner. This highlights

an inherent tension between pre-conceived non-realistic theories and novel change: the

former are meant to predict outcomes and the latter is an unpredictable structural

19Note that non-ergodic systems are not necessarily static: patterns can also be inter-temporal
such that these systems change, predictably, over time. Furthermore, non-realistic theories can
handle such dynamics: systems of differential equations are a case in point.
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change. Note the problem is not so much about the inability of a non-realistic theory

to predict novel change; it is about the resulting re-patterning and (likely) decline in

predictive power. The implication is that non-ergodicity leads to non-realistic theories

having a shelf-life.

A good example of the problem here is provided by standard Value At Risk models

in finance, which are used to manage risk in asset portfolios. These models typically

use historical data to derive a variance-covariance matrix between the prices changes

of the assets in a portfolio. The efficient markets hypothesis leads to an assumption

that this matrix is approximately accurate and can be used to choose how much risk a

portfolio is exposed to. The problem, however, is that in times of stress, these backward-

looking matrices no longer reflect reality and portfolio values can fall much more than

was previously deemed likely20. Put another way, the patterns assumed inside the VAR

‘black box’ are rendered obsolete by novel changes in the system.

This problem of novel change also applies to realistic theories. However, the proposition

here is that such theories are likely to be more robust in the face of novel change. This

means they are likely to perform better vis-à-vis predictions in non-ergodic systems than

their non-realistic counterparts and, also, they are probably easier to update after some

structural change.

Whether this is true, however, will depend on various factors, notably the realism of

the pre-existing theory and the nature (and magnitude) of the novel change. A highly

realistic theory which is rendered slightly less realistic by some minor change is likely

to perform better (and is more easily updated) than a less realistic theory faced with

radical change.

The problem mentioned above, that reality might not be sufficiently observable and

knowable, is an important qualification here. An ability to observe reality hampers the

building of such realistic theories.

To summarise the above discussions, we can say that CE is sympathetic to instrumen-

talism but, ultimately, there are important reasons for theories to be realistic, notably

their use to bring about change in social systems.

Finally, we should note the relevance of the above discussions for the models developed

for this thesis, which were designed with realism in mind. As mentioned in the In-

troduction, the ultimate aim of these models is to help develop our understanding of

organic institutional emergence (and how legal rules relate) with a view to being helpful

in real-world problem spaces.

20During the 2007-8 financial crisis, some risk managers talked about asset price volatility that
should not have been observed over the lifetime of the known universe.
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Comparison with Neoclassical Theory

It is not possible to firmly align Neoclassical theory with either instrumentalism or real-

ism: the relevance of ether approach differs between researchers and individual theories.

Indeed, it is hard to imagine even the most hardened advocate of Neoclassical theory

rejecting realism on its own merit.

However, it is probably reasonable to state that Milton Friedman’s famous perspective

(which is firmly associated with instrumentalism) has been influential among Neoclas-

sical (and other) economists. The classic text is Friedman (1953) where he uses the

example of billiard players to make his case:

Consider the problem of predicting the shots made by an expert billiard

player. It seems not at all unreasonable that excellent predictions would be

yielded by the hypothesis that the billiard player made his shots as if he

knew the complicated mathematical formulas that would give the optimum

directions of travel, could estimate accurately by eye the angles, etc., de-

scribing the location of the balls, could make lightning calculations from the

formulas, and could then make the balls travel in the direction indicated by

the formulas. Our confidence in this hypothesis is not based on the belief

that billiard players, even expert ones, can or do go through the process

described; it derives rather from the belief that, unless in some way or other

they were capable of reaching essentially the same result, they would not in

fact be expert billiard players. (Friedman, 1953, p. 21)

From a complexity science perspective, we can interpret Friedman’s argument as propos-

ing a reductionist strategy for making sense of systems that are simple, mechanistic, and

ergodic. Such a strategy would be reasonable for these types of system because they

can be broken down in to constituent parts (players, table, balls, etc.) with known,

predictable relationships. Furthermore, as-if assumptions can be used to approximate

how players play the game provided one’s aim in understanding is not subverted by these

approximations, e.g., simply knowing the trajectory of the balls.

However, given the defining features of complex systems in Section 2.1 above, Friedman’s

description of billiards is a terrible metaphor for economic systems21, i.e., the premises

on which his analysis is based are flawed. Imagine instead if billiards is played by many

players, each adapting to each other’s style of play, when the balls, table, rules, and aims

were also evolving, all simultaneously.

21Archibald, Simon, and Samuelson do not hold their punches when they write that “[t]he
expressed purpose of Friedman’s principle of unreality (or as-if hypothesis) is to save Classical
theory in the face of the patent invalidity of the assumption that people have the cognitive
capacity to find a maximum” (Archibald, Simon, and Samuelson, 1963, p. 230).
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The distance between complex economic systems and Friedman’s billiards analogy tells

us that instrumentalism should be used in economics with care. This is particularly true

in light of the arguments in support of realism set out above.

2.3.3.11 Pragmatism

The final principle of CE is an association with pragmatist philosophy as depicted by

Charles S. Peirce (e.g., Peirce, 1905), William James (e.g., James, 1890), and Dewey

(e.g., Dewey, 1938).

There is an enormous literature on pragmatism versus Cartesian philosophy and posi-

tivism; and these approaches span many academic domains. What follows are concise

summaries of pragmatism and positivism and short discussions of their relationship to

economics.

The underlying assumptions of pragmatism include the ideas that perception is subjec-

tive, that reality is socially constructed, and that observers are an integral part of what

is being observed. Furthermore, each mind is an assemblage of habits and beliefs; and

the idiosyncrasies of personal histories means that minds are heterogenous.

The consequences of these assumptions can be divided into: (i) the implications for our

understanding of phenomena; and (ii) the process of research. Regarding the former, our

understanding of reality has to be aware of context and also reflexive in that observers

should attempt to be aware of their impact on a situation. Multi-perspectivalism is

generally valued in light of the heterogeneity of minds.

In general, pragmatists accept that the process of research is influenced by human inter-

ests and that in practice it is a human act: within literatures there is a social construction

of understanding. Furthermore, qualitative and quantitative modes of research are both

valued, and Peirce originated the notion that ideas are developed through abduction,

which is “the process of forming an explicit hypothesis.” (Peirce, 1903, p. 216).

There is a comfortable affinity between CE and pragmatism because they have similar

ontologies. Most notably, Dewey’s pragmatism emphasises a grounded-ness to under-

standing reality which fits neatly with the bottom-up orientation of the complexity

sciences. Related, Blumer (1969) writes that no “theorizing, however ingenious, and

no observance of scientific protocol, however meticulous, are substitutes for developing

a familiarity with what is actually going on in the sphere of life under study.” (p. 39).

Also relevant is Commons’ (1934) reference to pragmatism in economics as “the scientific

investigation of economic relations of citizens to citizens” (p. 157).

Furthermore, the social construction of institutions (including, most importantly, lan-

guage) and the subjective nature of sense-making both point to a reality which is per-

ceived differently by agents.
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Importantly, an affinity with pragmatism should not be mistaken for a wholly incorrect

interpretation of this paradigm as anti-scientific, notably as devaluing verification of

hypotheses. In fact, by appreciating a range of qualitative information such as inter-

views, it can be argued that pragmatists have a greater appreciation of verification than

positivists.

Pragmatism is frequently contrasted with positivism, which contains a Cartesian duality:

the separation of an independent observer and an objective, external reality. In terms of

helping us understand phenomena, in principle this reality is comprehensible in the same

way to all observers, i.e., a homogenous understanding of the truth is available. There

is generally an emphasis on data and quantification given the ambiguity of qualitative

information.

In terms of the process of science, the aim of the positivist is to find the objective

truth. Moreover, Comte’s positivism emphasised simplification, reductionism, and the

attainment of laws that demonstrate a causal relationship between phenomena.

Comparison with Neoclassical Theory

NCE is closely associated with positivism (e.g., Katouzian, 1980; Bromley, 2006; Aligica,

2013). Bromley (2006) argues that the problem with this approach is that it is narrow:

the “ ‘explanation’ of a phenomenon is always bound to the limits set up by axioms and

assumptions” (Aligica, 2013, p. 183). Given the association of NCE with “rationality,

self-interest, and utility maximization” (ibid), explanations of economic behaviour are

constrained by these phenomena.

2.3.4 Neoclassical Economics as Restricted Complexity

Economics

Given the descriptions in Section 2.3.3 above, we can interpret NCE - approximately

speaking - as a special case of CE. Put another way, if we constrain our approaches in

the eleven categories in particular ways, we arrive at CE:

1. Agents in Neoclassical theory use a restricted form of mental processing - utility

maximization - whereas CE is open to other forms of cognition, including Simon’s

bounded rationality.

2. Neoclassical economics is focused on equilibrium systems whereas CE is open to

non- and dis-equilibrium phenomena, in addition to equilibrium.

3. Whereas CE considers the formation of, and allocation within, the economy, Neo-

classical theory is focused on the latter.
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4. CE is open to a stratified ontology in addition to reductionist explanations, whereas

NCE is reductionist in nature.

5. In Neoclassical theory, the economy does not evolve: it is static, or “dead”. In CE,

the economy evolves over time in a way that is open to generalized Darwinism,

although CE recognises that objects and patterns might be stable for periods of

time.

6. Included in our understanding of CE is the idea that economies are non-ergodic,

i.e., the idea the economy re-patterns itself. By contrast, Neoclassical theory treats

the economy as ergodic, i.e., only involving fixed patterns.

7. CE is open to uncertainty (and various types and degrees of certainty) whereas

Neoclassical theory rejects uncertainty and embraces risk (as defined above in the

quote from North, 2005).

8. As will be discussed further below, the mental models mostly used in Neoclassi-

cal theory (substantive rationality) are restricted to create stable macro patterns

(equilibrium conditions) for which they are also an appropriate response. In CE,

mental models can be broader than this, e.g., pattern-based reasoning under con-

ditions of uncertainty.

9. Neoclassical economics is less open to inter-disciplinarity than CE because of its

reductionist stance.

10. Neoclassical theory appears to emphasise instrumentalism more than realism, ap-

proximately speaking, whereas CE is comfortable with both.

11. Positivism should not be viewed as a subset of pragmatism because the two do

not share underlying assumptions of reality. However, pragmatists can incorporate

much of the positivists practical ways of doing research, e.g., hypothesis testing

and the use of quantitative data.

Consistent with these comments, when contrasting it with Neoclassical theory, Arthur

(2013) argues that “Complexity economics, we can say, is economics done in a more

general way.” (p. 19).

2.3.5 Choice of Framework in Economics

A question we must address is: which framework should we use for economic research?

From a number of the discussions above, it is tempting to argue that CE contains a more

realistic description of how the economy works than Neoclassical theory so the former

should be preferred over the latter.
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However, this would be näıve. A general appeal to realism is not a sufficient argument

for choosing CE because a Neoclassical economist might argue that abstractions are

always necessary in economics. The question is then: which abstractions?

We can, however, appeal to realism in light of the arguments developed in Section

2.3.3.10 above. For this thesis, the most important of these is the aim of using economic

research to improve real-world situations. If we assume this as a goal then it supports

the use of CE, which values realism more than Neoclassical theory has historically done.

In addition, there is a great deal NCE misses in terms of how economies work. Arthur

(2013) summarises this in the following way:

Equilibrium of course will remain a useful first-order approximation, useful

for situations in economics that are well-defined, rationalizable, and rea-

sonably static, but it can no longer claim to be the center of economics.

Moving steadily to the center is an economics that can handle interactions

more generally, that can recognize nonequilibrium phenomena, that can deal

with novelty, formation and change. (Arthur, 2013, p. 19)

Nonetheless, even is we assume the goal of using research to improve real-world situ-

ations, there are two ways in which NCE can still be useful. First, for some research

questions, Neoclassical theory might be sufficient. For example, if we are interested in

stable, equilibrium conditions and if substantive rationality were a reasonable approxi-

mation of human cognition given the subject matter then Neoclassical theory would be

reasonable.

Second, this approach might provide a useful first-order approximation even if the econ-

omy behaved in a more complex way. Arthur (2013) makes this point, noting that “under

the undeniable force of gravity an approximately equilibrium sea level has first-order va-

lidity.” (p. 12). However, “in the ocean the interesting things happen ... on the surface

where ... the boats are.” (ibid). Put another way, first-order approximations can be a

useful starting point before moving to something that better respects the complexity of

the phenomena being studied.

Bowles and Gintis (2011) make a related point concerning analytical solutions for “highly

complex selection processes operating at two levels - individual and group” (p. 125).

Samuel Bowles and Herbert Gintis argue that this type of dynamic is not amenable to

mathematical analysis but it is accessible by agent-based models. This point is very

relevant for this thesis given the combination of individual and group-level phenomena

observed in the simulations reported below.

The point being emphasised here is that it is not necessary to reject the Neoclassical

approach entirely: it is a mature body of work that still has some use. However, there
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are reasonable questions about its use in real-world contexts, and many phenomena lie

outside its field of vision. In private correspondence, Arthur wrote that CE would not

be necessary:

if you don’t care about change, structural change, development, innovation,

technology, evolution, formation, how institutions emerge, systems being

gamed, etc.

[CE] is about the economy in formation, and that’s at least as large a set of

problems as the economy in equilibrium. (Arthur, 2019, personal commu-

nication, dated 13 December 201922)

2.3.5.1 Rationale for Using Complexity Economics to Study Organic

Institutions

The discussions above provide useful context for rationalizing the use of CE to explore

organic institutions in this thesis. There are three points worth noting here.

First, as Hodgson (2002a) argues, and Field (2007) implies, there is a gap in the literature

concerned with the origination of organic institutions. CE is well suited to addressing

this - both conceptually and formally - because it is concerned with the emergence of

macro patterns from the bottom up, as well as the relationship between such patterns

and agents’ mental models. Such a framing requires a stratified ontology and there is

also a clear link to economic formation. Both of these are included in CE.

Second, North emphasised that institutions help to mitigate uncertainty for agents.

Uncertainty is also a part of the ontology of CE, which is not the case for Neoclassical

theory.

Third, CE includes formal modelling technologies (including agent-based modelling) that

allow for the exploration of emergent institutions, as well as the role of regulations and

laws, within whole economic systems. Furthermore, this technology allows for experi-

mentation that is not possible in the real world, e.g., analysing the impact of corruption

on the efficacy of legal rules.

Overall, CE appears very well suited to exploring the emergence of organic institutions,

which is the overarching aim of this thesis.

2.3.6 Internal Consistencies: Complexity Economics and

Neoclassical Theory

One of the most important and valuable features of NCE is the internal consistency it

demonstrates between its micro and macroeconomic approaches. Arthur (2013) writes:

22Printed with permission.
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economics early in its history ... asked ... what behaviors (actions, strate-

gies, expectations) would be upheld by - would be consistent with - the ag-

gregate patterns they caused. It asked in other words what patterns would

call for no changes in micro-behavior, and would therefore be in stasis, or

equilibrium. (Arthur, 2013, p. 2)

The framework created by Neoclassical theory is one of agents maximizing their utility

via deductive reasoning (substantive rationality) within a macro environment that con-

tains no uncertainty. Importantly, the agents’ combined behaviour generates a macroe-

conomy in equilibrium for which each agent’s choices are appropriate. Arthur (2013)

notes this is true of general equilibrium theory, classical game theory, and rational ex-

pectations economics (p. 2). We can say, therefore, that NCE demonstrates a healthy

internal consistency between its micro and macro theories.

The overarching ontology of CE is different to Neoclassical theory in all of the ways

listed in Section 2.3.3 above. Arthur (2013) writes:

Complexity ... asks how individual behaviors might react to the pattern

they together create, and how that pattern would alter itself as a result.

This is often a difficult question; we are asking how a process is created

from the purposed actions of multiple agents. (Arthur, 2013, p. 2)

However, even though the ontologies differ, it appears CE also includes an internal

consistency between micro behaviour and macro patterns, i.e., it provides a coherence

equivalent to that seen in Neoclassical theory. We can characterise this in the following

way:

• Agents operate under conditions of uncertainty and use mental models to make

sense of their environment and to make decisions;

• Micro interactions between agents give rise to patterns (which might or might not

be stable); and

• The nature, adaptation and co-adaptation of other agents’ mental models, and the

emergence of macro patterns, all contribute to the uncertainty that the mental

models are an appropriate response to.

If we contrast the two approaches, however, the coherence of Neoclassical theory appears

much more fragile than that of CE. If we change the rationality assumption of NCE (even

very slightly) the equilibrium outcome would most likely fall apart and it is unlikely that

this changed behaviour assumption would be an appropriate response to whatever macro

phenomena were then seen. By contrast, CE is open to different mental models being
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suitable to varying environments and it is open to non- and dis-equilibrium states. In

fact, we would expect the agents themselves to adapt their mental models to whatever

macro environment they face via a continuous process of pattern recognition.

Finally, it should be clear that the internal consistency of CE is compatible with stable

and unstable economic systems (in the latter, patterns are ephemeral and outcomes

volatile). Understanding the patterns Arthur referred to (including institutions), their

stability, and their relationship with agents’ cognitive processes are important challenges

that CE appears better suited to than Neoclassical theory.

2.4 Criticisms of The Complexity Sciences &

Complexity Economics

So far this chapter has promoted CE as more useful than NCE for the study of organic

institutions. Here we turn our attention to criticisms of the complexity sciences and CE.

There appear to be five main criticisms (following Horgan, 1995; Horgan, 1997; and

Rosser, 1999):

1. The complexity sciences have not delivered relative to the hype or the promise of

/ desire for a unified theory of everything.

2. Complexity science is the latest version of three previous fads: cybernetics, catas-

trophe theory, and chaos theory.

3. Complexity science is too loosely defined - there is no consensus definition of what

it is.

4. Evaluation via empirical evidence is very difficult if we treat the economy as a

complex system.

5. Complexity science is not necessary in economics: orthodox economics does a good

enough job.

The first criticism is articulated in Horgan (1995), repeated in Horgan (1997), and

referred to in Rosser (1999). Given Horgan’s criticism first appeared in 1995 when

the complexity sciences and CE were in their infancy23, it seems reasonable to ask

how such expectations could have been met in a relatively short space of time (versus

approximately 200 years of largely reductionist science since the Enlightenment).

23For example, the Santa Fe Institute was founded in 1984 and its economics department in
1988.
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Furthermore, this is a relative criticism (delivery versus hype / promise) so it could

equally be levelled at those responsible for raising expectations. Some complexity scien-

tists themselves are probably guilty of this, which is perhaps not surprising given they

are promoting a new subject in an overcrowded funding landscape. However, popu-

lar books like “Complexity” (Waldrop, 1993), while interesting and informative, have

probably contributed to the hype24.

The second criticism was also set out in Horgan (1995) and referred to in Rosser (1999).

The premises of this criticism are: (i) complexity science is essentially the same as

cybernetics, catastrophe theory, and chaos theory; and (ii) these subjects were correctly

found out to be fads by the academic community. The first of these premises is easily

rejected by comparing descriptions of the four fields: there are a number of commonalities

but they are not identical to each other.

The second premise can be challenged by arguing that cybernetics, catastrophe theory

and chaos theory have made useful contributions to research, including ideas like the

sensitivity of results to initial conditions. If these fields are to be viewed as fads then it

is more likely because they delivered less than people expected, which would make the

second criticism identical to the first.

Overall, the criticism that the complexity sciences are the latest manifestation of previous

incarnations that proved to be fads appears very weak.

The third criticism is not unreasonable, e.g., Seth Lloyd identified over 45 definitions

of ‘Complexity’ (listed in Horgan, 1997, p. 303, footnote 11). However, the complexity

sciences represent a relatively new field / movement that is being used across multiple

subjects, which means that, perhaps, this should be expected.

Furthermore, if we align the complexity sciences with multiperspectivalism then this

diversity of definitions could also be viewed as a strength rather than a weakness (re-

lated to this, Cilliers, 1998 looks at the overlap between the complexity sciences and

postmodernism).

The fourth criticism, regarding the problem of empirical evidence in the complexity

sciences, relates to the discussions in Section 2.3.3.10 above. Rosser (1999) notes:

More generally, some argue that complexity implies a need to seriously re-

think the nature of empirical testing in economics. Such a project threatens

to lead into deeply philosophical issues such as induction versus deduction,

objectivism versus subjectivism, and other difficult conundrums. (Rosser,

1999, p. 185)

24The back cover of Waldrop (1993) begins “In a rented convent in Santa Fe, a revolution has
been brewing...”.
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It is difficult to know precisely what Rosser means by this quote but the implication

appears to be that delving into the philosophical issues he mentions would necessarily

be a bad thing.

One counter-argument to Rosser’s point is simply that orthodox economics appears

unable to explain a range of empirically-observed phenomena, including the formation

of the economy and organic institutional emergence.

More generally, the approach taken in this thesis is that the economy does resemble a

complex system; that the complexity sciences would be useful in developing economic

research (if done carefully); that empirical testing does require a “serious rethink” as

Rosser put it; and that if this opens up “deeply philosophical issues” then so be it if this

is a reasonable consequence of framing the economy as a complex system. A preference

not to open up particular philosophical arguments is not a good rationale for not treating

the economy as a complex system.

The fifth criticism, that the complexity sciences are not necessary in economic research,

was discussed in Section 2.3.5 above so it will not be repeated here. As mentioned

in that section, the complexity sciences deal much better with a variety of phenomena,

including structural change, innovation, technology, formation, and organic institutional

emergence, than orthodox economics.

Overall, it is telling that none of the five criticisms discussed above are conceptual

in nature: in fact, it is noteworthy that critics of CE have failed to criticise through

reasoned arguments about abstract concepts. Indeed, we can think of CE as providing a

range of new concepts (like those listed in Section 2.2) and being more generalised than

Neoclassical theory. In a sense, it appears pareto superior to NCE.

2.5 Chapter Summary

This chapter provided some of the foundations for the rest of the thesis by:

• articulating an overview of the complexity sciences (defining and analytical fea-

tures), with an emphasis on the concepts most useful to this thesis;

• highlighting the potential problem of mapping these concepts, which mostly arose

from the natural sciences, on to the social sciences;

• setting out eleven principles that are in part intended to help overcome this map-

ping problem and which also help define what is meant by CE in this thesis;

• discussing why a CE framing is more suited to understanding organic institutional

emergence than Neoclassical theory; and
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• evaluating the criticisms of the complexity sciences and CE, noting that all of

these criticisms appear weak and that none of them include reasoned arguments

about abstract concepts.



Chapter 3

Spontaneous Order - Rationale

and History

To understand our civilisation, one must appreciate that the extended

order resulted not from human design or intention but spontaneously.

– The Fatal Conceit by Friedrich Hayek (mostly)

The aim of this chapter and the next is to evaluate parts of the spontaneous order

literature that are relevant to the thesis, and to highlight key issues and open questions

within this literature that have a bearing on the research questions. This chapter focuses

on the history of spontaneous order and the next chapter looks more closely at Hayek’s

framing, which is considered by many to be the most detailed and coherent available

(Barry, 1982; Gray, 1998; Caldwell, 2004; and Luban, 2020).

While the term ‘spontaneous order’ was “coined by Michael Polanyi (1941, 1951)”

(Luban, 2020, p. 68), the idea has a long and important history avant la lettre. Some of

this history - that which is pertinent to the thesis - is the main subject of this chapter.

Section 3.1 below introduces the term ‘spontaneous order’ and discusses the rationale

for studying it. The second section (3.2) provides a ‘potted history’ of the term. Section

3.3 discusses specific historical influences on Hayek, whose version of spontaneous order

is the subject of the next chapter.

3.1 Introduction and Rationale

The phrase often associated with ‘spontaneous order’ in the literature was written by

Ferguson in his Essay on the History of Civil Society (Ferguson, 1767, p. 205). As stated

77
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in the Introduction, he writes about order that is “the result of human action, but not

the execution of any human design”1. Moreover, soon after Ferguson wrote these words,

Smith mentioned essentially the same idea in The Wealth of Nations, whereby “man is

led to promote an end which was no part of his intention” (Smith, 1776, p. 456).

The idea that order at some group level is a result of human action but unplanned is at

the heart of spontaneous order. Let us now consider the rationale for this literature in

some detail.

Assuming for the moment that forms of spontaneous order do exist in social systems

then probably the simplest and most obvious reason for studying it is that it adds to

our understanding of social systems. This, in turn, might help us - individually or

collectively - to make better decisions than otherwise.

We can appreciate the importance of understanding spontaneous order if we see it in

the context of “the ‘natural’ versus ‘artificial’ dichotomy handed down from Greek phi-

losophy” (Boehm, 1994, p. 297); it creates “a distinct third category allowing for the

explication of [this type of order]...” (ibid, pp. 297-8). Put another way, if explanations

of phenomena are divided solely in to natural events like the weather or those involv-

ing human design, then this might render us blind to forms of order which result from

neither.

In looking more closely at the distinction between spontaneous and designed order,

Ullmann-Margalit (1978) argues that there are certain biases in human cognition which

lead us to mistake the former for the latter. She wrote of “the ‘artificer bias’, that leads

us to postulate a designer whenever we encounter what looks like evidence of orderliness

and pattered structure...” (p. 268). Examples of planned phenomena include “the artist

creating works of beauty”, “the inventor and manufacturer of elaborate machines”, and

the “the manifestation of coordinated activity” (ibid, p. 268-9).

Ullmann-Margalit’s (1978) paper, entitled Invisible Hand Explanations, will be consid-

ered in more detail in the next chapter2. Most importantly, this paper, which follows

Nozick (1974), helpfully distinguishes between two different “moulds” or “types” of spon-

taneous order, which map on to the two computational models described later in the

thesis.

1We will see below that while Ferguson’s quote is synonymous with spontaneous order, he is
often misunderstood. In addition, we can begin to appreciate the long history of spontaneous or-
der by noting that Ferguson’s statement includes a footnote which references “De Retz Memoirs”
(of 1669). In turn, Cardinal De Retz associates this notion with Oliver Cromwell, concerning
“the fixity of all men’s designs and the uncertainty of their destiny.” (Forster, 1860, p. 24).

2Ullmann-Margalit (1978) has been generally well received in the spontaneous order literature,
e.g., Barry (1982) refers to it as “an important article” (Endnote 2, p. 53) and Vanberg (1986)
refers to it as “an excellent essay” (p. 81).
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Returning to the rationale for studying spontaneous order, and bringing to mind its

potential value for explaining some types of collective decision making, it should be of

no surprise to us that this notion is prevalent in political ideologies.

In this context, it seems reasonable to state that Hayek’s writings on spontaneous order

have had a significant influence on classical liberalism, libertarianism, and conservative

modes of thought. Indeed, Hayek saw his work as a defence of classical liberalism in

the context of the Soviet Union and a bias toward ‘rational constructivism’ in Western

thought, notably after the Second World War. More specifically, Hayek’s ideas were

cited by the architects of the New Right in the late 1970s and early 1980s. For example,

Margaret Thatcher wrote in her autobiography that “the most powerful critique of

socialist planning and the socialist state which I read at this time [the late 1940s],

and to which I have returned so often since [is] F.A. Hayek’s The Road to Serfdom.”

(Thatcher, 1995, p. 50)3.

There are two factors which might lead us to conclude that spontaneous order is less

relevant today than it was, say, 30 years ago. First, the New Right experiment of

approximately 40 years ago is viewed by many (though not all) as a failure, e.g., in

discussing some of the problems of Reagan and Thatcher’s New Right experiment, Gray

(1998) writes that “Hayek ... failed entirely to comprehend how unfettered markets can

weaken social cohesion in liberal cultures.” (p. 147).

The second factor is that Hayek’s thinking has been heavily criticised in the academic

literature, including by Buchanan and Vanberg in Economics, and John Gray in Social

Philosophy4. These criticisms will be developed in more detail in the next chapter but,

for now, a common theme of these and other writers is that Hayek failed to articulate a

convincing mechanism by which order emerges spontaneously in social systems.

However, these two points are not sufficient to reject spontaneous order being an impor-

tant topic in the social sciences.

On the first point, the UK’s Conservative Party voted for a leader in September 2022

(Elizabeth Truss) whose policy platform was based on the New Right and ideas developed

at the Institute for Economic Affairs (IEA), a think-tank heavily influenced by Hayek’s

3Given this impact on conservative thought, it is perhaps worth noting that Hayek wrote
a postscript to The Constitution of Liberty (Hayek, [1960] 2006) entitled “Why I am Not a
Conservative” (pp. 343-356). This apparent inconsistency can be understood as part of a larger
theme concerning the wide variety of interpretations of Hayek’s work (discussed further in the
next chapter).

4In the first edition of Gray (1998), published in 1986, Gray was broadly complimentary of
Hayek’s body of work, but in the postscript to the third edition, published in 1998, Gray was
much more critical, stating that Hayek’s work “demonstrates that a powerful twentieth century
project - the Marxian project of replacing market processes by central planning - is unachievable.
It tells us little else.” (emphasis added, Gray, 1998, p. 150).
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work. This tells us that approximately 40 years after Thatcherism, Hayek remains

influential.

On the second point, while Hayek’s framing is viewed by many (e.g., Gray, 1998; Luban,

2020) as the most coherent explanation of spontaneous order, his failings are not neces-

sarily failings of spontaneous order per se. Hayek does not own this idea, he is merely

associated with one interpretation of it.

Moreover, if the main criticism of Hayek is that he failed to provide a persuasive theory of

spontaneous order, we can present this as a challenge: can such a theory be developed

which fits Ferguson’s statement about order that results from human action but not

human design? This question is too large for a thesis to answer comprehensively but it

does provide further motivation for the work here.

There is a final point to note, which is perhaps best captured by Luban (2020) in

discussing the seductive nature of spontaneous order to many:

...spontaneity (like the related notion of ‘nature’) has a way of remaining in

the background even when explicitly disavowed, and many of those hostile

to Hayek’s particular political program still hold onto some vision of what

a genuinely spontaneous order would look like. (Luban, 2020, p 69)

Given the above comments, where does this leave us in terms of our rationale for studying

spontaneous order? First of all, a slight of hand was used above in that an assumption

was made that spontaneous order exists. This allowed us to consider various factors

in the literature where this assumption is prevalent as well as political history where it

appeared to influence decision making. It should be clear, however, that in the absence

of a clear and compelling mechanism by which order can emerge in an unplanned way,

we ought to be open to it not existing at all or, more conservatively, that it is of less

significance than the likes of Hume and Hayek believed.

Put another way, the proponents of spontaneous order appear to take it on faith that at

least one mechanism must exist which we simply haven’t discovered yet. This leaves us

with a more fundamental challenge of whether a mechanism, more concrete than vague

references to spontaneity or emergence, can be identified.

With these motivations in mind, let us now look at a concise, summarised history of

spontaneous order.

3.2 A Short History of Spontaneous Order

The concept of ‘spontaneous order’ has a long history even if the phrase dates from the

Twentieth Century. Barry (1982) notes that Hayek saw his work on spontaneous order
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“...continues a long tradition. While acknowledging it is absurd even to speculate on

the beginnings of a tradition, Hayek often refers to the original Spanish schoolmen [of

the 16th Century] as the founders of the theory of spontaneous order.” (p. 12). Looking

even further back, Boehm (1994) remarks there are “intimations present in Aristotle

and Aquinas” (p. 296); and, as mentioned in the Introduction, Hamowy (1987) writes

of the fourth century BC Chinese Philosopher Zhuang Zhou who observed that “good

order results spontaneously when things are let alone” (p. 6).

What value does a historical analysis of spontaneous order have for this thesis? There

are three related points to make. First, history is path dependent so it is helpful in

general terms to know how we got to where we are. This path dependence manifests

in various ways, including the impact of Hayek’s work on current political philosophies,

as noted above. Second, almost all of the researchers named below have contributed to,

or are associated with, some feature of the spontaneous order literature and it is worth

looking at - and where necessary evaluating - each of these. Third, the fact many of the

great names in philosophy and economics (e.g., Hume and Smith) have considered this

topic over several centuries is indicative of how important it has been in social science

research.

A number of useful histories of spontaneous order exist. The most noteworthy include

Barry (1982), which is the most cited; Hamowy (1987), which focuses on spontaneous

order during the Scottish Enlightenment; Sheehan and Wahrman (2015), which looks

specifically at the origins of self-organisation from the beginning of the Eighteenth Cen-

tury; and Gray (1988), Gray (1998), and Caldwell (2004) discuss the historical influences

on Hayek. Finally, Boehm (1994) deserves an honourable mention - this paper includes

some history within a neat 6-page summary of spontaneous order.

The summarised history and analysis in this section loosely follows Barry’s (1982) version

but we add to this with others’ analyses, when helpful, along the way.

Luban (2020) provides a helpful warning when looking at the history of spontaneous

order from a perspective that follows the beginnings of the Soviet Union. He notes that

the world of the Scottish Enlightenment writers - who play an important role in this

history - was very different:

Spontaneous order theory grew out of twentieth-century anticommunism,

and the fight against state encroachment upon economic life more broadly.

The dichotomy of state and market underlies the entire theory in ways that

are far-reaching yet rarely made explicit - the market is bearer of spontane-

ity, the state as bearer of constructivist rationalism; the market as realm

of peaceful competition, the state as realm of coercive force; the market as

grown, the state as making and made. (Luban, 2020, p 78)
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We should therefore consider the history of spontaneous order prior to Polanyi and Hayek

as very much avant la lettre, given the association between this concept and arguments

against centralized planning.

3.2.1 Pre-Scottish Enlightenment

Barry’s (1982) history starts with the School of Salamanca of the Sixteenth Century,

notably Luis de Molina who Schumpeter and Hayek viewed as a precursor to spontaneous

order. According to Schumpeter, Molina’s natural law doctrine was concerned with

events which would occur “if they were allowed to work themselves out without further

disturbance” (Schumpeter, 1954, p. 112).

Here we see an important distinction between deliberately designed laws and ‘other’

types of law - in this context,, between positive and natural law. The latter “are not

in force because they have been ‘artificially’ made by a specified human activity but

because they stem from God, nature, or reason” (Kelsen, [1949] 2006, p. 392). Positive

law “comes in, as compared with the law of nature: it is made by human will” (ibid).

Spontaneous order, in Molina’s framing, is aligned with natural law. Moreover, this

distinction between natural and positive law appears correlated with (but not the same

as) the distinction made between common and statute law.

Sir Matthew Hale was discussed by Barry as claiming that common law “possessed a

greater inner wisdom and rationality than the anti-traditionalist and a priori theories

of law precisely because it accommodated facts and circumstances unavailable to the

unaided reason.” (Barry, 1982, p. 15). In turn, Hale “inaugurated a tradition of ju-

risprudence which we normally associate with Adam Smith and Edmund Burke and, in

the present day, Hayek” (ibid).

In this context, and being mindful of the bottom-up orientation of the complexity sci-

ences, it is tempting to align common law with an organic, bottom up “grown law”

perspective; and, further, to align statute law with top-down-ism. This would, however,

be a significant over-simplification. For example, in the UK, white and green papers are

used in the early stages of statute formation for reasons of consultation with interested

parties, before bills are written and then debated in parliament. Equivalently, as will

be discussed in the next chapter, English Common Law has been materially enabled by

statute law in the past.

It is worth briefly mentioning Thomas Hobbes in this potted history, not as a proponent

of spontaneous order but as providing an antithesis5. Hobbes’ famous view is that

human nature involves “a general inclination of all mankind a perpetual and restless

desire of power after power, that ceaseth only in death” (Hobbes, [1651] 2017, chapter

5Hobbes’ framing should not be considered as the only antithesis. Hayek, for example, was
concerned with spontaneous order versus organizations (Boehm, 1994, p. 298).



Chapter 3 Spontaneous Order - Rationale and History 83

13), leading to a life (in the absence of relevant enforced laws) which is “solitary, poor,

nasty, brutish, and short.” (ibid). Order had to be achieved by a strong, sovereign

figure (hence, a ‘Leviathan’). This is very different to the unplanned, emergent order

articulated by Hayek and others.

Barry (1982) also discusses Bernard Mandeville who articulated “an outrageous demon-

stration of the social benefits that accrue from vicious and self-interested motivations”

(p. 17). Mandeville was most famous for his Parable of the Bees, first published as a

poem but later on with commentary. Although he shared some of Hobbes’ views of

human nature, Mandeville appeared more aligned with spontaneous forms of order than

a Leviathan state.

It is worth noting here that Sheehan and Wahrman (2015) write about the origins of

the term ‘self-organisation’ following the Mississippi and South Sea financial bubble of

1719-1720, after which the “vision of Newtonian order - that consequences follow causes

in linear and stable fashion - was disrupted.” (Dale, 2018, p. 928). Importantly in the

context of this thesis, Sheehan and Wahrman (2015) write that:

contemporaries came up with a novel notion that, when left to their own de-

vices, complex systems generate order immanently, without external direc-

tion, through self-organization (Sheehan and Wahrman, 2015, p. x). (Dale,

2018, p. 928)

This quote points to an important ambiguity in the meaning of spontaneous order, that

good order necessarily emerges. This ambiguity will be addressed by the Agent-Based

Models (ABMs) developed later in the thesis: we will see that beneficial organic insti-

tutions can emerge in complex economic systems but it is not inevitable (this point has

been made by other researchers, e.g., Sugden, 1989; and Hodgson, 2006a). Furthermore,

the simulation results presented below show: (i) that there must be an enabling environ-

ment for such institutions to emerge; and (ii) detrimental forms of organic institutions

can emerge under certain conditions (we see this when the parameter space of the second

model is explored and also when we run certain experiments with this model).

Next in Barry’s chronology is Josiah Tucker who saw a balance between the two extremes

of unplanned order and a Leviathan state. While Tucker was a mercantilist, he saw a role

for the state in providing the conditions “required for the operation of an otherwise self-

regulating commercial machine.” (Barry, 1982, p. 20). This idea of the state providing

an enabling institutional environment for an otherwise free market system precedes the

ordoliberals and the Constitutional Economics developed by Buchanan, Vanberg, and

others. These researchers will be discussed in more detail in the next chapter but the

point to note here is that Tucker alluded to a designed institutional framework co-existing

with an economy based on free markets.
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3.2.2 The Scottish Enlightenment

According to Barry (1982), the Scottish enlightenment writers (he listed Smith, Hume,

Ferguson, Dugald Stewart, and Thomas Reid) were “largely successful in integrating all

these significant hints at a doctrine of spontaneous order into a general social philosophy”

(p. 21).

Ferguson and Smith are of particular interest because they dovetail with Hayek’s framing

and because of the repeated use in the literature of Ferguson’s definition of spontaneous

order (stated above). Also, Smith is viewed as the grandfather of Laissez Faire Western

economics6. When we look more closely at Ferguson’s and Smith’s work, however, both

were in different ways sceptical about whether spontaneous order necessarily gives rise

to beneficial outcomes.

Luban (2020) argues that the Scottish Enlightenment writers in general had a more

balanced view toward ‘good’ and ‘bad’ unintended consequences of human action (he

refers to these as fecundity and perversity, respectively): “[t]hey are often held up as

pioneers of spontaneous order theory [but] they might better be understood as critics

avant la lettre.” (p. 69). Moreover, Daniel Luban argued this applied most significantly

to Ferguson and Smith. His reading was that Ferguson tended to a view of human nature

“closer to Machiavelli’s” (Luban, 2020, p. 78).

This is important because there is an argument that the more we expect human inter-

action to give rise to “perversity”, the greater is the case for planned order (Hobbes’

Leviathan being an extreme). This is a crude argument, however, because it assumes

that ‘planning’ can overcome social problems: this is at the heart of the debate between

Hayek and “rational” central planner.

Whyte (2019) adds another factor concerning Ferguson. She argues that his opinions

should be viewed in the context of his Christian beliefs, stating that “Hayek struggles

to obscure the providentialism underpinning the account of social order he derives from

Adam Ferguson and the Scottish Enlightenment.” (p. 156). Put another way, his faith

in a Christian god was part of Ferguson’s telos. This is significant because we can think

of God within Ferguson’s framework as providing a role resembling that of a planning

entity. Paradoxically, spontaneous order might be the result of some divine plan.

The implication is that belief in God might lead to an expectation that, ultimately,

fecundity will win out against perversity. This is not the same as a rational construc-

tivist’s faith in central planning but it is nonetheless a form of faith in the (net) positive

outcomes of spontaneous processes. Hayek’s atheistic interpretation of spontaneous or-

der contained no such faith, other than, perhaps, his interpretation of Darwinian forces

working on institutions.

6Barry (1982) refers to him as “Newton of the social sciences” (p. 21).
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Looking more closely at Smith, Barry’s (1982) comments make Smith look much more

like a classical liberal than, say, a Laissez Faire anarchist, which is to say Smith believed

that a “system of natural liberty ... can only work in the context of a form of inter-

ventionism; that of the enforcement of the strict rules of justice.” (p. 27). Like Hale,

Smith believed that common law was preferable to statute law as balancing positive law

and natural justice; however, statute law should supplement common law where neces-

sary, including in the need to ensure judges are accountable. Moreover, Smith was clear

that he thought free markets give rise to some detrimental outcomes, which justified

“a sizeable list of ad hoc interventions” (Barry, 1982, p. 28), e.g., a state system of

eduction.

These comments about Smith point to an important distinction in the spontaneous

order literature, between a so-called free market economic system and the institutional

framework (including jurisprudence). As will be discussed further in the next chapter,

Hayek used the former as a metaphor for the latter, which raises the important question

of whether this is appropriate7.

3.2.3 Post-Scottish Enlightenment

Barry (1982) writes that “[i]t is commonly thought that after Smith the theory of spon-

taneous order went into a decline until the rise of Austrian economics” (p. 28) in the

guise of Carl Menger. However, he notes the French laissez-faire school (albeit they

“contributed little in the way of original theory to economics”, ibid, p. 29) and Herbert

Spencer. The latter took a broadly Darwinian view but, like Hayek later on, faced the

problem of institutions emerging which “embody anti-liberal values” (ibid, p. 30).

The theoretical foundations of spontaneous order appeared to mature further with

the work of Carl Menger, notably in Menger [1890] (1981) and Menger [1883] (1985).

Menger made a helpful distinction between organic (unplanned) and pragmatic institu-

tions (planned): the former include money, language, markets, and law and the latter

“are the product of human deliberation and will.” (Barry, 1982, p. 32). Indeed, the

institutions that emerge in the simulations reported later in the thesis can certainly be

categorised as organic in nature8.

Menger is generally understood to have been the founder of the Austrian School of

Economics (Gray, 1998, p. 16), which was set up originally in opposition to the German

Historical School. The Austrians are viewed as an important school of economics in

their own right but they also had an impact on Hayek (who was Austrian) as a young

adult when he studied in Vienna.

7There is also the related point that markets should be viewed as institutions themselves
which typically exist within a wider enabling institutional framework.

8In some experiments we will look at how legal rules can catalyse this emergence. This gives
rise to a categorization problem: should we refer to these as organic or pragmatic institutions?
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In Menger’s work, by far the most significant example of an organic institution is money.

This was the subject of Chapter 8 of Menger [1890] (1981), and he wrote a broader

account of organic institutions in Part 4 of Menger [1883] (1985).

Menger’s [1890] (1981) account of money is well worth considering in some detail because

it is a quintessential example of what proponents mean by spontaneous order9, but also

because there is an important criticism of this account which calls into question its

spontaneous nature, in the form of the quality of money.

Menger’s Account of Monetary Emergence

For Menger, the origins of money start from a barter economy. Depicting a “smith of

the Homeric age” (p. 259) wishing to exchange suits of armour for consumables like food

and water as well as raw materials, the smith will be aware of the difficulty of bartering

his wares (the ‘double coincidence of wants’ problem). Knowing, however, that there are

certain products (like cattle, in the case of Ancient Greece) that are more in demand,

the smith will see the value in exchanging his armour for cattle in order to subsequently

‘buy’ (exchange cattle for) consumables and raw materials. Over time, as

... each economizing individual becomes increasingly more aware of his

economic interest, he is led by this interest, without any agreement, without

legislative compulsion, and even without regard to the public interest, to give

his commodities in exchange for other, more saleable, commodities, even if

he does not need them for any immediate consumption purpose. [Emphasis

included] (Menger, 1981, p 260)

Menger argues that cattle as money was appropriate for regions like Ancient Greece

but other forms of ‘money’ could emerge in different cultures, with the characteristics

of marketability and relatively low costs of maintenance and transport. Moreover, the

state could contribute to the ‘moneyness’ of some commodity by accepting and making

payments in that form but Menger was clear that at this ‘cattle’ stage, the state is not

necessary in the emergence of money.

Menger’s account then proceeds through time, noting that economic progress gave rise to

precious metals being preferred as money in many regions of the world. These became

more marketable (metals were used more in advanced agricultural equipment, crafts,

and early forms of industry), had very low maintenance costs, and transportation costs

were low relatively to their high market price.

It is in the move from precious metals to coins that Menger alludes to a possible role of the

state, including, most importantly, a quality (or “fineness”) challenge which resembles

9Note that game theoretic and computational models of monetary emergence are considered
in Chapter 5.
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Akerlof’s (1970) information asymmetry problem. Ordinary people cannot ascertain the

quality of a metal so there is a question of how this is achieved. To that end, Menger

mentions the creation of coins or bars with a “stamp by a public official or some reliable

person on a metal bar guaranteed ... its degree of fineness” (Menger, 1981, p. 282).

Put another way, a credible source is required to guarantee quality. In the next page,

Menger writes “[g]overnments have ... usually accepted the obligation of stamping the

coins necessary for trade ... [b]ut they have so often and so greatly misused their power

...” (ibid, p. 283).

This quality problem is discussed in more detail in Hodgson (1992). In this paper,

Hodgson argues that Menger understated the quality problem by “saying that money

is likely to take the form of precious metals, and these are ‘easily controlled as to their

quality and weight’ (Menger, 1892, p. 255)” (Hodgson, 1992, p. 403). Moreover, Hodgson

references Mirowski (1990) in stating the quality of money problem means “the ‘value’

of money is continually under threat from many devices and stratagems, from coin-

clipping to the modern expansion of debt.” (ibid, p. 404). Hodgson also notes that,

while different to forgery, the state’s debasement of money by inflation can also be

construed as an (inter-temporal) money quality problem.

In Menger’s monetary emergence narrative, this quality argument was mentioned vis-à-

vis coinage but there is an argument that it can be applied to his earlier forms of money

like cattle: Akerlof-like quality problems hold for many resources. Hodgson (2002a)

writes that “debasement is a potential problem at the inception of money, not merely

its development stage.” (p. 119).

This quality problem is an important challenge to Mengerian monetary theories because,

ultimately, it changes money as an institution from being related to - in Schultz’s (2001)

terminology - a coordination scenario to a collective action scenario10. The difference

between these two is crucial in the theory of spontaneous order and will be discussed

further in the next chapter. For now, we can state that coordination situations are in

a sense self-regulating (they have qualities akin to Nash equilibria in game theory) and

any organic institutions that emerge can be categorized as conventions. By contrast,

Schultz’s (2001) collective action situations typically require some sort of mechanism for

agents not to cheat / defect / free ride on the rest of the population. These mechanisms

might be informal in nature, e.g., enforcement of a social norm, or more formal like a

fine from a third party.

It is tempting to dismiss Menger’s money emergence narrative as inadequate when we

factor in the quality challenge. However, this would be an over-reaction: Menger’s nar-

rative is interlaced with many supportive empirical examples. Rather, a more balanced

view is that “there are good reasons to assume that money will be - to use Menger’s

10Section 1.4.9
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terminology - partly a ‘pragmatic’ rather than a purely ‘organic’ institution.” (Hodgson,

1992, p. 408).

It is worth emphasising that this debate about whether money should be left to its

own devices or if it requires some sort of “intervention” (from the state or otherwise)

is an excellent exemplar in a number of the debates described in the next chapter.

Most notably, Hayek’s prescribed policy that money be denationalised (Hayek, 1976a),

where privately-issued currencies can compete against each other, appears founded on

the assumption that money has no quality problem. Moreover, as discussed in the

Introduction, this question is important today in the context of cryptocurrencies (of

which there are now many): reports of fraud and theft via hacking suggest the quality

argument is very much alive and relevant.

Michael Polanyi

As mentioned above, Polanyi11 coined the phrase ‘spontaneous order’. A detailed eval-

uation of his framing of this concept is beyond the scope of this thesis but a history of

spontaneous order should contain at least a summary of his contributions.

In his work, Polanyi differentiated between synchronic (stable) and diachronic (dynamic)

systems in a way that resembles the difference between ergodic and non-ergodic, as de-

fined in Chapter 2. Within diachronic systems, Polanyi further differentiated between

‘corporate’ (hierarchical) and ‘spontaneous’ (horizontal) social orders. This distinction

resembles Hayek’s differentiation between ‘economies’ and ‘catallaxy’, which are dis-

cussed in more detail in the next chapter.

Within his framing of spontaneous order, Polanyi developed his notion of ‘polycentricity’,

which is the idea that certain social systems (he used the example of the scientific

community) tend to have multiple decision centres but also a common goal (such as the

pursuit of objective truth). Polanyi used this notion to argue that socialist planning is

inappropriate for economic systems because it tries to force a polycentric system to be

‘monocentric’ (with only one decision centre).

In his work, Polanyi also argued that much knowledge in society is tacit. Hayek mimics

Polanyi here - this is also discussed in more detail in the next chapter.

It is worth noting briefly, that Michael Polanyi’s older brother, Karl, was also a social

scientist who was concerned with these matters. Karl was more critical of decentralised

markets than his brother and he became more aligned with socialism and monocentricity.

11Polanyi was viewed by many as a polymath, having held professorial positions both in
chemistry and the social sciences.
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3.3 Historical Influences on Hayek

As mentioned previously, Hayek plays the leading role in the next chapter. Here we look

briefly at the historical influences on his work, drawing mainly from Gray (1998) and

Caldwell (2004).

Gray (1998) differentiated between two major groups who influenced Hayek’s work,

which we might call the Austrians and non-Austrians. Of the former, Gray mentioned

Menger, Friedrich von Wieser, who was Hayek’s teacher, and Ludwig von Mises, who

was one of Hayek’s doctoral supervisors. Of the non-Austrians, Gray listed five main in-

fluences: Immanuel Kant, Ernst Mach, Karl Popper, Ludwig Wittgenstein, and Michael

Polanyi. A comprehensive evaluation of these historical figures is well beyond the scope

of this thesis but there are a number of points worth making as context for later dis-

cussions, notably with respect to Hayek’s theory of mind12. Let us start with the non-

Austrians.

At the heart of Hayek’s ontology lies an approach to knowledge which Gray (1998)

describes as “Kantian in that it accords a very great measure of creative power, which

is neither a receptacle for the passive absorption of fugitive sensations, nor yet a mirror

in which the world’s necessities are reflected.” (p. 8). As we will see below, this Kantian

scepticism regarding the nature of knowledge in social systems is fundamental to Hayek’s

framing of spontaneous order. He also sees knowledge as decentralized and largely tacit

in nature - put together, all of this presents a powerful challenge to would-be social

planners.

While Hayek’s developing framework of ideas was broadly consistent with Kant, his

relationship to Mach’s positivist philosophy was in opposition. Hayek believed the “mind

is thus the order prevailing in a particular part of the physical universe - that part of

which is ourselves.” (Hayek, [1952] 2018, p. 290, as quoted in Gray, 1998, p. 10).

Hayek’s emphasis was not only on order emerging among individuals but it was also on

forms of order arising in the human mind. This is relevant context for this thesis because

the institutions that immerge and emerge in the simulations reported in later chapters

involve both immanent, intra-agent patterning and concomitant inter-agent order.

Caldwell (2004) notes that during his student days in Vienna, Hayek wrote a paper

elaborating his ideas which was viewed positively by Adolf Stöhr (who succeeded Mach)

and the philosopher Alois Riehl. This paper formed the beginnings of The Sensory

Order (Hayek, [1945] 2018), published 25 years later.

Gray (1998) argues that Hayek and Popper differed in a number of respects but there

were affinities between Hayek’s view on the growth of knowledge and Popper’s work

12Hayek’s main text here is The Sensory Order (Hayek, [1952] 2018).



90 Chapter 3 Spontaneous Order - Rationale and History

corresponding to an ‘evolutionary epistemology’. Specifically, Gray writes that for Hayek

“the human mind is itself an evolutionary product and that its structure is therefore

variable and not constant.” (Gray, 1998, p. 11). Curiously, while Gray presented Popper

as an influence on Hayek, it seems Hayek got to this position first: he noted that even

though The Sensory Order was first published in 1952, it was composed in the 1920s

whereas the idea of an evolutionary epistemology appeared in Popper’s work later on13.

There is relevance, again, for this thesis because of the overlap between Hayek’s theory

of mind and the mental models assumed for the agents in the ABMs presented in later

chapters. These computational models were in part inspired by a type of mental model

described in Holland (1975) and Holland et al (1986), which are commonly referred to

as classifier systems. These have been subsequently used in Arthur (1994), Kirman

and Vriend (2000), Vriend (2002), and Marimon et al. (1990). A key characteristic of

these models is that there is some type of evolutionary process concerning rules going

on within the agents’ own mental models.

Turning to Wittgenstein14, whose “influence runs deep ... [in] Hayek’s system of ideas”

(Gray, 1998, p. 13), Gray writes “[t]here are ... many evidences that Wittgenstein’s work

reinforced Hayek’s conviction that the study of language is a necessary precondition of

the study of human thought, and an indispensable prophylactic to the principal disorders

of the intellect.” (p. 13).

Both Hayek and Wittgenstein believed that language has a fundamental role in enabling

coherence within - or the order of - the mind. Language is not merely a means of

communication: words are associated with cognitive patterns which play an important

role when individuals attempt to make sense of their environment and when they reason.

Moreover, in the context of Schultz’s (2001) coordination and collective action situations

noted above, language is probably the purest form of the former. This means, most

simply, that once a group of individuals has associated a word with some phenomenon

(say, “ceiling”), then it is unlikely any individual would want to change this designation.

This is not to argue that language does not evolve but words in general are close to

conventions in a pure coordination game15.

13Hayek and Popper were good friends for many years and we might expect them to have
influenced each other’s thinking. Caldwell’s (2006) paper Popper and Hayek: Who Influenced
Whom? argues, however, that neither influenced the other and the relationship was based on
mutual support of each other’s arguments. The problem with this conclusion, however, is that we
cannot know counterfactual histories: how would Hayek’s work have developed without Popper,
and vice versa? Surely this is un-answerable.

14who was a distant cousin of Hayek’s.
15There are a number of other problems with this simple account, e.g., the lack of univocality

with most words, and the coexistence in populations of multiple dialects. A detailed discussion
of this, however, is beyond the scope of this thesis.
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In addition to this emphasis on language, Hayek’s theory of mind is concerned with

social knowledge as embodied in rules which exist in the human mind “which in some

cases are necessarily beyond articulation by us” (Gray, 1998, p. 14). Furthermore, “for

Hayek ... all our knowledge is at the bottom practical or tacit knowledge: it consists,

not in propositions or theories, but in skills and dispositions to act in a rule-governed

fashion.” (ibid).

Once again we see a considerable amount of overlap with Holland et al (1986) who

emphasise both the rule-following nature of human mental models and the idea that

some of these rules exist sub-consciously. In fact, given the overlap between Hayek’s

theory of mind (especially his book The Sensory Order) and Holland et al (1986) it

is remarkable that the latter never mentions Hayek’s work. This overlap, which was

identified by Vanberg (2018), is discussed further in the next chapter.

Looking at the fifth and final influence on Hayek’s system of ideas, Gray (1998) notes

Polanyi’s insight “that, since much of the knowledge we use is inarticulate, we always

know more than we can ever say” (p. 15). Furthermore, this “gives a wholly new twist to

the argument for liberty from human ignorance.” (ibid). In the debate about the extent

to which human knowledge can be formalized and communicated for the purposes of

central planning, Polanyi’s point is particularly significant and it is used by Hayek to

reinforce his argument against rational constructivism.

Turning now to the Austrian School, Gray (1998) summarises the relationship by stating

that “Hayek has followed and developed the Austrian School.” (p. 16). Included within

this is “Hayek’s extension of Austrian subjectivism about value to the whole realm of

social objects [which] in no way represents a deviation from the positions of his mentors,

Menger and von Mises.” (p. 17).

Menger had a considerable impact on Hayek’s thought, both directly through his publica-

tions but also indirectly by the fact Menger established the Austrian school of economics.

Also, Menger stimulated Hayek’s interest in economics (Caldwell, 2004, p. 139) and the

latter came to study under Menger’s disciples (notably von Wieser who encouraged and

supported Hayek). We can say, therefore, that Menger enabled the environment in which

Hayek learnt economics, and catalysed his interest in the subject.

Caldwell (2004) describes how Hayek’s relationship with von Mises was one of mentee and

mentor (the latter was about 12 years ahead of Hayek in his academic career). Moreover,

von Mises employed Hayek and the two formed a personal relationship which lasted for

about 10 years, between Hayek obtaining his undergraduate degree and later joining the

London School of Economics. Von Mises appears to have been significantly responsible

for Hayek moving away from his earlier socialist beliefs to one of classical liberalism.

Moreover, Caldwell characterized the intellectual relationship by quoting Hayek who
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said that he agreed with many of von Mises’ (liberal) conclusions but disagreed with the

arguments which supported them.

Von Mises thought that “economic laws were deductions from a few axioms about human

action” and that “all of economic science can be derived from a proper specification of

the nature of human action.” (Gray, 1998, p. 17). Hayek took issue with this apodictic-

deductive approach in von Mises’ work, which focused on the scientific method as applied

to social science, e.g., in Hayek [1964] (2014), which is discussed in the next chapter.

Now that we have considered the history of spontaneous order and the influences on

Hayek’s thinking, let us look in more detail at his approach to spontaneous order.



Chapter 4

Hayek’s Spontaneous Order

Hayek is a puzzle.

– Hayek’s Challenge by Bruce Caldwell

The main aim of this chapter is to describe and evaluate Hayek’s framing of spontaneous

order, especially his theory of cultural evolution, which is closely related to organic

institutions.

Hayek’s work takes centre stage because, as noted in the previous chapter, he developed

the most systematic and sophisticated approach to spontaneous order. His framework

includes various ontological ‘foundations’, featuring a theory of mind, a perspective on

devolved, tacit knowledge, and - interestingly for this thesis - many of the principles of

Complexity Economics (CE) discussed in Chapter 2. Moreover, Hayek looked at various

forms of spontaneous order in multiple domains, including ‘the market order’, his own

theory of cultural evolution, and English common law.

Section 4.1 below begins the chapter with a health warning regarding Hayek’s work,

which is voluminous and which seemed to evolve over the six decades in which he wrote.

Section 4.2 looks in more detail at the ontology, or foundation stones, of Hayek’s work,

including the crucial ‘knowledge problem’ and how his ontology corresponds with CE.

In Section 4.3 we take a slight detour, looking in more detail at Ullmann-Margalit

(1978). This paper is important because it provides further background to Hayek’s

theory of cultural evolution, and also because the two computational models described

in chapters 7 and 9 loosely correspond to Ullmann-Margalit’s two ‘moulds’ of invisible

hand explanations.
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With these ‘background’ sections out of the way, Section 4.4 focuses on Hayek’s dis-

cussion of ‘catallaxy’ and the order he believed was achieved - spontaneously - in free

market systems. This is important in its own right but it also provides background to

Hayek’s theory of cultural evolution, which is the subject of Section 4.51. This theory

is particularly relevant to the thesis because ‘cultural evolution’ incorporates organic

institutions such as conventions, and social norms.

Section 4.6 focuses on how Hayek distinguished between common law and legislation in

the context of his theory of cultural evolution; and Section 4.7 discusses how Vanberg

(1994b) tries to reconcile various strands of Hayek’s work via the idea of conditional

evolution. These two section are related to the second research question, concerning

“liberal legislation”.

Section 4.8 concludes.

There are two points to note before proceeding. First, the literatures concerned with

the various matters discussed in this chapter are enormous: the aim is to thread a

way through this terrain and to highlight issues pertinent to the thesis while not doing

violence to that research.

The second point is to repeat, for convenience, Hayek’s definition of order since it plays

a central role in this chapter. For Hayek, order is:

a state of affairs in which a multiplicity of elements of various kinds are

so related to each other that we may learn from our acquaintance with

some spatial or temporal part of the whole to form correct expectations

concerning the rest, or at least expectations which have a good chance of

proving correct. (Hayek, 1973, p. 36, emphasis removed)

As mentioned in the Introduction, one of the curious features of this definition is that it

contains no commitment to spontaneous order necessarily giving rise to beneficial social

patterns, including organic institutions. This is discussed further in Section 4.5 below.

4.1 Interpreting Hayek

Before we look in detail at Hayek’s work, we should say a few words about how it seemed

to change over time, and how people have interpreted him in different ways.

1One of the important criticisms of Hayek’s work is from Buchanan who argued that Hayek
used spontaneous market order as an inappropriate analogy for the emergence of institutions
(Buchanan, 1986).
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Hayek wrote prolifically over six decades and covered a broad variety of subjects2, all

of which gave rise to an enormous and diverse body of work. Furthermore, his opinions

appeared to change, which is to be expected of someone writing over several decades.

However, one of the key challenges of interpreting Hayek is that he did a poor job of

advertising when his opinions had changed and explaining why. We can contrast this

with researchers like North (also a recipient of the Nobel prize in economics) who flagged

changes in his thinking and who showed “characteristic intellectual honesty” (Hodgson,

2017, p. 5) through much of his career. This appears less true of Hayek, which adds to

the difficulty of interpreting his work.

Related to this, Hayek seems to contradict himself over and above the understandable

changes in his thinking. For example, Caldwell (2004) notes how Hayek argued that

policies aimed at income redistribution violated the rule of law while he also endorsed

welfare measures that redistributed income “[w]ithin the covers of the same book” (p. 5).

Gray (1998) believes the most fundamental tension in Hayek’s work is:

... between a conservative attachment to inherited social forms and a liberal

commitment to unending progress. Hayek’s distance from anything resem-

bling traditional conservatism emerges most starkly when he commends

progress, while acknowledging that “Progress is movement for movement’s

sake” (Hayek, [1960] 2006, p. 41). (Gray, 1998, p. 154)

There is one final point worth mentioning about consistency, which concerns Hayek’s

final book, The Fatal Conceit (Hayek, 1988): there is a question about how much Hayek

participated in its writing. He fell ill in 1985 and it is “not clear how much of the book

should be attributed to Hayek and how much to [William] Bartley.” (Caldwell, 2004,

p. 317). Bartley was officially the book’s editor and not a co-author. This question

of authenticity is important because it is viewed as Hayek’s last book so it might be

interpreted as his ‘final say’ in various matters.

If we take all of the above observations together, and the fact Hayek was a controversial

figure, we can appreciate how different researchers have interpreted him in varied -

and sometimes contradictory - ways. For example Vanberg (2011) refers mainly to

Hayek’s earlier work (which emphasised classical liberalism) to discuss how Hayek’s

“liberal planning” laws could be considered within an evolutionary framework3; whereas

Whyte (2019) claims a very different interpretation of Hayek, who “is tethered to deeply

conservative opposition in politics.” (p. 160).

2Caldwell - one of Hayek’s key biographers - referred to him as a polymath (Caldwell, 2006).
3We will see in Section 4.7 that Vanberg has a more complete command over Hayek’s work

than this implies, to the extent he attempts to reconcile seemingly incompatible parts of Hayek’s
work in Vanberg (1994b).
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Given the apparent contradictions in his work we might conclude that Hayek is not worth

paying attention to. This would be a mistake, especially in light of the orientation of

this thesis around CE and spontaneous order. Hayek published The Theory of Complex

Phenomena in 19644 (Hayek, [1964] 2014), which preceded most of the work published on

social complexity by decades5. Moreover, while his work was inter-disciplinary, Hayek’s

orientation was around economics, and he was awarded6 the Nobel prize in economics in

1974. These factors, combined with his sophisticated theorizing on spontaneous order,

make Hayek a very relevant researcher for this thesis.

4.2 Hayek’s Ontology

In framing Hayek’s work, it is helpful to distinguish between the ontological foundations

of Hayek’s body of thought and his theory of cultural evolution. In this section we focus

on the former, discussing Hayek’s theory of mind; his orientation around knowledge;

instincts, habits, and rules; and, finally his paper on complexity (Hayek, 1967).

4.2.1 Hayek’s Theory of Mind

We saw in the previous chapter that Hayek’s theory of mind has broadly Kantian origins

and he follows Wittgenstein concerning the transmission of practical knowledge via social

rules. However, Hayek’s framing has “some entirely original features ... which it would

be hard for Kant or Wittgenstein to accept.” (Gray, 1998, p. 21). Most notable of these

is Hayek’s view of rules which operate sub-consciously and which cannot be known by

the conscious mind. Moreover, Hayek argued that a type of evolutionary mechanism

operates within the mind which ensures selection and modification of its set or rules.

This framing of the mind has profound implications for social theory. Gray (1998) does

not hold back when he writes that it “entails the bankruptcy of the Cartesian rationalist

project and implies that the human mind can never be fully understood itself ” (p. 24).

One of the implications of the evolutionary view of rules in the mind is that, if we accept

the idea that every individual has a unique history, the sets of rules operating within

each mind will be equally unique, i.e., this points to radical heterogeneity in people’s

mental models. Another implication is that new experiences will result in changed sets

of rules, i.e., we should expect mental models to evolve.

4Versions of this paper were published in 1964 and 1967 but Hayek completed the original
manuscript in December 1961 (Hayek [1964] 2014, p. 257).

5Notably, the Economics Programme of the Santa Fe Institute was not set up until 1988.
6jointly with Gunnar Myrdal.
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Gray (1998) discusses two broad implications of Hayek’s theory of mind. First, a single

mind cannot ‘know’ other minds because of the rules / knowledge contained in the sub-

conscious that sense-making is partly based on: “inquiry can only be reflexive and never

transcendental” (p. 25). Second, sub-conscious rules in others’ minds will ultimately be

hidden from view.

Moreover, in discussing rationality, “for Hayek rational calculation is inherently inter-

stitial or supervenient - it fills the gap in a code of rules, resolves episodes of cognitive

dissonance and aids judgment in applying norms.” (ibid, p. 52). This is some distance

from the assumption commonly held in Neoclassical Economics of substantive rational-

ity. For Hayek, ‘rationality’ supervenes on sub-conscious foundations that are made up

of rules.

The final point to note in this sub-section, mentioned briefly in the previous chapter, is

that Hayek’s theory of mind bears a great deal of resemblance to the discussion of mental

models in Holland et al (1986) and to Holland’s work on ‘classifier systems’ in general.

This overlap between Holland and Hayek has been noted by others. For example, Van-

berg discusses it in Section 11 of his Introduction to The Sensory Order (Vanberg, 2018,

pp. 78-86). Here, Vanberg quoted Mark Miller who writes that “[a]lthough Holland de-

veloped his ideas without knowledge of Hayek’s work, the two scholars are wonderfully

complementary.” (Miller, 1996, p. 59).

Holland’s approach to mental models heavily informs those assumed in the computa-

tional models developed later in the thesis.

4.2.2 Hayek’s Knowledge Problem

Many researchers have noted that Hayek’s orientation around knowledge in social sys-

tems is crucial to understanding his body of thought, e.g., Gray (1998) and Caldwell

(2004). The former argues that Hayek’s framework of spontaneous order contains three

principles: (i) his “invisible hand thesis” (p. 33); (ii) a form of cultural evolution of rules;

and (iii) his understanding of the role of knowledge in social systems. Hayek referred to

the first two of these as his “twin pillars”. We can understand Gray’s third component,

concerning knowledge, as foundational to Hayek’s ontology. Indeed, Hayek deemed the

division of knowledge in economics “at least as important as ... the division of labour.”

(Hayek, 1937, p. 49).

It is important to emphasise that we ought not to discuss Hayek’s approach to knowledge

independently of his theory of mind. Rules contained in the mind - whether we are

conscious of them or not - are part of society’s body of knowledge. Boehm (1994) writes

that, for Hayek, “knowledge of the social world is primarily embodied in practices and

skills rather than in theories and that a great deal of this practical knowledge cannot be

articulated and communicated.” (p. 300), i.e., it is mostly tacit.
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Related to this, “Hayek is at great pains to point out that ... dispersed knowledge

is precisely not theoretical or technical knowledge, but practical knowledge of concrete

situations” (Gray, 1998, p. 36). This is not to argue that knowledge cannot be theoretical

or technical: Hayek is emphasising that knowledge in social systems is predominantly

devolved, informal, and practical. To understand this more clearly, Hayek writes:

The skipper who earns his living from using otherwise empty or half-filled

journeys of tramp-steamers, or the estate agent whose whole knowledge

is almost exclusively one of temporary opportunities, or the arbitrageur

who gains from local differences in commodity prices - are all performing

eminently useful functions based on special knowledge of circumstances or

the fleeting moment not known to others. (Hayek, 1976b, p. 80)

From a whole systems point of view, we might ask, therefore, how do we: (i) make

maximal use of this dispersed, devolved knowledge? and (ii) enable it to usefully develop

/ accumulate?

It was clear to Hayek that this ontology of knowledge means that central planning along

the lines of socialism is futile: to achieve this, devolved, tacit knowledge would have

to be formalized, collated, and centralised; and whole-system decisions would have to

be made, transmitted, and enacted instantaneously (else some marginal change in local

knowledge might require a different system-wide ‘solution’). The obstacles to this should

be clear from the discussion of Hayek’s theory of mind and his description of the nature

of knowledge. As Gray (1998) puts it, such “public planning cannot avoid yielding calcu-

lation chaos.” (p. 36) even if the practical problems of centralised knowledge-gathering

and execution could be overcome.

By contrast, Hayek argued that market systems provide the mechanisms through which

(one type of) spontaneous order can emerge which will maximize the use of dispersed

knowledge. Such market systems are exemplars of spontaneous order and are discussed

in more detail below.

4.2.3 Instincts, Habits and Rules

Rules play an important role in Institutional Economics, and they are central to the

mental models used in the Agent-Based Models (ABMs) described later in the thesis.

Here we will look briefly at how Hayek used this term, a criticism of this use, and how

it relates to habits in Hayek’s framework.

Hayek’s reference to ‘rules’ was mentioned above. It is “a central concept in [his] mature

theory of social evolution...” (Hodgson, 2006b, p. 16). For Hayek the meaning of ‘rule’

was that of a “regularity of the conduct of individuals ... irrespective of whether such a
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rule is ‘known’ to the individuals ...” (Hayek, 1967, pp. 66-7, as cited in Hodgson, 2006b,

p. 16).

Hodgson (2006b) argues that the problem with this definition is that it is too broad. “It

commits Hayek, for example, to regard all regular bodily functions as resulting from the

observances of rules.” (Kley, 1994, p. 44, as cited in Hodgson, 2006b, p. 16). Moreover,

Hodgson argue that the lack of “an adequate explanation of the origin and impetus

behind rules [means] his explanation is insufficiently Darwinian.” (ibid, p. 17).

This raises questions of Hayek’s framing which are both important and unanswered, like

“[w]hat are the mechanisms involved in ... the transformation of a rule into an act?” and

“[w]hat sustains the rule and gives it some durability through time?” (Hodgson, 2006b,

p. 17). Indeed, both these questions provide good motivations for the models described

in later chapters: the agents in these ABMs use mental models which provide both a

framing of the context in which they operate and also a means to make decisions, i.e.,

they use both perceived patterns and reasoning to make choices.

As noted in the Introduction, the models developed below also explore the process of

habituation. Unfortunately, for Hayek the concept of habit “is not prominent because

it is also subsumed within his overly extensive concept of a ‘rule’.” (Hodgson, 2006b,

p. 18). From what Hayek wrote, we can discern that he did not recognise that “habit

is a necessary foundation for conscious reflection” and that “his casual use of the term

suggests a conception of habit as settled behavior, more than a propensity of disposition.”

(ibid).

The conclusion we draw here is that Hayek’s reference to ‘rules’, and his understanding

of habits, are somewhat ambiguous.

4.2.4 Hayek on Complexity

Caldwell (2004) describes how Hayek’s ideas about knowledge, exemplified by his article

The Use of Knowledge in Society (Hayek, 1945), at first “convinced no one, or virtually

no one” (Caldwell, 2004, p. 10).

This problem illustrates a key tension between Hayek and the economics orthodoxy

throughout his career. He saw the role of the ‘economy’7 as coordinating dispersed

knowledge whereas the consensus among economists was (and remains today) that eco-

nomics is concerned with the allocation of scarce resources8. Indeed it is noteworthy

7Hayek’s preferred term here is ‘catallaxy’ rather than ‘economy’. This is discussed further
below.

8These two are clearly not mutually exclusive. The issue is more one of emphasis in research.
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that Hayek’s 1974 Nobel citation did not refer to knowledge, which was at the heart of

his ontology9.

When considering the poor reception of his theories of knowledge, Caldwell (2004) writes

that Hayek encountered a problem that “everyone of his opponents claimed to be doing

‘real’ science.” (p. 10). In a move which mimicked “Menger before him, he turned to the

study of methodology to make his case.” (ibid). Caldwell (2004) stresses that Hayek’s

“first love was not methodology” (ibid, p. 11) but he felt compelled to develop this side

of his work to counter his critics. It is this which led him to consider the problem of

“complexity”.

As part of this methodological turn, Hayek was influenced by General Systems Theory

(GST) and, related to this, in 1961 he gave a series of lectures entitled “A New Look

at Economic Theory”. In a letter to Popper the year before, Hayek writes that these

lectures “began with an attempt to restate my views of the nature of economic theory,

and the conception of higher level regularities which I then formed continues to occupy

me and seems fruitful far beyond the field of economics. I suspect it is really what

[von] Bertalanffy with his General Systems Theory was after...” (Hayek, 1960, as cited

in Caldwell, 2004, p. 307).

Ludwig von Bertalanffy’s most famous text in GST is von Bertalanffy (1968); however,

he and Hayek were in communication well before that10. Moreover, von Bertalanffy

published a number of books and papers on the subject of GST in German (Hayek’s

first language) prior to 1961.

In addition to von Bertalanffy, who Hayek “was, perhaps, closest to” (Caldwell, 2004,

p. 362), Hayek also “cited Warren Weaver on organized complexity, John von Neumann

on the logic of automata, and Norbert Weiner on cybernetics.” (ibid).

There are two points worth emphasising here. The first is Caldwell’s references to von

Bertalanffy, Weaver, von Neumann, and Weiner, all of whom are associated with the

origins of the modern day complexity sciences11, e.g., all are referenced in Castellani

and Gerrits’ (2021) Map of the complexity sciences12. Second, Hayek saw his project in

the early 1960s as going beyond - or developing - GST.

9The citation reads “for [Hayek’s and Myrdal’s] pioneering work in the theory of money and
economic fluctuations and for their penetrating analysis of the interdependence of economic,
social and institutional phenomena.”

10Caldwell (2004) notes that “von Bertalanffy ... had provided comments on The Sensory
Order [published in 1952] when it was in draft form.” (Caldwell, 2004, p. 362).

11From a CE point of view, the relationship Hayek (who was an economist) had with these
giants of the complexity sciences is both fascinating and important.

12According to Rosser (1999), Hayek also “had significant communication with Ilya Prigogine
and Hermann Haken.” (p. 185).
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In the same year as his “New Look” lectures, Hayek completed the first manuscript

of The Theory of Complex Phenomena, in December 1961 (Hayek, [1964] 2014)13. It

is worthwhile examining and evaluating parts of this paper in some detail, for four

reasons: (i) in general it supports the CE orientation of this thesis (the overlap between

this paper and the description of CE in Chapter 2 is substantial though far from total);

(ii) related, the paper discusses a number of challenges in attempting to deal with social

complexity via a scientific approach, which were not discussed in Chapter 2; (iii) it

helps inform the mental models used in the ABMs presented in later chapters; and

(iv) it provides important ontological foundations for understanding Hayek’s theory of

spontaneous order.

The rest of this sub-section will look at four of the themes in Hayek [1964] (2014):

1. pattern recognition;

2. simple versus complex systems;

3. incomplete data; and

4. the implications for theories of social structures.

Pattern Recognition

Extending his theorizing about the mind, Hayek [1964] (2014) emphasises the impor-

tance of pattern recognition, which allows for the identification of “regularities of nature

... recognised intuitively by our senses ... without having to resort to intellectual op-

erations.” (p. 258). This distinction between intuition and intellect obviously pre-dates

Hayek’s paper but it is worth noting that Hayek’s discussion preceded Daniel Kah-

neman’s (2012) related references to System 1 (intuitive) and System 2 (intellectual)

information processing by about 50 years.

Delving deeper in to Hayek’s thoughts on mental models and complexity, Vanberg (2018)

discusses one of Hayek’s unfinished papers Within Systems About Systems (pp. 361-

381). Related to this, in his Introduction chapter Vanberg (2018) notes “that Hayek’s

social theory, revolving around the ‘twin ideas of evolution and spontaneous order,’ can

be understood as an application of the ‘systems within systems’ concept as a general

explanatory scheme.” (p. 81). This scheme fits neatly into the notion of nested complex

systems discussed in Section 2.1.1.1 above as well as the main aim of this thesis, which

is to explore the emergence of organic institutions.

13Caldwell (2004) states that “Hayek’s writings about spontaneous orders share certain sim-
ilarities with recent work in complexity theory, the study of self-organizing complex adaptive
systems ... it was his publication of The Sensory Order [in 1952] that his interest in the ubiquity
of such phenomena became apparent.” (p. 361)
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The second way Hayek’s discussion is helpful concerns pattern recognition in science,

which is discussed further below under theories of social structures.

Simple Versus Complex Systems

In discussing degrees of complexity, we see most clearly the affinity between Hayek’s

ontology and the complexity sciences. He distinguished between simple and the present

day complex systems, noting that physicists often deal with simple, mechanical problems

whereas the study of social systems appears inherently more complex (he was clear this

does not mean that all natural phenomena are non-complex). Complexity involves

“[t]he ‘emergence’ of ‘new’ patterns ... [and] means that this larger structure as a whole

will possess certain general or abstract features which will recur independently of the

particular values of the individual data...” (Hayek, [1964] 2014, p. 262). As stated

previously, the idea of emergence, which is non-reducible to constituent parts is viewed

by many researchers in the field as the sine qua non of the complexity sciences (e.g.,

Waldrop, 1993; and Mitchell, 2011).

On the related subject of ‘wholes’, Hayek discusses the need to draw “a ‘partition bound-

ary’, [which] will be determined by the consideration of whether we can thus isolate re-

current patterns of coherent structures of a distinct kind” (Hayek, [1964] 2014, p. 262).

Here, the discussion of boundaries resembles that seen in Signals and Boundaries (Hol-

land, 2014). Furthermore, Hayek refers to structures in which “a complex pattern has

produced properties which make self-maintaining the structure showing it” (ibid), which

preceded Maturana and Varela’s [1972] (1980) reference to ‘autopoiesis’ by a few years14.

One criticism that can be levelled at Hayek’s discussion here is his attempt to quantify

complexity as “[t]he minimum number of elements of which an instance of the pattern

must consist in order to exhibit all the characteristic attributes of the class of patterns

in question” (Hayek, [1964] 2014, p. 260). There is now a large literature devoted to

measuring complexity (see Wiesner and Ladyman, 2019, pp. 12-15 for a good discussion)

and in this context Hayek’s definition looks näıve. Notably, his definition omits any

consideration of the relationships between ‘elements’ within a complex system, which

might include non-linear feedback loops. Hayek’s definition would, for example, lead

him to view a glass of water as vastly more complex than Lorenz’s equations (which

include only three variables).

Nonetheless, Hayek’s attempt at quantifying complexity aside (this is far from resolved

anyway), his analysis of ‘simple’ and ‘complex’ systems still holds if we assume a simple,

qualitative distinction between them.

14We should note that Prigogine had discussed the related concept of ‘dissipative structures’
in the 1950s.
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Incomplete Data

Hayek’s discussion here fits his emphasis on tacit knowledge being located locally among

an enormous number of agents. Incomplete data gives rise to theories which are highly

conjectural, with “small empirical content ... and [where] the possibility of falsifying

[them] correspondingly small.” (Hayek, [1964] 2014, p. 264). Moreover, “[t]he advance

of science will thus have to proceed in two different directions: while it is certainty

desirable to make our theories as falsifiable as possible, we must also push forward into

fields where, as we advance, the degree of falsifiability necessarily decreases. This is the

price we have to pay for an advance into the field of complex phenomena.” (ibid).

In this discussion of the difficulties of theorizing in the context of data that is far from

complete, it is worth mentioning the potential value of computational models.

Hayek was at pains to emphasise the limitations of human cognition relative to the vast

amount of knowledge in social systems (notably in The Sensory Order and The Fatal

Conceit), to which we can add his discussions of complexity in The Theory of Com-

plex Phenomena. We can also add the problems inherent in theorizing about emergent

phenomena, which Hayek [1964] (2014) mentions.

We might think of a computational model as a ‘cognitive annex’ whereby information

concerning complex phenomena can be processed by computers in a way that is well

beyond the capacities of the human mind. Computational modelling can achieve in

seconds (accurately) what people would need far longer to do (less accurately). However,

this is not only about speed: spending months manually computing a single simulation

has an enormous opportunity cost which people will generally avoid, so ABMs allows us

to deal in phenomena we would not otherwise consider (or observe).

Regarding modelling, it is perhaps worth noting that this is one of the weaker areas of

Hayek [1964] (2014). He wrote that “[t]he systematic construction of ... new patterns

is the business of mathematics” (p. 259). Given that in 1961 mathematics was the

dominant form of modelling and that computation was far from ubiquitous, Hayek can

be forgiven. It does not require a great leap of imagination to see the construction of

new patterns as also being the business of computational modelling.

Theories of Social Structures

In the context of Pattern Prediction, Hayek [1964] (2014) considers the problem that

“scientific procedure demands that we should find a theory of sufficient simplicity to

enable us to derive from it predictions of particular events.” (p. 263). This is central

to Hayek’s criticism of his opponents who appeal to “science” in their work (näıvely in

Hayek’s opinion).
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The appeal of simplicity is, Hayek notes, probably in part because of physicists’ success

in dealing with “simple” phenomena and developing equivalently simple laws. However,

Hayek argues that “a simple theory of phenomena which are in their nature complex

... is probably merely of necessity false - at least without a specified ceteris paribus

assumption, after the full statement of which the theory would no longer be simple.”

(ibid). We might add to this that some pattern might be observable under certain

conditions but not others. This idea is significant for the simulation results presented in

later chapters because we see that organic institutions emerge only when the conditions

are sufficiently enabling.

Hayek also helpfully distinguishes between predicting the appearance of a class of some

pattern versus the prediction of a specific instance. “The distinction [between class

and instance] assumes ... greater importance when we turn from the relatively simple

phenomena with which the natural science deal, to the more complex phenomena of

life, of mind, and of society...” (Hayek, [1964] 2014, p. 260). Simpler systems, when

sufficiently understood, allow for concrete (spot) predictions whereas in complex systems

we might expect some general phenomenon to arise, the precise nature and timing of

which will be uncertain.

Darwin’s theory of evolution by natural selection is used in Hayek (1967) as an example

of a theory which provides general but not specific predictions about the future because

we cannot know ahead of time the exact nature of future mutations.

This discussion of class versus instance is relevant for this thesis because we will see

in the simulations based on the first model that a market (as a class of phenomenon)

emerges when the environment is sufficiently enabling but we cannot predict beforehand

where and when the specific market will manifest.

Hayek applied his distinction between class and instance prediction to theories of social

structures. Looking specifically at economics, he writes that “economic theory is con-

fined to describing kinds of patterns which will appear if certain general conditions are

satisfied, but can rarely if ever derive from this knowledge any predictions of specific

phenomena.” (Hayek, [1964] 2014, p. 270). He gave the example of simultaneous equa-

tions representing supply and demand curves, post-Walras, as operating as if we know

all the parameters and variables of the model. But he quotes Pareto who stated that

such equations are not meant to predict exact prices because it would be “absurd” to

believe we could find all the relevant data.

This begs the question of what value is gained from general insights into behaviour if we

cannot make concrete predictions. Hayek’s answer to this question relates to some of the

simulation results we see later in the thesis regarding an enabling environment : “Since

the theory tells us under which general conditions a pattern of this sort will form itself,

it will enable us to create such conditions and to observe whether a pattern of the kind
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predicted will appear.” (ibid, p. 271). Indeed, we will see below that this also relates to

Hayek’s earlier “classical liberal” work in which he saw the role of “liberal legislation”

as providing the conditions in which ‘free’ markets can operate.

Conclusion

Overall, when considering the tension between the complexity of social systems and the

limitations of human cognition, Hayek writes that “[i]t is high time ... that we take our

ignorance more seriously.” (ibid, p. 275). This appeal to humility is directed at what

he refers elsewhere (disparagingly) to as ‘scientism’; it means that “we must get rid of

[this] näıve superstition that the world must be so organized that it is possible by direct

observation to discover simple regularities between all phenomena and that this is a

necessary presupposition for the application of the scientific method.” (ibid).

Equivalently, Hayek discusses the idea of ‘laws’ in theoretical science, which in the usual

conception of the word (a deterministic relationship between two or three phenomena)

“has little application to the theory of complex phenomena.” (ibid, p. 276). This would

suggest that the aim in social science is not the identification of laws but the creation

of, and debate about, generalized theories.

4.3 Invisible Hand Explanations

Before we discuss Hayek’s ‘market order’ and his theory of cultural evolution in more

detail, it is helpful to look at two different types of “invisible hand explanations”. These

are attributable not to Hayek but to Nozick (1974) and Ullmann-Margalit (1978).

There are two reasons for this short detour. First, the distinction between Ullmann-

Margalit’s (1978) two “moulds” of invisible hand explanations provides helpful back-

ground to criticisms of Hayek’s theory of cultural evolution, described in Section 4.5.

The second reason is that the two ABMs set out in chapters 7 and 9 below correlate

strongly with Ullmann-Margalit’s (1978) two “moulds” of invisible hand explanations:

the Market Emergence Model of Chapter 7 is approximately aligned with her “aggregate”

mould; and the Property Rights Model of Chapter 9 is associated with her “functional-

evolutionary” mould15.

Invisible hand explanations are related to various types of spontaneous order and not

only to organic institutions. The term “invisible hand” was originally used in Smith

[1759] (2011) and also Smith (1776). The latter use corresponds to the “market order”

described in the next section.

15Nozick (1974) referred to “equilibrium” and “filtering processes” (p. 21), which Ullmann-
Margalit (1978) developed.
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Ullmann-Margalit (1978) provides five examples of invisible hand explanations: the cre-

ation of money in the banking system; “Nozick’s account of the rise of the so-called ultra-

minimal state” (p. 264); the development of early forms of money; Adam Smith’s “equi-

librial pricing system that develops within the perfectly competitive market” (p. 270);

and segregation in cities, following Schelling (1969).

Below we first look at Ullmann-Margalit’s discussion of eligibility for (and characteristics

of) invisible hand explanations. We then discuss how her two ‘moulds’ correspond to

the ABMs set out later in the thesis.

4.3.1 Eligibility as an Invisible Hand Explanation

What makes an explanation for a “social pattern or institution” (Ullmann-Margalit,

1978, p. 267) eligible to be classed as ‘invisible hand’ in nature? Her answer to this

question has a direct bearing on this thesis. She states:

It seems to me to be quite clear ... that the onus of the explanation lies on

the process, or mechanism, that aggregates the dispersed individual actions

into the patterned outcome: it is the degree to which this mechanism is

explicit, complex, sophisticated - and, indeed, in a sense unexpected - that

determines the success and interest of the invisible hand explanation in

question. (Ullmann-Margalit, 1978, pp. 267-8)

She continues, stating that “the more structured and complex the pattern, the greater

the challenge it poses to whoever proposes to explain it invisible-handedly” (Ullmann-

Margalit, 1978, p. 269), arguing also that such complex patterns can be associated,

mistakenly, with planned order. Her discussion of this point was referenced in the

previous chapter.

Furthermore, by “invisible hand process”, she means a “mechanism which takes as

‘input’ the dispersed actions of the participating individuals and produces as ‘output’

the overall social pattern ... it is this process which bears the explanatory brunt of

invisible-hand explanations.” (p. 270).

In light of the weight she places on invisible hand mechanisms, perhaps the most surpris-

ing part of Ullmann-Margalit’s (1978) paper is that she thinks it is not worth “looking

for generalizations over these [invisible hand processes], or to seek to unearth [their]

‘logic’ ”, preferring to focus on constraints (or characteristics) which she views as “the

backbone of good invisible hand explanations” (Ullmann-Margalit, 1978, p. 271) - these

are discussed below. The two moulds she refers to are not invisible hand explanations

themselves: they are groupings within a typology.
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This devaluing of generalizations is very contentious, least of all because Ullmann-

Margalit gives no compelling reason for not seeking them. In light of the broader range

of invisible hand explanations (than only those pertaining to organic institutions) dis-

cussed in Ullmann-Margalit (1978), it is possible that Ullmann-Margalit thinks the range

of explanations would be so wide as to make generalizations worthless. This would be

a reasonable argument (if supported by empirical evidence); however, this is conjecture

about her opinion - she did not state this.

In the context of organic institutions - the focus of this thesis - the discussion of the

rationale for studying their emergence in the Introduction constitutes further criticism

of Ullmann-Margalit’s preference to avoid generalizations. Organic institutions are im-

portant phenomena and understanding the nature and timing of their emergence can

help inform what steps we might take to catalyse helpful types in the future, e.g., by

providing an enabling environment.

4.3.2 Characteristics of Invisible Hand Explanations

This criticism aside, Ullmann-Margalit (1978) offers three constraints on (characteristics

of) invisible hand explanations16:

1. the initial stage of their origination consists of “nothing but the private inten-

tions, beliefs, goals, and actions of the participating individuals, in a specified

setup of circumstances.” (p. 271). Let us refer to this as the “individual-based

characteristic”.

2. the various stages of any explanation should “sound like a description of the or-

dinary and normal course of events. It cannot hinge on the extraordinary and

the freaky” (ibid). Put another way, an explanation should seem reasonable in its

local context. We refer to this as “the normalcy condition”.

3. invisible hand explanations typically involve surprise “at their very existence”

(ibid); but, once properly understood, there are “no further surprises within the

explanation itself.” (p. 272).

The first of these locates Ullmann-Margalit’s invisible hand explanations in the long

tradition of spontaneous order. It fits with the definition provided by Ferguson, cited in

the previous chapter, and sits comfortably alongside Smith’s (1776) invisible hand and

Hayek’s subjectivism.

16Strictly speaking, Ullmann-Margalit (1978) includes two constraints followed by an addi-
tional “comment” on the nature of surprises. The third is significant in the context of emergent
properties so it is included here as a third characteristic.
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The second of these characteristics appears innocuous at first and could be interpreted

as an appeal to common sense. However, in the context of economics, it is a strong

methodological statement.

This second characteristic appears related to the discussion of instrumentalism and re-

alism (Section 2.3.3.10). Ullmann-Margalit’s valuing of a ‘grounded’ normalcy appears

consistent with a realist’s point of view However, we should not take this too far because

Ullmann-Margalit did not discuss this matter in any detail. The point here is that her

emphasis on normalcy has, let us say, a flavour of realism.

In the context of mental models and rationality, it is worth highlighting Ullmann-

Margalit’s (1978) Endnote 10 (p. 288). She asks whether rationality would “take care

of this normalcy condition?” (ibid). She answers that it would, provided “agents act

rationally relative to their beliefs and utilities ... [and] relative to the prevailing (and

possibly changing) circumstances.” (ibid). Ullmann-Margalit’s framing here appears to

be equivalent to Simon’s (1976) procedural rationality and not substantive rationality.

It also sits comfortably alongside the approach taken in the ABMs developed for this

thesis, in which agents reason under conditions of uncertainty and change.

The third point listed above is particularly interesting in the context of the complexity

sciences, specifically the distinction between epistemological and ontological emergence

(Ladyman, Lambert and Wiesner, 2013). The former is associated with the idea that

an emergent property is predictable in principle (Laplace’s (1814) demon would be able

to anticipate it) whereas the latter is not. Both are associated with surprises but the

crucial point here is that the former can be understood, at least in principle. This is

very much consistent with Ullmann-Margalit’s idea that invisible hand explanations can

be surprising but, ultimately, understandable.

Ullmann-Margalit’s three characteristics provide a framework for evaluating the results

of the ABMs presented in later chapters. The idea is that a coherent and compelling

mechanism which explains the emergence of organic institutions features all three char-

acteristics.

We will see that the first was included in the models at the design stage: we are interested

in the collective behaviour of individual agents. The second and third are essentially

challenges for these models: can (a) compelling invisible hand explanation(s) be found

for the emergence of organic institutions? and can this explanation move us from surprise

to comprehension?

Now that we have discussed some of the territory highlighted in Ullmann-Margalit

(1978), let us consider her two moulds of invisible hand explanations: the aggregate

mould and the functional-evolutionary mould.
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4.3.3 The Aggregate and Functional-Evolutionary

Moulds

In discussing her aggregate and functional-evolutionary moulds, Ullmann-Margalit (1978)

helpfully distinguishes between explanations of how a phenomenon comes in to being,

and how it is maintained in a population.

By aggregate mould of invisible hand explanation, Ullmann-Margalit (1978) writes that

these are associated with “one particular mode of emergence rather than ... intentional

design.” (pp. 283-4). This means that the explanation is bound up with the origination

of the “social pattern or institution” (ibid).

This description by Ullmann-Margalit is still somewhat vague so we will make use of

Gedeon’s (2015) helpful interpretation to make it clearer. According to Gedeon, the

aggregate mould is about “social order as an unintended, spontaneously emerging con-

sequence of individual choices. Spontaneous aggregation of individual actions leads to

social coordination of individual actions.” (p. 3, emphasis included).

The emphasis here is on coordination, and we can further tie this notion to it being

self-sustaining, i.e., a situation in which third party enforcement is not required because

the nature of the interaction means the agents do not want to change for their own

reasons. This appears to be consistent with Schultz’s coordination situations.

For Ullmann-Margalit, the functional-evolutionary mould includes a:

...functional analysis of the pertinent social institution, conjoined with the

concomitant evolutionary apparatus presumed to supply the missing causal

link, that constitute - together - the invisible hand explanation of that in-

stitution. (Ullmann-Margalit, 1978, p. 282)

Put another way, the phenomenon contains two factors: a social function it performs;

and there is an evolutionary explanation for it being maintained.

Regarding the first characteristic here, a phenomenon performs “a useful service to the

social unit incorporating it.” (Ullmann-Margalit, 1978, p. 284). The reference to “social

unit” is important: a function is performed for a population.

Furthermore, this mould is defined by there being some type of ‘evolutionary’ explana-

tion for how the phenomenon is sustained in a population. The:

process of selection is supposed to be a non-man-made one: it is visualized

as a large-scale evolutionary mechanism that as it were scans the inventory

of social patterns and institutions at any given period of time and screens
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through to the next those of them that are best adapted to their (respective)

roles. (Ullmann-Margalit, 1978, p. 282, emphasis included)

A curious feature of the functional-evolutionary mould is that the origination of such

phenomena can be planned. Its ‘invisible hand’ nature is associated with ‘invisible forces’

which ensure the phenomenon is maintained17.

4.3.4 Links to Computational Models

The first model below, referred to as the Market Emergence Model, is aligned with

Ullmann-Margalit’s (1978) aggregate mould of invisible hand explanations and Schultz’s

coordination situations.

We find that, in the default simulations, a single market emerges as an unintended

consequence of agents’ actions and in the context of an enabling environment. This

market is equivalent to a solution in a coordination situation (it is ‘non-pure’ because

agents benefit by being closer to the emergent market). It is both a type of organic

institution and a convention.

The second model is motivated by Schultz’s (2001) discussion of the fact that if we

assume substantive rationality, an “exchange situation” is a collective action situation

and not a coordination situation because “there are no normative constraints precluding

force or fraud” (p. 67). The first model is aligned with Schultz’s first category through

the assumption of property rights: agents respect each other’s resource holding as their

property. In the second model we drop this assumption: the second model is essentially

identical to the first but agents can steal from each other.

This second model explores whether an organic institution can emerge in the form

of property rights. Moreover, we are particularly interested in whether a functional-

evolutionary explanation à la Ullmann-Margalit (1978) is seen in the simulations. We

find this is indeed the case when the agents’ mental models change as a result of reinforce-

ment learning and habituation: the agents converge (approximately) on two different

strategies and we find that the strategy which includes property rights proves more likely

to survive than the alternative.

Furthermore, we find that legal rules can help catalyse property rights when they do

not emerge endogenously, which fits with Ullmann-Margalit’s (1978) idea that the orig-

ination of the institution does not matter but the selection and maintenance aspect

does.

17This is similar to but not quite the same as planning that might enable spontaneous order,
which was discussed in the Introduction. Ullmann-Margalit is referring here to planned rules.
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Now we have discussed key features of Hayek’s ontology, and Ullmann-Margalit’s invisi-

ble hand explanations, let us turn to what Hayek and others view as the paradigm case

of spontaneous order, that produced by so-called ‘free markets’, which relates to what

Hayek refers to as ‘catallaxy’.

4.4 Catallaxy and the ‘Market Order’

This type of spontaneous order is seen as one of several ‘paradigm’ cases (others include

money, language, and - more contentiously - English common law). Moreover, Hayek’s

work was generally concerned with economics and the market order provides not only an

example of spontaneous order, it can also be viewed as an analogy for spontaneous order

seen elsewhere, notably in “the emergence of institutional structure itself.” (Buchanan,

1986, p. 76).

It is helpful to first look at how Hayek differentiated between an economy and ‘catallaxy’

(the latter is attributed to von Mises). An economy :

...in the strict sense of the word in which a household, a farm, or an enter-

prise can be called economies, consists of a complex of activities by which

a given set of means is allocated in accordance with a unitary plan among

the competing ends according to their relative importance. (Hayek, 1976c,

p. 107)

By contrast, catallaxy is:

the order brought about by the mutual adjustment of many individual

economies in a market. A catallaxy is thus the special kind of sponta-

neous order produced by the market through people acting within the rules

of the law of property, tort and contract. (Hayek, 1976c, pp. 108-9)

In Hayek’s view, economies are associated with deliberate organisation and the coordi-

nation of individuals’ activity toward some specified end. By contrast, catallaxy is about

spontaneous order without any common purpose. Moreover, it is worth highlighting, in

the context of the co-adaptation observed in the simulations reported below, Hayek’s

reference to “the mutual adjustment of many individual economies” in his definition of

catallaxy.

Furthermore, for Hayek catallaxy is related to his emphasis on knowledge: “[t]he im-

portant point about the catallaxy is that it reconciles different knowledge and different

purposes which, whether the individuals be selfish or not, will greatly differ from one

person to another.” (Hayek, 1976c, p. 110). This is a crucial part of Hayek’s body of
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thought: the relationship between the order brought about by markets and dispersed,

heterogenous knowledge among people with different purposes.

Hayek uses this distinction between an economy and catallaxy to illustrate his argument

against central planning. The reference to a “national economy” creates confusion over

the nature of order and encourages people to think that the economic activities of a

nation (for example) can be planned and organised in the same way “a household, a

farm, or an enterprise” can.

Two further points are worth highlighting. First, order is clearly referred to here by

Hayek in a positive light: in Chapter 10 of Hayek (1976c) he discusses how catallaxy

is related to peace and prosperity in the “Great Society”. There is a large literature

concerned with the normative content of Hayek’s framing, and this is discussed briefly

in Section 4.5.5 below.

Second, in the quote above containing his definition of catallaxy, Hayek is clear that

order should be viewed in the context of appropriate forms of law. This is the subject

of Section 4.6 below.

The above statements by Hayek raise the question of the mechanisms through which

market-based order is maintained. One of these is a body of law whose primary purpose

is the protection of individuals’ property. A number of researchers have argued (e.g.,

Gray, 1998; and Vanberg, 1994b) that Hayek is writing here as a classical liberal whereby

a key role of the state is to protect individuals from others.

Another mechanism, related directly to the operation of markets, is about market

“[c]ompetition as a discovery procedure” (Hayek, 1979, p. 70), which relates to the roles

played by market prices and entrepreneurs. Part of this framing is the familiar ‘story’ of

free market economics in which prices equilibrate supply and demand for goods and ser-

vices. For Hayek, however, this is only part of the story - he also draws on his discussion

of dispersed knowledge:

the price mechanism operates as a medium of communicating knowledge

which brings it about that the facts which become known to some, through

the effects of their actions on prices, are made to influence the decision of

others. (Hayek, 1976c, pp. 108-9)

Prices, therefore, act to communicate knowledge between people who need not know

each other. This led Gray (1998) to state that “the market is a paradigm case of a social

institution having an epistemological role” (p. 41).

Moreover, the entrepreneur plays an important role through which market order is main-

tained: prices communicate opportunities to make a profit, which entrepreneurs exploit.
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The final point to note here is that market order is not the same as the ergodic world

of General Equilibrium theory (Arrow and Debreu, 1954). Hayek’s framing is consistent

with the definition of non-ergodic in Chapter 2: he understands that catallaxies re-

pattern themselves in unpredictable ways18; however, “large-scale disequilibrium would

be impossible in a catallaxy of wholly unhampered markets.” (Gray, 1998, p. 92). Hayek

writes:

The significance of the abstract character of [spontaneous] orders rests on the

fact that they may persist while all the particular elements they comprise,

and even the number of such elements, change. (Hayek, 1973, p. 38)

4.4.1 Criticisms of Hayek’s ‘Market Order’

Having outlined Hayek’s framing of the ‘market order’, how might we evaluate it? There

are two broad criticisms relevant to this thesis. The first is posed as a question in

Vanberg (1986): “what rules can be considered ‘appropriate’ in the sense of allowing for

a beneficial working of the market mechanism[?]” (p. 97). The view that markets can

operate without enabling institutions19 has been criticised by a number of researchers

(e.g., Vanberg, 1986; Hodgson, 1988; and Loasby, 2000): markets are institutions which,

historically, have had to be supported by various conventions, norms, and legal rules.

Hayek’s answer to this question is wrapped up in his theory of cultural evolution, which

is “expected systematically to select for appropriate rules.” (Vanberg, 1986, p. 97). We

discuss this further in Section 4.5 below.

The second criticism relates to the stability of the order Hayek describes: in Hayek’s

framing there is no room for what we might refer to as endogenous volatility, i.e., un-

welcome outcomes brought about by agents making decisions in “free markets”.

Moreover, Hayek wrote at length about how he attributed much of the volatility in a

catallaxy to attempts at planning, most notably by national governments. For example,

in The Denationalisation of Money, Hayek writes “monetary policy is much more likely

to be a cause than a cure of depressions, because it is much easier [for governments to

give in] to the clamour for cheap money” (Hayek, 1976b, p. 79)20.

In a sense, therefore, if we view governments as outside of a catallaxy, poor policies

represent external shocks to the system.

18New resources might be discovered and new technologies invented, either of which will cas-
cade across a catallaxy via actions which are, in effect, coordinated by the price mechanism.

19Typified by Williamson (1975) who writes that in “the beginning there were markets” (p. 20).
20Hayek was more open to the idea that private banking systems could be the cause of monetary

expansion in Hayek (1933) but he appeared to step back from this in Hayek (1976b).
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If, however, we consider some of the principles of complex systems discussed in Chapter

2, notably positive feedback loops, non-linearity, and systems existing far from equilib-

rium, it seems unreasonable to simply assume that a catallaxy necessarily gravitates to

stability.

This is a general observation from the point of view of the complexity sciences but it

is supported by research in the past two decades looking at endogenous volatility in

economic and financial behaviour. Examples include Branch and Evans (2007), Al-

Suwailem (2014), and Gomes (2014).

Related to this is the work of George Shackle (who was a PhD student of Hayek’s)21.

Shackle was not a particularly clear writer so his work is difficult to understand but in

light of Hayek’s framework, Shackle emphasised the subjective nature of expectations

within a context of uncertainty. More specifically, business confidence is viewed as a

“matter of animal spirits or creative imagination rather than of rational assessment.”

(Gray, 1998, p.92).

For Shackle, large scale dis-equilibria can result from this mass subjective decision mak-

ing, including a ‘national economy’ operating far below full employment, i.e., depressions

can result from endogenous volatility. In a sense, Shackle’s views here are an attempt

to bridge Hayek’s subjectivism (and micro foundations) and Keynes’ (1936) emphasis

on aggregate demand volatility (and macro focus).

There are two final points to note here regarding endogenous volatility. First, the notion

is a powerful challenge to Hayek’s classical liberalism (specifically the argument for a

minimalist state). Most importantly, this volatility could be used to legitimise some

types of “central planning”, which Hayek argued vociferously against throughout his

career. A good example is, again, John Maynard Keynes’ argument that market systems

do not necessarily gravitate to full employment; but the point is a broader one. Any

form of endogenous volatility could be used as a rationale for government policy.

Second, and related, it is perhaps surprising that Hayek did not give more credence

to the idea of endogenous volatility in his work given his discussions of ‘complexity’

noted in detail above (and his association with some of the major researchers in General

Systems Theory and Cybernetics). Clearly we cannot know why Hayek did not attach

more weight to endogenous volatility but it is seems reasonable to state that it probably

would have required a significant shift away from his Austrian intellectual heritage.

Now that we have considered Hayek’s interpretation of spontaneous order brought about

by free markets, let us turn to his theory of cultural evolution.

21Gray (1998) refers to Shackle as “Hayek’s brilliant but somewhat neglected pupil.” (p. 92).
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4.5 Hayek’s Theory of Cultural Evolution

In this section we focus on Hayek’s theory but we first briefly discuss what a ‘good’

theory of social evolution looks like. This will help us evaluate Hayek’s own theory

and help us analyse the results of simulations based on the second model below, which

appear to have some of these features.

This section comes with a health warning equivalent to those stated previously: the

literatures concerned with Hayek’s theory, the nature of evolution in biology (including

the contentious subject of group selection), and the applicability of evolutionary concepts

to social science are each enormous. This section attempts only to distil key issues from

these literatures which are important for this thesis.

The subject of “generalized Darwinism” (e.g., Hodgson and Knudsen, 2006) was dis-

cussed in Chapter 2 where the three principles of variation, selection, and durability

were generalized in two different ways: the degree of abstraction of these words, and

the ‘level’ of explanation within a stratified ontology22. It stands to reason that a good

theory of cultural evolution would contain mechanisms that correspond to each of these

principles.

Here we add a further point from Hodgson and Knudsen (2006), that “Darwinism alone

is not enough” (p. 15) because “explanations additional to natural selection are always

required to explain any evolved phenomenon.” (ibid). Put another way, the three prin-

ciples are necessary but not sufficient - we also require a compelling explanation.

How does Hayek’s theory of cultural evolution fare in this context? We find that it has

been heavily criticised mainly because it lacks coherence vis-à-vis the three principles

and, over and above this, because it appears weak in the face of empirical evidence.

For example, Vanberg (1986) writes that Hayek’s “notion of cultural group selection is

theoretically vague, inconsistent with the basic thrust of [his] individualistic approach,

and faulty judged on its own grounds.” (p. 97). Similarly, Hodgson (1991) writes “Hayek

is unclear about the mechanisms of socioeconomic evolution and thus, like [Herbert]

Spencer’s, his account of evolutionary processes still has to fall back on some strange,

detached, and universal selective force, emanating from the ‘free’ market.” (p. 78). Gray

(1998) does not mix his words when he states that Hayek’s “whiggish interpretation of

history has been secularized in a pseudo-Darwinian idiom.” (p. 152).

Let us look at Hayek’s theory in more detail.

He states that “cultural evolution operates largely through group selection; whether

group selection also operates in biological evolution remains an open question - one on

which my argument does not depend.” (Hayek, 1988, p. 25). However, we will see below

22See Section 2.3.3.5 (p. 54).
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that Hayek’s account awkwardly straddles an individual-based theory of variation and

selection, and that of group selection.

Moreover, it is worth noting that Hayek’s group selection operates “always within a given

(market) structure” and “ignores the possibility that selection may also be working at

the level of structure and substructure, creating a diversity ... of types of economic

system or subsystem.” (Hodgson, 1991, p. 79).

We might also add that Ullmann-Margalit (1978) aligns Hayek’s theory of cultural evo-

lution with her functional-evolutionary mould of invisible hand explanation:

Notable among the authors to whom this conception [of the functional-

evolutionary mould] of invisible-hand explanations may be attributed is

F. A. Hayek; he is the most explicit in what he says about this matter.

(Ullmann-Margalit, 1978, p. 282)

Below we consider Hayek’s theory of cultural evolution, which he expounded in various

publications, by looking at the principles of variation, selection, and durability in turn23.

We will then consider whether it is coherent and compelling as an explanation over and

above these three principles, specifically with respect to empirical evidence.

After this, we briefly discuss the normative content of Hayek’s theory and how rules

might become common to groups.

4.5.1 Variation

In Hayek’s words:

...the evolution of culture [was] made possible by some individuals breaking

some traditional rules and practising new forms of conduct - not because

they understood them to be better, but because the groups which acted on

them prospered more than others and grew. (Hayek, 1976c, p. 161)

This statement is consistent with Hayek’s other writings concerning variation: it is about

individuals adopting new rules of behaviour, who by “experimenting with new practices

act as innovators and generate ‘new variants’ ” (Vanberg, 1986, p. 82).

Hayek’s’ individual-based account of variation is compatible with Ullmann-Margalit’s

(1978) first characteristic of invisible hand explanations. The problem, however, is

when we consider a wider set of rules, most notably those formally agreed within (or

even imposed upon but followed by) groups.

23We see in Hayek (1967) a reference to the three principles of Darwinism as that of “a
machanism of reduplication with transmittable variations and competitive selection.” (p. 32).
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The core problem here has been argued well by Buchanan and Vanberg. Buchanan

(1986), for example, writes that constitutions “cannot emerge in a process of simultane-

ous coordination analogous to that which allows us to classify the market as efficient or

which characterizes natural selection.” (p. 321, emphasis included). Equivalently, Van-

berg (2011) writes that there are “kinds of rules that only groups can experiment with,

be it because by their nature they are inapplicable at the level of individual behaviour -

such as, e.g., rules for organizing collective action - or because individuals cannot directly

benefit from unilaterally adopting them” (p. 21).

Put another way, some collective rules cannot come about by agents acting in isolation.

This criticism is made all the more powerful, Vanberg (2011) argues, when we consider

that Hayek’s theory of cultural evolution is one of spontaneous order so any form of

planning (like individuals consciously coordinating their actions or designing enforcement

mechanisms) must be excluded.

4.5.2 Selection

The problem with Hayek’s selection mechanism is that it is incoherent (it combines in-

dividual and collective forms of selection) and it also appears to be missing a mechanism

that overcomes the free-rider problem.

Hayek’s selection argument at the individual level is oriented around function combined

with mimicry. If some new rule benefits a ‘deviant’ more than the previously adopted

rule in some social context, that individual will replace the old with the new in their

repertoire and we would expect it to be copied (selected) by other individuals. In this

framework, rules compete against other rules in the social context, and the best wins out.

This idea is included in many evolutionary game theoretic models, which are discussed

in more detail in the next chapter.

Curiously, while Ullmann-Margalit (1978) aligns Hayek’s theory of cultural selection

with her functional-evolutionary mould, there is an argument that Hayek’s framing

of selection at the individual level resembles Ullmann-Margalit’s amplification rather

than an invisible hand explanation. It appears more concerned with individuals copying

others.

In addition to his individual-based selection, Hayek also proposes that group selection

mechanisms operate at the group level.

It is important to note here that Hayek was fully aware of the free-rider problem. This

is crucial in the context of group selection arguments because it raises the question of

whether individual agents would sustain rules that are beneficial to the group but where

they have an incentive to cheat. Hayek (1973) writes of individuals that some rules “they

will follow spontaneously because they will be part of their common cultural tradition.
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But there will be still others which they may have to be made to obey, since ... it would

be in the interest of each to disregard them.” (p. 45, emphasis added).

However, despite this recognition, several researchers have emphasised a bias in Hayek’s

work toward interactions of a coordination type rather than others (which appear to

fall into Schultz’s (2001) collective action scenarios and therefore involve the free-rider

problem).

Schultz (2001) argues that Hume, Menger, and Hayek all conflate his two categories of

interaction, focusing much more on the first, which is related to coordination (pp. 61-

62). Hodgson (2006a) makes an equivalent point, noting that the difference is significant

because “coordination rules can often emerge spontaneously and be self-reinforcing”

(p. 14) whereas other forms of interaction (like the Prisoners’ Dilemma) involve defection

/ the free-rider problem (so are not self-enforcing).

Vanberg and Buchanan (1988) mimic Schultz (2001) when they write that there “is a

tendency throughout this tradition - from David Hume over Carl Menger to F. A. Hayek

- to argue as if the kind of explanation that applies to coordination-type rules can be

generalized to other kinds of rules as well, including those of the prisoner’s dilemma

type.” (p. 143).

Vanberg notes:

Apparently, and strangely enough, Hayek appeals to ... a collectivist, func-

tionalist notion (Hayek, 1967, pp. 70f., 74) when he stresses that, in cultural

evolution, a process of “group selection” is of “greatest importance” (Hayek,

1979, p. 202), a selection process which Hayek obviously considers to be dif-

ferent from the process of variation and selection by individual choices...

(Vanberg, 1986, p. 84)

Moreover, Vanberg (1986) writes that “with those behavioural patterns that apparently

are advantageous to the group in which they are practised, but appear to be disadvan-

tageous on the part of the individual exhibiting them ... Hayek considers recourse to

the notion of group selection to be necessary” (p. 87). In Vanberg’s interpretation of

Hayek, therefore, group selection is necessary vis-à-vis free-rider problems.

In terms of the mechanisms of group selection, Hayek refers to population growth (ex-

pected to be greater in more prosperous societies), migration from group to group, and

conflict between groups. Over time, the group with ‘better’ customs / traditions / habits

will survive and other groups will (relatively) wither.

The problem, however, is that Hayek did not propose a mechanism by which the free-

rider problem is overcome within groups other than vague references to “tradition and
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group retaliation” (Gedeon, 2015, p. 16)24 and to similarly loose references to govern-

ment.

It is well known in economics (e.g., Bergstrom, Blume and Varian, 1986; Andreoni, 1988;

and Okada, 2008) that the enforcement of social norms by individuals can be interpreted

as a (second-order) public goods problem because retaliation for not following a social

norm has an individual cost but a public benefit. This means it is not sufficient for

Hayek to resort to selection mechanisms like “retaliation” without explaining how the

subsequent collective action situations are then resolved.

In referring to Hayek’s comments about the role of government in group-wide rules,

Vanberg proposes an important criticism of Hayek’s work:

...these aspects are merely added to, rather than systematically integrated

with Hayek’s theory of cultural evolution. Their systematic incorporation

would require Hayek’s theory to be much more specific about the nature,

scope, and limits of evolutionary principles and their relation to or interac-

tion with the forces of organized, political choice in cultural change. (Van-

berg, 1986, p. 96, emphasis included)

Overall, we can say that Hayek’s selection mechanism is incoherent because it confuses

two levels of explanation (individuals and groups) and he fails to provide a compelling

mechanism for overcoming the free-rider problem.

4.5.3 Durability

When it comes to Hayek’s functional arguments of cultural evolution, rules are selected

for and endure for reasons of functionality. Therefore, there is little more to add to

Hayek’s theory in the context of durability.

We will add, however, that in terms of what Hayek (1967) refers to as “reduplication”,

his view is that “cultural evolution is brought about through transmission of habits and

information not merely from the individual’s physical parents, but from an indefinite

number of ‘ancestors’.” (Hayek, 1988, p. 25).

There are two points worth considering further from this: the question of Larmarckism,

and the role of habits and cultural traditions.

The quote from Hayek above chimes with the Lamarckian principle of ‘acquired charac-

teristics’, which raises the question of whether this can be compatible with a Darwinian

24Hayek (1973) discusses “rules which do not simply follow from [individuals’] desires and their
insight into relations of cause and effect, but which are normative and tell them what they ought
to or ought not to do.” (p. 45).
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account. When it comes to cultural evolution, Darwin and Lamarck are not incom-

patible: Hodgson (2002b) writes that in social evolution, “Lamarckism and Darwinism

are neither opposites, nor even mutually exclusive.” (p. 270, Footnote 14). The reason

is because in the social realm, agents can learn from others via mimicry while, at the

same time, the three principles of generalized Darwinism can remain relevant. Hodgson

(2001) and Knudsen (2001) also discuss the compatibility of Lamarckism and Darwinism

in social contexts.

Moreover, as Marciano (2009) points out, Darwin discussed cultural inheritance in The

Descent of Man (Darwin, [1871] 1988). For example, the “greater intellectual vigour

and power of invention in man is probably due to natural selection, combined with the

inherited effects of habit” (Darwin, [1871] 1988, p. 372, as quoted in Marciano, 2009,

p. 58).

In the quote above from Hayek regarding cultural evolution, he referred to the role of

habits. This is worth discussing in more detail because it highlights a particular form of

‘cognitive embeddedness’ which differentiates Hayek’s theory from the idea of “rational

habits” (e.g., Stigler and Becker, 1977, and Becker, 1992).

Gray (1998) argues that while there is some commonality, Hayek’s reference to habits

(and cultural traditions) is different to that Becker’s. The latter’s view is that habits, or

rules, form which are due to previously rational behaviour: habits minimize information

search costs. By contrast, ‘rationality’ plays a limited role in Hayek’s conception of

social norms and conventions, and “Hayek has always maintained that a measure of

‘uncritical’ submission to social convention is an indispensable condition of stability as

much as liberty.” (Gray, 1998, p. 50).

We will see in the simulation results reported below that organic institutions emerge via

reinforcement learning and that these rules become habits over time.

4.5.4 Hayek’s Explanation of Cultural Evolution

At the beginning of this section we noted Hodgson and Knudsen’s (2006) argument that

a theory of social evolution ought to contain convincing references to the three principles

of generalised Darwinism and a compelling explanation over and above these three. Here

we briefly add another criticism of Hayek’s theory of cultural evolution, linked to “good

explanations”, related to empirical evidence.

Is Hayek’s theory consistent with observed cultural phenomena? His theory can be sum-

marised by stating that experiments of rules by individuals (with unplanned outcomes)

are adopted by them (and others) if they are beneficial; and that groups that adopt such

rules will endure better than those that do not.
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A criticism is that Hayek’s theory does not explain observed cultural differences and

changes over time, at least not in a particularly compelling way. Gray (1988) summarises

these perspectives well when, while also criticising Hayek’s functionalism, he writes that:

...human history is too riddled with sheer contingencies for any monocausal

model of institutional development to be at all plausible, and for this reason,

a Darwinian explanation of the rise and fall of institutions comes up against

many strong counterexamples. For example, Hayek’s suggestion that there

is a sort of natural selection of religions, in which religions favouring private

property and family life prevail over others by virtue of the enhanced survival

chances they afford the offspring of their practitioners, neglects the role that

the capture of state power has often played in accounting for the triumph of

religions over their rivals. In fact, the evolutionary turn in Hayek’s thought

seems open to all the criticisms and objections that disable the evolutionary-

functionalist sociologies of Herbert Spencer, W. G. Summer, and (perhaps)

Marx. (Gray, 1988, p. 57)

On the historical contingencies point, Gray (1998) writes that this “is a point Hayek

implicitly recognises when he acknowledges that barbarous militarist states may win

out over more pacific free societies, but it has large implications which may demand a

revision of his system.” (p. 138). This is reminiscent of Vanberg’s (1986) criticism noted

above that Hayek’s discussion of government in Hayek (1973) appeared to be in addition

to his body of thought rather than integrated within it.

The argument here, however, is not that group selection mechanisms linked to con-

ventions and social norms have no explanatory power for the existence and evolution

of cultural phenomena at all. It is more that these mechanisms appear weak when

contrasted with, for example, the exercise of power by monarchs.

4.5.5 Order and Efficiency

At this stage it is helpful to briefly consider how Hayek perceives efficiency vis-à-vis

spontaneous order, i.e., the question of whether this type of order is necessarily beneficial

for a population. Hayek’s definition of order is restated here for convenience. Order is:

a state of affairs in which a multiplicity of elements of various kinds are

so related to each other that we may learn from our acquaintance with

some spatial or temporal part of the whole to form correct expectations

concerning the rest, or at least expectations which have a good chance of

proving correct. (Hayek, 1973, p. 36, emphasis removed)
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As stated this definition “is entirely value-neutral” (Gray, 1998, p. 119). Consistent

with this, Hayek was clear in certain parts of his work that the order which arises in a

population is not necessarily beneficial for its constituents (Hayek, 1973, Chapter 2).

The reason why Hayek promoted the notion of spontaneous order in his work despite

the potential for ‘bad order’, is due to the selection process within his framing of social

evolution: more efficient social structures, including institutions, will be selected for over

a sufficiently long time period.

Buchanan has been an ardent critic of Hayek concerning this point. The problem, argues

Buchanan, is that:

mphasis is placed on the unintended consequences of limited-vision actions,

with an implicit faith that these consequences will be benign. It is as if the

many entrepreneurial choices, in the small, act always to push the institu-

tional frontier towards efficiency, in the small and in the large.e (Buchanan,

1986, p. 79, emphasis included)

These arguments can be augmented by the concept of lock-in, which was discussed in

Chapter 2. Detrimental rules can become locked in as can beneficial rules that become

obsolete.

These issues are addressed to some extent by the computational models below. Most

notably, one of the ‘null’ experiments run using the second model adopts substantive

rationality as the agents’ mental models. In that scenario we observe the population of

agents (in effect) descend into a “war of all against all”. Similarly, in certain parts of

the parameter space when the agents use different mental models to make decisions, the

opposite of property rights emerges: agents learn it is preferable to steal from each other

and we observe another Hobbesian-like state (equivalent to the Hawk-Hawk outcome in

an evolutionary Hawk-Dove game).

4.5.6 Mapping from Individuals to Groups

There is a question of how organic institutions become common to groups of agents. Here

we briefly emphasise three mechanisms mentioned at various points in this chapter for

how rules common to groups might arise from - or among - their constituent individuals.

Conventions and social norms are typically common to groups of agents25 and a helpful

question to ask is: how did they become common?

The first mechanism, directly related to Hayek’s theory of cultural evolution, is the

simple process of mimicry. It does not require much imagination to see how a rule which

25Wemight also add that ‘groups’ (e.g., a nation) can be defined by phenomena like conventions
and social norms.
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is beneficial to one agent might then be copied by others, and for it to then become

common to a group.

The second process was attributed to Becker above. If a particular rule is optimal for

all the agents in a group then we can imagine that it might become adopted by all

individually, thereby becoming common.

Indeed, we might think of Hayek’s and Becker’s mechanisms as ‘fractal explanations’ of

group phenomena: what we see at the social level is a reflection, or an aggregation, of

individuals.

Third, we can appreciate that deliberately designed legal rules with credible enforcement

mechanisms could also ensure that some rule is adopted by a group of agents. This

is not to argue that all such rules are necessary useful, nor that they achieve their

objectives without detrimental consequences. The point is that in principle such rules

might become common among agents.

None of these three mechanisms meet all three characteristics of Ullmann-Margalit’s

(1978) invisible hand explanations set out above (individual-based, normalcy, and sur-

prise). Both Hayek’s mimicry and Becker’s rational rules are individual-based and they

both seem reasonably realistic, i.e., they do not rely on the “extraordinary” or “freaky”

(which is not to say they are sufficient explanations of institutional emergence); however,

neither Hayek’s nor Becker’s mechanisms could be viewed as surprising. Planned rules

seem to fall foul of the first and third characteristics.

In Chapter 5 we describe a fourth mechanism, observed in Hodgson and Knudsen’s

(2004) results, that explains how rules adopted by individuals can become common

within a group: via the co-adaptation of agents’ mental models. This is also discussed

further in Chapter 6 because it is seen in the simulations results of the models developed

for this thesis.

4.6 Hayek on Common Law and Legislation

For Hayek, his theory of cultural evolution is relevant not only to organic institutions but

to English common law too. Hayek refers to the latter as “a law existing independently

of anyone’s will and at the same time binding upon and developed by the independent

courts; a law with which parliament only rarely interfered” (Hayek, 1973, p. 85).

We can see from this quote how Hayek’s view both chimes with Hale’s perspective on

common law (discussed in the previous chapter) and is consistent with his theory of

cultural evolution (the reference to independence from will sits particularly well with

the idea of order that is not designed). For Hayek, common law is a type of spontaneous
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order, which stands in contrast to any legislation that is designed via the mindset of

‘constructivist rationalism’.

The aim of this and the next section, which looks at Vanberg’s attempt to reconcile some

apparent inconsistencies in Hayek’s work regarding legislation, is related to the ‘liberal

legislation’ experiments, conducted with the second computational model, in Chapter

12.

When in comes to common law, Hayek follows in the tradition of Hale but he also follows

Menger - to some extent - in the latter’s distinction between ‘organic’ (unplanned) and

‘pragmatic’ (designed) institutions (Menger, [1883] 1985)26.

In Hayek’s view, common law is formed bottom-up and ‘discovered’ by the judiciary

rather than being deliberately designed in a top-down manner. Gray (1998) explains

this well when he writes that “[j]ust as central allocation of economic resources produces

chaotic waste and a degree of coordination of activities far less exact than that yielded

by the market process, so centralized legislation cannot match the subtlety of common

law in responding to complex and changing circumstances.” (p. 69).

We can see in this quote from Gray the correspondence between markets and com-

mon law, and between central planning and legislation. This is consistent with one of

Buchanan’s criticisms of Hayek’s body of work, that of an (inappropriate, in Buchanan’s

view) extension of the market analogy to institutions (e.g., Buchanan, 1986, pp. 75-86).

There are two broad criticisms we can level at Hayek’s framing of common law and

legislation. First, that it is ahistoric and, second, that Hayek appeared to contradict

himself. Let us look at these in turn. The second criticism is used as background to

Vanberg’s (1994b) distinction between unconditional and conditional evolution in the

next section.

4.6.1 Hayek’s Ahistoric View of Common Law

A number of researchers have argued that Hayek’s account of common law does not

accord with empirical evidence. Related to (but preceding Hayek), Menger writes that

the:

theory of the ‘higher wisdom’ of common law thus not only contradicts

experience but is at the same time rooted in a vague feeling, in a misunder-

standing. It is an exaggeration carried to the point of distortion, of the true

statement that positive legislation has upon occasion not comprehended the

unintended wisdom in common law... (Menger, 1985, p. 233)

26We will see below that Menger did not fully share Hayek’s point of view.
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This is consistent with Hamowy (2003) who argues that while Hayek’s account has some

merit,

it fails as an accurate description of the genesis and development of common

law. More importantly, it does not address the common law’s weaknesses

and inadequacies, which were so extensive that it was only by supplementing

it with other systems of substantive and procedural rules, particularly the

law of equity, that it was able to survive its early history. (Hamowy, 2003,

p. 245)

Put another way, common law had to be enabled by legislation and other planned

mechanisms in order to survive, especially the law of equity.

Luban summarises the problem well when he writes:

Hayek’s sketch of the English common-law judge essentially restates the

stylized depictions offered by jurists like Edward Coke and Matthew Hale in

the course of seventeenth-century polemics against absolutism. They aimed

to show that the common law had developed organically, independent of

the central sovereign, but historians from Maitland onward have shown how

misleading such a picture is (cf. Hamowy 2003). (Luban, 2020, p. 76)

Finally, as mentioned previously, Gray (1998) refers to Hayek’s “whiggish fallacy” (p. 152),

which seems apt in this context.

In summarising, it is important to highlight a comment from Hamowy (2003), that

Hayek’s “characterization [of common law] has some merit” (p. 245), i.e., we should not

fully reject Hayek’s understanding of the “wisdom” inherent in common law. It is more

that his account is incomplete, notably with respect to the historical role of legislation

in enabling it. Given that “Hayek’s distrust of social institutions that are clearly the

product of deliberate design [runs] deep” (Hamowy, 2003, p. 262), this is an important

criticism.

4.6.2 Inconsistency in Hayek’s Writings

When we look closer at Hayek’s work vis-à-vis common law versus deliberately designed

legislation, we find what a number of researchers have referred to as an inconsistency.

On the one hand, Hayek lauds the virtues of common law and the idea that it contains

some higher wisdom (and he binds it to the notion of spontaneous order). On the

other hand, Hayek discusses the need for legislation to do particular things, including

the curtailing of common law. Gray (1998) writes that this is because Hayek believed
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the “spontaneous development of law may sometimes result in dead ends or practical

deadlocks from which it has to be extricated.” (p. 70). For Hayek’s discussion of this,

see Hayek (1973), pp. 88-89. Moreover, Hayek linked this risk to his proposed role of

an upper parliamentary chamber (the Legislative Assembly)27, which is “to correct the

evolution of common law” (Gray, 1998, p. 71).

This acceptance by Hayek of a role for legislation vis-à-vis common law sits somewhat

awkwardly with the criticisms of Hayek’s framing being ahistoric in the subsection imme-

diately above. As mentioned there, several researchers criticise Hayek for downplaying

the historical role of legislation in enabling common law; but at the same time, Hayek

writes that there ought to be a role. The issue appears to be that Hayek’s critics cited

above are reacting to certain parts of his work and not others. Vanberg (1994b) argues

this is the case: many of Hayek’s critics have placed greater emphasis on his later work,

including Hayek (1988), than his earlier work.

Nonetheless, the idea of an upper chamber directing common law seems to represent a

significant contradiction in Hayek’s work. This would require the people in the upper

chamber understanding the intricacies of the whole corpus of common law, who would

then consciously plan changes to the benefit of the population. This closely resembles

the centralized planning which Hayek argued vociferously against in much of his work:

no human being could hold the breadth of knowledge (much of it tacit) in mind that is

required to plan on behalf of society.

There is an argument that Hayek understood that an upper chamber would have to do

its best when common law found itself in a dead end: the benefits might be thought to

outweigh the costs, unintended consequences aside. Perfect planning is impossible but

imperfect planning might be net beneficial.

The problem with this argument, however, is that it admits to planning having some

potential value. This then raises the question of the circumstances under which sponta-

neous order should be allowed to unfold unchallenged, and those in which planning can

add value. Hayek did not offer a clear answer to this. However, Vanberg attempted to

reconstruct Hayek’s arguments in a way that makes them more coherent. Let us look at

Vanberg’s arguments now.

4.7 Vanberg’s Reconciliation of Hayek

Regarding Legislation

In his article Hayek’s legacy and the future of liberal thought (Vanberg, 1994b), Van-

berg considered these apparent inconsistencies in Hayek’s work in some detail, stating

27Hayek’s policy proposals are elaborated in Hayek (1979), Chapter 17.
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that Hayek was far from clear about the relationship between planned legislation and

spontaneous order. This problem is related to the fact his “work appears to contain a

fundamental tension between what I call ‘rational liberalism’ and ‘evolutionary agnos-

ticism.’ ” (Vanberg, 1994b, p. 179). Barry (1994) and Kukathas (1989) make essentially

the same point.

Vanberg (1994b)28 proposes a way of reconciling these two seemingly conflicting parts

of Hayek’s work by distinguishing between unconditional and conditional evolution (de-

veloped in more detail in Vanberg, 1994c), arguing that Hayek’s views can be reconciled

under the banner of conditional evolution.

It is worth looking in more detail at Vanberg’s arguments because they have a direct

bearing on the ‘liberal legislation’ experiments conducted using the second model, which

is described in Chapter 12 below.

Vanberg (1994b) notes many references in Hayek’s earlier work to the constructive use

of legislation for the “task of improving our institutions” (Hayek, 1960, p. 5, as quoted

in Vanberg, 1994b, p. 179, Footnote 1). This is consistent with researchers such as Gray

and Kukathas who argued that the aim of much of Hayek’s work was to defend classical

liberalism.

Hayek’s later work tended to emphasise his views on cultural evolution. This is most

obvious in The Fatal Conceit (Hayek, 1988), which is described by Vanberg as “the book

in which Hayek’s rational liberalism is least visible” (Vanberg, 1994b, p. 180). However,

Vanberg believes that it “has gained disproportional attention and is widely regarded

as the definitive and authoritative summary of his ideas” (ibid) because it is Hayek’s

last book. We should also bear in mind here the question of the authenticity of Hayek

(1988) noted earlier in this chapter, which came to light after Vanberg (1994b) was first

published. In any case, Vanberg emphasises that we should not lose sight of Hayek’s

“rational liberalism” as this was an important part of his work for decades.

Nonetheless, the challenge remains of reconciling what appears to be two seemingly

contradictory strands of Hayek’s work.

Vanberg developed his argument by first distinguishing between two forms of evolution.

Unconditional claims are statements about evolution per se, statements that

leave totally unspecified the kinds of constraints under which the evolution-

ary process occurs. Such claims provide no substantive information about

what it is that can be expected to survive. Conditional claims, by contrast,

28Vanberg (1994b) has also been published as Vanberg (2001): the latter is an extended version
of the former (both are cited below).
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are statements about the working properties of evolutionary processes under

specified constraints. (Vanberg, 1994b, p. 185)

Hayek’s cultural evolution, writes Vanberg, is often viewed through the lens of uncondi-

tional evolution, which makes it appear incompatible with his rational liberalism. The

latter includes the designing of what Hayek himself referred to as “liberal legislation”.

It is worthwhile quoting the following from Vanberg (1994b) in full as a helpful summary

of Hayek’s liberal perspective and because it contains a quote from Hayek - a gardening

analogy - that suggests he is sympathetic to the notion of an “enabling environment”:

In a handbook article on Liberalism, written in 1973, Hayek included a

section entitled “Positive Tasks of Liberal Legislation” in which he refers

approvingly to certain “neoliberal” approaches that explicitly address the

issue of what the positive content of the legal framework must be in or-

der “to make the market mechanism operate satisfactorily” (Hayek, 1978,

p. 146). Though he did not specify which neoliberal approaches he had in

mind, his description certainly fits German Ordo-liberals of the so-called

Freiburg School, like Walter Eucken and Franz Boehm. It corresponds to

their understanding of the role of liberal legislation when Hayek (1976d

[1944], p. 18) notes that the “attitude of the liberal toward society is like

that of the gardener” who seeks to create favorable conditions for natural

growth. (Vanberg, 1994b, p. 182)

Vanberg (1994b) argues that Hayek’s rational liberalism and evolutionary agnosticism

can be reconciled if we think of his cultural evolution as conditional, i.e., as constrained

by liberal legislation. However, we should note Vanberg’s own health warning here:

Hayek “made very little effort to explicitly state what the relevant characteristics of a

beneficial process of cultural evolution are”, so we must “reconstruct his notion of a

properly constrained process from his writings.” (Vanberg, 1994b, p. 195). Vanberg’s

argument, therefore, contains some conjecture over parts of Hayek’s work.

Vanberg’s 1994b reference to conditional evolution fits with the distinction he made

in Vanberg (2001) to action interests and constitutional interests, which he discussed

in more detail in Chapter 4 of Vanberg (1994a). Action interests are “our preferences

over alternative courses of action that are open to us under given constraints”, and

constitutional interests are “our preferences over alternative rule regimes under which

we may come to live.” (Vanberg, 2001, p. 65).

There is a large literature discussing action and constitutional interests (and the dis-

tinction is important in the field of Constitutional Economics). The key idea is that

individuals can exercise their ‘rationality’ in different ways in the two ‘levels’: people
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might collectively agree to formal rules which apply to a group of individuals - including

themselves - that they would prefer not to follow as individuals. Clearly this is di-

rectly related to Schultz’s (2001) collective action scenarios, where agents would prefer

to change strategies at the collectively preferred outcome (as in the Prisoners’ Dilemma).

Vanberg’s argument, therefore, is that groups can agree ‘liberal legislation’ at the con-

stitutional level as constraints on individuals’ actions. Economies based on free market

competition can then evolve but in a conditional way, consistent with Hayek’s description

of the market order. In summary, “[i]f read as an unconditional claim about cultural

evolution per se, Hayek’s evolutionary argument makes little sense, and it would be

inconsistent with the liberal thrust of his work.” (Vanberg, 1994b, p. 195).

The reconciliation of Hayek’s work proposed by Vanberg is seductive in that it seems

to neatly tie together various strands of Hayek’s work which appear incompatible. It

is possible, of course, that Hayek’s views had changed significantly by the time The

Fatal Conceit was published in 1988, and that this book did in fact reflect his ‘final say’

on these matters. As mentioned previously, Hayek did a poor job of telegraphing and

explaining changes in his opinions so another way of resolving what Vanberg referred to

as Hayek’s ‘rational liberalism’ and ‘evolutionary agnosticism’ is simply that Hayek had

changed his mind, mostly dropping the former for the latter.

Another reconciliation of sorts is that The Fatal Conceit, where Hayek’s cultural evolu-

tion was most prominent, reflected more the views of the book’s editor, William Bartley,

than Hayek’s. Unfortunately, while there is documentary evidence to suggest some of

the text came from Bartley and his colleague, we cannot know the extent to which Hayek

agreed to the final draft of the book (Bartley died in 1990).

The final point to discuss here concerns what appears to be a second tension - or lack

of clarity - in Hayek’s work. On the one hand, Hayek seems open to liberal legislation

but on the other he is opposed to deliberate, central planning for reasons related to

knowledge, as discussed above. On this subject, Vanberg (1994b) helpfully distinguishes

between “two types of ‘design approaches’ ” (p. 196): liberal legislation (or what he

calls Ordnungspolitik) and intervention. The former is concerned with “a beneficial

framework of rules within which market processes can unfold” whereas the latter “seeks

to bring about particular outcomes by intervening in the market process”.

Moreover, Vanberg notes that while Hayek’s comfort with liberal legislation appears

more related to market processes than cultural evolution, “[l]ogic requires that the same

distinction between types of policies be made with regard to the process of institutional

competition that Hayek’s theory of cultural evolution is concerned with.” (Vanberg,

1994b, p. 196).
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Vanberg’s distinction between liberal legislation and intervention is very helpful and

appears to resolve the second tension in Hayek’s work that he discussed in Vanberg

(1994b). Moreover, Vanberg’s description of liberal legislation cited above is very com-

patible with the idea of an enabling environment, which is discussed in more detail in

Chapter 6.

4.7.1 Links to Computational Models

As mentioned at the beginning of Section 4.6, the main aim of this and the previous

section was to provide context for the ‘liberal legislation’ experiments set out in Chapter

12.

In simulations based on the second model, we see that property rights emerge endoge-

nously when we apply the default parameter set (this also occurs in other parts of the

parameter space). In some other parts of the parameter space, however, property rights

do not emerge. This can be interpreted in the following way: property rights as an or-

ganic institution emerge when the environmental conditions are sufficiently enabling of

such emergence, and vice versa. Furthermore, if property rights do emerge, this enables

the emergence of markets.

In the context of Hayek’s liberal legislation, this result presents a question: can legal

rules be designed that catalyse the emergence of property rights when the environment

is not sufficiently enabling? This is the question addressed in the liberal legislation

experiments: a set of parameters is chosen which is known not to give rise to property

rights, and we then apply various legal rules to the agents’ interactions (in fact, we look

at four different scenarios when property rights do not emerge endogenously).

These legal rules take the form of fines for agents who attempt to steal from others

(compensation is paid to ‘victims’ in some experiments). These rules look more like

liberal legislation than intervention because they relate more to the environment in

which markets operate rather than being a direct intervention in the market process.

We find that in all four cases, legal rules enable the emergence of property rights. In a

sense, this liberal legislation changes a non-enabling environment into an enabling one.

This is discussed in more detail in chapters 6 and 12.

4.8 Summary

The main aim of this chapter, stated at the outset, was to described and evaluate Hayek’s

approach to spontaneous order, especially his theory of cultural evolution.

Hayek’s work has taken centre stage because, as stated earlier, he developed the most

sophisticated and systematic body of thought concerning spontaneous order. We looked
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in some detail at his understanding of ‘the market order’ (including the notion of catal-

laxy) and then examined more closely his theory of cultural evolution as this is directly

related to organic institutions.

We have seen that while Hayek’s ontological foundations bear a great deal of resemblance

to CE (and his work preceded that subject by decades), his theory of cultural evolution

has not stood up to critical evaluation. However, the weaknesses in Hayek’s arguments

do not necessarily mean we should give up on the idea that organic institutions can

emerge in a spontaneous way, nor that ‘liberal legislation’ could be used to develop an

enabling environment along the lines of Vanberg’s constrained evolution. These are open

questions toward which the computational models below are orientated.

Moreover, while focused on Hayek’s work, this chapter deliberately examined Ullmann-

Margalit (1978) and Vanberg (1994b) in sections 4.3 and 4.7 respectively. These papers

provide motivation and helpful ways of framing the research questions addressed in this

thesis and also the computational models developed below.





Chapter 5

Models of Organic Institutional

Emergence

Q: Why did the chicken cross the road? A: To maximize its utility.

– Geoffrey Hodgson

In this chapter we switch our attention away from theorizing about spontaneous order

to focus on models. More specifically, we are interested in those concerned with the

emergence of organic institutions.

Four models / areas of research were chosen as the most relevant to this thesis:

1. Hodgson and Knudsen’s (2004) model of a simple traffic convention (Section 5.1);

2. parts of the social simulation literature, especially the models completed within

the “EMergence In the Loop” (EMIL) Project (Section 5.2);

3. attempts in game theory to model institutional emergence (Section 5.3); and

4. a strand of literature concerned with money emergence, which follows Jones (1976)

and Kiyotaki and Wright (1989) (Section 5.4).

Before moving forward, we should briefly note two strands of literature which are related

and interesting but, ultimately, not discussed in detail here.

Research Not Covered

One strand of related research makes use of systems dynamics, which has been the focus

of Michael Radzicki in particular (e.g., Radzicki, 1988, 2003, 2009, and 2010). Radzicki

133
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has done a considerable amount of work combining institutional economics and the idea

of a ‘system dynamics pattern model’, which is a “system of highly non-linear differential

equations that has no exact, analytical solution.” (Radzicki, 1988, p. 653).

Radzicki’s work sits comfortably alongside the ontology of complex systems discussed

in Chapter 2 but this material is not evaluated in this chapter for two reasons. First, it

is not concerned with the emergence of new organic institutions, which is our focus of

research.

Second, one of the 11 principles of Complexity Economics (CE) mentioned in Section

2.3.3 is that agents are computational in nature. By contrast, dynamical systems of the

type explored by Radzicki are mathematical and based on quantified stocks and flows.

This difference is important for this thesis because we are interested in how agents use

(computation-based) mental models, including whether institutions might emerge from

within these mental models.

Another strand of research worth mentioning is that which follows Vernon L. Smith’s

paper An experimental study of competitive market behavior (Smith, 1962). This work

has become associated with the ‘Hayek Hypothesis’, that strict “privacy together with

the trading rules of a market institution are sufficient to produce competitive market

outcomes at or near 100% efficiency” (Smith, 1982, p. 223). Crockett (2013) surveys the

dynamics of various exchange experiments.

This literature is closely related to Hayek’s conceptualisation of the spontaneous order

of markets but in this thesis we are interested in a different type of spontaneous order:

the emergence of organic institutions. We will not, therefore, consider this research any

further.

Let us now look closer at Hodgson and Knudsen’s (2004) model of a simple traffic

convention.

5.1 Hodgson and Knudsen’s Traffic Convention

Model

Hodgson and Knudsen (2004) is concerned with a number of issues of interest to us,

notably habituation. As mentioned in the Introduction, the models developed for this

thesis can be viewed both as a continuation of and a response to certain issues raised

by Hodgson and Knudsen’s (2004) results.

An additional motivation for examining this paper is that Hodgson and Knudsen (2004)

appears to be the only research published which, simultaneously: (i) is concerned with

organic institutional emergence; (ii) makes use of an Agent-Based Model (ABM); and
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(iii) is written specifically for an Institutional Economics (IE) audience. As was also

mentioned in the Introduction, it is noteworthy that in three recently published papers

petitioning for the use of ABMs in IE (Gräbner and Kapeller, 2015; and Gräbner (2016,

2018), Claudius Gräbner mentions only Hodgson and Knudsen (2004) as an example of

such work1.

This sub-section is divided into: (i) a description of the model; (ii) a discussion of the

results of the simulations; (iii) one criticism of the paper; and (iv) a look at the paper’s

explanation for how conventions become common to a group of agents.

5.1.1 The Traffic Conventions Model

Hodgson and Knudsen (2004) explore the emergence of a traffic convention: whether to

drive on the left or right side of the road. In the context of Schultz’s (2001) typology,

the model fits into his coordination situations: there are no free-rider problems seen in

the interactions.

The environment includes agents who are placed on a 100 × 2 ring that represents a

road on which they drive around, either on the right or left hand side2. There are 40

agents, 20 of whom drive clockwise around the ring and 20 anti-clockwise. The model

is turn-based and the agents make their decisions sequentially: whether to drive on the

right or left.

In the standard model the agents can see 10 ‘zones’ ahead: they count the number of

cars in both lanes and in which direction they are moving. This information is processed

by each agent’s mental model when it is their turn to move. The agents also count the

number of cars in the zone immediately ahead of them (whether travelling in the same

or opposite direction): this gives the drivers the opportunity to avoid these cars.

If the cars collide (when two cars occupy the same zone on the ring, irrespective of the

direction of travel) then both agents die. Both are replaced by cars driving in the same

direction as the replaced cars.

Hodgson and Knudsen’s agents have mental models based on four innate dispositions,

three of which are linked to the data corresponding to the position of cars ahead of them.

The fourth (Habitgenen) corresponds to a variable (Habituationn,t) which reflects an

agent’s historical decisions to drive on the right or left (linked to the concept of habit).

Here, n refers to a single vehicle; and t refers to the timestamp.

The five pieces of data used in the agents’ mental models to make a decision are:

1Gräbner and Kapeller (2015) discuss other ABMs in IE (p. 439) but none of these are
concerned with the emergence of organic institutions.

2Here we use ‘cars’, ’drivers’, and ‘agents’ interchangeably.
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• SL,n is the proportion of cars who are driving in the same direction up to 10

zones ahead who drive on the left, where subscript L refers to driving on the left

(SL,n = 0.5 if there are no such cars);

• OL,n is the proportion of cars who are driving in the opposite direction up to 10

zones ahead who drive on their left (n’s right) (OL,n = 0.5 if there were no such

cars);

• CL,n is the number of cars one zone ahead (moving in either direction) driving on

n’s left;

• CR,n is the number of cars one zone ahead (moving in either direction) driving on

n’s right; and

• Habituationn, t, a variable which measures the historical tendency of agents to

drive on the left or right.

The last piece of information is updated in the following way, for each player after each

move:

Habituationn, t = Habituationn, t−1 + LRn, t/(K +Movesn, t)

LRn, t is a value corresponding to n’s decision to drive on the left or right at time t.

LRn, t = 1 if n chooses to drive on the left at time t and LRn, t = −1 if it chooses to drive

on the right. K is an arbitrary parameter which controls the weight of each decision to

drive on the right or left hand side. The variable ‘Moves’ is the number of moves agent

n has made up until time t, i.e., its ‘age’ in the simulation. Habituationn = 0 when the

agent is instantiated.

Hodgson and Knudsen state that Habituationn, t is bounded between -1 and +1. Pre-

sumably this is ‘forced’ by the code as the above algorithm that updates Habituationn, t

does not on its own constrain this variable within these bounds.

The dispositions agents are born with are as follows:

• SSensitivityn, corresponding to SL, n;

• OSensitivityn, corresponding to OL, n;

• Avoidancen, corresponding to CL, n − CR,n; and

• Habitgenen, corresponding to Habituationn, t.

All of theses dispositions are drawn from a normal distribution with a mean of 1 and

standard deviation of δ.
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In addition to these, four (non-negative) ‘weight’ parameters (common to all drivers)

are used to control the weight of inputs in to the agents’ decisions to drive on the right

or left hand side (corresponding to the four dispositions above, respectively):

• wSdirection;

• wOdirection;

• wAvoidance; and

• wHabit.

At time t, agent n first uses the following expression to make a (pre-error) evaluation of

whether to drive on the right or left:

LREvaluationn = wSdirection × SSensitivityn × (2SL,n − 1)

+ wOdirection ×OSensitivityn × (2OL,n − 1)

+ wAvoidance ×Avoidancen × (CR,n − CL,n)

+ wHabit ×Habitgenen ×Habituationn, t

The model is designed so that positive values of SL,n, OL,n, CR,n, and Habituationn, t

are associated with n choosing to drive on the left (and vice versa) and a positive value

of CL,n tends to make n drive on the right (and vice versa). If unadjusted by an error,

an overall value of LREvaluation > 0 will lead n to drive on the left, and vice versa.

After each subjective evaluation (LREvaluation), the final step is to use an error pa-

rameter (ϵ) to (potentially) invert the agent’s subjective decision. We can assume that

a decimal number is drawn from a uniform distribution with a minimum of zero and

a maximum of 13 and this random number is compared with ϵ (adjusted between 0

and 0.02 in the standard model). If this random number is lower then the right-left

evaluation is reversed.

The agent then moves one zone ahead and implements its decision to drive on the left

or right. If there is no collision, the next driver takes its turn until all 40 drivers have

moved, after which the clock ticks forward (there are 20,000 rounds in each simulation).

As mentioned above, if two cars collide, they are both removed and replaced with two

new cars (which have new, randomly determined ‘genes’).

3The authors did not make it clear how the random number generator works but this is
probably a safe assumption.
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5.1.2 Simulation Results

The aim of the model is to explore “different points of parameter space and [to assess]

the impact of different levels of habit and error.” (Hodgson and Knudsen, 2004, p. 27).

In terms of the convergence of the agents on a particular convention, there was consider-

able variation within the parameter space. In some parts of the space there was hardly

any convergence, and in others it was close to total.

Fig. 5.1 below, reproduced from the paper (with permission), is helpful. It shows

a measure of convergence in an area of the parameter space where wSdirection = 1.4,

wOdirection = 0.9, and wAvoidance = 0.7 (these values were chosen because they maximized

convergence when wHabit = 0). The data reported show the area in the parameter space

where ϵ varies between 0 and 0.02, and wHabit varies between 0 and 2.

Figure 5.1: Taken from Hodgson and Knudsen (2004), p. 29. The caption in the
original paper reads “Fig. 2. Degrees of convergence with 200 runs for each level of
habit and error wX = {1.4, 0.9, 0.7, wHabit}.” The vertical axis shows Convergence (0.5
means the cars drive equally on the left and right side and 1 means all the cars drive
on the same side); the y-axis (error) corresponds to ϵ above; and the x-axis corresponds
to Habituationn, t above. Reproduced with permission from Elsevier B. V.

We can see from this graph that increasing the habit weight (wHabit) from 0 to 1 increases

the measure of convergence by approximately 0.3 (averaged across all values of error

shown). The authors refer to this measure as the habit effect.
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Fig. 5.2 below shows this habit effect across others parts of the parameter space. The

authors normalize wSdirection, wOdirection and wAvoidance so these three weights average

1, allowing this 2-D representation.

Figure 5.2: Taken from Hodgson and Knudsen (2004), p. 31. The caption in the
original paper reads “Fig. 3. The habit effect in parameter space.” C0 is convergence
when wHabit = 0 and C1 is convergence when wHabit = 1. The difference between these
two (C1 −C0) is termed the habit effect. Reproduced with permission from Elsevier B.
V.

In light of these results, the main conclusion the authors came to was that “convergence

is never achieved by the force of habit alone. Furthermore, convergence can sometimes

occur with low or zero level of habit. Crucially, habit helps convergence only when it

is combined with selection pressure on the fixed ‘instincts’ in the population of cars.”

(Hodgson and Knudsen, 2004, p. 30).

The statement here, that “convergence can sometimes occur with low or zero level of

habit” looks curious in light of Fig. 5.1 above. In that diagram, when ‘Habit’ is zero, the

degree of conversion is approximately 0.57 - 0.64 (depending on ϵ). This hardly looks

like convergence at a zero level of habit. What is probably happening here is that the

conversion data shown in Fig. 5.1 are mean values over 200 runs: there was probably

some variation between runs such that convergence was seen in some of them.

There are two final points worth noting before we discuss and critique the model and

results. First, in some simulations, a group of agents learned to be agile in their driving

rather than remaining on the same side of the road. Hodgson and Knudsen (2004) write
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that a “ ‘cycling’ pattern can occur, when cohorts of agile drivers repeatedly move safely

and laterally to avoid other oncoming groups.” (p. 28). This result of agility emerging

instead of a convention is fascinating from a complexity science point of view.

Second, the authors look at whether “inertia” is any different to habituation. This

means, essentially, replacing Habituationn, t with serially correlated behaviour in the

form of adding its current (pre-LREvaluationn) position and its previous two posi-

tions (LRn, t−1 and LRn, t−2). Clearly, these terms on average will be correlated with

Habituationn, t but the difference lies in the nature of memory and ‘stickiness’: “Habits

are like a crude summarized memory [which] are built up steadily once a repeated be-

haviour emerges.” (Hodgson and Knudsen, 2004, p. 35).

The results show that inertia, as defined, has a much weaker effect than habituation.

Now that we have understood the results, let us discuss and critique the model.

5.1.3 Discussion and Critique

We can see from the model described above that each agent’s decision making uses four

agent-specific parameters4. These “are akin to instincts: they are fixed for the lifetime

of each car.” (Hodgson and Knudsen, 2004, p. 35).

In this context, Hodgson and Knudsen make an important distinction between two broad

approaches to habit in the literature, stating that the question “is whether rational

choice is the foundation of habit, or whether the reverse is true.” (ibid, p. 22). This

is reminiscent of Gray’s (1998) reference to Hayek’s theory of mind in which rational

processing supervenes on rules within the sub-conscious.

As mentioned in the previous chapter, some researchers (e.g., Stigler and Becker, 1977;

and Becker, 1992) have argued that current habits reflect previously rational decisions,

i.e., that rational choice is the foundation of habit. Stigler and Becker (1977) write

that “habit is often a more efficient way to deal with moderate or temporary changes in

the environment than would be a full, apparently utility-maximizing decision.” (p. 82).

Here, “economizing” refers to the costs of acquiring and analysing information.

Hodgson and Knudsen (2004) argue in favour of “defining habit as a disposition or

propensity” (p. 36). In doing so, they place themselves “in the pragmatist tradition

of Charles Sanders Peirce, William James, George Herbert Mead and John Dewey [for

whom] any rational deliberation is always seen as grounded on habit.” (p. 22).

4Note that Hodgson and Knudsen refer to Habituationn, t as a parameter (p. 35) but it changed
throughout each simulation for each agent so convention (!) dictates it should be classified as a
variable.
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Let us step back and consider this in a bit more detail because it is at the heart of

human mental models and how these should be represented in computational terms.

Let us assume that people’s mental models include: (i) a perceived ontology of the

environment in which they exist (including other individuals); (ii) the aim(s) of the

agents; (iii) forms of information processing; and (iv) learning processes. This is not

meant to be an exhaustive list of the constituents of human cognition, rather it is meant

to help us understand Hodgson and Knudsen’s model.

We can think of Stigler and Becker’s (1977) rationality approach in this framework

too. Their ontology is a Neoclassical one (with a specific focus on addiction) in which

agents choose between consuming goods / services, and the aim of all the agents is

to maximize utility. These agents process information via substantive rationality, i.e.,

they deduce from the information they have (including given preferences) their preferred

choice. Learning does not seem to happen in Stigler and Becker’s (1977) model in the

way it does in Hodgson and Knudsen’s, where we see a change in a variable. However,

we might interpret the formation of a habit, post-rational decision, as learning of a type.

For Stigler and Becker (1977), therefore, habits in a sense substitute for substantive

rationality as a form of information processing.

Hodgson and Knudsen’s (2004) framework includes agents interacting on a road (and all

of the cognitive features that entails5). The aim of all the agents is to remain alive by

not colliding with other cars. The nature of the information processing is very different

to Stigler and Becker’s: agents use instincts which are fixed at instantiation to make

decisions and, as stated above, habit forms part of this process. Importantly, habit

work ‘alongside’ rather than instead of other processed information (Habituationn, t is a

component of LREvaluationn above).

The question of learning is taken up below.

Downward Causation / Effects

In their discussion of results, Hodgson and Knudsen (2004) refer to two types of down-

ward causation6. These play an important role in this thesis so let us consider them

further.

Following Campbell (1974), Hodgson and Knudsen discuss how a weak form of this

phenomenon means that as a convention begins to emerge, non-conforming agents tend

to be removed, i.e., “those that survive tend to be those that conform” (Hodgson and

Knudsen, 2004, pp. 38-39).

5For example, knowing what a car is, how to drive, the nature of a road, the difference
between left and right, etc.

6As mentioned in the Introduction, Hodgson later preferred downward and upward effects.
We keep to the terminology used in Hodgson and Knudsen (2004) here.
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This is of course a crude process because a non-conforming agent might also take out a

conforming agent; however, we can appreciate that conforming agents “tend” to survive.

A form of downward causation occurs at the agent level also, via Habituationn, t. Fol-

lowing Sperry (1969), Hodgson and Knudsen (2004) refer to this as a strong form of

downward causation that ‘reconstitutes’ the agents’ mental models. They write that “as

the left/right convention begins to emerge, more and more surviving cars develop the

habit to drive on the left or the right” (p. 39).

Habits Versus Reinforcement Learning

We now look at one criticism of Hodgson and Knudsen’s (2004) model and their inter-

pretation of the results. This is about whether we should interpret the changes to their

Habituationn, t variable as habituation or reinforcement learning. The authors are aware

of and refer to this question in their paper (see Footnote 19, p. 38, in particular).

Hodgson and Knudsen mention Erev and Roth’s (1998) model of reinforcement learning,

stating that “our concept of habituation is close to that of reinforcement in their general-

ized model.” (Hodgson and Knudsen, 2004, p. 38, Footnote 19). For our purposes, what

is important in this quote is “close to”, which means that while Hodgson and Knudsen

view changes to Habituationn, t as similar to reinforcement learning, it is not the same

thing.

We can use Erev and Roth’s (1998) three principles of reinforcement learning (see Section

1.4.6) to consider this more closely. First, the Law of Effect seems to hold when a driver

makes a decision and survives: the change in Habituationn, t means it will be more likely

to make this decision again in the future, ceteris paribus. Note, however, that this is

asymmetric: drivers cannot learn from ‘bad’ decisions because they are removed from

the simulation.

The power law of practice seems to hold in that changes to Habituationn, t decelerate

over time (and are kept within bounds of −1 and +1).

Finally, the third principle, that choice behaviour is probabilistic appears not to be

relevant here with the very weak exception of errors being determined probabilistically.

Given these three principles, there is an argument that Habituationn, t in Hodgson and

Knudsen (2004) can be interpreted as a proxy for reinforcement learning.

The difference between reinforcement learning and habituation is clearly important:

they are significantly different cognitive processes. The former is sensitive to success

and failure relative to some goal(s) whereas the latter is not.

We should be clear, however, that this second criticism does not mean Hodgson and

Knudsen are blatantly ‘wrong’: their results are consistent with habituation playing a
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role in the emergence of conventions. The problem is that their results are also consistent

with an alternative hypothesis that is based on reinforcement learning.

This criticism is one of the motivators for the models developed for this thesis: do organic

institutions emerge as a result of renouncement learning or habituation, or both? To

answer this, we explore organic institutional emergence with and without reinforcement

learning, and with and without habituation.

5.1.4 Commonality of Rules within the Group

In the previous chapter we identified three mechanisms by which rules might become

common within a group of individuals (mimicry, identical rational decisions, and a legal

rule). None of these appear relevant to Hodgson and Knudsen’s (2004) results but

conventions common to all the agents were observed in certain parts of the parameter

space: how so?

A fourth process appears to be at work here: when observed in the simulations, conven-

tions seem to emerge via a specific form of co-adaptation of the agents’ mental models,

i.e., the agents iteratively respond to each others’ actions in such a way that rule com-

monality is achieved (the convention). Symmetry breaking appears to be the specific

mechanism at play here.

This is described well by Hodgson and Knudsen although they use different language. As

a convention begins to emerge, more of the surviving cars start to follow the convention

(Habituationn, t tends to + or −1 for these cars); and on average more non-conforming

cars are removed than those that conform. The phenomena Hodgson and Knudsen point

to are reconstitutive downward causation and upward causation.

Now that we have discussed Hodgson and Knudsen (2004) in some detail, let us turn to

the literature concerned with computational models of social norms.

5.2 Social Norms Within the Social Simulation

Literature

There is a large literature concerned with the computational modelling of social norms

in what we are referring to here as the social simulation literature, and it spans across

different fields of study (including sociology and social psychology).

To help present this work, in this section we focus on research that is not based on game

theory, leaving a discussion of game theoretic work to the next section.
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It is important to note two points before we proceed: first, these literatures vary con-

siderably in their assumptions, framings, terminology, and aims; and, second, our focus

here is on economics.

Perhaps the most notable difference between a lot of the social simulation literature

(which appears most heavily influenced by sociology) and economics is the emphasis

placed on the free-rider problem. This thesis uses Schultz’s (2001) framing of interactions

in which his second category (collective action scenarios) includes the free-rider problem

(where at least one agent is incentivised to change its behaviour at some socially preferred

outcome). In discussing organic institutions in economics, this problem is fundamentally

important. By contrast, and by way of example, the EMIL Project Report (discussed in

more detail below) was a 245-page paper that summarised a 3-year multi-million Euro

project focused on the computational modelling of social norms: the free-rider problem

was not mentioned once.

This is not meant as a blanket criticism of sociological approaches. In fact, writing in

broad brush strokes, researchers publishing in that literature seem to have been more

open-minded about the nature of mental models and socially emergent properties than

orthodox economics for decades. Also, and related, these researchers appear to have

been much more open to computational modelling than IE has been. The issue being

emphasised here is the conceptual distance between computational models based on

sociology and those located in economics.

The implication of this point is that we have to be careful translating between fields.

Indeed, the first issue we face is terminological. Most notably, the definitions of social

norms used in much of this literature appears to be different to that used in economics

and also in this thesis.

The interpretation of conventions seems broadly aligned, however. For example, the

EMIL Project Report states that a convention is based on “the agent’s goal of conforming

to that behavior in order to act like the others, the mutual expectation that the others

will conform to that behavior as well.” (Andrighetto and Conte, 2010, p. 11).

By contrast, in the EMIL Project Report a norm is “a prescribed guide for conduct

which is generally complied with by the members of society.” (Ullmann-Margalit, 1977,

as quoted in Andrighetto and Conte, 2010, p. 10). Moreover, given the definitions of

conventions and social norms in the EMIL Report, the distinction “is not clear-cut.”

(Andrighetto and Conte, 2010, p. 11).

In this thesis we align social norms specifically with Schultz’s (2001) ‘collective action’

category of interactions, which include the free-rider problem. This is consistent with

Schultz’s use of the term.
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Let us now look at this literature in more detail. As Elsenbrioch and Gilbert (2014)

note, this literature can be roughly divided in to three. These are models of:

1. the diffusion of pre-existing norms, some of which has made use of complexity

science framings;

2. the use/application of norms, notably within the field of distributed artificial in-

telligence (AI); and

3. the emergence of social norms (which have mostly been game theoretic in nature).

In addition to these three broad categories, we should note that this literature has also

considered issues of internalisation (as self-policing), e.g., Villatoro et al (2015); the

relationship of social norms to obligations, e.g., Savarimuthu et al (2010); reciprocity

and sanctions, e.g., Younger (2005); social responsibility and meta-agency, e.g., Conte

and Paolucci (2004); altruism, e.g., Jaffe (2002); and inequality, e.g., Saam and Harrer

(1999). This research is noted here to emphasise the amount of work that has focused

on social norms through computational models. The work referenced above is, however,

less directly relevant to this thesis so it is mentioned in passing.

Returning to the above three categories, the third is clearly more relevant for this thesis;

however, the first two are worth noting briefly, partly as background to the third.

5.2.1 Norm Diffusion

Concerning norm diffusion, one such model is based on the Sugarscape model, developed

in Epstein and Axtell (1996). In this experiment, agents might adopt a pre-existing

norms when making a decision, and the adoption of a norm depends on those used by

an agent’s neighbours. This model is useful in that it identifies how norms might spread

within a population and it included“habitual behaviour when the agents are in a stable

norm-environment.” (Elsenbrioch and Gilbert, 2014, p. 77).

There is also a large amount of work regarding norm diffusion that has used the Belief-

Desire-Intention (BDI) framework and its variant, the Belief-Obligations-Intentions-

Desires (BOID) architecture. A detailed discussion of these frameworks can be seen in

Neumann (2010): they provide a cognitive architecture for agents that, as their names

suggest, incorporate beliefs, intentions, and desires; and obligations in the case of BOID.

Neumann (2008) provides a helpful review of some of the literature focused on norm dif-

fusion, citing Axelrod (1986) as seminal and representative of the game theory approach.

He also notes that “[t]he classical model in the tradition of models employing cognitive

rich agents is the model described in [Conte and Castelfranchi (1995b)].” (Neumann,
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2008, para. 5.27). The latter model has been replicated several times “and is still the

reference point for authors in this tradition.” (ibid, para 5.2). However, its orientation

is around the diffusion of pre-existing norms so we will not discuss it any further.

The papers reviewed in Neumann (2008) are considered in the context of whether they

add value in any of three ways: (i) the transmission of norms between agents; (ii) the

transformation of the agents (i.e., their mental models); and (iii) “the function of norms

for a society” (para 2.5). It is noteworthy that Neumann did not consider whether the

papers and models he reviewed add value via the origination of new norms.

5.2.2 Multi-Agent Systems & Artificial Intelligence

Models

Models in this literature tend to take one of two forms: (i) offline design, in which

“systems specify what norms a system [of agents] will follow and encode them directly

into the agents” (Hollander and Wu, 2011, para. 3.37); or (ii) autonomous innovation,

which “requires the agents of a system to create new norms without external influence”

(ibid).

Clearly, the second type is of more interest for this thesis. However, Hollander and Wu

(2011) note that this tended to be tackled in two ways. The first was through the use

of game theory; and the second was through machine learning, which takes “the same

selection approach as game theory.” (para. 3.38). It seems, therefore, that when it comes

to the origination of norms, this literature loops us back to game theoretic approaches,

which is the subject of the next section.

Let us now turn to non-game-theoretic models that are focused on the emergence of

social norms.

5.2.3 The Emergence of Social Norms

Interestingly, Elsenbrioch and Gilbert (2014) associate models of norm emergence with

game theoretic models. They write “[o]ne of the most famous simulations of norm

emergence is presented in Axelrod (1986) ... [which features] agents playing iterated

prisoners’ dilemmas” (p. 76). We defer our discussion of game theoretic models to the

next section.

Here we focus mainly on the computational models reported in the EMIL Project: this

was a sophisticated project (both in theoretical and computational modelling terms)

which made some important advances in the framing and modelling of social norms.

7Note that papers in the Journal of Artificial Societies and Social Simulations (JASSS) are
published online and therefore do not have page numbers. References therefore use paragraph
numbers.
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Before we do this, however, let us briefly look at two simple but elegant models of norm

emergence contained in Caldas and Coelho (1999).

5.2.3.1 Two Simple Coordination Models

Caldas and Coelho (1999) first develop a simple model where 100 agents have to choose

from one of 16 colours. The ‘return’ of the chosen colour simply reflects the number of

other agents that had chosen the same colour, i.e., the more agents with your chosen

colour, the better. The total number of agents choosing each colour is announced at the

end of each round and agents use this information in their decisions in the next round.

The paper does not explain this in detail but presumably the weight attached to each

rule is associated with its frequency in the previous round, i.e., there is some sort of

memory.

In this model agent rules consist of the 16 colour types. Each simulation shows that the

agents very quickly converge on a single rule-colour and each agent’s return is maximized

as a result. This is clearly a pure coordination-type interaction.

We might add here, briefly, that this convergence on a single colour is reminiscent of

behaviour seen in ants when a single ant, who has discovered a food source, ‘recruits’

other ants. This can occur through a variety of mechanisms, including laying down a

pheromone trail to the food or physically stimulating others at the nest as an signal

to follow. See Kirman (1993)8 for a discussion of this. Such behaviour can lead to

symmetry breaking whereby ants who had been wandering randomly are all recruited

to visit the food source.

In their second model, Caldas and Coelho (1999) attach different values to each colour.

When the authors ran the simulations they noticed that agents converge on the highest

value colour only half of the time. In the other half agents become locked in to a lower-

value colour: this happens if the colour has a relatively high frequency in the population

at instantiation such that the value of replicating this colour exceeds the colour’s intrinsic

value. This is related to the concept of lock-in, which was discussed in Chapter 2.

Caldas and Coelho’s second models is equivalent to the Market Emergence Model de-

veloped for this thesis (Chapter 7): both can be interpreted as non-pure coordination

games.

Let us now consider the EMIL Project and the four computational models developed

within it.

8This paper is a rare example of a CE approach (with computational modelling) used to
examine institution-like phenomena.
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5.2.3.2 EMergence In the Loop (EMIL)

Elsenbrioch and Gilbert (2014) write that the EMIL Project (which ran between 2006

and 2010) helped move the study of norms beyond the relatively restrictive BDI and

BOID architectures. Furthermore, “EMIL achieved its goal of designing a normative

agent that does not rely on a static set of norms but can learn normative behaviour

from its environment.” (p. 142). Given this outcome, it is worth considering the project

in more detail.

In the EMIL models, changes to an agent’s mental model were based on reinforcement

learning (from the agent’s own experiences and observations of others) and also ‘norm

invocation messages’ received from other agents. The latter can be admonishments for

transgressions or assertions about normative behaviour.

The use of reinforcement learning means that these EMIL models form a neat comple-

mentarity with Hodgson and Knudsen’s (2004) traffic convention model, which is focused

on habituation.

This project had two broad parts: a theoretical component and four computational

models, which “were initially carried out for exploratory purposes, but many of them

were later replicated for validation.” (Conte and Edmunds, 2010, p. 5). Put another

way, the models produced in the project helped develop the theory and to subsequently

demonstrate its validity.

An important theoretical feature of this project was the inclusion of Conte and Castel-

franchi’s (1995a) cognitive emergence and immergence. Both of these concepts were

defined in the Introduction.

Moreover, immergence and some sort of emergence outside of the agents’ boundaries are

thought to work together:

...our simulations show that under given social conditions, namely in multi-

scenario worlds, norms operate in society while operating in the mind, nei-

ther after nor before. In those circumstances, the two components of norm

dynamics – emergence and immergence – need to be strictly intertwined,

such that one cannot occur without the other. (Conte and Edmunds, 2010,

p. 6-7)

This simultaneous change in immanent and external phenomena will be discussed in

more detail in the next chapter and in the Conclusion. For now, it is worth noting how

the above quote chimes with Hodgson’s reference in Hodgson (2006a) to institutions,

which are “like Klein bottles: the subjective ‘inside’ is simultaneously the objective

‘outside’.” (p. 8).
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In critiquing the EMIL computational models, we look at: (i) a summary of the project’s

outcomes; (ii) an evaluation of the four chapters which each cover one of the models;

(iii) the use of reinforcement learning and norm-invocation messages; (iv) habituation;

and (v) a conclusion.

EMIL: Summary of Outcomes

The project helped to develop the idea of immergence in a theoretical sense but it also

helpfully straddled theory and computational modelling: as mentioned above, the models

allowed for both theory development and ‘proof of concept’. The project participants

did a particularly good job of demonstrating the technical aspects of developing models

which combine ‘inner’ immergence and ‘outer’ emergence.

However, as we discuss in more detail below, the chapters that describe the models

were so weighted toward technical matters that detailed discussions and analyses of the

simulation results were missing. This made it impossible to understand precisely what

happened in these simulations.

Four Computational Models

The models are as follows:

• Chapter 14 (Lotzmann, 2010) describes a traffic model in which pedestrians have

to cross a road, which - at the same time - car drivers want to travel along as

quickly as possible;

• Chapter 15 (Lotzmann, Emde and Troitzsch, 2010) sets out a model based on the

creation and criticism of Wikipedia entries;

• Chapter 16 (dos Anjos, Lotzmann and Pauli, 2010) is based on a micro-finance

model (linked to empirical work in Mexico); and

• Chapter 17 (Campenni et al, 2010) describes a model in which agents have to

navigate three events at an airport (baggage reclaim, customs, and queuing for a

taxi).

One of the interesting features of all these models is that they are all grounded in real-

world situations. This means the agents’ mental models are context-specific with respect

to goals and how information is processed. This contrasts with the highly abstract nature

of many game theoretic models. Moreover, this grounded-ness is consistent with both the

pragmatist orientation of this thesis and sits well alongside Ullmann-Margalit’s (1978)

‘normalcy’ condition for invisible hand explanations.

The agents’ mental models are all based on collections of rules, each of which is associated

with a probability for its enaction. These probabilities are adjusted via reinforcement
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learning given specific goals (consistent with the discussion in Section 1.4.6, p. 25) and

norm-invocation messages.

In all four chapters, the authors report that the movement of certain probabilities toward

1 equates to the immergence of social norms. This is the main result of these models

and is discussed further below.

Taking a step back, in evaluating computational research (including that developed for

this thesis) we typically look for the following four things (at least):

1. theoretical context;

2. a clear description of the model (ideally minimizing coding jargon to make it

accessible to a wider audience);

3. a description and analysis of the results - typically this contains the results of

some ‘default’ parameter set, and a discussion of the results when the parameter

space is explored; and

4. a discussion of how the results relate to theory.

Taking the EMIL Report as a whole, the theoretical context for the four models is

excellent and goes far beyond what we normally see in such research (chapters 2-4 of

the report are focused on “theoretical foundations”).

On the whole, however, the chapters focused on the computational models are relatively

poor vis-à-vis the other three aims stated above.

There was some variation between these chapters, however. Most include a clear de-

scription of the real world situation the models were attempting to mimic but fail to

include a description of key features of the model (with the possible exception of the

airport model). Without clarity of the models’ mechanics, results interpretation is made

more difficult. Replication of the models would be impossible in all four cases.

The results reported fell significantly short of what we would expect in such research.

For example, in Chapter 14 (which is 9 pages in length), the results are reported in the

last two paragraphs. Moreover, any analysis was focused on the aggregated outcomes

and not on how agents interact and how their mental models change over time. Any

discussion of results across the parameter space was meagre and confined mainly to

statements that this work had been done (but not reported).

Regarding the fourth aim above, there is some discussion in chapters 18 and 19 about

how the results of these models are related to theory. The main point made is that

these models and their simulations appear to corroborate the theory. This may indeed
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be the case given the authors’ exposure to the computational work undertaken but it is

difficult to confidently draw this conclusion from chapters 14-17 as they are written.

As mentioned above, an important qualification to these criticisms is that one of the

aims of the project was technical in nature: to describe how such models can be built

in practice. A substantial proportion of chapters 14-17 was devoted to modelling tech-

niques, e.g., Chapter 15 includes a block of code which takes up 2 of its 20 pages. If we

also consider that the report has 22 chapters (in 245 pages) and probably had a word

count limit, we can understand why chapters 14-17 were light on results and analysis.

It is, however, surprising that none of these chapters were followed up with published

research that developed the results in more detail9.

Reinforcement Learning and Norm-Invocation Messages

Reinforcement learning appears to play a central role in the emergence of norms in the

EMIL models, and this seems to be an important result.

The role of norm-invocation messages is worth considering in more detail. There are

two broad issues. First, when these messages took the form of admonishments in the

EMIL models, there appeared to be no cost incurred by the admonishing agent, and the

recipients of the messages were assumed to be influenced by them, e.g., the equivalent of

feeling embarrassed. From an economics point of view, this seems unsatisfactory because

it implies that punishment can be applied at no cost.

Second, norm invocation messages can only be applied if a norm already exists. This

mechanism is, therefore, more one of norm diffusion than origination. That is not to ar-

gue, however, that it plays no role in the immergence of a norm for individual agents, nor

in the ‘global cascade’ (Watts, 2002) of norms across a population. However, it appears

that in these models, the only underlying mechanism of immergence is reinforcement

learning.

Let us consider how we should interpret norm emergence via reinforcement learning.

This has a direct bearing on the models developed for this thesis because they also use

this mechanism as a basis for organic institutional emergence.

As mentioned in the Introduction, reinforcement learning is based on feedback. Let

us, approximately speaking, divide such feedback into three (not mutually exclusive)

sources:

1. direct from the environment (not other agents), e.g., a fee for importing declarable

goods (used in the EMIL Report’s airport model);

9Andrighetto et al (2010) reported some of the results but, again, the details were relatively
scant.
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2. direct from other agents, e.g., admonishments for contravening what others per-

ceive as a norm (as mentioned above, this can play a role in the immergence of

norms for individual agents); and

3. resulting from the nature of the interaction, e.g., taking longer to travel a section

of road because you have collided with a pedestrian, as in the first model above;

or payoffs in a prisoners’ dilemma game because you cooperated but the other

agent defected.

An important problem with the models reported in the EMIL Report is that it is difficult

to be certain what type of feedback the agents react to. Also, the precise nature of how

the agents interacted was not clear in the models (with the possible exception of the

airport model). This lack of clarity means it is difficult to understand how reinforcement

learning (and norm-invocation messages) worked in the EMIL simulations.

Consider in extremis a scenario in which, say, 100 agents receive feedback from the

environment only and in which there is no interaction between the agents. If all the

agents learn to adopt the same rule then the resulting group-wide ‘social norm’ is in

fact an aggregation of personal norms. This would fit into Ullmann-Margalit’s (1978)

use of “aggregation” in the context of invisible hand explanations. Furthermore, this

process would be of no surprise to us, i.e., it does not meet Ullmann-Margalit’s (1978)

third characteristic of invisible hand explanations (Section 4.3.2).

Given the lack of detailed analysis it is difficult to be absolutely certain but this appears

to be what happens in the airport model at the first two stations: baggage reclaim and

customs. The agents did not interact at either of these stations but the authors claim

that social norms emerge over time. One of the interesting features of this model is the

combination of normative agents who use reinforcement learning and “social conformers”

who simply copied those around them: the results show that the latter group helped to

amplify the norms the former group converged on.

At the third station, there is (punishment) feedback from other agents if an agent jumps

the taxi queue but the interaction between the agents is meaningful in that there is a

zero sum game: one agent jumping the queue saves time equal to the time lost by the

other agents. However, without data or analysis, it is impossible to understand from

Chapter 17 precisely how reinforcement learning gave rise to the social norm of queuing,

and we do not know which parts of the parameter space this occurred in and where it

did not.

Looking at the Wikipedia model, the feedback agents received appears to have been

from all the sources noted above but it is impossible to understand how these interact

and under what conditions specific social norms emerge. The same appears also true of

the traffic and micro-finance models.
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It is worth noting, however, that while the mechanics of emergence are unclear, the

results of the traffic scenario appear particularly interesting: in the reported results,

pedestrians learned to cross the road where a striped line was marked on the road, and

car users learned to slow down when pedestrians crossed at this location. How this came

about remains, nonetheless, unknowable from the data and commentary presented.

Habits

The role of habits is discussed in the EMIL Report. Most notably, the authors state

that:

...while giving a motivated and reason-based foundation to autonomous

norm-obedience, one cannot ignore that even intentional actions become

automatic, when habitual. The related behaviour is no longer really de-

cided nor deliberated, but it is just executed as a response to the recogni-

tion of a given stimulus in a given context; and the corresponding action is

performed under reduced controls and a higher attentive threshold. (An-

drighetto, Campenǹı and Conte, 2010, p. 80, Footnote 43)

This and similar comments elsewhere in the report suggest that in principle, habits

should be viewed as playing a role within norm internalisation. Unfortunately, however,

this is not explicitly incorporated into the models. We might guess that when a proba-

bility associated with an internal rule converges on 1, the authors would interpret this

as habit-like, but this is conjecture.

EMIL: Conclusions

As Elsenbrioch and Gilbert (2014) state, the EMIL Project was a good step forward

in our understanding and modelling of social norm emergence. The development of the

notion of immergence, its combination with some outer-emergence, and related compu-

tational modelling were all strong contributions.

However, as discussed in detail above, the simulations based on the four EMIL-like

models were poorly described, analysed, and reported. Moreover, there were important

questions left open about how reinforcement learning might give rise to social norms,

and also how this type of learning corresponds with the process of habituation.

In the same way that the models developed for this thesis can be viewed as extending

Hodgson and Knudsen’s (2004) line of research, we can say the same about the EMIL

Project. Most importantly, reinforcement learning and habituation are employed in the

models developed for this thesis but we analyse the results of the simulations in fine

detail to understand how the agents’ mental models and actions change over time.



154 Chapter 5 Models of Organic Institutional Emergence

5.3 Game Theoretic Approaches

In this section we discuss approaches to institutions from a game theoretic perspective.

We do this by looking at the subject through the lens of CE, as defined in Chapter 2,

and related literature.

It is worth highlighting up front that this literature is vast and a comprehensive survey

is well beyond the scope of this thesis.

Despite the scale of this literature it is possible to criticise: (i) the ability of game

theoretic models to explain institutions that are assumed in their analyses; and (ii)

other assumptions made in much of the game theory literature, especially those related

to uncertainty, deductive reasoning, and utility maximization.

Consistent with Arthur (2013), we can think of these models as first-order approxima-

tions of many interaction types rather than providing realistic explanations based on

bottom-up, practical situations (including conditions of uncertainty).

In the next section we discuss models of monetary emergence based on Jones (1976), in-

cluding Kiyotaki and Wright’s (1989) game theoretic analysis. This paper demonstrates

two Nash equilibria10 (which one exists depends on the parameters used) but empirical

studies based on the same model show that these equilibria are not observed in full.

Moreover, while this chapter is mostly focused on models of organic institutional emer-

gence, here we focus more on critiquing game theoretic approaches in general rather

than specific models. The only exception is Calvert (1995), which we discuss in detail

as an exemplar.

Section 5.3.1 below describes the two main conclusions (regarding institutions) drawn

from the game theoretic literature: that institutions are either equilibria or correlating

devices that achieve equilibria. We look at evolutionary models and those based on

repeated games as the main types of equilibrium-based research.

Section 5.3.2 looks at Aoki (2001) as an attempt to bridge the institutions-as-equilibria

approach with that of institutions-as-rules. It also discusses Hindriks and Guala (2015),

which also attempts to bridge these two.

The third sub-section (5.3.3) considers Field’s criticisms of game theoretic attempts to

‘explain’ the emergence of institutions. We look at Field (1979, 1981, and 1984) in

particular.

Section 5.3.4 develops a specific criticism, which is the over-generalization of utility maxi-

mization and the resulting de-valuing of mechanisms that explain institutional emergence

10Specifically, in their ‘Model A’.
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in the real world. This criticism follows Hodgson (2012) in particular and corresponds

to the discussion of instrumentalism and realism in Section 2.3.3.10.

The final sub-section (5.3.5) considers the implications of the various criticisms above

for the models developed for this thesis.

5.3.1 Institutions via Games

In looking at how game theory has been used to ‘explain’ institutions, the literature

appears to be divided, approximately, in to two (Gräbner and Ghorbani, 2019). The

first defines institutions as equilibria in games; and the second emphasises institutions

as correlating devices11 that achieve equilibria12.

The second strand of this literature is of interest to us but here we focus on the first.13.

As Aoki (2001) states, the research that represents the ‘equilibrium’ view of institutions

can be further divided into two: evolutionary models and repeated games. Let us briefly

look at the first category before looking at the second, which includes a discussion of

the model developed in Calvert (1995).

Evolutionary Models

Foundational texts in this area include Smith and Price (1973) and Smith (1982). These

gave rise to an enormous amount of evolutionary game theoretic work that spans many

different fields of study, including in the natural and social sciences.

The three characteristics of generalized Darwinism, discussed in Section 2.3.3.5, are

helpful for understanding these evolutionary models (see, e.g., Bowles, 2004, pp. 69-

84, for a more detailed discussion). First, agents adopt strategies that are subject to

variation over time: this can take a wide range of forms, including mutation in biological

models, and copying. Second, selection occurs via what is referred to in the literature

as differential replication, e.g., how outcomes in bilateral interactions are determined

11This type refers to devices “external to the game that selects a particular equilibrium by
ensuring the coordination of agents’ expectations” (Gräbner and Ghorbani, 2019, p. 14).

12Hèdoin (2012) provided an example of a correlated equilibrium: imagine two cars approach-
ing an intersection with payoffs for the drivers that mean there are no dominant strategies and no
Nash equilibria. An external rule such as “the driver to the right has priority” would represent
a way to coordinate the drivers’ actions. This rule is, however, imposed from “outside” of the
game and would not constitute an organic institution that has emerged.

13There are three reasons for this: (i) this literature overlaps considerably with the research
concerned with institutions-as-equilibria; (ii) the thesis is primarily orientated around the emer-
gence of organic institutions; and (iii) while the literature concerned with correlating devices is
relevant to the second research question, we are interested in legal rules specifically in the con-
text of mechanisms that correspond to processes observed in the real world (like reinforcement
learning and habituation). Below we see that game theoretic models do not appear to explain
these mechanisms, which makes the literature concerned with correlating devices less relevant
here.
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(such as in the Hawk-Dove game or the Prisoners’ Dilemma). Durability is typically

determined by replicator equations - a common approach is for the growth of some

strategy to be determined by its payoff relative to the mean payoff of the population.

Evolutionary models are typically mathematical, with the population normalized to 1:

different strategies, therefore, compete against each other in a proportional sense. These

models are typically open-ended and their dynamics are analysed to identify features

that correspond to phenomena observed in various types of system.

Institutions in social systems are examples of the phenomena studied. A simulation

based on such models can arrive at an Evolutionary Stable State (ESS): this is defined

as an equilibrium to which a system will return after some disturbance. Note that

these ESSs share some of the characteristics of Nash equilibria but the two are not

identical, e.g., Apaloo et al. (2015) argue that Nash equilibria is a concept best applied

to stationary (classical) and not evolutionary games, in which ESS is a more relevant

concept.

Notable research in this field includes Sugden (1989, 2005), Young (1998), and Okazaki,

Okuno-Fujiwara, and Greif (1998).

Equilibrium states are viewed as institutions within this literature. Indeed, it is worth

highlighting an important difference between the definition of institutions stated in the

Introduction and institutions as equilibria: the former is a rule whereas the latter is a

state. Gräbner and Ghorbani (2019) provide a helpful discussion of the resulting defini-

tional tensions, arguing that the stipulative definition of equilibria is difficult to reconcile

with taxonomic definitions like Hodgson’s (2006a), which is stated in the Introduction.

Finally, Hodgson’s (2015) reference to such equilibria as secondary “to the relational

framework that generates their possibility.” (p. 500), mentioned in the Introduction, is

worth repeating here. An equilibrium state might emerge but what are the (primary)

mechanisms by which this occurs?

Repeated Games

This literature is also enormous. Noteworthy research includes Axelrod (1984, 1986,

1997), Greif (1989, 1994, 1998), Schotter (1981), Milgrom, North, and Weingast (1990),

Greif, Milgrom, and Weingast (1994), Calvert (1995), and Bicchieri (1993, 2006).

Models have tended to be of three broad types: two agents only; multiple agents playing

bilateral 2-player games; and N-player games (where N > 2 players play single games

over successive rounds). N-player games overlap with Common Pool Resource problems

because these have been modelled as multiple agents playing a simultaneous prisoners’

dilemma game over time, e.g., Schindler (2012).
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In earlier work in multi-agent systems, researchers typically modelled a world of agents

that randomly interact with other agents. Subsequent work developed structural features

like networks with agents who interact with neighbour agents only. Classic network

structures have been investigated e.g. scale-free and small world, to consider their impact

on cooperation. For example, Seltzer and Smirnov (2015) combine an iterated prisoners’

dilemma model with social networks, showing greater cooperate with fewer degrees of

separation.

Agents in these models typically have two strategies to choose from in each game, e.g.,

defect or cooperate in iterated prisoner dilemma games; however, they can also develop

dynamic strategies where an agent might choose from a range of such strategies de-

pending on which has historically gained the most benefit. A classic example of such a

dynamic strategy is ‘tit-for-tat’ where (in 2-player games) an agent mimics the behaviour

of its opponent from the previous game: the opponent will be ‘punished’ if it defected

previously, and vice versa. An example of this work is Isaac (2008), and a classic text is

Nowak and May (1992).

The orientating question in this literature seems to be about the conditions under which

cooperation is a stable strategy for all or most players. In particular, is a broadly

cooperative system robust given an ‘invading defector’?

Some of the research in this literature has investigated various human characteristics

which might facilitate sustained cooperation. An example is Schindler (2012), which

discusses ‘socio-psychological factors’ including parameters linked to cooperativeness,

positive reciprocity, fairness towards others, and risk aversion.

This literature is both useful and revealing in that many authors have demonstrated

how certain traits, under specific conditions, are consistent with sustained cooperation

in multi-agent systems. Whether this equates to the emergence of an institution or

not depends on one’s definition of that term, e.g., Calvert (1995) argues there is no

institution because of the bilateral nature of the dynamic strategies observed.

Let us now focus on Calvert (1995), which developed Schotter’s (1981) view of “an

institution as an equilibrium of behavior in an underlying game.” (Calvert, 1995, p. 58).

Calvert (1995)

Aligning his model with substantive rationality, Calvert (1995) states that institutions

as “patterns of behavior and expectations must be consistent with utility maximization

of each individual.” (p. 59).

More specifically, Calvert argues that we define an institution as:
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... an equilibrium in which individuals’ actions are dependent upon the past

actions of many others, or upon expectations about the future reactions of

many other players, to one’s present actions. (Calvert, 1995, p. 59-60)

The model Calvert develops is based on an iterated prisoners’ dilemma game involving

N agents who are randomly paired in each iteration of the model. Importantly, Calvert

states the conditions under which this type of game achieves an equilibrium over time

under the assumption that the agents employ a type of tit-for-tat strategy. Furthermore,

he develops variations of the model in which: (i) multilateral communication is possible

between the agents; and (ii) a formal rule is applied.

Calvert states clearly that his model is not intended to show the emergence of an insti-

tution. It only provides information about the parts of the parameter space in which we

would expect an institution to be maintained within Calvert’s games.

In concluding, Calvert states:

... there is, strictly speaking, no separate animal that we can identify as

an institution. There is only rational behavior, conditioned on expectations

about the behavior and reactions of others ... all in an attempt to maximize

utility ... . Institution is just a name we give to certain kinds of equilibria.

(Calvert, 1995, p. 74, emphasis included)

For the discussion below, we should ask what Calvert (1995) says about the situations in

which his model and results are viewed as relevant. He focuses on scenarios in which the

‘players’ in the game could be thought to be behaving in a broadly “rational” way, e.g., in

his conclusion he discusses “congressional committees and the exPost Veto” (pp. 75-79).

However, he also states that his approach should be helpful “for all kinds of institutions,

from the most particular matters of legislative procedure to the broadest aspects of social

order.” (Calvert, 1995, p. 83, emphasis added).

Whether or not Calvert’s type of model is applicable to “the broadest aspects of social

order” (he gives no examples of what he means by this) is a fundamentally important

question. To what extent can models that assume deductive reasoning and utility max-

imization generalise to interactions in which neither is true? We discuss this further

below.

5.3.2 The Rules-as-Equilibria Approach

Here we discuss a strand of literature that attempts to combine the equilibrium approach

to institutions with the view that institutions are rules. The main text we look at is Aoki

(2001) but we also discuss Hindriks and Guala (2015). Both of these refer to Greif’s
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work as a strong influence, e.g., Greif, Milgrom, and Weingast (1994), and Greif (1994,

1998); and both mention Lewis [1969] (2008) as significant.

Looking in more detail at Aoki (2001), it is perhaps better to think of this work as a

variation of the equilibrium view rather than an approach that treats rules-as-equilibria

with equal weight. Aoki’s analysis is still heavily reliant on the framing and terminology

of game theory. Moreover, Aoki developed his thinking in subsequent work, notably in

Aoik (2011) but, for our purposes, focusing on Aoki (2001) is sufficient for understanding

the thrust of his work.

By way of additional motivation, it is worth noting that Aoki (2001) contains a number

of features that sit comfortably with the CE ontology promoted in Chapter 2.

The main aim of Aoki’s research is to marry the equilibrium definition of institutions (dis-

cussed above) with an agent-level explanation of institutions, i.e., to “subsume [Greif’s

(1994)] player-of-the-game view” (p. 9). To understand this, it is helpful to state Aoki’s

(2001) tentative characterization of an institution at the beginning of his book, as “a self-

sustaining system of shared beliefs about a salient way in which the game is repeatedly

played.” (p. 10, emphasis included).

This definition can be interpreted as a taxonomic definition, which is different to the

stipulative definitions we often see in Game Theory. Gräbner and Ghorbani (2019)

contains a helpful good discussion of this point: the goal of a “stipulative definitions in

mathematics ... is to allow for very precise analysis and logical derivation [whereas] the

primary goal of taxonomic definitions is to establish shared meanings about phenomena

within a scientific community” (Gräbner and Ghorbani, 2019, p. 3-4). This distinction

is important for the discussion below.

Aoki refers to the above characterization of institutions as his equilibrium-summary-

representation approach. In Part 2 of his book, Aoki develops this in order to articu-

late his more advanced shared-beliefs cum equilibrium-summary-representation framing,

which is also discussed below.

Aoki’s (2001) reference to shared beliefs in the above definition correspond to agents

having a “summary representation (compressed information) of an equilibrium of the

game.” (p. 10, emphasis included). The reference to “summary representation” and

“compressed information” are concerned with the agents having limited information

and cognitive constraints.

Furthermore, by “salient”, an agent might only be aware, tacitly, of some feature of the

equilibrium; or there might be a symbolic representation outside of its mind.

Aoki’s framing also contains the view that institutions help individuals to form expec-

tations about each other, which is both intuitively appealing and fits other researchers’
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reference to this role, e.g., Hayek (1973), North (1990), Ostrom (1991), Hodgson (2006a),

and Gräbner and Ghorbani (2019).

In terms of detailed aims, Aoki (2001) refers to his synchronic approach that corresponds

to understanding institutions across the economy in the present; and his diachronic

approach, which is to “understand the mechanisms of institutional evolution/change in

a framework consistent with an equilibrium view of institutions, but allowing for the

possibility of the emergence of novelty.” (pp. 2-3). This second, dynamic, aim is related

to our first research question but it is focused on the evolution of existing institutions.

In addition to all of the above theoretical work, in Part 1, Aoki (2001) develops a

number of empirical examples of institutions, in the context of the definition stated

above. Overall, this part of Aoki’s book fits fairly comfortably with CE as it was defined

in Chapter 2 above.

In Part 2, Aoki attempts to develop a more advanced characterization of institutions from

his tentative definition. Surprisingly, having set out a taxonomic definition of institutions

earlier in the book, in Chapter 7 Aoki falls back on the framing and language of game

theory to develop this more advanced definition. Gräbner and Ghorbani (2019) refer to

this type of definition as stipulative, as discussed above. The ‘core’ mathematical work,

including what Aoki refers to as an institution, is contained in Section 7.2 (pp. 197-202).

Gräbner and Ghorbani (2019) characterise Aoki’s definition in the following way14:

Institutions in their deep structure are commonly cognized, salient patterns

of the ways in which societal games are recursively played and expected to

be played. Institutions in their substantive forms are social artefacts that

ensure the societal games are in equilibrium. (Gräbner and Ghorbani, 2019,

p. 6)

The distinction between stipulative and taxonomic definitions noted above is important

because it points to a considerable gap between the niche language and framing of game

theory and the general discussion of institutions in the literature. We might think of a

stipulative definition as a jigsaw piece that stands alone, not quite fitting into the overall

picture. Gräbner and Ghorbani (2019) is helpful again by arguing that a stipulative

“definition of institution in a particular model should refer to and complement, but not

replace a taxonomic definition” (p. 5). Aoki (2001) does not provide such a ‘bridging’

taxonomic definition.

In the context of our first research question, another problem with Aoki (2001) is that

the focus of his diachronic work is on the evolution of existing institutions (see chapters

14Note that this definition is not from Aoki and that it incorporates two later articles: Aoki
(2007) and Aoik (2011).
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7, 9, and 10 in particular) rather than the emergence of new institutions. Takizawa

(2017) argues that Aoki “has not yet achieved the second goal of his book (Aoki, 2001):

to understand how a novel institution is created.” (p. 536). However, this is an unfair

criticism. Aoki (2001) is clear (see pp. 2-4) that his aim is to understand how institutions

might evolve as a result of novel change: his focus is not on the novel emergence of new

institutions.

In summarising Aoki (2001), we can say that this book was a commendable and novel

attempt to develop an approach to institutions that marries both the institutions-as-

equilibria and institutions-as-rules views15; and it shares a number of features with CE,

including relaxing some of the restrictive assumptions of game theory (notably in Chap-

ter 9). However, given the criticisms of game theoretic approaches to institutions below,

it is disappointing that Aoki fell back on game theory to develop his more advanced

definition of institutions. Furthermore, his book contained no attempt to explain the

origination of new institutions, which is the main focus of this thesis.

Hindriks and Guala (2015) is another attempt to marry institutions as equilibria and

rules. We discuss this briefly as its part-reliance on game theory means it shares some

problems with Aoki (2001).

At the heart of Hindriks and Guala’s (2015) article is an attempt to use Searle’s (1995)

framing of constitutive rules to synthesise the equilibrium and rules approaches to in-

stitutions. Constitutive rules differ from ‘regulative rules’: the former are structured as

“X counts as Y in C”16 whereas the latter generalise as “in circumstance X do Y” (as

stated in the Introduction).

A detailed discussion of Searle’s framing (which is summarised well in Searle (2005),

Takizawa (2017), and Gräbner and Ghorbani (2019)) and how it is used by Hindriks

and Guala (2015) to create a “unified theory”, is beyond the scope of the thesis. Here

we constrain ourselves to specific criticisms of their work.

The overarching criticism is that the argument Hindriks and Guala (2015) developed

is not compelling: creating a unified theory that brings together two major strands of

literature is a major undertaking and their article was 22 pages long. This means that

parts of their argument were left without requisite substantiation or support.

For example, Hindriks and Guala (2015) include a short discussion of the equilibrium ap-

proach to institutions in game theory, using the Hawk-Dove game and the institution of

property as an example. Immediately after this section they state that “So institutions

must be correlated equilibria of coordination games with multiple equilibria.” (p. 466,

15in addition to developing Comparative Institutional Analysis.
16Here, “the X term is an object, a person, or state of affairs, the Y term a status function

assigned to X, and C a context.” (Takizawa, 2017, pp. 532-533).
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emphasis included). This is a strong statement in light of their preceding section, which

did not attempt to deal with the many criticisms of game theoretic approaches to insti-

tutions in the literature.

Hindriks and Guala’s (2015) discussion of Searle’s constitutive rules was also too light

given the weight of their claim. For example, these types of rule rest on the idea of

collective intentionality, which “covers not only collective intentions but also such other

forms of intentionality as collective beliefs and collective desires.” (Searle, 2005, p. 6).

Importantly, Gräbner and Ghorbani (2019) argue that this “concept of collective inten-

tionality [is] specialized, yet in the philosophical literature still [a] contested concept.”

(p. 24). If Hindriks and Guala (2015) want to base their unified theory on Searle’s fram-

ing then they have to discuss this (vague) concept in more detail and support it with

robust arguments.

We should note that Hindriks and Guala (2015) also did not support their arguments

with any substantial empirical evidence, as Aoki (2001) did. This is another important

omission in the development of a unified theory.

The final point to note here is that Hindriks and Guala (2015) was “more concerned

with understanding the general nature of institutions” (Hodgson, 2015, p. 498) rather

than on the emergence of institutions.

Now that we have discussed various approaches to institutions in the game theory liter-

ature, let us now turn to the criticisms of such models.

5.3.3 Field’s Criticisms

Here we summarise Field’s criticisms of game theoretic models that claim to ‘explain’

institutional emergence. The first two papers considered below (Field, 1979 and 1981)

are targetted at “Neoclassical” and “rational choice theory” models but they provide

useful background to Field (1984), which is focused on game theoretic models.

Field (1979) helpfully draws attention to the distinction between explaining and analysing

economic phenomena, defining explanation as “to make clear the cause or reason of, or

to account for.” (p. 50).

He argues that “economists generally have been reluctant to describe their activities as

explanation” (Field, 1979, p. 51), preferring instead to focus on the weaker notion of

analysis (cf partial, general, and microeconomic analysis)17.

17Although he notes that some economists “have often, in an effort to attract attention to
the power of their analytical framework, claimed to have explained, whereas they have only
analyzed.” (Field, 1979, p. 51).
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In their use of rational choice theory, Field (1979) writes that “whereas economists

have in some sense been able to analyze institutional structures using economic theory,

they have not come any closer to explaining them” (p. 52). We will return to this

criticism of explaining institutional emergence in the next section when we look at

utility maximization.

Field (1981) adds an additional argument in criticising “Neoclassical” models of insti-

tutions, targetting North and Thomas (1973) and Posner (1973) in particular. These

models “attempt to make endogenous structural or institutional characteristics which

have previously been treated as noneconomic givens” (Field, 1981, p.174). Here, Field

is querying the extent to which society’s institutional structures can be explained by

purely economic phenomena.

He develops this argument further in Field (1984), which questions the ability of game

theoretic models to explain the very institutions they assume in their analyses. Field

believes that such models can be useful in “the case of a limited number of regulative

rather than constitutive rules ... in the sense that the posited choice among rules presup-

poses shared language as well as the prevailing more fundamental set of rules.” (Field,

1984, p. 691). However, these models cannot explain “the origins of language or of the

more fundamental constitutive rules of a group or society are concerned” (ibid).

Regarding language, Field (1984) points out that even simple forms of cooperation

require language to bring about a cooperative solution, which in turn challenges the

idea that language itself can come about via cooperative games. This is the infinite

regress problem noted in the Introduction.

Field also refers to “fundamental constitutive rules” as not being explainable by a game

theoretic analysis. Here, Field seems18 to be referring to:

norms established through the process of socialization, perhaps ‘voluntarily’

accepted or affirmed, perhaps building on certain genetic predispositions,

provide part of the framework within which individuals pursue their self-

interest. (Field, 1984, p. 705)

We should note that Field’s (1984) criticisms do not apply to all of the research based

on game theoretic models. Most notably, Aoki (2001) was very clear that he understood

how many pre-existing institutions like language, and related ‘cultural phenomena’, had

to be assumed in analysis.

18Field is not unambiguous about this.



164 Chapter 5 Models of Organic Institutional Emergence

Overall, Field provides a number of significant criticisms of game theoretic efforts to

‘explain’ institutions. Most importantly, he raises questions about the nature of ‘expla-

nation’ in these types of analyses and also the types of institutions game theory models

can reasonably claim to ‘explain’. Both of these are discussed further below.

5.3.4 The Value of Game Theory Models of Institutions

When we consider the question of what value game theoretic models like that developed

in Calvert (1995) have, we find two broad groups of opinion.

One group (referred to here as the ‘narrow-value’ group) believes that such models are

helpful19 only in situations that are consistent with the assumptions and framing of these

models. For example, game theoretical analyses were extremely helpful during the cold

war for making sense of nuclear arms escalation, and in understanding the requirements

for significant de-escalation (such as in the START Treaty of 1991).

This point of view means that these models, however, would not be useful for situations

when the assumptions do not hold, e.g., under conditions of extreme uncertainty when

agents cannot reason deductively (discussed further below).

A good example of this narrow-value point of view is expressed in Tuomela (2002). A

model in which:

a social institution is an equilibrium point in a repeated game ... is restricted

in that it applies only to activities that can be modelled as a game in the

sense of game theory [and] it is idealized in requiring equilibrium behavior

... Thus, the requirement of equilibrium behavior, if informatively specified,

often is false in actual life, or else it tends to be a tautological requirement

if left fuzzy and vague. (Tuomela, 2002, p. 157)

Tuomela (2002) expands on his criticisms of Schotter’s (1981) model in Endnote 2,

pp. 254-256. This 10-point criticism can be summarised as arguing: (i) that these game

theoretic models only have value in very specific, narrow circumstances that match the

assumptions used; and (ii) the space of other types of interactions observed in the world

is enormous20.

The second group (referred to here as the ‘broad-value’ group) takes the opposite view:

models like that seen in Calvert (1995) help us make sense of interactions even when

the assumptions do not hold. We can see this perspective across a lot of work in game

theory, e.g., Bicchieri (2006) describes how such game theoretic models help explain

19Let us say helpfulness here is made up of: (i) making sense of reality; and (ii) choosing
between options given some aim(s).

20Note that this narrow-value perspective can also be seen in Field (1984), discussed above.
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social norms as “The Grammar of Society” (the title of her book) as well as “The

Nature and Dynamics of Social Norms” (the sub-title).

These two groups are clearly very different: how do we make sense of them?

In the context of the instrumentalism / realism discussion in Chapter 2, the narrow-

value group appears aligned with realism (i.e., game theoretic models are helpful when

their narrow assumptions hold but not otherwise) and the broad-value group seems more

aligned with instrumentalism. The latter would mean the results of the models ought

to aid prediction but the internal mechanisms need not correspond to reality.

Let us briefly consider the implications of realism in the context of the game theoretic

models discussed above.

The narrow-value group’s affinity with realism generally leads to a greater appreciation

of uncertainty in real-world situations than game theoretic models. Here, uncertainty

includes that resulting from a lack of information (Schofield, 1985; and North, 1990)

and knowledge (North, 2005); cognitive limitations (Heiner, 1983; and North, 2005);

mutual contingency21 (Binmore, 1987; Arthur, 1994; and Rosser, 1999); and ontological

emergence22 (Ladyman, Lambert and Wiesner, 2013).

In questioning the prevalence of uncertainty in economies, we might recall from Chapter

2 North’s (2005) statement that “uncertainty is not an unusual condition; it has been

the underlying condition responsible for the evolving structure of human organization

throughout history and pre-history.” (p. 14).

Furthermore, deductive reasoning breaks down in the face of uncertainty (Arthur, 1994),

which raises the question of how agents make sense of their situations and make decisions.

Put another way, what forms of mental models (Holland et al, 1986; and Denzau and

North, 1994) are appropriate in these situations?

Game theoretic models typically assume certainty in the agents’ context, and in terms of

mental models they tend to assume utility maximization and deductive reasoning. The

latter is not true of all game theoretic models but utility maximization appears to be a

consistent assumption. Let us look more closely at this important assumption now.

Hodgson’s Criticism of Rational Choice Theory

Hodgson (2012) is a particularly helpful paper for this subject. The author has elsewhere

advocated a pragmatist stance and encouraged the use of the complexity sciences in

21This arises when two or more agents are trying to anticipate each other’s actions, simulta-
neously.

22This is a ‘strong’ form of emergence, the outcome of which is impossible to predict, even in
principle.
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institutional research so his paper on the limits of rational choice theory seems especially

relevant here.

In this context, it is tempting to interpret the narrow-value group above as promot-

ing an empirically valid account of human nature and interaction. However, Hodgson

(2012) argues that an appeal to empirical evidence is something of a red herring be-

cause any theory that assumes utility maximization can be made to fit a concept that

is unobservable and therefore hypothetical. This follows Samuelson (1937).

The more fundamental problem with a utility maximization approach, Hodgson argues,

is that of excessive generalisation23, to the point of being close to useless in specific

situations of interest. Hodgson (2012) writes that there are at least two important issues

missing in a utility maximization account: first, “it neglects the problem of explaining

the causes of behaviour. Second it fudges the question of the individual development of

capacities and dispositions.” (p. 99, emphasis included). We might think of the first of

these as about explaining behaviour in the moment and the second about learning over

time.

It is helpful here to differentiate between two different (but easily conflated) argu-

ments for empirical accuracy. One is a more general belief that game theoretic models

should be accurate vis-à-vis human cognition, motivations, and environmental condi-

tions in principle. The second treats empirical evidence as important because the aim

is to understand real mechanisms, e.g., concerning organic institutional emergence.

Hodgson’s (2012) arguments suggest that the narrow-value group, like Tuomela, are on

much firmer grounds if their appeal to empirical evidence is based on the second of these.

Hodgson’s argument of the excessive generality of utility maximization is also helpful

because it applies to a wide variety of mental models, i.e., the cognitive means to achieve

these ends. Notably, game theoretic models that have sought to include some of the

interesting results in behavioural economics still adopt utility maximization as an aim.

Regarding the avenues of research that economists have followed, Hodgson (2012) writes

that a problem is that some “still cling tenaciously to the principles of rationality, in a

manner that is reminiscent of Ptolemaic astronomers, fitting the evidence of the apparent

circular movements of the stars into complicated models.” (p. 103). This is reminiscent

of Kuhn’s (1962) reference to researchers tinkering at the edges of some paradigm before

it is superseded by another.

The ontology this thesis is based on, which includes the bottom-up orientation of the

complexity sciences and pragmatism (notably Dewey’s), leads us to agree with Hodgson’s

23Rational choice theory has been applied to, for example, “politics, marriage, religion, suicide,
and much else” (Hodgson, 2012, p. 102); but also to “a large portion of the animal kingdom as
well.” (ibid, p. 99).
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(2012) arguments that utility maximization is too generalised. What is needed is “some

real institutional and cultural flesh and blood.” (ibid, p. 103) if we are to explain the

mechanisms of organic institutional emergence. As noted above, Field (1984) came

to the same conclusion regarding the limited ability of game theory to ‘explain’ such

phenomena.

Hodgson’s conclusion chimes particularly well with the following quote from Arthur

(2013):

Equilibrium of course will remain a useful first-order approximation, useful

for situations in economics that are well-defined, rationalizable, and rea-

sonably static, but it can no longer claim to be the center of economics.

(Arthur, 2013, p. 19)

This quote is targetted at Neoclassical theory in general but it seems appropriate to the

equilibrium-orientation of game theoretic models more specifically.

Finally, looking at game theory from a Cognitive Institutional Economics (CIE) per-

spective, Ambrosino, Fontana, and Gigante (2018) argue that the “agents’ interactions

leading to the emergence of institutions is far more complex than how [New Institutional

Economics] describes them in its game theory models.”(p. 777). As a result, “CIE takes

a critical stance on game theory.” (ibid, p. 784).

The conclusion we draw is, as stated previously, that the game theoretic models of

institutions are helpful as first-order approximations but, as Field (1984) and Hodgson

(2012) emphasise, they tell us little about mechanisms of behaviour in the real world.

This is important to us in this thesis: recall from the Introduction (and Chapter 2)

the discussion of practical institutional problems that arise as an economy changes,

including the topical example of cryptocurrencies. Without a realistic understanding of

the mechanisms of institutional emergence, how do we move forward?

These points both act as the underlying criticism of game theoretic models of institu-

tional emergence and they provides a motivation for the models developed for this thesis.

Let us consider this, briefly, now.

5.3.5 Implications for Modelling Organic Institutional

Emergence

The models developed for this thesis are based on the ontology of economic systems

described in Chapter 2.

In the context of game theoretic models of institutional emergence, an emphasis is

placed on the bottom-up orientation of the complexity sciences (cf Section 2.1.1) and
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on pragmatism (Section 2.3.3.11). This is consistent with Hodgson’s (2012) conclusion

that to find explanations of behaviour we must draw upon “psychology, anthropology,

sociology, and other disciplines” (p. 101). Moreover, this aim sits comfortably alongside

Ullmann-Margalit’s (1978) normalcy condition for invisible hand explanations.

More concretely, in the models below, the agents make decisions under conditions of

uncertainty, including situations when information is scarce but also when interactions

involve mutual contingency, i.e., when the agents cannot make decisions deductively

because they cannot deduce what other agents will do.

As a result, the agents’ mental models are based not on deductive reasoning but on prag-

matic forms of reasoning, learning, and habit formation. As stated above, Arthur (1994)

argues that deductive reasoning, which is implicit in substantive rationality, breaks down

in the face of uncertainty.

In addition, the agents must consume two resources to survive. There is no utility

maximization although the aim is still quantified.

We should note, however, that the development of models that precisely replicate cutting

edge “psychology, anthropology, sociology, and other disciplines” in a detailed way is

beyond the scope of a single thesis. More modestly, the aim of the models is to take a

step towards such an approach. As mentioned previously, these models can be viewed

within the family of those developed in Hodgson and Knudsen (2004) and in the EMIL

Project.

5.4 Models of Monetary Emergence

This section discusses a specific strand of literature concerned with the emergence of

money. This research is often traced back to Kiyotaki and Wright (1989) but their work

is in turn based on Jones (1976). Looking even further back, this literature can be

viewed as exploring Menger’s ([1890] 1981, [1883] 1985) account of monetary emergence,

which was discussed in Section 3.2.3 above.

It is worth noting briefly that money is thought of as a convention in this literature,

i.e., it provides a coordination role in which (self-sustaining) Nash equilibria are thought

to exist. The ‘quality of money’ argument discussed in Section 3.2.3 is not taken into

account. This literature also assumes that the need for money arises because of a division

of labour: there is no consideration of why agents would specialise in the absence of media

of exchange.
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One of the most interesting features of this literature is the combination of: (i) game

theoretic analysis (Kiyotaki and Wright, 1989); (ii) agent-based models (notably Mari-

mon et al., 1990); and (iii) empirical studies (Brown, 1996; Duffy and Ochs, 1999; and

Duffy, 2001 in particular). In this section we summarise and critique these three.

We first look at Kiyotaki and Wright’s (1989) Model A to orientate us around how the

problem is typically framed in most of the literature. This is the subject of Section

5.4.1, which includes a statement of the conditions under which two Nash equilibria

exist. Sethi (1999) supports Kiyotaki and Wright’s (1989) results by demonstrating

that their Nash equilibria would be reached in a dynamic setting.

The second sub-section below (5.4.2) looks at Marimon et al.’s (1990) computational

model, which was an attempt to consider whether Kiyotaki and Wright’s (1989) Nash

equilibria would be arrived at by interacting agents using classifier systems.

Section 5.4.3 considers the empirical evidence: studies have sought to replicate Kiyotaki

and Wright’s (1989) model in laboratory settings with real human subjects. We find that

this empirical evidence is inconsistent (though not fully) with both Kiyotaki andWright’s

(1989) and Marimon et al.’s (1990) analyses. Duffy (2001) represents an attempt to

reconcile the empirical evidence with an agent-based model.

5.4.1 Kiyotaki & Wright’s Model of Monetary Emergence

Kiyotaki and Wright’s (1989) Model A is summarised in Fig. 5.3 below24. There are

three agent types: each produces a good which it does not want to consume and the

circularity of production and consumption means there is never a ‘double coincidence

of wants’ (Jevons, 1875) corresponding to any two agents’ production and consumption

goods. This sets up a simple interdependence problem and the question is whether any

of the commodities would emerge as a form of money25.

In the model, an infinite number of agents (denoted i) interact bilaterally in each round.

They gain ui > 0 of utility (identical for all agents) if they consume their preferred

good, and zero otherwise. To compare utilities between rounds, a discount factor is used

(β < 1, also identical for all agents). There are an infinite number of rounds, agents

have infinite lives, and the aim of each agent is to maximize the net present value of its

present and future utility.

A transaction occurs only if both counterparties agree to sell the resource they hold. If

either refuses to sell, there is no transaction.

24Note that Kiyotaki and Wright’s (1989) Model B is the same as Model A except the pro-
duction / consumption arrows in Fig. 5.3 are reversed. This is not symmetrically the same as
Model A because of the asymmetry of storage costs of the three resources.

25Type i agents consume Resource i and produce Resource (i + 1) mod 3. In Model B they
produce (i+ 2) mod 3.
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Figure 5.3: A summary of Kiyotaki and Wright’s (1989) production and consumption
environment (Model A). A group of agents is divided into 3 types. Each arrow relates to
a specific resource: the squares at the base of each arrow correspond to production and
the pointy ends correspond to its consumption by each agent type, i.e., Type 1 agents
consume Resource 1 and produce Resource 2; Type 2 agents consume Resource 2 and
produce Resource 3; and Type 3 agents consume Resource 3 and produce Resource
1. The design of the problem space ensures there is no double coincidence of wants
vis-à-vis any two agents’ production and consumption resources.

Agents can only store 1 resource unit between rounds. If an agent does hold a resource

between rounds, it incurs a storage cost, denoted by ci. These storage costs differ such

that 0 < c1 < c2 < c3. Furthermore, if an agent trades for its preferred resource, this

is consumed immediately and the agent produces its corresponding production good (at

no cost) before the round is finished.

Kiyotaki and Wright (1989) identify two Nash equilibria (depending on c2, c3, β, and

u1). They refer to these as a ‘Fundamental Equilibrium’ and a ‘Speculative Equilibrium’

(illustrated in figures 5.4 and 5.5 below, respectively).

The Fundamental Equilibrium shown in Fig. 5.4 is quite simple: Type 2 agents inter-

mediate between Type 1 and Type 3 agents, accepting Resource 1 from Type 3 agents

and then trading it for Resource 2 from Type 1 agents. Type 1 agents will only store

Resource 2 and Type 3 agents will only store Resource 1. Type 2 agents store Resource

1 half the time and Resource 3 half the time.

This steady state equilibrium exists when the following condition holds:

c3 − c2 >
1

2

β

3
u1 (5.1)
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Figure 5.4: Kiyotaki and Wright’s (1989) Fundamental Equilibrium. Types 1 and 3
only transact with Type 2 who essentially intermediates between them. Resource 1 is
viewed as a form of money in this pattern.

We can understand this condition intuitively. The LHS of the inequality represents the

(opportunity) cost of Type 1 agents holding Resource 3 instead of Resource 2 (they

will only consume Resource 1 and never hold it). The RHS is the probability-weighted

expected utility (discounted) of holding Resource 3 instead of Resource 2 in the current

period, and in equilibrium. If the LHS exceeds the RHS then Type 1 agents will refuse

to hold Resource 3 at any time.

A Speculative Equilibrium (depicted in Fig. 5.5 below) exists if:

c3 − c2 < (
√
2− 1)

β

3
u1 (5.2)

In this type of equilibrium, Type 1 agents believe it is worthwhile holding Resource 3

when offered (the expected utility of this strategy exceeds its opportunity cost), hence

Type 1 agents will ‘speculate’ that they might sell Resource 3 for 1 in the next round.

In this literature, resources 1 and 3 are seen as having money-like properties.

It is worth emphasising here that the difference between the fundamental and speculative

equilibria is in whether Type 1 agents store and trade Resource 3.

Note that when:

(
√
2− 1)

β

3
u1 < c3 − c2 <

1

2

β

3
u1
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Figure 5.5: Kiyotaki and Wright’s (1989) Speculative Equilibrium. This is identical
to the Fundamental Equilibrium outcome except this time Type 1 agents will accept
Resource 3 from either Type 2 or 3 agents. Both resource 1 and 3 are viewed as money-
like: Resource 1 is used as ‘money’ by Type 2 agents and Resource 3 is used by Type
1 agents.

there is no determinable equilibrium.

The simple, interdependent framework developed and analysed in Kiyotaki and Wright

(1989) seems a neat way of thinking about money as an organic institution (here, a con-

vention). Also, the Nash equilibria are helpful in helping us understand which outcomes

would be self-sustaining.

In the context of this thesis, there remains a crucial question of whether such institutional

equilibria can emerge in a population.

Related to this, Sethi (1999) demonstrates that not only are Kiyotaki and Wright’s

(1989) Nash equilibria both stable, we should also expect convergence on these equilibria.

This is true of the equilibria pertaining to Model A but also Model B: for the latter,

convergence to either equilibrium can occur but which emerges depends on the initial

conditions.

It is worth noting, also, that Sethi (1999) states that “stringent assumption regarding

information and rationality are not necessary in order to explain the use of money as

a medium of exchange.” (p. 246). This seems a strong statement in light of the fact

he does not explore whether a wide variety of mental models give rise to these Nash

equilibria. Marimon et al. (1990), to which we now turn, indicates that this is not true.
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5.4.2 Marimon et al’s Computational Model

In the words of Marimon et al. (1990), “while [Kiyotaki and Wright (1989)] studies

stationary equilibria in which beliefs about ‘media of exchange’ are consistent with

trading patterns, we study economies in which particular commodities emerge as media

of exchange.” (p. 330, emphasis included).

In this subsection we focus on Marimon et al.’s (1990) evolutionary model and then

comment on other evolutionary models at the end.

The economic environment in which the agents are located is essentially the same as

that of Kiyotaki and Wright’s (1989) Model A26. However, here, the agents use classifier

systems as described in Holland (1975), which means the agents’ mental models are

based on rules rather than substantive rationality.

Each agent has two classifier systems: one related to exchange (concerned with whether

an agent should offer to trade their stored resource) and another related to consumption

(whether or not they should consume the resource they hold at the end of the round).

Within these two systems, classifiers are categorised according to the conditions an agent

might face such that for a given set of conditions (e.g., I hold Resource 2, my counterpart

Resource 3) there are a number of potential rules which apply (e.g., offer to trade or

not).

Each rule in a group of classifiers is given a weight that changes over time depending

on experience: at any given time, the rule with the highest weight is chosen27. The

change in weights occurs via a type of reinforcement learning: if the agent benefits from

a rule, its weight increases; and vice versa. Note this reinforcement learning can occur

inter-temporally, e.g., if an agent chooses a rule which means it keeps its stored resource

at time t but which it then trades for its consumption resource in t + 1, the weight of

the rule applied in t increases.

Marimon et al. (1990) conduct two sets of experiments. In one the agents are allowed

access to every rule possible; and in the second, the agents have a limited set but they

use a genetic algorithm “as a device for periodically eliminating some rules and injecting

new rules into the population...” (Marimon et al., 1990, pp. 330-331).

Initial Conditions and Parameters

At instantiation each agent (i) is endowed with the resource it can produce: (i+1) mod 3.

26The authors also explore Model B but most of their simulations are based on Model A.
27This is referred to below as a “Winner Takes All” approach. In the default simulations of the

first model presented in Chapter 7 below we consider this and also a “Roulette Wheel” approach
whereby the probability a rule is chosen is determined by its relative weight.
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Marimon et al. (1990) are interested in both the fundamental and speculative equilibria

so they (attempt to) adjust parameters to correspond with these scenarios.

For simulations related to a Fundamental Equilibria, they select the following parame-

ters:

ui = 100

c1 = 0.1

c2 = 1.0

c3 = 20

When focused on the speculative equilibrium, the same parameters are used except

ui = 500.

An important difference between Kiyotaki and Wright’s (1989) framework and Marimon

et al.’s (1990) architecture is that β (the discount rate applied to future utility) is not

incorporated into the latter. One implication of this is that we cannot specify whether

the Speculative Equilibrium inequality (5.2 above) holds or not.

In fact, the exclusion of β from Marimon et al.’s (1990) model raises a larger question

about its comparability with Kiyotaki and Wright’s (1989) equilibrium-based analysis.

This simple difference highlights the distinction between the types of first-order approx-

imations seen in game theoretic analyses and attempts to consider mechanisms closer to

those seen in reality. This was the main theme of the last section.

In Kiyotaki and Wright’s (1989) analysis, β is necessary to enable agents to calculate

their expected utilities (to infinity) of different strategic choices in the present. This

corresponds to Hodgson’s (2012) reference to treating “individuals as capable of em-

ulating incredible super-calculators with unbounded cognitive capacities, without any

consideration of how they would manage to do this.” (p. 100).

We can think of Marimon et al.’s (1990) model as a step away from a first-order ap-

proximation and closer to a realist approach (not that they stated this). Agents make

decisions via rules and the probabilities of selecting those rules change over time. In this

model, the agents learn through reinforcement triggered by utility gains and storage

costs. Moreover, while we can imagine a version of this model which discounts expected

utility in the future to the present, this is not done in Marimon et al.’s (1990) model: β

is not relevant in this framework28.

28Below we will see that Duffy and Ochs (1999) and Duffy (2001) in effect ‘force’ β = 0.9 on
their live subjects by applying a 10% probability that the ‘game’ will finish at the end of the
current round.



Chapter 5 Models of Organic Institutional Emergence 175

To the extent we want to compare Marimon et al. (1990) and Kiyotaki and Wright

(1989), we can determine the values of β implied by inequalities 5.1 and 5.2 by applying

the former’s parameters.

If we apply the above Fundamental Equilibrium parameters to Inequality 5.1 above we

find that β < 1.140. Given that we would expect 0 < β < 1, this condition will hold,

i.e., the above parameters appear consistent with a Fundamental Equilibrium.

However, if we apply Marimon et al.’s (1990) Speculative Equilibrium parameters to

Inequality 5.2 above, we find β > 0.275. This is more troublesome because we cannot

say for sure what β ought to be. This requirement leads Marimon et al. (1990) to

fudge the issue somewhat by stating that “for high enough discount factors the unique

stationary equilibrium of Kiyotaki and Wright’s economy is the so-called speculative

equilibrium...” (p. 359).

In addition to the comparability problem that β points to, there are at least two more

criticisms of Marimon et al.’s (1990) simulations: (i) the authors did not explain why

these two specific sets of parameters were chosen (other than attempting to replicate

inequalities 5.1 and 5.2); and, related, (ii) they did not discuss results that used different

parts of the parameter space29.

Because the authors did not address these issues, they are at risk of being accused of

‘cherry picking’ parts of the parameter space. Unfortunately, we require an analysis of

results from different parts of the parameter space to know the extent to which this

criticism is important!

Results and Discussion

This potential criticism of cherry-picking aside, Marimon et al. (1990) report and discuss

various simulations of these models (A and B).

When the Fundamental Equilibrium parameters were applied to Model A and the agents

had a full set of classifiers available to them, “the exchange and consumption strategies

implemented by the system of winning classifiers virtually coincide with the [fundamen-

tal] equilibrium strategies.” (p. 356), i.e., there is successful convergence to this Nash

equilibrium.

Furthermore, when the agents have a restricted set of classifiers (along with a genetic

algorithm as described above) under the same conditions, the results were about the

same but “it takes longer to converge...” (Marimon et al., 1990, p. 359).

29It is possible that the authors covered these issues in the working paper that preceded the
published paper (the former is referred to in the latter) but this appears no longer available. An
attempt was made to retrieve this from the publishers (the Hoover Institution) but they could
not find it.
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Turning to the Speculative Equilibrium parameters (now ui = 500), the authors report

that the results essentially reflect the Fundamental Equilibrium and not the Speculative

Equilibrium they had targetted. This was true when the agents used full and restricted

sets of classifiers.

It appears that the agents fail to learn a combination of strategies via their classifiers

required for the Speculative Equilibrium to emerge. For this to happen, the agents have

to learn to: (i) exchange Resource 2 for 3; (ii) hold Resource 3 between rounds (i.e.,

not consume it and incur a relatively high storage cost); then (iii) exchange Resource

3 for 1 (potentially); and then (iv) consume Resource 1. After this sequence of events,

the utility consumed (500) would feed back to the classifiers, as a type of reinforcement

learning, that allowed this consumption to occur.

From Marimon et al.’s (1990) data and comments, it appears the Type 1 agents will do

step (i) above but the agents learn to consume their Resource 3. This seems odd but it

allows them instead to produce and hold Resource 2 (with a lower storage cost) between

rounds, which they might then trade. The net effect is that the pattern of resource

holdings closely resembles the Kiyotaki and Wright’s (1989) Fundamental Equilibrium30.

It is possible that the seemingly large difference in storage costs (c2 = 1.0 and c3 =

20.0) plays a role here and we will see below that the models of both Başçi (1999) and

Staudinger (1998) reduce this differential.

One of the noteworthy results identified by Marimon et al. (1990) is referred to in a sub-

section entitled ‘Patience requires experience’ (pp. 361-2). They observe the problem of

lock-in when it comes to winning classifiers that dominate the agents’ mental models.

If an agent happens upon beneficial but sub-optimal classifiers, these are often retained

for the life of the simulation. This is like climbing to the top of a local peak in a fitness

landscape when higher peaks exist elsewhere.

Put another way, the agents did not experiment sufficiently enough to find an optimal

strategy of exchange.

Marimon et al. (1990) also run simulations corresponding to Kiyotaki and Wright’s

(1989) Model B. This model also has two equilibria but this time they co-exist across

the whole parameter space.

When the agents use a full set of classifiers, Marimon et al. (1990) observe trading

patterns consistent with one of the equilibria but eventually the economy gravitates to

30It is not clear why the exchange and consumption classifiers had to be linked here. An
alterative design could have simply used the utilities gained from consumption (and costs from
storage) as feedback to both sets of classifiers but independently of each other. Alternatively,
the consumption classifiers could have been assumed away by simply granting the agents the
intelligence of consuming their own preferred resource and neither of the other two. Our interest
lies more with exchange so the consumption classifiers seem like a distraction.
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the other equilibrium. When a restricted set of classifiers is used, the economy does not

converge on an equilibrium after 2,000 rounds but “the economy seems to be moving

towards [one of the equilibria].” (p. 366).

We conclude by quoting Hodgson and Knudsen (2004): the results of Marimon et al.

(1990) are “qualified and partially inconclusive.” (Hodgson and Knudsen, 2004, p. 21).

Other Evolutionary Models

Here we briefly note two papers. The first is Başçi (1999) who also uses classifier sys-

tems: the question explored is whether reducing c3−c2 and introducing imitation would

induce Type 1 agents to adopt a speculative strategy. Başçi (1999) finds that “neither

modification by itself results in a significant increase in the speed of convergence to the

speculative strategy profile ... but that the combination of these two modifications does

enable the classifier system to achieve convergence .. with a high frequency.” (Duffy,

2001, p. 302). Note, however, that the RHS of Inequality 5.2 ((
√
2 − 1)β3u1) must be

significantly greater than the RHS (c3 − c2) for this to be true, in addition to agents

imitating others.

The second paper is Staudinger (1998), which also adjusts c3 − c2 but here the author

applies a genetic algorithm to exchange strategies only. Staudinger finds that “if the

difference between benefit and costs is sufficiently big the economy converges to the

speculative equilibrium.” (p. 98). This is essentially the same result as Başçi (1999) but

without the use of classifier systems and imitation.

We can think of Başçi (1999) and Staudinger (1998) as exploring specific parts of the

parameter space, which Marimon et al. (1990) failed to do.

5.4.3 Empirical Studies of Monetary Emergence

Brown (1996) was the first to test the Kiyotaki and Wright (1989) model on live human

subjects; however, here we discuss Duffy and Ochs’s (1999) experiments because these

were more rigorous and applied more broadly than Brown’s (and their results included

the latter’s main result).

Duffy and Ochs (1999) attempted to create a set of experiments that was as close to

Kiyotaki and Wright’s (1989) environment as possible. A detailed description can be

found in their Section III (Duffy and Ochs, 1999, pp. 853-857).

In fact, Duffy and Ochs even went as far as to ‘force’ a discount rate (β = 0.9) by telling

their human subjects there was a 10% probability that the ‘game’ would end before the

next round.

The main results from Duffy and Ochs (1999) are presented in Table 5.1 below.
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ui = 20 ui = 100
KW Exp D&O(p) KW Exp D&O(p) D&O(e)

Type 1 0 0.30 1 0.36 0.37
Type 2 1 0.98 1 0.95 0.96
Type 3 0 0.07 0 0.25 0.16

Table 5.1: A Summary of Duffy & Ochs’ Experiment Results (Model A). Two sets
of results are presented: one where ui = 20 (Table 4, p. 859) and another where
ui = 100 (Table 7, p. 865). Other parameters are identical for both: β = 0.9, c1 = 1,
c2 = 4, and c3 = 9). The first experiment corresponds to Kiyotaki and Wright’s (1989)
Fundamental Equilibrium and the second to their Speculative Equilibrium. Values of 1
in this table mean that Type i agents would always exchange Resource (i+1) mod 3 for
(i+ 2) mod 3 (0 means they would not). The results referred to as “KW Exp” are the
values expected in Kiyotaki and Wright’s (1989) Nash equilibria for each agent type.
Those referred to as “D&O” refer to the results observed in Duffy and Ochs’s (1999)
experiments (second half of results only): “D&O(p)” refers to these results when the
subjects start each game holding their production goods, and “D&O(e)” when they
start with the good expected in Kiyotaki and Wright’s (1989) Nash equilibria. There
are two main differences: (i) Type 1 agents do not behave as expected in Kiyotaki
and Wright’s (1989) Nash equilibria (in both experiments) - notably, their behaviour
does not appear to change between the two experiments; and (ii) Type 3 agents do not
behave as expected when ui = 100.

Like Brown (1996) before them, Duffy and Ochs (1999) observe a “Type 1 problem” in

that the behaviour of Type 1 agents does not accord with Kiyotaki and Wright’s (1989)

Nash equilibria. In the first set of experiments, when ui = 20, we expect Type 1 agents

never to exchange Resource 2 for Resource 3 and yet they do so 30% of the time31.

Likewise there is inconsistency in the Speculative Equilibrium setting (ui = 100). Here

Duffy and Ochs (1999) presents two sets of data: one where the subjects start the

experiments with the resource they produce (“D&O (p)”)32 and a second where they

start off as if in Kiyotaki and Wright’s (1989) Speculative Equilibrium (“D&O (p)”)33.

Type 1 agents exchange resources about 37% of the time under both initial conditions,

versus 100% in Kiyotaki and Wright (1989). Duffy and Ochs state that a statistical

significance test suggests Type 1 agents did not change their behaviour from when

ui = 20 and ui = 100.

Duffy and Ochs (1999) also observe an inconsistency for Type 3 agents, when ui =

100. These agents exchange Resource 1 for 2 16-25% of the time (depending on initial

conditions) when in Kiyotaki and Wright’s (1989) Speculative Equilibrium they are

expected never to do so. Statistical significance tests indicate that the 0.25 result is

significantly different from zero and that 0.16 is not significantly different from 0.25.

31When the data is disaggregated and analysed, Duffy and Ochs find that approximately 48%
of agents behave according to the Fundamental Equilibrium and the remaining agents are roughly
evenly split in exchanging Resource 2 for 3 between 5% and 100% of the time.

32See Duffy and Ochs (1999), Table 4, p. 859.
33ibid, Table 7, p. 865.
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Duffy (2001) attempts to reconcile the empirical evidence observed in Duffy and Ochs

(1999) with an ABM (and to conduct further live experiments).

After making a number of (reasonable) simplifications, Duffy’s (2001) computational

model boils down to a single probability for each agent type as to whether it would

exchange Resource (i+1) mod 3 for (i+2) mod 3. To implement this, the model recorded

the number of times the agents chose to exchange these resources and then whether they

were subsequently able to trade for their consumption resource (i) or not. The model

recorded the same data for when the agents chose not to exchange these resources.

These data were then transformed into a probability that was used to determine the

agents’ decisions (see pp. 304-305 of Duffy, 2001 for further details). The updating of

probabilities was referred to by Duffy as ‘hypothetical reinforcement’ and was equivalent

but not identical to Roth and Erev’s (1995) strict reinforcement learning.

Duffy’s (2001) main results are shown in Table 5.2 below.

u = 100
KW Exp D&O(p) D&O(e) D Sims

Type 1 1 0.36 0.37 0.32
Type 2 1 0.95 0.96 0.99
Type 3 0 0.25 0.16 0.04

Table 5.2: A Summary of Duffy’s (2001) Experiment Results. The parameters are
identical to Duffy and Ochs’s (1999) Speculative Equilibrium experiments (RHS of
Table 5.1 above). The results referred to as “KW Exp” are the values expected in
Kiyotaki and Wright’s (1989) Nash equilibria for each agent type. Those referred to as
“D&O” refer to the results observed in Duffy and Ochs’s (1999) experiments (stated in
Table 5.1 above). “D Sims” refers to Duffy’s (2001) main simulation results.

Duffy (2001) concludes that, overall, “qualitatively, the ‘fit’ of the artificial agent sim-

ulation statistics to those ... from the experimental data appears to be quite good.”

(p. 309). The largest difference between Duffy and Ochs’s (1999) data and Duffy’s

(2001) simulation results is for Type 3 agents: Duffy seems comfortable that this is not

significant.

5.4.4 Comparing the Literature

When we consider the computational models of Marimon et al. (1990), Başçi (1999),

and Staudinger (1998), and the empirical results of Brown (1996) and Duffy and Ochs

(1999), we are in the curious position of being able to compare game theoretic and

computational analyses with empirical data (all largely based on the same model).

The main observation we can make is that of inconsistency between the three types of

study. Moreover, given the emphasis on realism in Chapter 2, it seems reasonable to use

the empirical evidence as a yardstick by which to judge the other two.
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On that basis, we can state that, on the whole, Kiyotaki and Wright’s (1989) Nash

equilibria appear to be a first-order approximation of Brown’s (1996) and Duffy and

Ochs’s (1999) empirical evidence. This is certainly true of type 2 and 3 agents in the

Fundamental Equilibrium experiments (LHS of Table 5.1) but it is less true of Type 1

agents in these experiments. Furthermore, there appears to be a significant difference

between both Type 1 and Type 3 agents in the Speculative Equilibrium experiments

relative to the equilibrium behaviour expected in Kiyotaki and Wright (1989).

The idea that Kiyotaki and Wright’s (1989) Nash equilibria are first order approxima-

tions (inaccurate but helpful) is very much consistent with the theme of the last section.

What about the simulation results of Marimon et al. (1990), Başçi (1999), and Staudinger

(1998) versus the empirical evidence?

Marimon et al. (1990) predates the empirical tests so these did not influence their ABM.

The key result of this paper is that their Type 1 agents appear to play the Fundamental

Equilibrium strategies in both the fundamental and speculative environments. Duffy

and Ochs (1999) also show consistency between the two but only partially.

Başçi (1999), and Staudinger (1998) were published after Brown (1996) but Başçi (1999)

saw Duffy and Ochs’s (1999) results before they were published.

Unfortunately, the data published in Başçi (1999), and Staudinger (1998) make it im-

possible to analyse the differences between their results and the empirical evidence in

detail.

Başçi (1999) states that “our algorithm qualitatively mimics the experimental results of

Brown (1996) and Duffy and Ochs (1996).” (p. 1582). This is a vague statement and is

the only reference to a comparison with empirical evidence in the paper.

Staudinger (1998) states that a “large number of simulations shows that individuals of

type 1 prefer to hold the good with the lowest costs. These results are consistent with

those of Brown and Marimon et. al.” (p. 98). While this appears broadly true, data is

not presented to allow us to judge this quantitatively.

It is worth highlighting that Başçi (1999) and Staudinger (1998) share an interesting

feature: both appear more interested in replicating Kiyotaki and Wright’s (1989) Nash

equilibria than reproducing the empirical evidence. Both papers refer to these Nash

equilibria as “optimal”. For example, Staudinger (1998) states that the “main questions

dealed [sic] with are: Do the economy converge to a steady state equilibrium, and if so, do

individuals with bounded rationality learn the optimal strategies of this equilibrium[?]”.

Furthermore, neither of these papers deal with the question of uncertainty for the sub-

jects who took part in Brown’s (1996) and Duffy and Ochs’s (1999) experiments, and its

implications for decision making. Notably, Kiyotaki and Wright’s (1989) Nash equilibria
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require not only that each agent is substantively rational, they also require that agents

assume all other agents are also substantively rational34. It would be entirely reasonable

for subjects in experiments not to know how other subjects make their decisions, which

would have to be based on guesswork about how other agents think about the problem

(and how these agents are guessing how others are thinking...).

As discussed above, Duffy (2001) also developed a computational model but his was

more focused on the empirical evidence.

5.5 Concluding Comments

From the discussions in the preceding four sections of this chapter, three themes in

particular are worth highlighting. These provide challenges for the models of organic

institutional emergence developed below.

5.5.1 Reasoning, Learning and Habits

The models evaluated or mentioned in this chapter all include combinations of forms of

reasoning, learning, and habit formation. However, none of these models included all

three (at least not explicitly), all of which seem to be important and interesting cognitive

phenomena.

One of the challenges this poses is to develop agents’ mental models that allow them to

reason in some way about their environment, to learn, and to form habits.

The EMIL models evaluated in Section 5.2 are orientated around reasoning and (rein-

forcement) learning, and are focused on immergence. If the convergence of some cognitive

rule to a probability of 1 can be interpreted as a habit then one could argue that these

models also included habit formation; however, this was not explicitly mentioned.

Overgeneralizing somewhat, Hodgson and Knudsen’s (2004) model can be seen as the

mirror imagine of the EMIL models. Agents’ decisions are driven entirely by innate

tendencies applied to observed data and a single habituation variable, which simply

reflected previous decisions. Changes in the habituation variable were seen by Hodgson

and Knudsen (2004) as akin to but not the same as reinforcement learning.

The challenge here is related to the following quote from Hodgson and Knudsen (2004)

who state that “more complex learning algorithms would clearly be appropriate in deci-

sion environments involving more learning parameters and behavioral choices than are

present in our model.” (p. 23, Footnote 7).

34This assumption is necessary when agents decide whether or not to hold a particular resource
between rounds: what other agents do between rounds matters for this decision.
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5.5.2 Beyond First-Order Approximations

The main theme of Section 5.3 was that game theoretic approaches can be viewed as

helpful approximations of reality, and this was neatly exemplified in Section 5.4 when

we contrasted Kiyotaki and Wright’s (1989) Nash equilibria with comparable empirical

evidence. However, if our aim is “explaining the causes of behaviour” (Hodgson, 2012,

p. 99, emphasis included), or at least to move a step closer to this, then we have to look

beyond approaches that combine utility maximization and substantive rationality.

This fits with the emphasis on realism and pragmatism in this thesis and also with

Ullmann-Margalit’s (1978) normalcy condition for invisible hand explanations.

Another feature of a number of models analysed above (notably that of Hodgson and

Knudsen, 2004 and the four EMIL ABMs) was the grounding of models in lifelike situ-

ations. This stands in contrast to the abstract nature of many ‘games’ in game theory

and it sits comfortably with pragmatism.

Furthermore, we would ideally develop models of both convention and social norm emer-

gence, corresponding to Schultz’s (2001) two categories of interaction.

With all these aims in mind, the models developed for this thesis are grounded in the

important economic challenges of markets, property rights, and the division of labour.

Mental models are designed to help agents make decisions in uncertain environments.

More specifically, the emergence of a market is based on a coordination-like challenge

(agents finding each other to trade); and the emergence of property rights is based on

interactions that include a free-rider problem (the temptation to steal others’ resources

which runs counter to the socially preferred outcome where they do not).

5.5.3 Thoroughness of Analysis

This final theme relates to criticisms of the write-ups of the four EMIL models and of

Marimon et al.’s (1990) ABM. The exploration of the parameter space was poor in all

of these cases, and there were no explanations for why specified parameters were chosen

over others.

As mentioned in Section 5.2.3, it is important in computational research to report on

simulation results for areas outside of some chosen point in the parameter space. Ideally

data would be provided (like those in figures 5.1 and 5.2 above, which were copied from

Hodgson and Knudsen, 2004) in addition to analysis.

The aim in doing this is not only to understand when some phenomenon occurs but also

to understand the nature and degree of the impact of parameters (or different methods)

on the phenomenon. In the models described in chapters 7 and 9 below, exploring the

parameter space is also important for understanding when an environment is enabling
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of (conducive to) an institution emerging, and when it is not. Exploring and analysing

the parameter space is essential in computational research.





Chapter 6

Models: Rationale, Design and

Results

All models are wrong, some are useful.

– George Box

This chapter has four aims:

1. the identification of two research questions;

2. the reasons why specific architectural decisions were made when designing the two

computational models presented in later chapters;

3. an overview of these models; and

4. a summary of the main results of the simulations.

It is perhaps surprising that a summary of the main results is presented before the

models and simulations are discussed in detail in later chapters. There are two reasons

for this.

The first stems from the fact the models were not developed in order to investigate a

pre-conceived hypothesis; rather, they were used as tools of investigation. This means

that it would be disingenuous to state some hypothesis in this chapter and then to ‘test’

it subsequently with some Agent-Based Models (ABMs). The two research questions

below provide us with orientation but the main results are presented in lieu of some

theory or hypothesis to be tested.

In practical terms, the research proceeded iteratively between conceptualising and mod-

elling. Some of the open questions in the spontaneous order and Institutional Economics

185
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literatures acted as ‘compass bearings’ (including earlier versions of the research ques-

tions) but the research phase should be thought of more as an exploration of terrain.

In fact, the need for this approach was augmented by the focus on ‘surprising’ emergent

phenomena. There is a tension in trying to understand and model such processes: the

‘surprise’ element means they should be beyond our (unassisted) cognitive horizons;

but we need to understand them sufficiently enough to develop an initial model. The

solution to this paradox was to employ a feedback loop: to develop a model, investigate

and analyse the resulting simulation data, and then to make adjustments to the model.

The process can perhaps best be described as ‘trial and error’. Moreover, we can think of

the computational models as cognitive annexes that help overcome the cognitive horizon

problem.

The authors of the EMIL Project Report stated something similar to this: their models

were used both to develop the theory and to validate it (Conte and Edmunds, 2010,

p. 5).

The second reason for discussing the main results in this chapter is that the models

described in chapters 7 and 9 are relatively large (the reason for which are discussed

below) and summarising the results helps with orientation and understanding.

The rest of this chapter is divided in to four sections which are aligned with the four

aims listed above.

6.1 Research Questions

The two research questions stated below arise from the ontology of Complexity Eco-

nomics (CE) set out in Chapter 2; the spontaneous order literature discussed in chapters

3 and 4; and the models / model types evaluated in Chapter 5.

Let us first state the research questions and then discuss them:

1. Can organic institutions emerge spontaneously across a population while also im-

merging within individuals’ mental models via reasoning, learning, and habitua-

tion? and

2. Can ‘liberal legislation’ catalyse institutional emergence when it does not occur

endogenously?

To better understand these questions, it is helpful to pull them apart and address various

topics.
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Organic Institutional Emergence

In this thesis we are interested in a specific type of spontaneous order: organic (un-

planned) institutions. For clarity, it is helpful to repeat Ferguson’s statement, mentioned

in the Introduction, of order that is “the result of human action, but not the execution

of any human design” (Ferguson, 1767, p. 205).

The main challenge here stems from the lack of understanding of mechanisms by which

organic institutions emerge. As was mentioned previously, Hayek’s framing of spon-

taneous order is viewed by many (e.g., Gray, 1998; and Luban, 2020) as the most

sophisticated but we saw in Chapter 4 that his theory of cultural evolution has been

heavily criticised1.

This lack of a coherent theory of organic institutional emergence chimes with the fol-

lowing quote from Hodgson (2002a).

At both the theoretical and methodological level, there is no clear consen-

sus among modern researchers as to what would constitute an adequate or

acceptable explanation of the process of emergence of an institution. This

question is at present under-researched. (Hodgson, 2002a, p. 112)

Field wrote something similar:

While we are making methodological and substantive progress on macro-

level explorations of the consequences of institutional variation, attempts to

provide a satisfactory microanalytics, one that explains systematically how

institutions are created, how they are sustained, and why they vary, have

been far less successful. (Field, 2007, p. 1)

There has also been a lot of work in game theory which claims to be concerned with

organic institutional emergence. However, we argued in Chapter 5 that while these

models contain helpful ‘first-order approximations’ (Arthur, 2013), they have mostly

failed to identify the mechanisms by which organic institutions emerge in the real world.

Field’s (1979, 1981, 1984) criticisms and Hodgson’s (2012) discussion of the limits of

rational choice theory were used to support this point2.

1In previous chapters, we saw that Hayek is not the only theorist who has been concerned
with spontaneous order. In Chapter 3 we discussed a wide range of research pre-, intra-, and
post-Enlightenment. Nonetheless, it is not unreasonable to state that Hayek’s framing has been
at the heart of the spontaneous order literature for decades.

2As mentioned in Chapter 5, this is not to argue that game theory is completely useless. The
discussion of Kiyotaki and Wright’s (1989) money emergence model, for example, showed that
their Nash equilibria are interesting but, ultimately, not fully consistent with empirical evidence.
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Can These Institutions Emerge?

A question worth repeating, discussed in Chapter 4, is whether or not we should expect

beneficial institutions to necessarily emerge.

There are two parts to this. From a complexity science point of view, whether or not

some property emerges depends on whether the environment is sufficiently enabling.

Second, might good and bad institutions emerge under different conditions?

Hence, the first research question asks ‘can’ institutions emerge? And, similar to Hayek’s

definition of order, the question is agnostic as to whether any emergent institution

is beneficial or detrimental. Note, however, that in the first model we start from a

state of non-coordination and explore the agents unintentionally coordinating: no ‘bad’

institutions can emerge in these simulations; but this is not true of the second model.

Emergence and Immergence

As mentioned previously, Hodgson (2006a) uses the analogy of a Klein bottle to illustrate

the idea that, for institutions, “the subjective ‘inside’ is simultaneously the objective

‘outside’ ” (p. 8). From a complexity science perspective this image seems appealing

because it highlights both some externally observed structure co-existing with institu-

tions within agents’ mental models. An example can be seen in Hodgson and Knudsen’s

(2004) simulations when the agents choose to drive either on the left or right of the

road: the objective emergence is the observed phenomenon of all the agents driving on

the same side whereas the inner, cognitive phenomenon is habituation.

Moreover, the idea of immergence appears to have been catalysed by Conte and Castel-

franchi’s (1995a) reference to cognitive emergence; and further developed in Castel-

franchi (1998), the EMIL Project, and subsequent work, e.g., Conte et al (2013).

An important part of the first research question, then, is to explore further this com-

bined emergence and immergence as the process counterparts to Hodgson’s Klein bottle

analogy.

Reasoning, Learning and Habituation

While emergence and immergence are of general interest, we are more interested in

specific mechanisms by which these occur.

As stated in the conclusion to the previous chapter, the models critiqued in that chap-

ter seem to contain three important features (deployed in different ways): (i) types of

reasoning under conditions of uncertainty; (ii) learning, notably that of reinforcement

learning (Roth and Erev, 1995; and Erev and Roth, 1998); and (iii) habituation.
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The EMIL Project models probably come closest to including all three of these features

but were weak on habituation (and simulation evaluation); and Hodgson and Knudsen

(2004), which focused on habits, commented that forms of learning could be added to

their model.

The first research question includes the challenge of developing computational models

that accommodate all three of these phenomena in a coherent and compelling way.

Furthermore, the design of the agents’ mental models also accounts for the idea of

institutions as rules3 and also the idea of different rules competing within the mind.

This latter point is consistent with Hayek’s theory of mind, Holland’s (1975) classifier

systems, and Holland et al’s (1986) discussion of how agents identify patterns and reason

under conditions of uncertainty.

Liberal Legislation

Turning now to the second research question, there was a discussion in Chapter 4 of

what Hayek refers to as ‘liberal legislation’ in some of his work (Vanberg, 1994b). This

is the idea of legislation that enables efficient markets (but which is not designed to bring

about specific outcomes) and is contrasted with ‘interventions’ in economic activity that

have concrete objectives in mind.

Related to this, let us recall a point made in Ullmann-Margalit (1978) about her

evolutionary-functional mould of invisible hand explanations. This is when some process

or feature can maintain something which has been deliberately designed, rather than it

having emerged spontaneously. This means the mechanism that sustains ‘order’ can be

categorized as ‘invisible hand’ even though the outcome has been planned.

With these points in mind, a set of experiments is designed (based on the second model)

whereby legal rules are imposed on a population of agents in conditions when we know

property rights do not emerge endogenously. The question we explore is whether such

rules enable the emergence of property rights in the population.

Computational Models

In additional to the conceptual material considered above, an implicit aim of the research

questions is to add to the body of computational models concerned with institutional

matters.

Most notably, and as mentioned previously, Gräbner has argued in three recent papers

(Gräbner and Kapeller, 2015; Gräbner, 2016; and Gräbner, 2018) that agent-based

models appear well suited to institutional analysis. However, the only model that focuses

specifically on organic institutional analysis cited in those papers is that of Hodgson and

3that in “circumstances X do Y.” (Hodgson, 2006a, p. 3).
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Knudsen (2004), which was discussed in detail in Chapter 5. The models presented below

add to this strand of literature.

Now that we have stated and discussed the research questions, let us consider some of

the factors that influenced the design of the models over and above these questions.

6.2 Model Design

Here we consider the main influences on the design of the models.

Recall from the Introduction various challenges in the literature identified in Hodgson’s

(2002a) Agenda. These all influenced the design of the models and will not be repeated

here.

Below we look at five themes before discussing three risks of agent-based modelling, as

identified in Gräbner (2016), and how these risks were managed in the models.

Spontaneous Order

Consistent with the ontology of CE described in Chapter 2, we design our agents with

mental models that allow them to make decisions, given their aims, under conditions

of uncertainty. The agents in these models are deliberately myopic with no means to

directly coordinate or cooperate.

Furthermore, setting aside the ‘liberal legislation’ experiments for now, the models were

developed in a way that meant there was space for some organic institution to emerge

but care was taken to ensure nothing was designed into the models that created a bias

towards such emergence.

In the first model, the agents’ mental models were designed to allow them to find other

agents to trade with: no attempt was made to force or encourage the creation of a

market. In the second model, agents were endowed with two propensities (to steal and

to defend their resource holdings) that evolved via reinforcement learning. Again, there

was no attempt to create an outcome one way or the other, including property rights.

Bottom-Up Pragmatism and Realism

In Chapter 5 we discussed a number of models that are based on representations of

real-world situations, e.g., Hodgson and Knudsen’s (2004) traffic convention model and

the four models discussed in the EMIL Project Report. By contrast, game theoretic

models tend to abstract away from practical situations.

The models developed for this thesis follow the pragmatic, ground-up approach, which

fits with the CE principles discussed in Chapter 2. The main rationale for this links to
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Hodgson’s (2012) emphasis on seeking to identify mechanisms that explain phenomena

seen in the real world.

More specifically, the models are focused on economic matters. To that end, three of

the core features of market-based economies were chosen as ‘target domains’: property

rights, markets, and the division of labour.

The first model below assumes the agents respect each other’s property, allowing us to

focus on market emergence and agent specialisation (leading to a division of labour).

The second model is based on the first but it relaxes the property rights assumption

(agents are now free to steal from each other): the question is whether property rights

emerge endogenously which might then enable market emergence and the division of

labour.

We should be clear that a ‘market’ here is defined in a narrow sense: it is a solution to

a coordination problem in which agents want to find others to trade with. Markets can

be defined in many different ways, e.g., Hodgson (2019) discusses various meanings of

this word in the context of taxonomic definitions.

Invisible Hand Explanations

The design of the models is also linked to Ullmann-Margalit (1978). This paper is helpful

in two ways. First, as discussed in Chapter 4, Ullmann-Margalit proposed two ‘moulds’

of invisible hand explanations: the aggregate and functional-evolutionary moulds.

These two moulds correspond neatly with the two models developed below: the first

model with the aggregate mould and the second with the functional-evolutionary mould.

In addition, there is an approximate correspondence between the models and Schultz’s

(2001) coordination situations (the first model) and collective action situations (the

second model): free-rider problems were not observed in the simulations based on the

first model4 but they were seen in the second.

The second way Ullmann-Margalit’s (1978) paper is helpful is that it proposes three

characteristics (or ‘constraints’) for invisible hand explanations. These should: (i) be

individual-based; (ii) meet a ‘normalcy’ condition; and (iii) be surprising in some way.

The first of these characteristics was designed into the models, which is typical of ABMs

anyway. The second and third conditions both helpfully guided the research during the

iteration between models and theory. Also, we use these characteristics to evaluate any

institutions that might emerge (see Section 6.4.6 below).

4We found the problem was equivalent to a non-pure coordination game rather than a pure
one.
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Principles of Complexity Economics

Given the emphasis on the eleven CE principles in this thesis (Section 2.3.3), it would

be appropriate to mention how the models were consistent with these features. The

models:

1. are computational in nature;

2. have no predisposition toward equilibrium or dis-equilibrium conditions;

3. create a space in which institutions might or might not emerge / form;

4. allow for a stratified ontology whereby social patterns (including respect for prop-

erty, a market, and division of labour) might or might not emerge from the agents’

mental models;

5. allow for the evolution and co-adaptation of the agents’ mental models and skills;

6. are open to non-ergodicity in that certain structures within the system might

emerge or change;

7. include uncertainty in that agents lack information, have limited cognition, and

must handle mutual contingency;

8. include agents that reason, learn, and form habits within their mental models;

9. are inspired by various disciplines, including economics, the complexity sciences,

spontaneous order, psychology, and sociology;

10. are designed with realism in mind, and they focus on key features observed in free

market systems, namely respect for property, markets, and the division of labour;

and

11. are based on, from an individual agent’s point of view, grounded problems.

Other Factors

The division of labour was mentioned in the previous section. This is of secondary

importance to us because it is not related to the research questions but it is not unim-

portant: we find that it occurs only after (is enabled by) the emergence of a market. The

concomitant specialisation of the agents raises productivity levels in the pseudo-economy.

Moreover, there is a link here between Hayek’s emphasis on dispersed knowledge and

markets as institutions, which is discussed in more detail in Section 6.4 below.

In terms of data and parameters, the models were designed to ensure that a considerable

amount of information was produced for each run (and each set of runs), and so that
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it was relatively easy to explore the parameter space. Some of the models discussed in

Chapter 5 contained little data and their analysis of results was weak (notably the EMIL

Project models), and/or they failed to explore the parameter space sufficiently well, e.g.,

Marimon et al. (1990). Steps were taken to ensure the models generated helpful data,

which is analysed in later chapters.

6.2.1 Risks with ABMs

Gräbner (2016) describes three risks that are associated with agent-based modelling

(these were mentioned briefly in the Introduction). We discuss these, and how our

models mitigated them, here.

Gräbner’s (2016) first risk is that “ABMs tempt researchers to take a constructionist-

instrumental standpoint” (p. 255), which would lead them to “not try to describe ...

reality accurately but consider their theories to be mere instruments replicating observed

data.” (ibid). This risk was dealt with by adopting a pragmatist stance in the design

of the models and having an aim of seeking to understand the mechanisms by which

organic institutions emerge in the real world.

The second risk is an “[i]mplicit focus on predictive power” (p. 256), in line “with

Friedman’s methodological instrumentalism.” (ibid). Prediction was never an aim of

the models developed for the thesis. In the simulations reported below we take an

interest in the conditions under which organic institutions do and do not emerge but

this is not the same as prediction as described by Gräbner.

The third risk is that of “[o]verparamerisation and decreased transparency.” (p. 256).

We should discuss this in more detail because it is relevant to the models developed for

the thesis, which are relatively large. What Gräbner is referring to here is the risk of a

researcher “adding variables, processes, and methods until one gets ... the patterns one

wishes to explain.” (p. 256).

In framing this issue, we identify a potential tension in modelling, when the models

attempt to describe real-world phenomena, between parsimony and description.

This is addressed particularly well (and succinctly!) in Elsenbrioch and Gilbert (2014)5.

The authors argue that while parsimony is undoubtedly valuable, this does not mean

that all valuable models are parsimonious (see Edmonds, 2004 for a discussion of this

point6). To confuse the two risks falling foul of the association fallacy and it gives

rise to another risk: that detailed but useful models are rejected because they are not

parsimonious.

5See Section 10.1, p. 144, entitled “KISS vs KIDS”.
6Recall also that Hayek addresses this in Hayek [1964] (2014), which was discussed in Chapter

4.
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In modelling (and elsewhere), parsimony is associated with the acronym KISS (“Keep It

Simple Stupid”). By contrast, Edmonds and Moss (2005) argue for the KIDS principle

(“Keep It Descriptive Stupid”): start with a model that is “as descriptive as given data

and evidence as possible. Once the model is understood, it can be simplified if parts are

found to be superfluous...” (Elsenbrioch and Gilbert, 2014, p. 144).

The models developed for this thesis were more aligned with KIDS than KISS for three

(related) reasons. First, the emphasis on real world (economic) phenomena requires that

we represent them in a model: this is very much aligned with KIDS.

Second, there is an argument that, given the CE principles discussed in Chapter 2,

we should develop a model of a whole system rather than a partial representation of

it. This would allow us to explore certain feedback effects which would be otherwise

missing. Such models are, however, likely to contain more details (and parameters)

than partial models.

Third, we want to address the question of organic institutions emerging within an en-

abling environment. To explore this thoroughly in a model requires that we develop

multiple parameters that can be adjusted to observe the conditions under which an

organic institution emerges and when it does not.

Overall, therefore, there were good reasons for designing relatively detailed models,

which were different to Gräbner’s (2016) (entirely reasonable) warning of overparameri-

sation for the sake of obtaining desirable results.

There are, of course, risks in designing a relatively large model. Here we consider two.

The first risk concerns the identification of the causal mechanisms we seek: this is more

difficult in larger models. The worst outcome is that we misinterpret the results and get

the mechanisms wrong.

The second risk is what Gräbner (2016) referred to as transparency: this would be when

the causal mechanisms are accurately identified but this is unclear to everyone except

the researcher who was immersed in the models and simulations.

We can think of research time as the cost incurred to minimize these risks. This meant

designing models that generated data which enabled analysis of the results, which were

then re-designed to generate more data when it was not clear what happened in the

simulations. This is part of the model iteration process mentioned above. Put another

way, a considerable amount of time (about 4 full-time equivalent years) was spent on

modelling, which included making sure that the mechanisms described below are an

accurate reflection of what was observed in the models.



Chapter 6 Models: Rationale, Design and Results 195

This discussion of model size is continued in the Conclusion, in light of the simulations

results and, most importantly, the identification of a generalised framework of organic

institutional emergence, which points to how this simplification might be achieved.

Now that we have discussed some of the factors that influenced the design of the models,

let us now summarise them.

6.3 Model Description

Detailed descriptions of the two models are included in chapters 7 and 9 below. Here we

provide a summary that is sufficient to make sense of the results discussed in the next

section.

We begin by describing the first model and assume its ‘default parameter set’7: the

second model is a variation of this.

A rudimentary economic system was developed that includes 2 resources within an

environment and 25 agents (initially) who have the goal of surviving. Each agent has

to consume both resources to survive and is subject to a metabolism cost of 1 unit of

each resource at the end of each round. Survival requires the agents to maintain positive

stocks of both resources in their ‘personal resource arrays’: if either of an agent’s resource

stocks fall below zero, it dies and is removed from the simulation (without replacement).

The agents can undertake work in the form of foraging for the 2 resources, which they

can subsequently trade with other agents.

Each round of the simulations is divided into two phases: (1) foraging; and (2) interac-

tion. Fig. 6.1 below illustrates the main features of each round.

During the foraging phase, agents can visit either of two resource ‘fountains’ and each

has 5 time slots in which to attempt to find one resource unit (their ‘foraging strategy’ is

a list of which fountains they visit in the 5 slots). Whether they are successful in finding

a resource unit in each time slot depends on their skill in foraging and the amount of

each resource remaining at the fountain (the fountains are replenished at the beginning

of each round and depleted by foraging).

After the foraging phase is complete, the second phase starts in which agents have an

opportunity to trade the resources they hold. At the beginning of this phase each agent

is placed at different ‘home’ locations in a geographic space (a 50× 50 torus). The aim

of the agents in this phase is to find other agents and to trade when both agents deem it

7For simplicity, a ‘default’ set of parameters is specified for each of the two models. When a
simulation using these parameters is run, this is referred to as the ‘default scenario’. This set is
not meant to represent a ‘correct’ collection of parameters - it merely helps us present the model
and the simulation results in the simplest way possible. The main parameters are varied when
we explore the parameter spaces.
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Figure 6.1: A breakdown of each round in the first model. In the first stage of each
round, agents forage from resource fountains. In the second stage they try to find each
other within a geographic region, in order to trade any resources they might have. At the
end of the round, various adjustments are made and some of the agents communicate.

beneficial. Each interaction phase is divided into 50 trading ‘moves’: in each move, an

agent can either travel to an adjacent grid square or offer to trade with another agent if

one is co-located on its current square.

At the beginning of the simulations, the agents start by moving around in a random

walk. After they have met another agent and transacted, they store up memories of

transaction locations (but they can also be told of locations by other agents at the end

of the round - see below). Agents build up a database of transactions locations (i.e.,

memories) and these are used by the agents in subsequent rounds to decide where to

head to on the torus to find other agents.

Put another way, if an agent has no memories of transactions, they walk around the

grid randomly; but if they have memories of transactions, these are used to decide on a

target location.

We can think of each agent as having 2,500 potential rules, each corresponding to a grid

square: the weight of each rule is determined by the number of transactions at each

location known to the agent. These weights decay between rounds as a form of memory

loss.

The change in memory weights (due to known transactions and decay) is equivalent to

the reinforcement learning seen in the four EMIL models.

If an agent has memories, at the beginning of an interaction phase a ‘roulette wheel’

approach is used to decide which grid square an agent heads towards, i.e., selection is

proportional to relative weight. The agents stay at their ‘target’ grid square for the

duration of the interaction phase.

At the end of the round (after the 50 trading moves and before a new round begins), a

number of processes are completed:
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• The agents have an opportunity to communicate with others. In each round there

is a 1% probability that any pair of agents will do so: if this happens, the two

exchange information about the locations of transactions they were involved in

during that round.

• The agents consume whatever resources they have left after foraging and trading,

and a metabolism cost of 1 unit of each resource is deducted from each agents’

resource stocks. All resources perish in between rounds so the agents cannot carry

any forward.

• The agents’ foraging skills are updated by the model (simple probabilities that

start at 0.5 for each resource, for each agent). These skill changes depend on

the number of time slots an agent spent foraging for a particular resource: if an

agent spent more time foraging for one than the other, this skill increases, and

vice versa.

• The agents then update their ‘foraging strategies’. Each has the opportunity to

change which fountain it visits in one (randomly chosen) of the five time slots:

this depends on which resource the agent is most deficient in (its aim is to increase

this in the next round), its foraging skills, and the likelihood of being able to trade

in the next round.

• If two agents in the population have resource stocks above a specific threshold,

they sire a child. Some resources are deducted from both parents and transferred

to the child.

After these processes are completed, the model ticks over to the next round and both

resource fountains are replenished. The model is run for 1,000 rounds.

The second model is essentially a variant of the first but, here, respect for property is

dropped: the agents can steal from each other. This time the challenge for the agents is

about learning to trade or steal, and whether to defend their resources or to acquiesce

when another agent attempts to steal from them. If theft is attempted by either agent

and neither acquiesces, they both incur a ‘cost of fighting’, which is determined by a

parameter in the model.

Agents are endowed with two propensities: a propensity to steal which determines

whether an agent attempts to steal from another; and a propensity to defend which

determines whether an agent defends its resources (if challenged) or acquiesces. In the

default simulations, these propensities change via reinforcement learning only: if a choice

proves beneficial, the agent is more likely to do it again in the future, and vice versa.

Note that in the habituation experiments, the process of habituation also changes these

propensities (agents are more likely to repeat past decisions).
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The agents’ propensities can exceed 1 and fall below zero. At the point of interaction,

probabilities (of attempting to steal and defending its resource holdings) are generated

by truncating an agent’s propensities so they are within the bounds of 0 and 1. These

probabilities are then applied in decision making. The rationale for this ‘probabilities

as truncated propensities’ approach is discussed in Chapter 9.

In the default simulations of both models, the agents’ mental models change only as

a result of reinforcement learning. Additional experiments were conducted to test the

impact of habituation on the emergence of organic institutions. These are discussed in

Section 6.4.3 below.

6.4 Summary of Results

We start with an overview of the main results and then proceed to discuss specific

features in more detail.

6.4.1 Main Results

In the simulations of both models that use the default parameter sets, organic insti-

tutions are seen to emerge and immerge spontaneously. When the parameter space is

varied we find that this emergence is conditional on there being an enabling environment

(discussed further in Section 6.4.2 below).

In simulations based on the first model we observe:

• Several ‘local’ (or proto) markets emerge within approximately the first 30 rounds

(typically we see 4-7 of them). The agents either ‘bump’ into others and trade or

they hear about transaction locations from other agents.

• A process of symmetry breaking occurs which, in net terms, leads agents in the

smaller (by volume) local markets switching allegiance to the larger markets.

Eventually a single market dominates. See Fig. 6.2 (described further below)

for an illustration of this symmetry breaking in a typical simulation.

• The establishment of a consistent, efficient market leads agents to specialise in

foraging for a single resource. This does not happen until agents are confident of

being able to trade: it is conditional on market emergence.

• Specialisation leads to foraging skills (as probabilities) for the resources specialised

in increasing from 0.5 to 1: productivity increases.
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• These productivity gains mean the initial group of agents accumulate resources,

sire children, and the population grows until it plateaus at approximately 43

agents8.

• When habituation is added to the mental models, we observe an increase in the

number of markets: agents are more conservative about their target location choice

so symmetry breaking is disrupted. Nonetheless, the results of the default simu-

lations are replicated. There are a number of other interesting results, including

habituation eventually dominating the agents’ mental models, which are discussed

in more detail in Section 6.4.3 below.

Fig. 6.2 below is helpful for visualising the breaking of symmetry (note habituation was

not included in the simulation depicted). It shows a time series of the total number of

agents visiting each of 7 different proto-markets ([x, y] denote coordinates on the torus).

This run is particularly interesting because it shows two locations dominating (at [31,

16] and [22, 30]) until the latter wins out. It is not shown in Fig. 6.2 but all the agents

visit location [22, 30] only from Round 68.

Figure 6.2: A time series of the number of agents targetting different locations on the
grid during the first 50 rounds of a typical simulation that uses the default parameter
set. This chart demonstrates a scenario when two markets dominate for a period but
symmetry breaking means that, eventually, one dominates.

In simulations based on the second model we see:

• The agents quickly learn it is preferable to defend their resources (propensities to

defend increase).

8This is not to argue that ‘success’ should be measured by total population size: the child-
birth algorithm could easily have been changed so agents simply accumulate resources.
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• Fig. 6.3 below is helpful for illustrating what happens in the default simulations

vis-à-vis agents’ propensities to steal (data are taken from a typical simulation). It

depicts a ‘cloud’ of these propensities (measured on the y-axis) and time (rounds)

on the x-axis. Each dot represents one agent’s propensity to steal at the end

of each round. The red dots are those of agents who die before the end of the

simulation, the blue dots are of those who survive, and the lines correspond to

mean values of each type. The red lines ends when all the agents who die in this

simulation have all died.

Figure 6.3: The ‘cloud’ of agents’ propensities to steal over 200 rounds in a typical
simulation when the default parameter set was used. The chart shows the propensities
to steal of the agents who survived until the end of the simulation as blue ‘dots’. The
blue line is the mean of these values. The red dots represent the propensities to steal
of the agents who died before the end of the simulation, and the red line is the mean
of these values (it ends in Round 102 when the last of these agents died). The chart
shows how, on the whole, the propensities to steal of the agents who died was sustained
above those who survived.

• The change in each agent’s propensity to steal depends on the ‘social environment’

it experiences. Six ‘patterns’ were identified which influence these propensities.

• The first pattern is that when the agents’ propensities to defend are below ap-

proximately 0.8 on average, the agents learn it is preferable to steal than to trade,

i.e., their propensities to steal increase. The benefits of theft on the whole exceed

the costs of fighting.

• Second, after the agents’ propensities to defend increase above 0.8 on average, the

agents learn it is preferable to trade than to steal, i.e., their propensities to steal
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decline. This is mainly attributable to the debilitating effect of fight costs, which

on the whole outweigh the benefits of theft.

• The third pattern is that when the agents’ propensities to steal decline to close to

zero, the rate of decline slows down because agents fight less.

• The fourth pattern is the benefit of transactions, which maintains some downward

pressure on the agents’ propensities to steal.

• Unexpectedly, however, a fifth pattern is observed which encourages propensities

to steal higher. The mechanism is described in more detail in Section C.6 of

Appendix C. In situations when one agent has a positive propensity to steal and

all the other agents have negative propensities, the single agent with a positive

propensity benefits disproportionally from a resource concentration effect which

is ‘centred’ around this agent. It is encouraged to steal in this specific social

context. Eventually, however, other agents learn from this agent and total fight

costs increase again because multiple agents have positive propensities to steal.

• The sixth and final pattern is the locking in of negative propensities to steal when

all the agents’ propensities are negative. When this occurs, agents only ever trade

and they can only benefit from trading, so their propensities can only decline.

• The combination of these six upward and downward patterns and the (eventual)

deaths of agents with positive propensities to steal mean that, ultimately, all the

surviving agents have propensities to steal below zero. This gets locked in because

these agents only ever transact: in this situation we can say that property rights

have emerged across the population.

• After property rights have emerged, an efficient market emerges and the agents

once again become specialised, i.e., the results of simulations based on the first

model are replicated. In a sense, the second model’s simulation results show that

property rights, which were assumed in the first model, are ‘endogenised’.

• The results of habituation and liberal legislation experiments are discussed further

below, in sections 6.4.3 and 6.4.5, respectively.

6.4.2 Parameter Space Exploration and Enabling

Environments

Chapters 8 and 11 below contain summaries of the results of the parameter space ex-

plorations for the two models, so this will not be repeated here. In addition, appendices

B and C provide much more detailed explanations of these results, respectively.

There are three main points to note.
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The first is that the various changes in the parameters have a realistic and understand-

able impact on the organic institutions. This is because the models are designed to mimic

real world situations. For example, when the probability of communication at the end

of each round is reduced from 1% to zero, the speed of symmetry breaking slows down

in simulations based on the first model. This seems reasonable because communication

plays a catalytic role in this process. In extremis, when the agents are prevented from

communicating, there is no breaking of symmetry: in a steady state we observe about

9-10 local markets with approximately 4 agents each on average. In these simulations,

the ratio of actual to desired transactions is nonetheless high enough for the agents to

specialise.

The second main point is that the simulation results demonstrate that organic institu-

tional emergence is conditional on there being an enabling environment. We see this

when we start from the default parameters set and relax each of these (or multiple)

parameters. For example, when the population is too sparse (the ratio of geographic

area / agent exceeds 1002 versus 102 in the default simulations), the agents never find

each other so no markets form.

Note that this idea of an ‘enabling environment’ can give the impression that a specific

institution is in a sense ‘waiting’ for the right conditions before emerging. However, it is

perhaps better to think of an environment in which a range of social structures (including

institutions) have the potential to emerge whereby each structure can be catalysed by

a different set of circumstances. Different starting points in the environment’s state

space might enable different emergent patterns: in a sense we can think of these as

manifestations of the starting conditions.

The third main point is that detrimental institutions can emerge. This is observed when

we explore the parameter space of the second model, e.g., when the cost of fighting is

close to zero, the opposite of property rights emerges: all the agents learn, eventually,

to steal in all interactions. No efficient market emerges, none of the agents specialise,

and the agent population collapses.

6.4.3 Habituation

As noted above, habituation was applied to each model in the form of a set of experi-

ments. The details and results of these are discussed in more detail in sections 7.6 and

10.3 below. For both, we examine the results when the agents’ mental models change

as a result of: (i) habituation only, i.e., reinforcement learning is ‘switched off’; and (ii)

both habituation and reinforcement learning.

Here we summarise the results of these experiments.
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The approach taken in both sets of experiments mimics Hodgson and Knudsen’s (2004)

method of applying habituation to their model. In their simulations, a habituation

variable accrues over time in a way that means agents are more likely, ceteris paribus,

to repeat a past decision.

In the first model below, a habituation parameter (ha) is added to the weight of an

agent’s target location in their memories after they have selected a target in each round.

In the second model, a similar parameter (ha2) is added to or subtracted from the agents’

propensities to steal or defend immediately after they make a corresponding decision.

The contribution of these habituation parameters (to memory weights or propensities)

do not decay over time and they are not influenced by learning in any way9.

Habituation in the First Model

As mentioned above, in simulations based on the first model, habituation leads to agents

behaving more conservatively in their choice of target locations at the beginning of the

trading phases. This should not be surprising: it reflects agents being more likely to

repeat past decisions. Symmetry breaking is either slowed down or prevented, depending

on the strength of the habituation parameter.

Nonetheless, in general the agents transact enough to specialise and, eventually, to bear

children, i.e., the results of the default simulations are replicated.

There are three additional points worth noting. First, the emergence of multiple markets

means some of the markets are illiquid (e.g., with only two agents10). In turn this means

allocative efficiency is less than when all the agents visit one market only. However, the

distribution of resources is more equal than in the case of a single market. Overall,

therefore, the markets are less allocatively efficient but they are more equitable.

To understand the equity point, it is helpful to note that we see in the default simulations

agents benefiting if their home location is closer to the single emergent market than

further away. They profit from playing an intermediary role more than agents who

arrive later11, which means resources are allocated in a (slightly) unequal way. In the

habituation experiments, multiple markets means agents generally live closer to the

market they frequent, so this effect is lessened.

The second noteworthy result is that habituation on its own (when reinforcement learn-

ing is switched off) can give rise to markets with sufficiently high turnover for agents to

9This is slightly different to Hodgson and Knudsen (2004) where habituation accrual decel-
erates over the life of the agent (see Equation 5.1.1, p. 136), and this variable is kept within the
bounds of −1 and +1.

10These markets look more like private contracts than institutions.
11These agents obtain ‘good’ prices from newly arriving agents (who sell ‘in bulk’) and then

sell these on to other agents, resulting in small profits.
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specialise. About 12 markets emerge on average: on the whole, the process is less efficient

(allocative efficiency is lower and more agents die) than in the default simulations.

The third result worth noting is seen when agents’ mental models change due to rein-

forcement learning and habituation, and the parameter of the latter is relatively low

(ha < 1, approximately). The key point is that markets emerge as a result of reinforce-

ment learning but, over time, habituation dominates.

This combination is illustrated well by figures 6.4 and 6.5 below, which show the time

series of a location weight (for the market an agent frequents from Round 31), taken

from a representative agent’s memories. This weight is decomposed into contributions

from reinforcement learning and habituation. Fig. 6.4 shows the data for 200 rounds

and Fig. 6.5 for 1,000 rounds.

Figure 6.4: A time series of the contributions to a target location’s weight in memory
over the first 200 rounds of a typical simulation (for one agent). The two ‘areas’ denote
contributions to the total weight over time: the blue area shows the contribution of re-
inforcement learning and the red area shows that of habituation. This chart shows how
the agent ‘learned’ to visit the location depicted, i.e., reinforcement learning dominated
during the emergence of the market.

Fig. 6.4 tells us that the contribution from reinforcement learning dominates the total

weight over the first 100 rounds or so, which is when the market is emerging.

Fig. 6.5, however, shows how the contribution from reinforcement learning plateaued

over time while the contribution from habituation increased persistently. So, while the

agent learned to visit this location early on, the emergent ‘rule’ in the agent’s mental

model looked much more like a simple habit by the end of the simulation.
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Figure 6.5: The same time series as shown in Fig. 6.4 above but over 1,000 rounds.
See the above figure for descriptions of the data. This chart shows how habituation
came to dominate the weight of this location over time.

Habituation in the Second Model

There are three main findings worth noting.

First, reinforcement learning is necessary to ensure property rights emerge in all simu-

lations. This is observed irrespective of the strength of habituation (ha2), and whether

or not mental models change via reinforcement learning. When habituation is ‘strong’12

we observe scenarios in which 1-3 agents with propensities to steal above 1 are able to

thrive by bullying ‘doves’ (agents with negative propensities to steal and defend). This

situation is unsustainable and the agent population collapses. This scenario is avoided

when the agents’ mental models employ reinforcement learning and ha2 is not too high
13:

here, agents learn to defend their resources, i.e., there are no doves.

The second finding is that when reinforcement learning is employed alongside habituation

(and habituation is not too strong14), the latter leads the agents’ propensities to steal to

bifurcate into two ‘strategy groups’. In the first group, the agents’ propensities to steal

are negative and their propensities to defend exceed 1 (we refer to these as ‘passive-

aggressive’ agents). The second group has propensities to steal and defend above 1

(referred to as ‘Al Capone’ agents).

12This is when mental models change as a result of reinforcement learning and habituation,
and ha2 ≥ 0.02 (approximately), and when reinforcement learning is ‘switched off’.

13Approximately, ha2 < 0.02.
14Again, ha2 < 0.02.
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We saw a weaker version of this in the default simulations when higher (lower) propen-

sities to steal tend to stay higher (lower), i.e., there was serial correlation (see Fig. 6.3

above). Fig. 6.6 below is equivalent to Fig. 6.3, and is typical of simulations when

ha2 = 0.01. In these simulations15, all the Al Capone agents die because of debilitating

fight costs, leaving only agents who respect property.

Figure 6.6: A time series of the agents’ propensities to steal over the first 400 rounds
of a typical simulation when the agents’ propensities change as a result of reinforcement
learning and habituation (here, ha2 = 0.01). The red lines depict ‘Al Capone’ agents,
whose propensities increase above 1, and who all died. The blue lines depict passive-
aggressive agents (who all survived).

Moreover, in these simulations, property rights emerge more quickly than equivalent

simulations without habituation but more agents die in the process.

The third noteworthy finding is the same as that observed in the first model, for low

values of ha. In this situation, the surviving agents co-learn to respect property (the

contribution of reinforcement learning is greater than habituation in earlier rounds);

however, habituation dominates in the later parts of simulations.

Figures 6.7 and 6.8 below are equivalent to figures 6.4 and 6.5 above but they show the

contributions of reinforcement learning and habituation (both positive and negative) to

a representative agent’s propensity to steal in a typical simulation when ha2 = 0.005.

Fig. 6.7 shows data for the first 100 rounds and Fig. 6.8 for 1,000 rounds.

6.4.4 The Division of Labour and Knowledge

The results of the default simulations based on the first model point to an explanation

for a ‘paradox’ regarding markets and specialisation in the economics literature.

15Here, the agents starting resources are increased to 1,000 units of each resource, which helps
us analyse the mechanisms at work.
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Figure 6.7: A time series of a passive-aggressive agent’s propensity to steal (the black
line) over the first 100 rounds of a typical simulation when propensities change as a result
of reinforcement learning and habituation (here ha2 = 0.005). The y-axis measures
the level of the agent’s propensity to steal and the contributions to this propensity.
The four ‘areas’ denote contributions to the agent’s propensity to steal over time: the
upper (dark red) area shows positive contributions by habituation; the second (dark
blue) area shows positive contributions by reinforcement learning; the third (light blue)
represents negative contributions by reinforcement learning; and the lower (light red)
area represents the negative contribution by habituation. This chart shows how the
agent’s propensity to steal declines below zero (this occurred in Round 26) mainly as a
result of reinforcement learning.

Figure 6.8: The same time series as shown in Fig. 6.7 above but for 1,000 rounds. See
the above figure for descriptions of the data. This chart shows how habituation came
to dominate the agent’s propensity to steal over time.

The paradox is this: it should be clear that markets are necessary when agents are fully

specialised because they provide a medium of exchange. But how do markets form prior

to specialisation, if agents are generalists?

In the default simulations a market emerges when generalists trade small amounts of

resources, e.g., when they have a small surplus of one resource while other agents have a
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small deficit. These modest volumes of transactions early in the simulations are sufficient

for a market to emerge. Once this occurs, the agents adapt to the existence of a market

by specializing. The volume of transactions then increases significantly.

Note that this description is not presented here as the solution to the paradox; rather

it is one plausible explanation.

It is worth noting, also, that the market changes from being a helpful but non-essential

part of the economy to one which is necessary for agent survival (this is when the agents

are fully specialised but still need to consume both resources to survive).

Furthermore, we can tie this division of labour to Hayek’s division of knowledge. Recall

from Chapter 4 that Hayek argued that markets are a more effective means to ensure

societies make maximal use of devolved, heterogenous knowledge than systems based on

centralised control.

The default simulations based on the first model point to a two-way relationship be-

tween markets and knowledge: markets ensure the resources produced by specialists

are efficiently allocated; but they also indicate that markets can catalyse heterogeneous

knowledge.

In fact, this relationship can be viewed within the wider notion of social structures (here

markets and division of labour) co-evolving.

6.4.5 Liberal Legislation Experiments

In Chapter 12 below we take four scenarios in which we know property rights do not

emerge endogenously and examine whether a legal rule might help to enable property

rights. As stated in the Introduction, a legal rule here is simply one that is known to

all the agents, and is known to be enforced by a third party.

The scenarios are where: (i) agents only acquiesce when other agents attempt to steal

their resources; (ii) fight costs are very low; (iii) the outcome of a conflict is a function

of the agents’ fighting skills (each determined by how many fights each agent has been

involved in); and (iv) the outcome of a conflict is a function of total resource holdings

and there is one wealthy agent. The latter two scenarios are designed to incorporate

forms of power into the simulations.

In all four cases we find there is at least one legal rule that gives rise to property rights.

One helpful way to interpret this result is that an effective legal rule changes a non-

enabling environment into an enabling one.

Related to this point, it is important to understand that these legal rules work within

a complex and co-adapting environment. It would be wrong to think of these rules as
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working as if they are mapped directly into the agents’ mental models: the agents are

influenced by the rule via reinforcement learning.

Moreover, these rules appear to fit Hayek’s reference to ‘liberal legislation’: the property

rights enabled by the legal rule help to enable the emergence of (and allocation within)

an efficient market.

Finally, an emphasis in this thesis is on bottom-up pragmatism: with this in mind,

variations of the ‘liberal legislation’ experiments were conducted in which the policing

authority might be corrupt. We find that corruption can undermine the efficacy of legal

rules such that property rights do not emerge.

6.4.6 Invisible Hand Explanations: Characteristics

Chapter 4 included a discussion of Ullmann-Margalit’s (1978) three characteristics of

invisible hand explanations16. As stated above, these should:

• be individual-based;

• include the ‘normalcy condition’; and

• be surprising.

Here we briefly discuss how the results of the default simulations meet these three

conditions.

Individual-Based

As mentioned previously, the models were designed to be ‘individual-based’ so it should

not be too surprising that the explanations of institutional emergence set out above meet

this characteristic.

There is one additional point worth emphasising. The organic institutions we saw arose

via the co-adaptation of the agents’ mental models. In the simulations based on the first

model, we observed this via symmetry breaking. In those based on the second model,

the agents are all simultaneously influenced by the six patterns identified above - these

impacted the agents differently according to who they interacted and communicated

with, i.e., it depended on each agent’s ‘social environment’.

We should view this co-adaptation in the context of the discussion of ‘semi-permeable

agents’ in Chapter 2. Individual agents’ mental models are open to information that

changes these models. This gives rise to behaviour changes which then impact other

agents when then impact others, and so on. The social environment is one of continuous

16See 4.3.2 (p. 107) for a more detailed discussion of these three.
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co-adaptation and in the default simulations of both models, the net result is organic

institutional emergence.

Overall, therefore, we can say that the models were individual-based but the organic

institutions that emerged did so via the co-adaptation of the agents’ mental models.

Normalcy

When the simulation results were analysed and the mechanisms of institutional emer-

gence identified, we found that they met this criterion. Let us look at this in more

detail.

In the simulations based on the first model, the concept of symmetry breaking seems

somewhat abstract but at the individual agent level, the process seems normal. We

saw that agents at smaller markets (i.e., with fewer agents and transactions) were more

likely to hear about larger markets than agents at larger markets hearing about smaller

markets. This means that those at smaller markets were more likely to ‘try out’ a larger

market they have been informed about than vice versa. Over time, the cumulative effect

of this is symmetry breaking and the emergence of a single market.

Equivalently, in the simulations based on the second model, all of the patterns listed

above appear to be reasonable reactions of the agents to different social conditions.

Provided the environment is sufficiently enabling, their combined effect over time leads

to the emergence of property rights.

Surprise

This is perhaps the most interesting of the three characteristics. Given that (i) we have

identified certain mechanisms through which institutions emerge in the simulations; and

(ii) these seem reasonable and normal, can we claim to be surprised?

The answer is a definite yes.

The mechanisms described above were identified after a lot of investigative work which

included the generation of information from the simulations and analysis of the results.

With hindsight, the emergence of organic institutions looks less surprising but ex ante

the results were not predictable.

In the first model’s default simulations, the agents’ mental models were designed merely

to allow them to find other agents. The emergence of a single market was very surprising;

moreover, we could not predict before each simulation where the single market would

be located.

In the second model’s default simulations, the agents’ mental models were set up so that

they simply learned to defend their resources (or acquiesce) and steal (or trade) based

on simple reinforcement learning. It is difficult to anticipate all of the various patterns
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identified above, let alone how these combine to give rise to property rights, given this

simple feedback mechanism.

Note the ‘surprising’ nature of the single markets and property rights are explored in

more detail in the last sections of Chapters 7 and 10, respectively.

6.4.7 Emergence and Immergence

Here we note briefly that two related phenomena are observed in the simulations of both

models: the emergence of some ‘external’ (to each agent) property and the immergence of

some immanent behavioural tendency. The concluding chapter contains a more detailed

description of symmetry breaking via emergence and immergence, which is at the heart

of the organic institutional emergence observed.

In the simulations based on the first model, the ‘outer’ emergent property is a single

market which all the agents attend. In a sense, this ‘market’ is a reification of the fact

all the agents target the same location on the grid at the start of the interaction phase

of each round, which they then attend. However, it seems reasonable to refer to this

location as a market17.

In terms of the ‘immergent property’ here, this is the dominance (in terms of memory

weights) of one location in all the agents’ memories. When mental models include only

reinforcement learning, memory decay means each agent completely forgets about other

locations. However, when habituation is included, agents can have multiple locations

sustained in memory with positive weights: one location dominates all the others such

that the probability of visiting the non-dominant locations declines asymptotically to

zero.

The ‘outer’ emergent property in simulations based on the second model is less obvious

than those based on the first model but we can state that it is the fact of all the agents

trading in interactions rather than stealing. The counterpart immergent property is all

the agents’ propensities to steal being negative.

Note that the detailed description contained in the conclusion focuses more on the

processes of symmetry breaking via emergence and immergence rather than the end-

states described above.

Now that we have discussed the background to the models, their design features, and

the main results of simulations based on them, let us look in detail at the first model.

17This reification is an example of Gilbert’s (2002) second type of cognitive emergence, in
which a concept is identified.





Chapter 7

Market Emergence Model

If you try and take a cat apart to see how it works, the first thing

you have on your hands is a nonworking cat.

– Douglas Adams

This chapter presents the first of the two computational models (the Market Emergence

Model) developed for this thesis.

An overview of the model was provided in the last chapter. The first section below

(7.1) sets out a more detailed description, including the default parameter set1, which

contains all of the parameters used in the ‘default scenario’.

Prior to looking at the results from this scenario, in sections 7.2 to 7.4 we look at three

‘null scenarios’. This is in order to contextualise the results from simulations which use

the default parameter set:

• Section 7.2 contains the results from simulations when the agents are prevented

from trading. This helps us identify the carrying capacity of the environment

when agents neither trade nor specialise.

• Section 7.3 presents the results of simulations from the second null scenario. Here,

agents can trade but they do not store memories of previous transaction locations

which might help them to find other agents. The agents are, however, allowed to

specialise.

1As mentioned in the previous chapter, a ‘default’ set of parameters is specified for both
models. When a simulation using these parameters is run, this is referred to as the ‘default
scenario’.
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• Section 7.4 presents the third null scenario - this time the agents can store mem-

ories that might be used to find other agents; however, the agents are not allowed

to specialise.

In the default scenario, presented in Section 7.5, the agents can trade and use their

memories to find other agents, and they are allowed to specialise. Note the agents’

mental models change as a result of reinforcement learning only.

Section 7.6 uses the same parameters as those in Section 7.5 but now the agents’ mental

models can change as a result of habituation as well as reinforcement learning.

The final section of this chapter (7.7) considers whether the markets we observe emerg-

ing in the default simulations (and those including habituation) meet the definition of

organic institutions mentioned in the Introduction.

Note that the next chapter contains a summary of the exploration of the parameter space

and Appendix B contains a more detailed analysis of these results. This exploration is

important in investigating the conditions under which markets emerge and when they

do not.

7.1 Overview of the Model

Recall from the previous chapter that two resources are generated in an environment

and agents must consume both resources to survive. The objective of each agent is to

stay alive, which they do by foraging from ‘resource fountains’ and, when it is useful,

trading with other agents. In this model, agents respect others’ property, i.e., they do

not steal resources from other agents - they only trade.

7.1.1 The Environment and Time

The environment in which the agents are located is made up of two resource ‘fountains’

(denoted A and B), which follows Holland (2014), and a grid on which agents can trade.

At the beginning of each round both fountains are replenished with their specific re-

source, starting each round with L units each (L = 50 in the default scenario: equivalent

to 2 units for each of 25 agents at instantiation). All of the fountains’ resources that

are not collected perish in between rounds, i.e., no resources are carried over from one

round to the next.

Each round is split in to two main phases: (i) foraging, and (ii) trading (see Fig. 7.1

below, which is replicated from the previous chapter for convenience).
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Figure 7.1: A breakdown of each round in the first model. In the first stage of each
round, agents forage from resource fountains. In the second stage they try to find each
other within a geographic region, in order to trade any resources they might have. At the
end of the round, various adjustments are made and some of the agents communicate.

During the foraging phase, agents have five time slots in which they can visit either

fountain (they can collect up to one resource unit from the visited fountain per time

slot).

After foraging, the agents are placed on a torus on which they can move, i.e., a grid that

wrapped around from top-to-bottom and from side-to-side. This torus has dimensions

of 50× 50.

Each agent has a home location on the grid from which it starts its search for other

agents during the trading phase. Agents can see other agents on their current square

and adjacent squares, which here means all of the eight Moore’s (or ‘King’s move’)

squares; however, they can only trade with agents on their current square. The trading

phase is split in to 50 time periods: when moving around the grid during these periods,

agents can only travel up to 1 grid square at a time.

At the end of each round, i.e., after foraging and trading, the agents consume the re-

sources they hold, update their foraging strategies, and communicate with other agents.

Once finished, a new round begins until 1,000 rounds have been completed.

7.1.2 The Agents

In the default scenario 25 agents start each simulation. The following is a list of the

agents’ state variables (individual agents are denoted by the subscript i):

• A personal resource array

ri =
[
rAi , r

B
i

]
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Each element of this array is a stock corresponding to each of the fountain resources

(A and B). We can think of these resources as nutrients, both of which are essential

for survival. The agents have to maintain a stock of both of these resources by

consuming what they have collected or bought during the round (metabolism

depletes the agents’ stocks by one unit of each resource in between rounds). Once

consumed, these resources are ‘embodied’, i.e., the agents cannot un-consume the

resources and trade them.

The resources rAi and rBi are initialised with values drawn from a normal distri-

bution with mean of 50 units and standard deviation of 5.

Agent i remains alive if both of these resources exceed 0, i.e.:

rji > 0 for all j ∈ A,B

For the agents, therefore, the challenge is to remain alive by sustaining positive

values of both rAi and rBi .

• A foraging strategy array

hi =
[
h1i , h

2
i , h

3
i , h

4
i , h

5
i

]
The foraging phase of each round is divided in to 5 time slots, which means

agents have 5 discrete opportunities to forage from either fountain. This array

determines which fountain each agent visits in each time slot. At inception this

array is populated randomly, e.g., hi =
[
A,B,B,A,B

]
. Note that the order of

this array matters since the quantity of resources at each fountain is finite and

could be exhausted before the end of the foraging phase.

• A foraging skill levels array

pi =
[
pAi , p

B
i

]
These are probabilities that correspond to levels of skill of the agent in foraging

for each resource type. Specifically, each element reflects the probability that an

agent will detect and obtain2 the particular resource associated with a fountain

(this is explained further below).

At instantiation:

2Note that if an agent detects any resource, it always collected it - these words are used
interchangeably below.
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pji = 0.5 for j ∈ A,B

These skill levels change according to how much time the agent spends foraging

for a particular resource: its detection probability for j will increase if it spends

more time foraging for it, i.e., its skill will improve; and vice versa. This process

is at the heart of how agents become specialised and is explained further below.

• A basket array

bi =
[
bAi , b

B
i

]
This array is used to keep track of the resources successfully collected during

the foraging phase of each round, and which might be subsequently traded. The

resources remaining in the basket at the end of the round (after foraging and

trading) are consumed, i.e., added to ri.

• A memory array

mi =
[
m1

i ,m
2
i ,m

3
i . . .

]
This array records grid locations where agent i has traded with other agents in

previous rounds, and also locations where others have traded that agent i has been

informed about. Memories decay over time, which is explained further below.

• A Home Location on the grid

Each agent is allocated a location on the grid from which it starts the trading

phase (a ‘home’). In the default scenario, agents’ homes are evenly spaced on the

grid, as shown in Fig. 7.2 below, to maximize sparsity.

An agent can sire children if both its resource holdings exceed 125 units. If this is true

of any two randomly paired agents then they will bear a child: 25 units of each resource

will be deducted from the parent’s resource arrays, and a child will be instantiated with

a personal resource array containing 50 units of each resource. The child will also be

given a home location in the grid square furthest away from any other agent (again

maximizing the sparsity of the population).
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Figure 7.2: The location of agents’ homes on the grid. In the default simulations the
grid is a torus with dimensions of 50 × 50. Each of the agents starts the trading phase
from its home location. These ‘homes’ are shown above as black squares. If a new
agent is born, its home location on the grid is chosen in such a way as to maximize the
sparsity of the population (this is in order to ensure consistency between simulations).

7.1.3 Foraging

The resource fountains are not given a geographic location: we assume both fountains

are within reach of all the agents. In a sense, the fountains represent work that the

agents undertake in order to survive3.

In the first time slot of the foraging stage, each agent visits the resource fountain specified

by the first cell in its foraging strategy array hi. As a result, at each fountain there is

typically a group of agents foraging from that fountain.

These agents form a queue at the fountain (randomly generated), and they then take

turns to forage from it. The likelihood of an agent collecting a resource when it is their

turn is described below.

If an agent successfully collects one unit of a resource, this is deducted from the fountain’s

stock so it is not available to other agents, and it is added to the agent’s basket array,

bi.

After all the agents have foraged from both fountains in the first time slot, the ‘clock’

ticks forward to the second time slot. The agents move to the fountain designated by

the second cells in their foraging strategy arrays.

This process is repeated over the 5 time slots. It is possible that one or both fountains

are fully depleted during the foraging phase; however, the agents never know if this

happens - they will attempt to collect resources regardless.

3When the parameter space is explored, we consider a scenario in which the fountains are
given specific locations on the grid and the agents start the trading phase at the fountain where
they were located at the end of the foraging phase.
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After the foraging part of the round has been completed, agents move on to the trading

phase.

Detecting Resources at Fountains

When foraging for resources, the success of an agent in detecting a resource is dependent

on two factors: its skill in detecting that resource (determined by pi) and the resource’s

availability at the fountain.

The simplest way to combine these two factors is to multiply an agent’s detection prob-

ability by the remaining stock of a fountain relative to its maximum stock level. As a

result, the probability an agent detects a resource unit at any fountain is:

nj
i = pji

lj

L
(7.1)

where:

• nj
i is agent i’s probability of detecting a resource unit at fountain f j

• pji is agent i’s detection skill for resource f j , taken from pi

• lj is the stock of resources at fountain j at the time of foraging

• L is the stock of fountain j at the beginning of the round (50 by default)

For example, if agent i reaches Fountain A when the fountain’s resource level is 40 and

the agent has a detection skill of 0.5 for that resource then:

nA
i = 0.5× 40

50
= 0.4

The agent will have a 0.4 probability of detecting the resource. We can see that an

agent is more likely to detect a resource unit if its detection skill is higher and/or if

more resources are present at the fountain.

7.1.4 Trading

After the foraging phase is complete, agents are placed on the grid at their individual

home locations. See Fig. 7.2 above. Agents then seek out other agents to trade with.

In the default scenario, if agents have no memories (which is true at the beginning of

each simulation) they move around the grid in a random walk. This means they choose

one of the 9 squares within range (the agent’s current square and any of the 8 adjacent

squares) with equal probability. During this random walk, if an agent sees another agent
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on an adjacent square, it will move on to its square; however, it could not immediately

initiate a transaction because agents could either move or trade in each time period, not

both.

If agents have memories of previous transactions at the beginning of the interaction

phase, they select a target location (from memory) to head towards from their home. In

the default scenario, agents use a ‘Roulette Wheel’ approach to choose between different

locations in memory, i.e., the probability that an agent chooses a specific location is

proportional to its weight in memory4.

An important assumption in this model is that agents use their memories of transactions

in previous rounds, as signals for where other agents might be in the current round. Put

another way, they are used to form expectations about other agents’ locations.

Memories are strengthened by repeated trading at the remembered location but they

also decay over time. When an agent transacts at a specific location for the first time,

this location is given an initial weight of 1, and each time the agent transacts at this

location, its weight in memory is increased by 1. The total weight of each location in

memory decays by 20% in between rounds until the weight declines to below 0.05. At

this point the grid location is removed from the agent’s memory5.

In addition, if the agent is informed about a transaction that had involved two other

agents, the weight of this location in memory is increased by 0.5, i.e., half the weight of

transactions in which the agent participated6.

If an agent heads to a ‘target’ location, it will ignore other agents along the way. Also,

once reached, an agent will remain at its target location until the end of the trading

phase.

The agents’ memories and the roulette wheel choice algorithm are the main components

of the agents’ mental models. Agents use what information they have to make their

decision of where to move to but there is no guarantee other agents will be there. In

effect, the agents use ‘informed guesswork’ with the only data available.

If two agents meet at the same target location, they will attempt to trade. If multiple

agents are at the same location, they are paired randomly and then transact. Each

agent can initiate one transaction in each time period of the trading phase (assuming it

remains static).

4For example, if location [3, 15] has a weight of 2 and [35, 17] has a weight of 1 then there is
a 2/3 chance the agent will visit [3, 15] and a 1/3 chance it will visit [35, 17].

5This means that a single transaction will stay in the agent’s memory for 13 rounds.
6A single ‘rumoured’ transaction will stay in memory for 10 rounds.
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Reinforcement Learning

Here, reinforcement learning is consistent with Erev and Roth’s (1998) first and third

principles (see Section 1.4.6). The (first) principle of Law of Effect should be clear:

transactions add to location weights, which increases the likelihood an agent will choose

that location again.

The (third) principle is also clear: the Roulette Wheel approach ensures choice behaviour

is probabilistic.

Erev and Roth’s (1998) second principle (power law of practice) appears less relevant

here because choice is based on relative weights. In principle, location weights could have

been designed to accrue by declining amounts over time but this does not seem relevant

in this specific context. A choice was made to ensure location weights are proportional

to known transactions, with some decay over time due to memory loss.

Transaction Prices

In order to determine the prices at which agents transact, the model adopts the process

used in Epstein and Axtell (1996): prices are the geometric mean of agents’ marginal

rates of substitution (MRSs). An MRS is simply the ratio of one resource holding (the

combination of the agent’s resource stocks and resource basket) relative to another:

MRSAB
i =

(rAi + bAi )

(rBi + bBi )

We can think of this as the value an agent attributes to Resource A in units of Resource

B. For example, if rAi + bAi = 100 and rBi + bBi = 50 then MRSAB
i = 2. This means

the agent values 2 units of Resource A as equivalent to 1 unit of Resource B. From a

survival perspective, this makes sense because each agent will attach a greater value to

the resource in which it is most deficient (here, Resource B).

The MRS also represents the price above which Agent i will buy A and sell B and below

which it will do the opposite. For example, if the agreed price of Resource A in units of

Resource B is 2.5 then Agent i will prefer to sell B and buy A. By contrast, if the price

is 1 then the agent will prefer to sell A in exchange for B.

The price at which the agents trade resources A and B is determined by the geometric

mean of the agents’ MRSs:

PriceAB =

[
(rAi + bAi )

(rBi + bBi )
×

(rAk + bAk )

(rBk + bBk )

]1/2
(7.2)
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When two agents, i and k, interact their MRSs are compared and, if it is beneficial, the

agents trade.

The general idea with this approach to pricing is that if agent i has, say, significantly

more of resource A than resource B, then MRSAB
i will be relatively high. Suppose this

agent then meets agent k, with significantly more of resource B than A (MRSAB
k is

relatively low). The agreed price will be somewhere between MRSAB
i and MRSAB

k :

the agents will ‘meet’ in the (geometric) middle. This trade is beneficial to both agents

because they both sell a resource they have more of in exchange for a resource they have

less of.

Note that this trade can only occur if i and k have the resources each wants to sell in

their basket arrays. In the example, i and k will only transact if i has A and k has B to

sell.

Transaction Quantity

If the agents have sufficient resources, they will trade an amount that leads to their

MRSs becoming equal. If the agents do not have sufficient resources, they will exchange

as many resources as possible: their MRSs will converge but not completely.

7.1.5 End of Round Adjustments and Communication

At the end of each round, the agents consume the resources they hold in their baskets,

their foraging skills are updated (pi), they adjust their foraging strategies (hi), and

some of the agents communicate. Let us look at each of these in turn.

7.1.5.1 Consumption & Metabolism

The agents add the resources in their foraging baskets (bi) to their personal resource

arrays (ri); and a metabolism cost of 1 unit for each resource is deducted:

rend
i = rstarti + bi − 1

Here, rend
i refers to i’s personal resource array at the end of the round, and rstarti at

the beginning. The deduction of 1 represents the cost of metabolism.

7.1.5.2 Updating Foraging Skills

The agents’ resource detection arrays (pi) are updated to reflect the agents’ experience

of foraging in the round: the general idea is that if an agent spent a lot of time foraging

for a specific resource during the round, its skill (detection probability) increases, and

vice versa.



Chapter 7 Market Emergence Model 223

An adapted logistic equation is used, which allows the detection probabilities to vary

between a minimum level of skill (p) and a maximum level (p̄):

∆pji =
t.[wj

i − d/x].(pji − p)(p̄− pji )

p̄− p
(7.3)

There are three parts to this adjusted logistic equation:

1. t is a speed-of-adjustment parameter.

2. wj
i − d/x is a term that ensures the agent’s change in skill is positive (negative)

if the agent spends more (less) time than average foraging for a specific resource:

wj
i is the total number of time slots agent i spends foraging for resource j during

the round; d is the total number of time slots; and x is the number of resource

fountains. In the default scenario, d = 5 and x = 2. This means that, in the

default scenario, if an agent spends more than 2.5 of its 5 time slots foraging for

resource j then its skill increases, and vice versa.

3.
(pji−p)(p̄−pji )

p̄−p ensures the adjusted logistic equation has a minimum value of (p) and

a maximum value of (p̄). In the default scenario, agents’ skill probabilities have

a floor of 0.2 and a ceiling of 1.0, i.e., the agents can attain skill ‘perfection’ but

they will always have some nominal level of skill even if they stopped foraging for

a particular resource.

This logistic equation (which generates a sigmoid curve) is used in the default simula-

tions. There is some evidence that learning from a minimal level of understanding in

some field describes a sigmoid curve (e.g., Leibowitz et al, 2010; and Johnson, 2012).

Moreover, the top half of this curve is consistent with Erev and Roth’s (1998) second

principle of reinforcement learning (power law of practice).

Note that a linear approach is considered when the parameter space is explored.

7.1.5.3 Updating Foraging Strategies

In updating their strategies, agents are allowed to change one randomly chosen cell of

the five cells in their foraging strategy arrays (hi). In doing this, agents will seek to

maximize the acquisition of the resource in which they are most lacking in their personal

resource arrays (denoted rmin), i.e., if they hold less of Resource A than B then they

will seek to increase their holdings of A in the next round.

In general, an agent has two ways to increase its holding of rmin: (1) choosing to forage

from the counterpart resource fountain in the next round; or (2) choosing to forage for
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the resource in which it is most skilled (denoted rpmax)
7 and then attempting to trade

rpmax for rmin (if different) in the next round. When rpmax and rmin are different, we

refer to this challenge as a work conundrum.

Suppose, for example, an agent holds fewer units of Resource A and it must decide

whether to change h4i from B to A. Suppose, also, that its detection probability for

A (pAi ) is 0.3 and its detection of probability for B (pBi ) is 0.7. The agent faces a

conundrum: it could decide to forage from Fountain A; or it could forage from Fountain

B (with a higher expected yield), hoping to trade from B to A.

What the agent decides will depend on its detection probabilities, the expected exchange

price of the resources, and its expectation of being able to trade (this is explained in

Section 7.5.2 below). If it believes the probability of trading will be low then it will be

less likely to forage for its specialised resource, and vice versa.

One addition to this process is an error term that reflects the idea that agents do not

have perfect information, nor perfect processing power. The agents’ expected yields for

both resource choices are calculated (accurately) and these are then adjusted by a value

drawn from a normal distribution with mean 0 and standard deviation of 0.1, to form

the agent’s expectations. Here, the higher the standard deviation, the less accurate is

the agent’s estimated foraging yields.

For the purpose of clarity, let us look at this formally from one agent’s point of view.

For Agent i, the expected foraging yield of Resource j in any time slot t is determined

by the following equation:

E(yieldj,ti ) = pji .
E(lj,t)

L
+ εj, t (7.4)

where:

1. E(yieldj,ti ) denotes Agent i’s expected yield of resource j in time slot t.

2. pji is i’s detection skill for resource j in time slot t.

3. E(lj,t) refers to the expected stock of resource j at fountain j during time slot t.

In the model, this is derived from taking the mean of the fountain’s beginning and

end stocks for each time slot (t) in the previous round.

4. L is the starting stock of all fountains (L = 50 in the default scenario).

7pmin and pmax denote the agent’s minimum and maximum foraging skills, respectively
(stated as probabilities): rpmax

denotes the resource associated with its maximum detection
skill.
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5. εj, ti is a variable taken from a normal distribution with mean zero and a standard

deviation of 0.1 in the default scenario.

Note that pji .
E(lj,t)

L is equivalent to equation 7.1, which defines the probability of de-

tecting a single unit of resource j in a single time slot. The expected foraging yield

is the same as the expected probability of detection in each time slot since agents are

attempting to detect a single resource.

This updating of foraging strategies is central to whether or not agents specialise: in

the default simulations, we find that once markets formed and the probability of trading

increased toward 1 then agents did indeed choose to specialise.

Moreover, we also find that specialisation occurs when an agent enters a positive feedback

loop: it forages for the resource for which it had greater skill (rpmax), and this typically

increased the agent’s skill for that resource, making it more likely the agent subsequently

chooses to forage for rpmax when it adjusts its foraging strategy. This is discussed in

more detail in Section 7.5.2 below.

7.1.5.4 Communication

At the end of each round, agents communicate with each other: there is a 1% probability

that any pair of agents communicate (regardless of location). If two agents communi-

cated, they share information about every transaction they had participated in during

that round.

After these end-of-round processes are complete, the next round began until the end of

the 1,000th round.

Now that the model has been explained, let us look at the results of three ‘null’ scenarios

before those of the default scenario and the habituation experiments.

7.2 Results: Null Scenario - No Trading

As mentioned above, three null experiments were conducted. The first, which is pre-

sented here, is the simplest because agents can only forage for resources; they are not

allowed to trade.

The rationale for this first null scenario is to evaluate the carrying capacity of the

environment when agents cannot trade.

Fig. 7.3 below shows the total population in a typical simulation (extended to 2,000

rounds to be sure of a steady state result): it falls to 15 agents by Round 800 (approxi-

mately), after which it stabilizes.
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Figure 7.3: Total agent population over 2,000 rounds when the agents are prevented
from trading. Over 20 simulations the total population declines to approximately 15-
16 agents, which can be viewed as the carrying capacity of the environment when the
agents neither trade nor specialise.

Over 20 simulations the mean population in the last 100 of 2,000 rounds was 15.7 (with

a standard deviation of 0.7). The carrying capacity of the agents’ environment (in the

absence of trading) is, therefore, approximately 15-16 agents.

The agents remained generalists throughout these simulations: their foraging strategy

arrays were roughly evenly split between the two fountains and their foraging skills

remained at approximately 0.5 throughout.

7.3 Results: Null Scenario - No Memories with

Specialisation

Here we look at the results from the second null scenario, when agents can trade but

are restricted to moving around the grid randomly.

Fig. 7.4 below shows a heatmap of the total volume of transactions in each grid square

in the last 100 rounds of a typical simulation. It shows a random spread of transactions.

In this scenario, all transactions resulted from agents randomly bumping in to each

other.

A useful representation of the (in)efficiency of this null scenario is to compare the actual

volume of transactions on the grid with a representation of the market clearing volume

of trade. Fig. 7.5 below shows the supply and demand curves for Resource A in a typical
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Figure 7.4: Heatmap of transactions in each grid square (last 100 rounds of a typical
simulation) when the agents hold no previous transactions in memory. The agents move
around the grid in a random walk and interact only when they bump in to each other.
This results in a ‘noisy’ dispersion of transactions.

round of a typical simulation; and it shows the actual volume of transactions and the

mean transaction price (the red star).

Figure 7.5: Supply and demand curves and total transactions in one round of a typical
simulation when the agents have no memories of previous transactions. The supply and
demand curves are calculated after foraging and before trading, and are generated by
discovering what each agent would have supplied or demanded for each resource over
a range of prices; and then aggregating these over all agents. The red star indicates
the total volume (measured on the horizontal axis) and the mean price (measured on
the vertical axis) of the subsequent transactions in the same round. The mean ratio of
actual transactions to the market clearing volume was 18% over 20 simulations.

On average we found that the volume of transactions was about 18% of the market

clearing volume: agents are generally left unsatisfied. Many wanted to trade but could
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not find other agents to do so.

In these simulations, none of the agents specialise even though they were able to: de-

tection probabilities remained at about 0.5 for all agents. The total agent population

declined to the carrying capacity observed in the preceding sub-section. An analysis of

the data showed that the transactions that did occur helped to equalize the resources in

agents’ personal resources arrays (but only very marginally). The lack of specialisation

meant the total population did not increase above the carrying capacity.

Note that an additional null experiment was conducted in which the agents could trade

but not use memories nor specialise. The results were essentially the same as in this

second null experiment. This should not be surprising: in both scenarios the agents

walk around the grid randomly and cannot specialise.

7.4 Results: Null Scenario - Memories without

Specialisation

If agents use their memories of locations in order to choose a target location, we find

that, over time, they converge on a single grid square where (essentially) all transactions

take place.

Fig. 7.6 below shows the heatmap of transactions during the last 100 rounds of a typical

simulation. It is equivalent to Fig. 7.4 above: here, 99.9% of transactions took place on

a single grid square8.

A single market typically emerged over approximately 200 rounds: initially, several

markets emerge as agents bump in to each other and then (in some cases) report these

interactions to other agents. The agents’ mental models co-adapted and there was also

symmetry breaking, which meant larger markets dominated smaller markets until only

one market was left. This process is described in more detail Section 7.5.1 below.

Fig. 7.7 below is equivalent to Fig. 7.5 above: it shows how the existence of a market

moves the actual volume of transactions much closer to the market clearing volume.

Fig. 7.8 below shows a time series of the actual volume of transactions divided by the

market clearing volume of transactions (denoted here as the ‘turnover ratio’) in a typical

simulation. This is the quantity associated with the red star in Fig. 7.5 divided by the

market clearing volume (at the intersection of the supply and demand curves). We can

see how this ratio rises from zero to approximately 1 over about 200 rounds.

8Recall that agents do not transact on the way to a target location - they only do so after
they reach their target. We relax this assumption when we explore the parameter space in the
next chapter.
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Figure 7.6: Heatmap of transactions in each grid square (last 100 rounds only) when
the agents use their memories of previous transactions to find other agents. Over each
simulation they converge on a single grid location in order to trade (a ‘market square’).
Note, however that this location differed between simulations: it was an emergent
property of each simulation.

Figure 7.7: Supply and demand curves and total transactions in one round of a typical
simulation when the agents use their memories of previous transactions to find other
agents. See Fig. 7.5 above for a description of the data. On average the ratio of actual
transactions to the market clearing volume was 100.0% over 20 simulations.

Agents are not permitted to specialise in this scenario. This means that detection

probabilities are kept constant at 0.5. We found that, even though agents could transact

efficiently, the overall foraging yield was not sufficient for all 25 agents to survive. We

again saw the total agent population decline to the carrying capacity of approximately

15-16 agents.
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Figure 7.8: A time series of the turnover ratio over 500 rounds when agents use their
memories of previous transactions to find other agents. The turnover ratio is defined
as actual transactions divided by the market clearing volume. It was measured and
recorded in each round. In this chart we can see how the turnover ratio increased
toward 1 as agents find each other and trade. The ratio is maintained at approximately
1 after a single market emerges.

7.5 Results: Default Scenario - Memories with

Specialisation

In these experiments, agents use their memories to decide on target locations and they

are allowed to specialise.

The results are similar to the previous scenario in that a market emerge but, this time,

most agents become fully specialised, i.e., the agents’ skill for one resource (pmax) in-

creased to 1 and, perturbations aside, they remained at this resource fountain throughout

the foraging phases thereafter.

We found the total agent population increases to approximately 43 agents on average.

Typically, 37 agents reached full specialisation and there are on average 5-6 agents born

who fail to reach full specialisation. These agents eventually die and are replaced with

new, unskilled agents, who also fail to specialise.

A measure that helps us visualise the move from generalists to specialists is shown

in Fig. 7.9 below, which was taken from a typical simulation. The chart shows the

‘mean specialisation value’ over all agents during the first 500 rounds of one simulation

(this is explained in Fig. 7.9 - a value of 3 means all the agents are perfect generalists

and 5 means they are perfect specialists). In this run, most agents have specialised

by approximately Round 200. The oscillations around 4.5 are because most of the
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agents achieve a mean specialisation value of approximately 5 and a minority have mean

specialisation values of 3 or 4 (those who fail to reach full specialisation and die).

Figure 7.9: Time series of the mean specialisation value in a typical simulation using
the default parameter set. For each agent, the ‘specialisation value’ is the number of
times an agent forages from the fountain it visits most often (given 2 fountains and 5
foraging opportunities, this value varies between 3 and 5). For the agents as a whole,
an average value of 3 would mean all the agents were generalists and a value of 5 would
mean they were all specialists (foraging from the same resource fountain in all five
time slots during the foraging phase). The data here shows how the agents became
more specialised over the first 200 rounds of the simulation, which correlates with the
turnover ratio.

This move from generalists to specialists is due to the existence of a market which

increases the agents’ expected probabilities of transacting. When their foraging strategy

arrays are updated, agents are generally encouraged to select the fountain associated

with their highest detection probability. In a sense, when agents are confident of trading,

they view the two resources as interchangeable, which means they chose to forage for

the resource with the highest expected yield. This is explained further in Section 7.5.2

below.

We can say, therefore, that markets enabled specialisation in these simulations.

It was noteworthy that, prior to specialisation, agents meet only to exchange marginal

quantities of resources: as generalists, they forage from both fountains and there is little

benefit from transacting (but not none). As agents become specialised, they forage for

a single resource but they still need both resources to survive, which means exchange is

necessary. As a result, the total average volume traded after a single market emerges (but

before agents specialise) was approximately 0.15 resource units per agent per round. By

the end of the simulations (when agents had specialised), this increased to 0.54 resource

units.



232 Chapter 7 Market Emergence Model

7.5.1 The Emergence of the Market

Here we look at how the markets emerge in the default simulations.

As mentioned above, the agents start the interaction phase at their home locations and

then walked around the grid randomly.

Eventually, two agents come across each other and attempt to trade. However, the

agents would only do so if both held the resources the other wanted to buy. At the

beginning of the simulations, when agents are generalists, only about 1 in 4 interactions

results in a transaction.

Fig. 7.10 below helps us visualise what happened during the first 50 rounds of a typical

simulation. Each line corresponds to the total number of agents targetting a specific

square in each of the 50 rounds (‘none’ is also included: this is the number of agents

walking around the grid randomly).

Figure 7.10: A time series of the number of agents targetting six locations on the grid
during the first 50 rounds of a typical simulation that used the default parameter set.
The chart shows how multiple markets emerged during the first 30 rounds but one of
these ([12, 8]) was visited by more agents. Symmetry breaking meant all the agents
eventually converged on this location.

If the agents transact then this is recorded in both agents’ memories. The first transac-

tion typically takes place within the first five rounds of any simulation.

On average, there were approximately 5 locations on the grid where transactions oc-

curred as a result of agents walking around randomly, and these were typically first

observed within the first 15 rounds. We can think of these as proto-markets.
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In the absence of any other memories, the agents who form these proto-markets revisit

them in the rounds after they first appear in memory9. It is likely that the two agents

who first transact at this location meet again on this square in subsequent rounds: in

some rounds they will transact and in others they will not (given the point mentioned

above about there being only a 1 in 4 chance of two agents transacting). However, given

that single transaction locations remain in memory for 13 rounds, it is likely they will

transact again, eventually, and we will observe the location’s weight in memory increase

as a result.

After these proto-markets are formed, the agents communicate about them. Recall there

is a 1% chance that any pair of agents communicate at the end of each round: in the

simulation from which Fig. 7.10 is taken, location [12, 8] became a proto-market in

Round 2 and was communicated to two other agents at the end of that round. As a

result, four agents visited this location in Round 3. None of these agents transacted in

that round but all of them transacted in the next round, increasing the weight of this

location in their memories.

If we look closer at what happened to these four agents (let us denote them i, j, k, and l)

we observe the phenomenon of co-adaptation. Agents i and j formed the proto-market

and then communicated its location to k and l: the participation of k and l meant more

transactions occurred at that location than would have otherwise. This had an impact

on i and j’s mental models, which contained higher weights attributed to this location

than would have existed if k and l had not visited this location.

We can see from Fig. 7.10 that a number of proto-markets formed but eventually disap-

peared. For example, location [17, 2] was formed at the same time as [12, 8], in Round

2; however, unlike [12, 8] this location was only communicated to one other agent at the

end of Round 3. It is noticeable from Fig. 7.10 that 5 other proto-markets were formed

at the same time or after [12, 8] but that none of these survived beyond Round 29.

The reason for this pattern is the existence of symmetry breaking in the simulations.

As mentioned above, this means that the markets with more agents tend to cannibalize

those with fewer.

To understand this symmetry breaking, consider a situation in which 12 agents visited

location Y but 13 visited location X. Symmetry breaking occurred because the prob-

ability that an agent at Y would be informed about X was (slightly) higher than vice

versa. There was a second influence: it was likely that each agent would have taken

part in more transactions at X than at Y so if two agents did communicate, there were

probably more transactions at X to communicate about than those at Y.

9Recall that a memory decay rate of 20% means single transactions remain in agents’ memories
for 13 rounds.
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These two influences together meant that those markets with more agents tended to

dominate the smaller ones until only one market was left.

Fig. 7.11 below demonstrates this symmetry breaking particularly well (reproduced from

the previous chapter for convenience). This chart is taken from a different simulation in

which two markets initially dominate others (at [31, 16] and [22, 30]).

Figure 7.11: A time series of the number of agents targetting different locations on the
grid during the first 50 rounds of a typical simulation that uses the default parameter
set. This chart demonstrates a scenario when two markets dominate for a period but
symmetry breaking meant that, eventually, one dominates. Reproduced from Fig. 6.2
in Chapter 6 for convenience.

In this figure, the number of agents targetting locations [31, 16] and [22, 30] (the two

dominant markets) were approximately equal until circa Round 32.

A degree of randomness was built in to the selection of target locations (when agents

had more than one location in memory) and in to the communication process. These

resulted in perturbations in the agents’ choice of target locations.

The final point to make here is to link the formation of a single market square to the

concept of emergence in the complexity sciences. The market appears to be an emergent

property in the sense that, to paraphrase the definition stated in Section 2.2.5, the

agents collectively acquired a qualitatively new property that cannot be understood as

the simple addition of their individual contributions. Moreover, the market was clearly

useful to the agents because it helped them survive.
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7.5.2 The Emergence of Specialization

Here we look more closely at how agents came to specialise in the default scenario10.

To do this we must first consider in more detail how agents decide between foraging

for Resource A or B when they adjust their foraging strategy arrays at the end of each

round.

As mentioned in Section 7.1.5 above, the agents are allowed to adjust one of the five

cells (randomly chosen) in their foraging strategy arrays (hi) at the end of each round.

When they do this, they choose to maximize the expected yield of the resource they will

be most deficient in (rmin) in the next round.

If the agent has a greater skill (detection probability) in foraging for rmin then the choice

is simple: it will visit Fountain rmin during the time slot in question.

Suppose, however, there is a conundrum: the agent is deficient in the resource it is less

skilled in foraging for.

If we start with Equation 7.4 and substitute rmin for j, we find the expected yield of

foraging for Resource rmin is:

E(yieldrmin, t
i ) = prmin

i .
E(lrmin, t)

L
(7.5)

Note we have dropped εi since the expectation of this would be zero.

The agent will compare this to the expected yield as if it forages for the resource it is

more skilled in foraging for (rpmax) and then trading this with another agent for rmin.

This expected yield is more complicated than E(yieldrmin, t
i ) above because the agent

has to account for the expected price of the transaction and the likelihood of being able

to trade.

Let us denote the expected yield of rmin received for the expected foraging yield of rpmax

as E(yield
rpmax→rmin, t

i ) where:

E(yield
rpmax→rmin, t

i ) = p
rpmax
i .

E(lrpmax , t)

L
. Pricermin↔pmax×1 . Probtrans (7.6)

The first part of the right hand side of Equation 7.6 (p
rpmax
i . E(lrpmax , t)

L ) is the expected

foraging yield of Resource rpmax in time slot t.

10The model is designed with only two resource fountains; however, the principles shown below
can extend to more than this.
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To find the counterpart expected yield in units of rmin (via exchange), we must multiply

this by the expected price of rmin in units of rpmax (denoted Pricermin↔rpmax×1) and

multiply by the expected probability of transacting, Probtrans.

Suppose, for example,

pmax = 0.7

E(lrpmax , t)/L = 0.8

Pricermin↔pmax×1 = 0.95

Probtrans = 0.9

then:

E(yield
rpmax→rmin, t

i ) = 0.7× 0.8× 0.95× 0.9 = 0.4788 (7.7)

Now, the agent will choose to forage for rpmax in time slot t if:

E(yield
rpmax→rmin, t

i ) > E(yieldrmin, t
i ) (7.8)

For example, if E(yieldrmin, t
i ) = 0.4 the agent will prefer to forage for rpmax in time slot

t rather than rmin because the expected yield will be slightly higher.

If we substitute equations 7.5 and 7.6 in to Equation 7.8 and rearrange, we arrive at the

following, which is the condition for the agent choosing to forage for rpmax rather than

rmin in time slot t, i.e., when there is a work conundrum:

prpmax

prmin

.
E(lrpmax , t)

E(lrmin, t)
. Pricermin↔rpmax×1 . Probtrans > 1 (7.9)

This equation can be interpreted by stating that an agent will be more likely to choose

rpmax in a work conundrum:

1. the more skilled it is at foraging for rpmax versus rmin;

2. the higher the expected fountain stock for resource rpmax relative to the expected

stock of rmin, in time slot t;

3. the more of rmin it expects to receive in exchange for rpmax ; and

4. the higher the expected probability of transacting.
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It is this last point that helps us understand why the emergence of specialisation was

conditional on markets existing: the higher the expected probability of transacting, the

more inclined agents were to choose rpmax in a work conundrum rather than rmin.

To help us understand the emergence of specialisation better, it is informative to rear-

range Equation 7.9 in order to derive a threshold probability of transacting above which

an agent will choose rpmax and below which it would choose rmin in a work conundrum:

ProbThreshold =
prmin

prpmax

.
E(lrmin, t)

E(lrpmax , t)
.

1

Pricermin↔rpmax×1 (7.10)

We can generate and track this threshold probability for every agent in each round

because we can determine values (or their expectations) for each element on the right

hand side of this equation. We can also compare this threshold with the actual expected

probability of transacting: if the latter exceeds the former, the agent will specialise in a

work conundrum11. Fig. 7.12 below includes the time series of this threshold probability

(the red line) for one agent over the life of a typical simulation.

Figure 7.12: The specialisation threshold for an agent over 200 rounds of a typical
simulation. The model keeps track of this metric (the red line) for each agent over each
round: if the turnover ratio experienced by the agent and its neighbours (the black
line) exceeds this value then agents tend to specialise, and vice versa. The blue line
shows the foraging skill (as a probability of detection) of the resource in which the agent
became specialised, and the green line shows the non-specialised resource.

11Note that even when there is no such conundrum, ProbThreshold was generated by the model
as a ‘thought experiment’.
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The chart shows four time series. The red line is the threshold probability which was

calculated in each round by applying Equation 7.10. Note that it started the simulation

at close to 1 and often exceeded this value.

The black line is the assumed probability of transacting (taken as the mean turnover

ratio for the agent and its neighbours whose homes were within 10 grid squares of the

agent in the preceding round). This started the simulation at well below 1 but it reached

1 by approximately the 50th round.

The blue line shows what ended up as the agent’s highest detection probability at the

end of the simulation (pmax); and the green line is what ended up being the agent’s

lowest detection probability (pmin).

In this particular simulation, E(lrmin, t)/E(lrpmax , t) ≈ 1, i.e., expected fountain levels

tended to be about equal and the price remained close to 1 (Pricermin↔rpmax×1 ≈ 1), so

the variation in the threshold probability was largely due to the variation in detection

probabilities prmin/prpmax
(see Equation 7.10).

When the black line in Fig. 7.12 was above the red line, the agent chose to specialise

when faced with a work conundrum. Moreover, when there was no conundrum, this

meant rmin was also the resource with the highest detection probability - here the agent

would invariably choose rpmax = rmin when it updated its foraging strategy.

In this particular simulation, both the red line and the black line oscillated close to 1

after the market emerged and prior to Round 50 (approximately). As a result, the agent

chose to specialise in the face of a conundrum about half of the time, which typically

meant it foraged for its higher skill resource in 3 or more of the 5 time slots. This

created a bias toward specialisation that meant the detection probability for the higher

skill resource increased slightly, and vice versa.

This process contained a positive feedback loop (noted earlier): a greater foraging skill

for one resource (combined with a high expected transaction probability) would lead

an agent to forage more for that resource on average; and this in turn increased the

agent’s detection probability for that same resource. Ultimately, agents became fully

specialised in one resource. We can see this in Fig. 7.12 above: the blue lined increased

more quickly after the black line stabilized at close to 1.

An interesting feature of Fig. 7.12 is the decline in the threshold probability after ap-

proximately the 50th round.

Mathematically, we can understand this by examining Equation 7.10: as pji rose and

p
rmin
i
i declined, ProbThreshold also declined (the two other factors on the right hand side

of Equation 7.10 were approximately 1). In fact, we can see that because pmax increased

to 1 and prmin fell to 0.2, prmin/prpmax
also fell to 0.2, which we can see in the chart.
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Conceptually, this decline in the threshold probability is related to a skill lock-in effect.

As one foraging skill (pmax) improved and the other (pmin) declined, the threshold

probability of transacting ‘required’ for the agent to specialise also declined. This lock-

in effect meant that when the agent was fully specialised (pmax = 1 and pmin = 0.2),

it still made sense for them to choose to forage for rpmax even when the probability of

transacting was only slightly above 0.2.

We will make further use of equations 7.9 and 7.10 in Appendix B where we explore the

parameter space in detail.

7.5.3 Proximity to the General Equilibrium Outcome

An interesting question to consider is how closely the results of the default scenario ap-

proximate the General Equilibrium outcome of Arrow and Debreu (1954). This would be

where the total volume transacted equals the market clearing quantity; and transaction

prices equal the market clearing price.

We can answer this question in two ways: by looking at the turnover ratio and by looking

at the mean and standard deviation of market prices. If the turnover ratio was 1.00 and

market prices were identical to the market clearing price (with no variation) then the

General Equilibrium outcome would have been precisely replicated.

Table 7.1 below shows turnover and price data for 20 simulations which used the default

parameter set.

Default
Scenario

Turnover Ratio 1.000 (0.0020)
Mean Price Difference 0.19% (0.14%)
Standard Deviation of Daily Price Changes 1.77% (0.16%)

Table 7.1: Proximity to general equilibrium over the last 100 rounds of 20 default
simulations. If the default simulations replicated the general equilibrium model then
the turnover ratio would be 1, the mean price difference (mean actual prices divided
by the market clearing price) would be zero, and the mean daily standard deviation of
price changes would also be zero. These data indicate that the results of the default
simulations did indeed approximate the results of the General Equilibrium model.

These data resemble the General Equilibrium outcome: the turnover ratio is very close

to 1.00; and there is a small difference between mean market prices and the market

clearing price in each round (about 0.19%). Prices varied little: the standard deviation

was equal to 1.7% of the mean market price.

Note, however, that these results were contingent upon the emergence of a market in-

stitution. Without this institution, the general equilibrium results would not have been

approximated.



240 Chapter 7 Market Emergence Model

Moreover, it is worth considering these results in the context of the famous quote from

Williamson (1975), that “in the beginning there were markets” (p. 20). The results

presented in this chapter reinforce the idea that markets are institutions which have to

be explained and not assumed (which links to the discussion of pre-existing institutions

in Section 1.1.2).

7.6 Habituation

Here we discuss the design and results of experiments which explore the impact of

habituation on the simulation results.

Broadly speaking, this was done by mimicking Hodgson and Knudsen’s (2004) approach

to habituation whereby habits are viewed as a “summation of behaviors in an unbounded

set of present and past periods” (p. 35).

Habituation is introduced into the models by adding a value ha to the weight of any

square an agent visits in each round. This value does not decay over time in the way

weights associated with transactions do, nor are these weights influenced by any trans-

actions. The parameter ha simply reflects the idea that an agent is more likely to revisit

a location it had previously visited.

With the inclusion of ha, the agents’ selection of target locations is now determined by

two different factors: reinforcement learning and habituation. A roulette wheel approach

is still used to select a target location but now the weights of locations are determined

by these two factors.

The inclusion of ha means the model is now similar to Hodgson and Knudsen’s (2004)

framing except here the agents’ mental models include reinforcement learning instead of

innate dispositions; and there are 2,500 potential options to choose from (locations on

the grid) instead of 2.

The main question we are interested in here is about the impact habituation has on the

emergence of markets as organic institutions. The idea that habituation can reinforce

market as institutions after they have emerged via reinforcement leaning seems intu-

itively appealing but what about when they are emerging? Section 7.6.1 below looks at

the results when the agents’ mental models change as a result of reinforcement learning

and habituation, for different values of ha.

Another interesting question is what happens when reinforcement learning is ‘switched

off’ and location weights are only determined by habituation. Section 7.6.2 looks at

these results.
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7.6.1 Reinforcement Learning and Habituation

The most significant result of the experiments is that habituation tends to interrupt

symmetry breaking, which leads to an increase in the number of market institutions

existing at any one time. This reduces the allocative efficiency of the markets but

it enhances equality because agents are on the whole closer to the market they visit

(discussed further below).

A second result is that for lower values of ha, reinforcement learning dominates the pro-

cess of markets emergence but, post-emergence, habituation dominates. Agents appear

to co-learn to visit specific locations but, over time, their choices look more like habits.

Looking at the results in more detail, at the agent level we observe, unsurprisingly, that

agents behave more ‘conservatively’ when ha > 0, tending to visit locations they had

visited in the past rather than trying out new locations suggested by others. We will

see below, however, that when the data is analysed, there are some unexpected results,

e.g., agents going to the better-attended markets are more likely to survive than those

going to less liquid markets.

Table 7.2 below shows the key results for different values of ha.

ha No. markets % on one square Turnover Ratio
0 1.00 (0.00) 100.00 (0.00) 1.00
0.1 1.55 (0.59) 98.90 (4.09) 0.99
0.5 3.65 (1.19) 92.29 (12.02) 0.94
1.0 3.65 (1.28) 78.30 (18.52) 0.93
2.0 4.50 (1.02) 65.01 (14.28) 0.93
4.0 4.75 (1.37) 56.24 (18.24) 0.95
6.0 4.80 (1.21) 53.18 (16.84) 0.96
8.0 4.85 (1.01) 48.86 (11.42) 0.96
10.0 4.70 (1.31) 57.13 (21.27) 0.97
∞ 5.15 (1.68) 51.24 (15.79) 0.98
No RL 11.50 (1.16) 20.44 (4.05) 0.98

Table 7.2: A summary of results for ‘habituation’ experiments based on the first
model. Data are mean values for the last 100 rounds of 20 simulations, for each value
of ha (standard deviations in parentheses). ha refers to the habituation parameter
added to the weight of an agent’s target location (if there is one), which does not decay
over time (note in the default simulations, ha = 0, which is represented in the top
row). ‘No. markets’ refers to the mean number of market locations. ‘% on one square’
refers to the percentage of transactions on the square with the most transactions. The
turnover ratio is the volume of actual transactions divided by the would-be volume at
the market clearing price. The final row (‘No RL’) refers to a set of experiments when
reinforcement learning is ‘switched off’: here, agents only ever visit the location where
they first transacted during a random walk.

The table shows that as ha → 0, the results mimic those of the default simulations,

when ha = 0 (this is not surprising). Moreover, as ha increases, the agents increasing
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visit the first location they transacted at or heard about (for the whole of their lives).

In this latter case, the mean number of market locations over 20 simulation runs was

5.15 (with a standard deviation of 1.68). This seems surprisingly low given that in

these simulations, the total population peaks at approximately 43 agents who only ever

transact at one location - this is explained below.

In all of the experiments, the turnover ratio was high enough for (surviving) agents to

specialise and, eventually, to bear children, i.e., despite there being multiple markets,

the agents sold enough of their resources to be sufficiently confident in specialising. To

help visualise this, Fig. 7.13 below shows the supply and demand charts in a typical

round when ha = ∞, as well as the turnover / mean price observed.

Figure 7.13: Supply and demand curves and total transactions in Round 999 of a
typical simulation when ha = ∞. See Fig. 7.5 above for a description of the data. On
average the ratio of actual transactions to the market clearing volume during rounds
900 - 999 was 0.98 over 20 simulations.

It is tempting to conclude from these results that the introduction of habituation makes

little difference in the emergence of the markets; however, these data hide the fact that

more agents died in these experiments than in the default simulations. For example,

when reinforcement learning was switched off, a mean of 7.3 agents died between rounds

900 and 999 across 20 simulations (with a standard deviation of 2.1) whereas in the

default simulations the equivalent numbers were 4.9 and 1.1, respectively.

The specific mechanism that explains these deaths was that, ceteris paribus, an agent

was more likely to survive if it frequented a market with more agents attending than

less well attended markets. There are two issues at play. The first and most obvious is

that an agent with an excess of one resource post-foraging is more likely to find someone

to trade with at larger markets - this helped it survive.
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The second issue was the problem of small markets with an odd number of specialised

agents. Consider a situation in which two of the original agents had become specialised

(in different resources) and a new, non-specialised agent finds the location where they

trade. The new agent would specialise in one of the two resources and, assuming no

other agents find the market, this will lead to an imbalance in the resources flowing

onto the market which has only 3 agents attending. Suppose now the market has one

specialist in Resource A and two specialists in Resource B.

In the mid to late parts of the simulations, the Resource A specialist will not be able

to collect enough of this resource for 3 agents to survive (there are approximately 43

agents competing for resources). From the new agent’s point of view there will be a

swing in price against its specialised resource which is, ultimately, more detrimental

than the productivity benefits of specialisation. One of the two Resource B specialists

will then perish: it will almost always be the newer agent because the older agent will

have accumulated a larger stock of resources over the life of the simulation.

In some simulations we observe the two mature, fully specialised agents also dying at

smaller markets because of the volatility caused by new agents and the fact that prices are

determined by the agents’ stocks of resources (not the flow onto the market). The latter

point means that the low price of Resource B in the above example can be maintained

well after the new agent has died: if the Resource B specialist has low levels of resources

at this point, it might also die. If this happens then the Resource A specialist will have

nobody to trade with and it too will die (even if the agent switches to foraging for its

non-specialised resource, its low level of productivity means it will be unable to survive).

For larger markets, this problem is less likely because they are more liquid and because

there is a greater chance of new agents joining that market than smaller markets (the

probability that a new agent finds out about a market is proportional to the number of

agents transacting at that location).

Hence, agents are more likely to survive if they join the larger markets.

One of the curious implications of this mechanism is that it is a weak form of symmetry

breaking: the death of agents at less liquid markets gives ‘room’ for new agents to be

born who are more likely to be informed about the more liquid markets. This is also

related to weak downward causation / effects (Campbell, 1974), as discussed in Hodgson

and Knudsen (2004). We should note, however, that markets with more than 3 agents

(approximately) tended to survive so this symmetry breaking effect was limited.

7.6.1.1 Efficiency and Equality

In the default simulations we observed that agents closer to the single market that

emerges benefit from their proximity to that market. They profit from intermediation:
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they obtain good prices from new arrivals to the market (especially when agents are

specialised) and then sell these to other agents. Given this benefits some agents more

than others, the institution should be viewed as a solution to a non-pure coordination

situation.

Having a single market which all agents attend, however, maximizes allocative efficiency

of the whole system (relative to multiple markets). Approximate speaking, the agents

get closest to what they would have bought and sold if they transacted at the market

clearing price at one market.

A single market, therefore, is allocatively efficient but it benefits the agents unequally.

When multiple markets emerge due to habituation making agents more conservative

in their choice of target location, this reduces allocative efficiency (each market sees

different prices) but in general the outcome is more equal because, on the whole, agents

live closer to their chosen market.

7.6.1.2 Agent Level Data: Reinforcement Learning and Habituation

When ha is relatively low and the data is disaggregated, we find some interesting results.

The total weight of each target location in an agent’s memory is made up of two values:

that attributable to (i) reinforcement learning, and (ii) habituation. Fig. 7.14 below

shows the contributions of both for a typical agent when ha = 0.5 for the first 200 rounds

of a typical simulation. Fig. 7.14 shows the same data for 1,000 rounds. These figures

are reproduced from Chapter 6 for convenience.

The agent represented in Fig. 7.14 visited the location depicted from Round 49 onwards.

The figure indicates that the emergence of the market to which the agent travels occurred

mostly as a result of reinforcement learning. In Round 100, the weight corresponding

to this location was 99.6, which can be decomposed into 68.6 for reinforcement learning

and 31.0 for habituation.

As the simulation progressed, however, the reinforcement learning component of the

weight stabilized at about 100 and the habituation component continued to increase.

This stabilization was a result of agents adding to the reinforcement learning contribution

by transacting but this was offset by memory decay (which depreciated the contribution

by 20% after each round). Habituation values, however, did not decay.

By the end of Round 1,000, the weight for this location in the agent’s memories was

530.6 (112.6 attributable to reinforcement learning and 418 to habituation).

In general, this tells us that for lower values of ha, market institutions emerge as a result

of reinforcement learning (and the co-adaptation of the agents’ mental models). Later
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Figure 7.14: A time series of the contributions to a target location’s weight in memory
over the first 200 rounds of a typical simulation (for one agent). The two ‘areas’ denote
contributions to the total weight over time: the dark blue area shows the contribution
of reinforcement learning; and the dark red area shows that of habituation. This chart
shows how the agent learned to visit the location depicted as a result of reinforcement
learning. Reproduced from Chapter 6 for convenience.

on, however, habituation dominates. This combination is intuitively appealing: agents

co-learn to target a specific location and then, over time, this becomes embedded in the

agents’ mental models.

7.6.2 Reinforcement Learning Turned Off

In the above experiments, agents combine reinforcement learning and habituation. What

happens if reinforcement learning is ‘switched off’? This would mean that agents choose

target locations as a result of habituation only. In practical terms, agents will wander

around the grid in a random walk until they bump into other agents: communication

from other agents is viewed as part of learning so this is also switched off.

The bottom row of Table 7.2 above shows the main results. We can see there are

many more markets in these simulations (11.50 on average) although the turnover ratio

remains high nonetheless.

The main difference between these simulations and those when ha = ∞ (when reinforce-

ment learning is ‘on’ - the penultimate row of Table 7.2) concerns communication. In

the former, agents mostly learn about market locations from other agents: they visit

a location in the round after learning about it, and always return to it thereafter. In

the latter, this cannot happen: agents spend more time walking around randomly and

this makes it more likely they will bump into other agents (without knowledge of a
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Figure 7.15: The same time series as shown in Fig. 7.14 above but over 1,000 rounds.
See the above figure for descriptions of the data. This chart shows how habituation
came to dominate the weight of this location over time. Reproduced from Chapter 6
for convenience.

market) and form their own market. Hence there are significantly more markets when

reinforcement learning is switched off.

7.7 Discussion of Results

A summary of the results presented in this chapter was provided in Chapter 6 and

these will not be repeated here. Moreover, a detailed discussion of how the results

correspond to the research questions is left to the concluding chapter. Here we focus

on two topics: first, whether the markets observed in the default simulations meet

our definition of organic institutions12 (Section 7.7.1); and, second, whether we should

consider the markets seen in the habituation experiments as organic institutions (Section

7.7.2).

7.7.1 Organic (Unplanned) Institutions

In the Introduction we adopted the definition of institutions as “durable systems of

established and embedded social rules that structure social interactions.” (Hodgson,

2006a, p. 13). Organic institutions meet this definition but are unplanned.

12See Section 1.4.1 in the Introduction.
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The single market that emerges in the default simulations appears to fit our definition

but let us look at this in more detail:

• They are ‘durable’ in part because “they can usefully create stable expectations

of the behavior of others” (Hodgson, 2006a, p. 2). This is clear in the simulation

results: the single location in memory, which can be interpreted as an expectation,

is consistent with other agents targetting the same location, i.e., there is persistent

consistency between expectations and agents’ actions.

• The institutions can be viewed as ‘systems’ made up of, inter alia, internal (men-

tal) representations and physical locations on the torus.

• They are clearly ‘established’ across and ‘embedded’ within the population of

agents via their mental models. A single market can be thought of as an ‘attractor

basin’ with steep sides.

• It should also be clear that the markets ‘structure social interactions’ in that they

provide a location at which agents can trade.

• The single markets appear consistent with the definition of a ‘rule’, stated in the

Introduction. We consider this in more detail below.

In terms of organic institutions, the question is whether the single markets are unplanned

or not. It should be clear that they are not: agents are endowed with a limited ability

to find other agents and to communicate; they could not directly plan to all meet at the

same location.

Rules

Are the market locations consistent with Hodgson’s (2006a) definition of rules?

In the Introduction we adopted the following definition: “The term rule is broadly

understood as a socially transmitted and customary normative injunction or immanently

normative disposition, that in circumstance X do Y .” (Hodgson, 2006a, p. 3, emphasis

included).

The first question here is whether the markets are socially transmitted, which “means

that the replication of such rules depends upon a developed social culture and some use

of language.” (ibid). In considering this, let us differentiate between emergence and

perpetuation of the single markets.

‘Social transmission’ appears to play some role in the emergence of the institutions but

this occurs largely through co-adaptive reinforcement learning. The co-adaptive aspect

suggests that ‘socially constructed’ is perhaps a more accurate term to describe this

emergence than ‘socially transmitted’.
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However, when we relax the assumption of agents having infinite lives (subject to re-

source consumption), which is done in the next chapter, it becomes clear that the repli-

cation of the institution occurs through communication from one generation to the next.

The second question is whether the single markets are equivalent to immanently nor-

mative dispositions13. It should be clear that the markets exist “immanently” and

as “dispositions” in the agents’ mental models. The question is whether they can be

categorised as “normative”.

The Oxford English Dictionary (OED) defines norms as “a standard or pattern of social

behaviour that is accepted in or expected of a group.” (OED, 2021, Definition I1b).

The reference here to “expected of a group” makes the market locations consistent with

“normative” in Hodgson’s definition of rules: when a single market emerges, it becomes

the sole location in each agent’s memory and this can be interpreted as an expectation

that other agents will target and visit that location. All the agents expect it of all the

other agents.

The third question is whether the agents are disposed in such a way that in circum-

stances X do Y (and not Y ∗). This is clearly true when the agents have a single

market in memory. The “not Y ∗” aspect is more questionable but we can consider this

pragmatically for a human agent who would be aware of there being 2,500 potential

locations to visit even if one dominates its memories.

We conclude, therefore, that the single markets observed in the default simulations meet

the definition of organic (unplanned) institutions we have adopted in this thesis fairly

comfortably.

7.7.2 Organic Institutions with Habituation?

Do the markets observed when habituation is included in the mental models also meet

our definition of organic institutions? To consider this, let us start from the ‘habituation

only’ results and then add reinforcement learning.

In the ‘habituation only’ simulations we saw that agents can only form ‘markets’ by

bumping into other agents, and they always visit the same location for the rest of their

lives. Given these points, it is difficult to interpret these markets as either ‘unplanned’

or ‘surprising’. This means they are not organic institutions (and they do not meet

Ullmann-Margalit’s (1978) third ‘surprise’ characteristic of invisible hand explanations).

When we add reinforcement learning we observe symmetry breaking; and when we reduce

ha from ∞ to zero, we observe more symmetry breaking. This is born out by the results

13This phrase seems more relevant than “customary normative injunction” in Hodgson’s defi-
nition of rules.
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in Table 7.2 above: even when ha = ∞ we see that in the last 100 rounds of simulations,

slightly more than half of transactions occur on a single grid square on average. The

reason for this appears to be the weak form of symmetry breaking identified above (when

agents at smaller markets are more likely to die and new agents are more likely to be

told of larger markets).

As ha → 0, we are more likely to observe the symmetry breaking identified in the default

simulations, when agents at smaller markets are more likely to switch their ‘allegiance’

than those at larger markets.

Overall, therefore, it appears the institutions we observe that are ‘unplanned’ and ‘sur-

prising’ are this way because of symmetry breaking, which itself results mainly from

reinforcement learning. However, this is not fully inconsistent with habituation: we

observe reinforcement learning and symmetry breaking when ha is weak.





Chapter 8

Market Emergence Model:

Exploring the Parameter Space

Negative results are just what I want. They’re just as valuable to me

as positive results. I can never find the thing that does the job best

until I find the ones that don’t.

– Thomas A. Edison

Fifteen parameters were adjusted in order to understand: (1) their impact on the default

simulation results presented in the previous chapter; and (2) the conditions under which

markets emerge and when they do not. A summary of the results is provided immediately

below and more detail is included in Appendix B.

8.1 Summary of the Results

• Memory decay: in the default simulations, the weights of locations in agents’

memories declined by 20% between rounds (mdec = 0.2). The default simula-

tion results were replicated if mdec < 0.95. For very low values (approx-

imately mdec < 0.02), symmetry breaking was slowed because agents retained

memories of transaction locations for longer1; and for very high values (approx-

imately mdec > 0.95), agents were too forgetful so the results of the second null

experiment (Section 7.3) were replicated (agents wandered around the grid ran-

domly).

1This diluted the impact of information about any larger markets.

251
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• Population density: there were 502 grid squares and 25 initial agents in the

default simulations, which meant these simulations started with a density of 102

grid squares per agent. This density was adjusted by changing the grid dimen-

sions while keeping the number of initial agents fixed at 25 (the time periods in

the trading phase were scaled pro rata so agents could still access the whole grid).

The default simulation results were replicated if this density was ap-

proximately less than 1002 grid squares per agent. For higher values, the

agents rarely found each other during their random walks.

• Probability of Communicating: the probability that any pair of agents com-

municated at the end of each round in the default simulations was 1%. For the

results of the default simulations to be replicated this probability had

to exceed zero. If communication was eliminated, markets still emerged, agents

specialised, and the population increased to approximately 43 agents; however,

approximately 10 markets emerged on average because symmetry breaking was

prevented by the lack of communication.

• Transacting on the Way to Target: in the default simulations, when agents

selected a target location from memory at the beginning of the trading phase,

they would transact only after reaching that target. Allowing agents to trade

on the way to this target made no material difference to the results.

Across 20 simulations we observed that a mean of 83% of transactions occurred

on one square in the last 100 rounds, with the remainder split between nearby

squares. In fact, the market was more like a small area on the grid: as most of the

agents converged on the ‘main’ market square, they would observe other agents

and sometimes transact2.

• Speed of Foraging Skill Change: the speed of adjustment parameter (t) in

Equation 7.3 was set at 0.01 in the default simulations. For the default simula-

tions results to be replicated, t > 0. If t = 0 the third null scenario (Section

7.4) was replicated because agents could not specialise and the population stabi-

lized at approximately 15-16 agents. Positive values of t meant agents specialised

eventually and the population ultimately reached (approximately) 43 agents.

• Randomizing Agents’ Home Locations: in the default simulations, agents’

home locations were positioned on the grid to maximize sparsity. If agent home

locations were chosen randomly this made no difference to the results.

The only marginal change was that markets tended to emerge slightly more quickly

if homes happened to be clustered: this meant agents were more likely to bump in

to each during their random walks. This also meant the locations of the emergent

markets were marginally more predictable than if home sparsity was maximized.

2Also, a small proportion of the agents would typically target these ‘satellite’ squares in each
round.
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• Accuracy of Foraging Yield Estimates. In the default simulations Equation

7.4 was used to estimate foraging yields in the next round when agents adjusted

their foraging strategies at the end of each round. In this equation, ϵ was an

error term, drawn from a normal distribution with mean of zero and standard

deviation (σ) of 0.1. We found that the simulation results were replicated

if σ < 0.7 (approximately). For higher values, changes to the agents’ foraging

strategies were in effect randomized so they never specialised.

• Weight of Other Agents’ Transaction Locations in Memory (β). In the

default simulations, β = 0.5. For these simulation results to be replicated,

β > 0.06. When β = 0, the results mimicked the simulations when there was no

communication between agents (both scenarios meant other agents’ interactions

were ignored). For low values of β, symmetry breaking was slowed down (a single

market emerged if β > 0.06, approximately).

• Travel Distance: in the default simulations, agents could travel 25 grid squares

during the trading phase, which meant they could access the whole torus. There

were nine grid squares between neighbouring initial agents which meant this travel

distance had to be at least five grid squares for them to have any possibility of

meeting at all. We found that the default simulation results were replicated

if this travel distance was five grid squares or more; however, fewer

markets emerged the larger this distance was.

• Selection of Grid Targets from Memory - Winner Takes All: In the default

simulations, agents used a ‘Roulette Wheel’ approach to select target locations

from memory (Section 7.1.4). An alternative ‘Winner Takes All’ algorithm3

had no impact on the results other than very slightly weakening the process

of symmetry breaking (agents remained more loyal to the first proto-markets they

visited).

• Starting Resources: in the default simulations, agents were endowed with two

resources, each drawn from a normal distribution with mean 50 and standard

deviation of 5. The mean starting resource value had to exceed approxi-

mately 15 units for the default simulation results to be replicated. Agent

populations tended to survive even with lower starting values but typically the

agent population would plateau at less than 43 agents (children were more likely

to die before specialising if they were born with fewer resources).

• Fountain Resources (L): The resource fountains began each round with a stock

of 50 units each (L = 50). The default simulation results were replicated if

L > 7, albeit with agent populations that plateaued at approximately 0.85× L.

3This is when the location with the highest weight in memory was selected rather than
selection probability being proportional to weight.
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• Geographically Locating the Resource Fountains: in the default simula-

tions, the resource fountains were not located on the grid. Here, the fountains

were placed on the grid in random locations and agents started the trading phase

at the last fountain they foraged from. This had no impact on the results

with the exception that markets emerged more quickly: one was created at each

of the fountain locations. Symmetry breaking still occurred so, ultimately, one

market prevailed.

• Limiting Agents’ Life Spans: agents lived forever in the default simulation

provided they did not starve to death. When we gave the agents a limited life

span (equal for each agent4) we found the default simulation results were

replicated if this age limit exceeded 400 rounds albeit with the agent pop-

ulation plateauing at less than 43 agents. We observe the markets being replicated

across generations.

• Foraging Skill Acquisition: Linear Approach: in the default simulations

an adapted logistic equation (7.3) was used to adjust the agents’ foraging skills.

Taking a linear approach to skill change5 had no impact on the results.

4Agents at instantiation began with an age drawn from a uniform distribution with a lower
bound of zero and an upper bound of the age limit.

5We used ∆pji = t.[wj
i − d/x] instead of Equation 7.3.



Chapter 9

Property Rights Model:

Introduction

Freedom and Property Rights are inseparable. You can’t have one

without the other.

– George Washington

In the Market Emergence Model we assume agents respect others’ property. In real-

ity, people might not acknowledge resources as belonging to others and/or they might

attempt to take them, i.e., property rights might not be recognised or certain.

Furthermore, it is generally understood by economists that property rights are a neces-

sary condition for markets to work (e.g., North, 2005). Similarly, Ostrom (2005) lists

the many conditions required for markets to operate and some of these are about the

respect and enforcement of property rights.

In this and the next four chapters we will explore the conditions under which property

rights might emerge as organic institutions, including how they might influence the

emergence of markets. This work dovetails with the first model described in Chapter 7

but, here, we adjust the model so agents can steal or trade. Which they choose depends

on their propensity to respect other agents’ property.

Overview of Chapters 9 to 12

This chapter describes the adjustments made to the original model.

255
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The next chapter (10) sets out the results of the null and default simulations1.

Chapter 11 explores the parameter space to see whether and how the default simulation

results are sensitive to the model’s parameters. Ten parameters are adjusted and the

simulation results analysed. Note that Chapter 11 contains a summary of the results:

Appendix C contains much more detailed analyses.

In Chapter 12 we attempt to apply legal rules to the agents in each of the three scenarios

set out in Appendix D. A fourth scenario is added, which is taken from Chapter 11 (this

is when the cost of fighting is below the threshold above which property rights emerge).

In all four scenarios, property rights never emerge endogenously so the question we

consider is whether legal rules might catalyse these rights.

Overview of this Chapter

Several changes are made to the original model from Chapter 7, the most significant

of which concerns the process of interaction between two agents on the grid in the

interaction phase of each round. Foraging, which takes place in the first part, remains

unchanged.

This chapter first discusses the introduction of a ‘propensity to steal’ and a ‘propensity to

defend’ (Section 9.1)2. The following section (9.2) outlines the changes made to bilateral

agent interaction. After that, we consider how the new version of the model differs from

conventional games in game theory (Section 9.3). Section 9.4 explains how the agents’

propensities to steal and defend are adjusted, which is a form of reinforcement learning.

In Section 9.5 we examine how agents move around the grid - in this version of the model

they avoid agents if they expect to lose out from any interaction. Following this, changes

to the end-of-round communication processes are described (Section 9.6). Finally, some

alterations to the default parameters in the original model had to be made, which are

explained in Section 9.7.

9.1 Propensities to Steal and Defend

In the new version of the model, agents are given two additional state variables: a

propensity to steal (PS) and a propensity to defend (PD). These propensities change

over an agent’s lifetime as a result of reinforcement learning. Note that habituation is

added to the agents’ mental models in experiments set out in the next chapter.

1As with the original model, we define a set of ‘default parameters’ that, as stated earlier,
are not meant to represent a ‘correct’ set of parameters.

2The latter is the propensity of an agent to defend its resources from theft but for the purposes
of brevity we refer simply to a ‘propensity to defend’.
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In a specific bilateral interaction, agent i’s probabilities of stealing and defending their

resources (P steal
i and P defend

i respectively) are derived by truncating their corresponding

propensities in the following way:

P steal
i =


1 when PS

i > 1

PS
i when 0 ≤ PS

i ≤ 1

0 when PS
i < 0

(9.1)

and, equivalently:

P defend
i =


1 when PD

i > 1

PD
i when 0 ≤ PD

i ≤ 1

0 when PD
i < 0

(9.2)

In terms of the model, the agents’ propensities are allowed to vary over time according to

their experiences: probabilities of stealing and defending are derived from these propen-

sities only when the agents interact. This truncation does not alter the propensities,

only experience does.

Note that in this thesis we define ‘property rights’ (or ‘respect for property’) as when

an agent has a zero probability of stealing in a bilateral interaction (P steal
i = 0), which

is when PS
i ≤ 0.

Rationale for Using Propensities

The process by which the agents interact in the new version of the model is explained

in more detail in the next sub-section. Here we can state that the agents face various

forms of uncertainty, including information about other agents’ resource holdings and

their propensities to steal and defend. In addition, we assume the agents are cognitively

limited relative to the large range of interaction types they face (we will see in the default

simulations that the agents faced 363 unique pay-off structures over 20 simulations).

In deciding how the agents handle this uncertainty in the new version of the model,

inspiration was taken from the various concepts in the social sciences, including habits

and habituation, propensities, heuristics (both as an adjective and a noun), and so-

cial norms. The idea of propensities that evolve with experience is a relatively simple

approach that respects these various concepts.

Furthermore, the approach fits with the probabilistic framing of the EMIL models dis-

cussed in Chapter 5. Also, it is broadly consistent with the use of classifier systems, e.g.,
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in Holland (1975), Holland et al (1986), Marimon et al. (1990), Arthur (1994), Kirman

and Vriend (2000), Vriend (2002), and Kirman (2011).

As a final note, we should not confuse this propensities approach with the idea of mixed

strategies in the context of substantive rationality, which is when agents assign prob-

abilities to strategic choices. In that approach, two agents calculate probabilities that

optimise the likely outcome of a game. This is not the same as assigning propensities to

agents’ behaviour.

Let us now look at the adjustments made to the agents’ interaction.

9.2 Adjustments to Agent Interaction

As in the original model, each agent selects a grid target at the start of the interaction

phase - these are the squares the agents move towards.

However, as we will see below, agents are now able to avoid other agents if they believe

an interaction might be detrimental (e.g., if an agent expects to be ‘mugged’). For now,

however, let us assume two agents interact.

Bilateral Interaction

In an interaction, each agent first decides if it will attempt to steal their counterpart’s

resources, or attempt to trade. For each agent, this is done by using the agent’s prob-

ability of stealing (P steal)3. With probability P steal
i , Agent i will attempt to steal its

counterpart’s resources. With probability 1− P steal
i , the agent will attempt to trade.

Both agents signal to each other their decision.

If both agents wish to trade then they follow exactly the same process as in the original

model (Section 7.1.4).

If both agents wish to steal then they enter in to a conflict. This is described in more

detail below.

If one agent wishes to steal and the other to trade then this second agent has to decide

whether to defend its resources or not. To make this decision, we follow the same

process as with the decision to steal but now we use the agent’s probability of defending

its resources (P defend)4. Note that if the second agent chooses to acquiesce, we refer to

this as a ‘mugging’.

3Recall that this is the agent’s propensity to steal truncated by 0 and 1.
4Again, this is the agent’s propensity bounded by 0 and 1.
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This framework creates six different scenarios, which are represented diagrammatically

in Fig. 9.1 below. The interaction is similar to a conventional 2 × 2 game but with the

addition of choices to be made in the second and third scenarios.

Figure 9.1: Overview of agent interaction in the second model. Agents initially decide
whether to steal or trade. If one of them wishes to steal and the other trade then this
second agent has to decide whether to defend its resource or not. As a result there are
six potential scenarios for each interaction.

At first blush, the idea that agents signal to each other their intention to steal might

seem unrealistic. For example, Agent i might try to ‘sucker’ Agent j by stating an

intention to trade but then attempt to steal (or vice versa). In this situation, we assume

that its counterpart could react immediately to being suckered, which means i’s actions

would simply amount to signalling attempted theft.

The interaction structure described above resembles the Hawk-Dove game. However,

this particular game typically has one specific set of pay-offs for the agents: in the

simulations run using this model we observed hundreds of unique pay-off types. This is

discussed further below. Also, in the classic Hawk-Dove game, agents cannot choose to

defend their resources.

The pay-offs in the scenarios are determined by two factors: first, the resources held in

the agents’ baskets; and, second, by a cost incurred if the agents fight. The winner of

any fight receives all of the resources from the loser’s basket (scenarios 2F, 3F, and 4),

as do muggers in the case of a mugging (scenarios 2A and 3A). In addition, we assume

that agents who fight also incur an injury cost that is reflected as a deduction of c from

both resources in the agents’ personal resource arrays (r). In the default simulations,
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c = 0.3 (this is adjusted when we explore the parameter space in the Chapter 11 and

Appendix C).

Furthermore, in the new default parameter set, the winner of any fight is determined by

the toss of a coin, i.e., each agent has a 50% probability of winning. The winner acquires

all of the resources from the loser’s resource basket (b).

In Appendix D we will use different mechanisms for deciding a fight outcome, e.g., in

one experiment the agents’ wealth (from r) is used as a measure of ‘power’ in conflicts.

In the case of scenarios 2A and 3A (muggings), the acquiescing agent will give all of its

resources to the stealing agent but neither agent will incur a fight cost because no fight

occurred.

Pay-Offs in Formal Terms

For the purposes of clarity, let us express the pay-offs and the expected pay-offs for each

agent in formal terms.

If we designate the two interacting agents as i and j then their personal resource arrays

will be ri and rj , and their basket arrays bi and bj . Furthermore, the cost of fighting

(for both resources) is denoted as c = [c, c].

For Scenario 1, as mentioned above, we follow the same process as in the original model:

the agents agree a price equal to the geometric mean of their marginal rates of substitu-

tion, and then they exchange resources at this price (assuming both hold the appropriate

resources in their baskets).

For scenarios 2F, 3F, and 4, if Agent i wins the ensuing fight then its personal resource

array is adjusted as follows5:

rnew
i = roldi − c

and it acquires j’s resources:

bnew
i = boldi + boldj

Here, the superscript ‘old’ refers to values prior to the interaction and ‘new’ refers to

afterwards.

In these same scenarios, if i loses, the change in its personal resource array is the same

as above but it will no longer hold any resources in its basket:

5Consistent with matrix algebra notation, bold text refers to arrays / matrices: transforma-
tions are done to all the elements in the array or matrix.
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bnew
i = 0

More generally, if the probability of either agent winning the fight is 0.5, then, ex ante,

Agent i’s expected pay-off (the change in its personal resource and basket arrays) in

each of these scenarios will be:

E(pay-off 2F, 3F, 4
i ) =

boldj − c

2
+

−boldi − c

2
=

boldj − boldi

2
− c

For Scenario 2A, Agent j is the stealing agent and i acquiesces. Here, there is no change

to either agent’s personal resource arrays since there is no fight. Agent i’s basket array

changes in the same way as above:

bnew
i = 0

and j acquires i’s resources:

bnew
j = boldj + boldi

In terms of expected pay-off, for Agent i this is simply the loss of its basket (no fight

cost is incurred):

E(pay-off 2A
i ) = −boldi

and for j it is, equivalently:

E(pay-off 2A
j ) = boldi

In Scenario 3A, j acquiesces and i takes j’s resources. Again, the agents’ personal

resource arrays do not change. For i, its gain is:

E(pay-off 3A
i ) = boldj

and j loses:

E(pay-off 3A
j ) = −boldj
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If we know both agents’ probabilities of stealing and defending (P steal
i , P defend

i , P steal
j ,

P defend
j ) we can also determine the expected (joint) probabilities of each of the scenarios

in Fig. 9.1. This is shown in Fig. 9.2 below.

Figure 9.2: Probabilities of each of the six potential scenarios in Fig. 9.1. These
are joint probabilities derived from both of the agents’ probabilities of stealing and
defending.

If we multiply these probabilities by their corresponding expected pay-offs as defined

above then we can determine the expected pay-offs from any interaction for both agents6.

This is useful when agents decide whether to avoid or interact with other agents, which

is discussed further below.

9.3 Similarity with Conventional Games

As we noted briefly above, the bilateral interaction described above looks similar to the

Hawk-Dove game: Scenario 1 appears equivalent to the ‘Dove, Dove’ outcome whereby

the agents co-operate in a mutually advantageous way; and Scenario 4 is equivalent to

the ‘Hawk, Hawk’ outcome.

However, we noted above that in the default scenario the agents interact with a wide

variety of resource holdings and this gives rise to hundreds of different game types,

only one of which is the Hawk-Dove game7. In addition, in the interaction architecture

6Note that Fig. 9.2 uses the agents’ actual probabilities but the agents themselves have to
estimate their counterpart’s probabilities. This is described further below.

7The 6-scenario game described above could be reduced to a 4-quadrant game if we assume
substantive rationality and if the agents use backward induction in scenarios 2 and 3.
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described above, agents can defend their resources against would-be thieves, which is

not the case in the Hawk-Dove game.

9.4 The Evolution of the Agents’ Propensities

to Steal and Defend

After any interaction, both agents learn from the changes to their basket arrays (through

trade or theft) and any fight costs incurred: the net benefit (or cost) of the interaction

is used to adjust the propensities to steal and defend of both agents. Consistent with

Erev and Roth (1998), if an agent benefits from a particular strategic choice then it will

be more likely to repeat this choice again in the future; and vice versa. For example, if

an agent successfully steals from its counterpart, its propensity to steal is increased.

9.4.1 The Reduced Gain / Loss From Interactions and

Adjustments

The immediate problem we face in updating these propensities is that the agents gain

and lose multiple resources whereas PS and PD are scalars. This presents us with an

incommensurability problem because we must map changes in arrays on to changes in

numbers.

The solution we use to overcome this problem is to employ the agents’ marginal rates

of substitution (MRSs), which is a measure of relative value, to map from one resource

to another. For example, if Agent i has a personal resource array of ri =
[
100, 50

]
then

MRSAB
i = 2, i.e., the agent will view Resource B as equivalent to 2 units of Resource

A. These MRSs are used to map agents’ gains and losses on to a value equivalent to its

minimum resource holding (B, in this example).

We refer to this minimum-resource equivalent gain (loss) as the reduced gain (loss) to

the agent, denoted by vi.

For example, if the same agent has resources in its basket of bi =
[
bAi , b

B
i

]
=

[
1, 1

]
and

is ‘mugged’, its minimum resource-equivalent loss will be:

vi = (−bAi × 1

MRSAB
i

)− bBi = (−1× 0.5)− 1 = −1.5

The agent loses 1 unit of its minimum resource and 1 unit of the other, which it values as

equivalent to 0.5 units of the minimum resource. Its total loss in units of its minimum

resource holding is, therefore, −1.5 units. This reduced value is used to adjust the

agent’s propensities to steal and defend, as described below.
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In terms of information to learn from, an agent’s own strategic choices, and its gains and

losses, are not the only data available to it. There is an argument that Agent i should

also use its counterpart’s experience in the interaction to supplement its own learning8.

This information about their counterparts is available to all agents. For example, if

Agent i attempts to steal from Agent j who wants to trade but who then fights back,

the benefit or loss from j’s decision is used to adjust i’s own propensities to steal and

defend.

To incorporate Agent j’s pay-offs (reduced to vj) into i’s learning, we introduce a weight

parameter, β. This is the weight i associates with vj (relative to a weight of 1 it associates

with vi). In the default parameter set, β = 0.5.

After vi and vj are calculated they are transformed in three ways. The resulting value

is then used to adjust the agents’ propensities to steal and defend. Let us now look at

how this transformation is done.

9.4.2 Mapping vi and vj on to Propensities

The equations that result from the transformation of vi and vj (and which are used in

the model to adjust PS
i and PD

i ) are shown in Table 9.1 below from the perspective of

Agent i (i.e., ∆PS
i and ∆PD

i ) in all of the six scenarios in Fig. 9.1. The equations for

i’s counterpart (j) are symmetrically the same.

Scenario Agent i

1 ∆P S
i = r × (−v∗i − βv∗j )

∆PD
i = 0

2F ∆P S
i = r × (−v∗i + βv∗j )

∆PD
i = r × v∗∗ii

2A ∆P S
i = r × (−v∗i + βv∗j )

∆PD
i = r ×−v∗∗ii

3F ∆P S
i = r × (v∗i − βv∗j )

∆PD
i = r × βv∗∗ij

3A ∆P S
i = r × (v∗i − βv∗j )

∆PD
i = r ×−βv∗∗ij

4 ∆P S
i = r × (v∗i + βv∗j )

∆PD
i = 0

Table 9.1: Adjustments to agents’ propensities to steal and defend following an inter-
action.

Notes:

v∗i = sign(vi)× |vi|δ

8This is equivalent to adding other agents’ interaction locations to memory when deciding a
target location, which was described in Section 7.1.4.
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v∗j = sign(vj)× |vj |δ

v∗∗ii = sign(vi − EQ2
i (vi))× |vi − EQ2

i (vi)|δ

v∗∗ij = sign(vj − EQ3
i (vj))× |vj − EQ3

i (vj)|δ

The parameters and variables used in this table are defined and explained below.

There are three parts to this mapping from the agents’ reduced pay-offs to changes in

their propensities:

1. the use of expected pay-offs (EQ2
i (vi)) when adjusting PD (but not PS);

2. the transformation of the resulting values by a ‘cognitive coarseness’ parameter,

δ, where 0 ≤ δ ≤ 1; and

3. adjustment via a rate of change coefficient (r).

Let us look at these three in turn. Section 9.4.2.4 below contains a detailed example.

9.4.2.1 Expected Versus Absolute Pay-offs

At first blush it seems reasonable to use gross reduced pay-offs to determine ∆PS
i and

∆PD
i , to ensure PS

i and PD
i change monotonically with vi. However, there is evidence in

the psychology literature that responses to outcomes should be viewed relative to prior

expectations of those outcomes, e.g., Brickman and Campbell (1971), Easterlin (1974),

and Rutledge et al (2014). This would argue for Agent i’s propensities responding to

vi − Ei(vi) rather than vi alone, where Ei(vi) is i’s expectation of vi.

Unfortunately, there is no consensus in the literature on this topic, e.g., Veenhoven

(1991) distinguished between happiness and contentment, and argues the evidence is

that the former did appear to be relative to some benchmark (like expectations) but the

latter did not.

The approach taken in this thesis is to consider both techniques, i.e., for ∆PS
i and ∆PD

i

to be determined by vi and vi −Ei(vi). This is done by assuming a particular approach

in the default simulations and then considering alternative techniques when we explore

the parameter space (see Section C.7.3 of Appendix C in particular).

For the default simulations we assume that ∆PS
i is a function of vi only, i.e., we use gross

reduced values; but for ∆PD
i we assume this is a function of vi−Ei(vi), i.e., the reduced

gain / loss relative to i’s prior expectation of it. Moreover, we assume the expectation

of vi is used when adjusting PD
i is that pertaining to Scenario 2 rather than the whole

interaction (denoted EQ2
i (vi)).

The argument for using relative outcomes when adjusting PD
i and absolute outcomes for

PS
i is that in Scenario 2, neither vi nor E

Q2
i (vi) are influenced by the choices made by i’s
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counterpart (j). In that scenario there is no contingency: vi is determined by i’s choice

(to acquiesce or defend resources) and EQ2
i (vi) is driven by the i’s probability-weighted

expected pay-offs.

By contrast, if we were to adjust PS
i by a function of vi relative to some expectation

of vi, we would have to use i’s expected outcome for the whole simulation (because its

decision to trade or steal covers all six scenarios9). The actual outcome of the interaction

(vi) would depend on j’s choices as would the resulting probability-weighted mean of i’s

outcomes. For i, therefore, use of vi −Ei(vi) to adjust PS
i would involve a considerable

amount of uncertainty regarding j.

This argument is not intended to be a fully compelling rationale for the approach taken

in the default simulations but it does point to reasonable ground for using different

treatments for ∆PS
i and ∆PD

i . In any case, as mentioned above, we consider alternative

approaches when we explore the parameter space.

9.4.2.2 Cognitive Coarseness

We introduce the idea of limited cognition here by adopting a parameter (δ) that influ-

ences the impact of vi and vi − Ei(vi) on ∆PS and ∆PD, respectively.

More specifically, we make ∆PS a function of vδi and ∆PD a function of (vi −Ei(vi))
δ.

However, we also wish to keep the monotonicity of these values while adjusting their

magnitudes by δ. Therefore10:

v∗i = sign(vi)× |vi|δ

v∗∗i = sign(vi − EQ2
i (vi))× |vi − EQ2

i (vi)|δ

where 0 ≤ δ ≤ 1

This transformation means that if δ = 1, the precise values of vi and vi − EQ2
i (vi) are

mapped on to ∆PS and ∆PD; and as δ → 0, v∗i and v∗∗i tend to +/-1.

We can think of δ = 1 as when pay-offs have a direct ‘fine-grained’ (Gell-Mann and

Hartle, 2007) impact on propensities; and we can think of δ = 0 as ‘coarse-grained’ (or

‘lumpy’) whereby the agents attach simple values of +/-1 (‘good’ or ‘bad’) to outcomes.

In the default parameter set we assume δ = 0.5, i.e., we adjust vi and vi − EQ2
i (vi) by

their square roots while retaining their signs (+ or -). We will look at the impact of

changing this parameter when we explore the parameter space.

9whereas i’s decision to defend its resources is only relevant for Scenario 2.
10Note that sign(x) = +1 for any value of x > 0 and, equivalently, sign(x) = −1 for any value

of x < 0 (sign(0) is irrelevant here because this value would be multiplied by zero in the two
equations).
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9.4.2.3 Rate of Change Coefficient

The final part of the transformation from vi and vj to the agents’ propensities is the use

of a coefficient (r). In the default parameter set we fix r = 0.01 but, once again, we will

consider the impact of different values of this parameter when we explore the parameter

space.

The equations that result from the above three transformations are shown in Fig. 9.1

above.

9.4.2.4 Example

For the purposes of clarity, let us look at an example we can apply to these equations.

Consider two agents (i and j) with personal resource and basket arrays as follows:

ri =
[
105, 95

]
bi =

[
1, 1

]

rj =
[
95, 105

]
bj =

[
1, 1

]
Suppose, also, that r = 0.01 (the speed of adjustment variable in the equations above),

β = 0.5, and PS
i = PD

i = PS
j = PD

j = 0.5.

When we combine these agents’ arrays we obtain marginal rates of substitution as follow:

MRSAB
i =

rAi + bAi
rBi + bBi

=
106

96
= 1.104

MRSAB
j =

rAj + bAj

rBj + bBj
=

96

106
= 0.906

If the agents trade, the price would be exactly 111 since each agent’s resource holdings

is the inverse of the other’s.

Table 9.2 below shows the outcomes of the interaction between these two agents in the

six scenarios and the corresponding changes to PS
i and PD

i .

11The transaction price is [MRSAB
i ×MRSAB

j ]1/2 = 1.
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Scenario vi ∆P S
i ∆PD

i

1 +0.0943 -0.0014 nil
2F - Agent wins +1.3340 -0.0257 +0.0160

- Agent loses -2.4774 +0.0314 -0.0111
2A -1.9057 +0.0286 +0.0082
3F - Agent wins +1.3340 +0.0257 -0.0056

- Agent loses -2.4774 -0.0314 +0.0080
3A +1.9057 +0.0286 +0.0041
4 - Agent wins +1.3340 +0.0010 nil

- Agent loses -2.4774 -0.0181 nil

Table 9.2: An example of changes in an instigating agent’s propensities to steal and
defend when both agents hold 1 unit of each resource in their baskets. The data is
shown for every one of the six scenarios.

In Scenario 1, both agents sell (buy) the resource they have more (less) of, which results

in a net positive reduced gain. The (small) gain from trading leads to a (very) small

decline in the agents’ propensities to steal, i.e., both agents are encouraged to trade

again in the future. Neither agent has to decide whether or not to defend its resources

so neither PD
i nor PD

j changed.

For Scenario 2, i attempts to trade but j tries to steal its resources. If i chooses to defend

its resources (2F) and wins, the (reduced) gain in resources will exceed the (reduced) cost

of fighting: the agent will be encouraged to trade12 (↓ PS
i ) and to defend its resources

(↑ PD
i ) in the future. However, if i chooses to defend its resources and loses, the reverse

will be true (↑ PS
i and ↓ PD

i ). The outcome if i acquiesces would be to encourage i not

to trade in the future (↑ PS
i ) and to defend its resources ↑ PD

i .

The outcomes in Scenario 3 are identical for those in Scenario 2 for i’s propensity to

steal but with opposite signs: i tried to steal and not trade so in a sense learning is

inverted. In this scenario, i would learn from j when it came to defending resources: if

j loses the fight, both agents would see ↓ PD (and vice versa). Both would see their

propensities to defend increase if j acquiesces.

In Scenario 4, both agents attempt to steal. The reduced gain / loss for i is the same

as in scenarios 2F and 3F but the impact of these on the agents’ propensities to steal is

different: each agent’s gains / losses act as a hedge for the other agent. For example,

if i wins the fight, vi will be +1.3340 but because βvj is -1.2387, therefore vi + βvj is

0.095313.

12or discouraged from stealing.
13hence r × (vi + βvj) = 0.0010.
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9.4.3 Propensities, Learning and Probability Limits

Given the equations in Table 9.1 above, which show how PS and PD change in the

different scenarios, it is possible for the agents’ propensities to exceed 1 or to decline

below 0. At first blush it might seem simpler to apply a ceiling of 1 and a floor of 0 to

both propensities and to use these as the agents’ probabilities of stealing or defending

their resources.

However, this would be problematic because any further learning at these limits would

be asymmetric, e.g., if PD
i = 1, Agent i would no longer learn from interactions that

indicated defending its resources was preferable to acquiescing; but it would learn in the

opposite situation14. This point is relevant for both the propensity to steal and defend

at probabilities of 0 and 1.

Two approaches were considered for dealing with this asymmetry: (i) making changes

in propensities a function of their levels such that they could not breach 0 or 1, e.g.,

with an adapted logistic equation15; and (ii) allowing the agents’ propensities to exceed

1 and to decline below 0 but truncating these propensities to generate probabilities, as

described in Section 9.1.

The second approach was chosen because: (i) agents could continue to learn even if the

propensities were above 1 or below 0; and (ii) making propensity changes a function of

their corresponding levels seems contrived, with no reasonable justification on theoretical

grounds.

Next we take a step back and consider how agents move around the grid and how they

decide which agents to interact with and which to avoid.

9.5 Moving Around the Grid: Interaction and

Avoidance

In the first model, agents remain on their target square for the rest of the interaction

phase after they reached it. In the second model, we have introduced the idea of agents

stealing from each other so it seems reasonable to give the agents an ability to avoid

others if they expect an interaction to be detrimental.

14If all of the agents’ interactions are relatively small and agents learn on average it was prefer-
able to defend their resources then their propensities will bounce along the ceiling of 1 so this
asymmetry would hardly matter. However, we found it was often the case that resources would
become very concentrated in the interaction phases, which meant that agents’ propensities some-
times jumped by 0.2-0.3 in one transaction. Such large changes means this learning asymmetry
is significant, e.g., PD

i might bump along the ceiling of 1 but then suddenly decline to 0.7.
15As an example of this logistical equation approach, in Scenario 2F the equation for ∆PS

i

would change from ∆PS
i = r . (−vi + βvj) to ∆PS

i = r . (−vi + βvj) . P
S
i (1− PS

i ).



270 Chapter 9 Property Rights Model: Introduction

In this section we summarise how this is done.

The key principle applied below is a simple one: agents will interact with those with

whom they expect to benefit; and avoid agents they expect to lose from.

As with the original model, each agent could see other agents on its current grid location

and also in adjacent (“king’s move”) squares. However, the model is adjusted to allow

the agents to estimate the likely pay-offs of all potential interactions16.

Fig. 9.3 below depicts a typical situation on the grid. The agent whose turn it is to move

(in red) is located in the middle, blue square and the neighbouring squares are shown

in grey.

Figure 9.3: A diagram depicting how an agent evaluates interacting or moving on the
grid in the second model. The 3 × 3 grid shown here is a subset of the 50 × 50 torus
on which agents could move during the interaction phase. The agent (in red) initially
evaluates the expected gains and losses from potential interactions on its current square
(in blue). If there are no agents on that square or none of the interactions are deemed
beneficial, the agent evaluates the gains and losses on the other squares within sight
(the grey squares).

Agents take turns to act during the interaction phase (they can transact or move, but

not both). When it is Agent i’s turn, it first looks to see if other agents are co-located

on its current square. If this is the case, it evaluates the likely pay-offs from interacting

with each of these agents17 and chooses to interact with the agent associated with the

highest expected reduced pay-off (if this is positive). This is a change from the original

model where agents are allocated counterparts (located on the same square) randomly,

if there is more than one.

16Here we assume that the agents have already arrived at their target squares so they can
interact.

17Note that in forming expected pay-offs, the model calculates an accurate expectation for
each of the six scenarios and adds an error term that is drawn from a normal distribution with
mean zero and a standard deviation of 0.05 (this is done for each of the six pay-offs). This error
represents a form of information uncertainty (it is adjusted when we explore the parameter space
in Chapter 11). In addition, agents use their estimates of other agents’ propensities to steal and
defend in order to form a probability-weighted expected pay-off for each potential interaction.
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If the highest expected reduced pay-off on its current square is zero or negative, the

agent looks at all the neighbouring squares (it could see all the agents and the resources

they hold).

The agent then calculates the mean expected pay-off from all of these neighbouring

squares and moves to the square with the highest mean expected pay-off. If all such

pay-offs are negative, the agent will move as far away as possible from the square with

the lowest pay-off.

In general we saw in the simulations that Agent i is more likely to interact with another

agent if this counterpart has:

• more resources in its basket (this was relevant whether Agent i is likely to steal

or trade);

• a low estimated propensity to steal; and

• a low estimated propensity to defend.

These principles were valued regardless of Agent i’s resource holdings and its propensities

to steal and defend. We see something similar in multi-agent iterated Prisoners’ Dilemma

games where both co-operators and defectors prefer to interact with co-operators.

The last point to note here is that in each of the time periods during the interaction

phase (there were 50 in the default simulations), the order the agents take to act is

randomized at the beginning of each time period18. This introduces variation, allowing

some realistic interactions19.

To summarise this section, agents are able to form expectations about pay-offs from

interacting with other agents in their immediate vicinity. If agents are co-located, the

acting agent would interact with the agent from which it expected to benefit the most.

Otherwise, the agent will look to its neighbouring squares and move to (away from)

squares where the expected pay-off is most positive (negative).

18For example, Agent i might be the fifth agent to act in Time Period 4 but the twelfth in
Time Period 5 and then the first in Time Period 6.

19This variation means, for example, that an aggressive ‘mugging’ agent (with high PS and
PD) might catch a non-aggressive, trading agent (with low PS and PD) in an adjacent square
if it acts twice in a row relative to the stationary non-aggressive agent. Equivalently, a non-
aggressive agent might escape from an aggressive, mugging agent on its square if it acts twice in
a row (it would be out of sight if it moves away twice).
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9.6 End of Round Communications & Grid

Target Selection

In the original model, the probability that any two agents communicate at the end of

the round is 0.01. If they communicate, the agents exchanged information about all the

locations of transactions they had been involved in during the round.

In the new default parameter set, the probability that any two agents communicate

at the end of the round is increased to 0.2. The rationale for this is explained below.

Two further adjustments are made to communication in the model. The first is to add

reputations. If two agents communicate then they will tell each other about which agents

had traded with them, attempted to steal from them, and which fought back. They will

do this regardless of whether or not they would interact with this other agent since they

will only be exchanging information about other agents and not themselves. We can

think of this as equivalent to gossip. Each agent maintains databases that store this

data, and these are used to estimate other agents’ propensities to steal and defend.

The second adjustment is that agents only exchange location information about trans-

actions and fights they themselves had been involved in if both agents expect a future

interaction to be beneficial. Agents will not provide this information to those they do not

want to interact with: they will be more coy about information pertaining to themselves.

In terms of grid target selection, the agents use the information concerning transac-

tion and fight locations to decide the grid squares they head toward in the interaction

phase. The process is similar to that used in the original model (Section 7.1.5) but now

the agents incorporate fight information.

In selecting a target, the guiding principle is that agents are attracted to locations where

they expect to gain from interacting, either through theft or trade, and are deterred from

locations where they expect to lose out.

Locations on the grid are each given weights: grid squares where the agent had trans-

acted saw their weight in memory increased by 1 as did locations where the agent had

fought and won. If the agent had fought and lost (or had been mugged) then the weight

corresponding to that location fell by 1. Locations of fights the agent had heard about

from others saw their weights increase by 1/2 if the agent expected to gain from inter-

acting with both the agents who had fought (on average) and the weight was decreased

by 1/2 if the agent expected to lose.

At the start of the interaction phase, each agent selects all of the squares with positive

values and, as with the first model, uses a roulette wheel approach to choose their target

(weighted by each square’s positive value).
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Finally, all of the location weights in memory decay by 20% in between rounds, consistent

with the first model (this is true of positive and negative weights).

9.7 Changes to the Original Parameters

The introduction of fight costs in to the model means the environment is harsher for

the agents in comparison with the original model. As a result, some of the original

parameters are adjusted to make the environment less harsh in the new default parameter

set (else most of the agents would simply die).

In the early parts of simulations that use the new default parameter set, there were

typically fewer transactions than in the early stages of the original default simulations.

The probability of communicating at the end of the round was raised to 0.2 to make it

easier for agents to learn where other agents might assemble in the next round.

The resource endowments of the population at instantiation are increased from a mean

of 50 units of each resource to 200 units; and the agents have to hold at least 300 units

of each resource before they could sire children. Each child is born with a mean of 200

resource units, half of which are taken from each parent.

Finally, there are now 2,000 rounds in each simulation (this was extended when neces-

sary), and, as before, there are 20 simulations in each set.

Now that we have described the changes to the original model, we can look at the

results from a set of ‘null simulations’ and from simulations that used the new default

parameters.





Chapter 10

Property Rights Model:

Simulations and Discussion

Why don’t you knock it off with them negative waves?

– Kelly’s Heroes, Oddball

In this chapter we first analyse and discuss the results of four ‘null simulations’ (Section

10.1). As with the first model, these are designed to contextualise the results of the

simulations that use the new default parameter set. Section 10.2 analyses and discusses

the ‘default simulations’.

The third section (10.3) presents the results of experiments in which habituation is

added to the agents’ mental models. In the default simulations, these change as a result

of reinforcement learning only: here, we add habituation.

Section 10.4 concludes the chapter by considering whether the property rights that

emerge fit our definition of organic institutions. This final section also considers the

results in the context of generalised Darwinism (as discussed in Chapter 2).

10.1 Property Rights Model: Null Simulations

In this section we present the results of four null scenarios.

In the first null experiment (Section 10.1.1) we replicate the original model by setting

PS = 0 for all agents. In this scenario, PD is irrelevant because the agents always trade.

275
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We found the results of the simulations that used the original default parameter set

are approximately replicated; however, some of the changes to the original parameters,

mentioned in the previous chapter, had an impact on the results. This experiment allows

us to examine these changes.

In the second null scenario (Section 10.1.2) we do the opposite of the first: we fix PS = 1

for all agents, i.e., they only ever fight.

In the third null experiment (Section 10.1.3) we apply substantive rationality to all

the interactions: the agents evaluate the pay-offs in each game and make their strategic

choices. The agents’ propensities to steal and defend are irrelevant in these experiments.

For the fourth null experiment (Section 10.1.4), PS = PD = 0.5 for all agents, i.e., each

agent has a 0.5 probability of trading or stealing and a 0.5 probability of defending its

resources or acquiescing.

10.1.1 Null Scenario: Replicating the Original Model

Here we fix all the agents’ propensities to steal at zero, i.e., none of the agents attempt

to steal from each other.

The results are broadly similar to those seen with the original default parameter set.

However, some of the modifications mentioned in the previous chapter affected the sim-

ulation outcomes. The main difference concerns the markets that emerge, which are

now a collection - or area - of neighbouring squares rather than a single square. See

Fig. 10.1 below, which shows a heatmap of transactions in the last 100 rounds of a

typical simulation.

This change is due to the interaction mechanics described in Section 9.5 whereby agents

move to adjacent squares from their target location if they deem it worthwhile. In the

first model, agents stay on their target square and wait: if no other agents show up

the agent would not trade and the weight of that particular square in memory would

decline. The main result of agents looking and moving to adjacent squares is that, in

general, agents maintain multiple squares with positive weights in memory.

It is worth noting that symmetry breaking still occurs if multiple market areas emerge:

a single area ultimately dominated for the reasons identified in Chapter 7.

Despite this dispersion of transactions across a market area, the turnover ratio was

sufficiently high (approximately 0.9) over a long enough period for the agents to be

induced to specialise. The agents eventually had children and the total population

increased to approximately 43 agents as in the first model’s default simulations. See

Fig. 10.2 below, which shows the total agent population in a typical simulation.
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Figure 10.1: Heatmap of transactions in the last 100 rounds of a typical simulation
when the agents’ propensities to steal are fixed at 0. The results replicate those of the
default simulations of the first model except, here, markets are made up of small areas
of adjacent squares.

Figure 10.2: Total agent population over 5,000 of an extended (and typical) simulation
when the agents’ propensities to steal are fixed at 0. The population plateaus at
approximately 43 agents, as in the original default simulations.

10.1.2 Null Scenario: All Agents Steal

If all the agents try to steal from each other in every interaction (PS
i = 1 for all i) then

the agent population always collapses1. Fig 10.3 shows the total agent population over

a typical simulation.

On average, approximately two agents survived until the end of 2,000 rounds in all of the

simulations. This was because the agents learned to avoid each other and this population

1Note that PD
i is again irrelevant: if all agents steal, none has to choose whether to defend

its resources or not.
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Figure 10.3: Total agent population over 2,000 rounds of a typical simulation when
the agents’ propensities to steal are fixed at 1, i.e., the agents only ever steal. The
population collapses in all 20 simulations owing to debilitating fight costs.

was well below the (non-specialised) carrying capacity of the environment, which meant

resources per capita were abundant. Note, however, that if we extend the simulations

long enough, the population increases to approximately 6-7 agents2

The two main contributing factors to the agents’ demise were: (i) the cost of fighting,

which was a persistent drain on agents’ resources; and (ii) the fact they would not

specialise in this environment (since there was no hope of trading), which meant levels

of productivity remained low.

There is one phenomenon worth noting here, which is the occasional clustering of agents

during the interaction phase of some of the rounds. This begs the question of why agents

would target squares at or close to those of other agents when the agents would only

steal from each other.

In these simulations, an agent would have a location in memory with a positive weight

if it had stolen resources from another agents at that location. If the other agent had

re-acquired these resources in an adjacent squares then this location would be in the

counterpart’s memory, also with a positive weight.

In the next round the two agents would ignore the squares in which they had lost

resources but would consider going to the squares where they had acquired resources. In

this next round, the agents’ target squares might end up being adjacent to each other, in

which case they would be able to see each other and possibly attempt theft once again,

2Recall that in the first model the non-specialised carrying capacity of the environment was
15-16 agents: the carrying capacity when the agents only ever fought was lower than this owing
to the impact of fight costs when the agents did interact.
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potentially maintaining adjacent locations with positive weights in their memories. This

phenomenon led to some clustering of the agents.

10.1.3 Null Scenario: Substantive Rationality Approach

In this section we consider what happened in the simulations when the agents adopt full

substantive rationality.

Recall from Fig. 9.1 (page 259) that the agents have potentially two decisions to make in

any interaction: (i) whether to trade or steal; and (ii) whether to defend their resources

or acquiesce.

In order to make these decisions under substantive rationality, agents first use backward

induction to determine whether they would acquiesce or defend their resources in sce-

narios 2 and 3. They would choose to defend if the pay-off exceeds that of acquiescing,

and vice versa3. Knowing their strategies in scenarios 2 and 3 means each interaction is

reduced to a 2 × 2 ‘game’. Substantive rationality is then applied to determine whether

the agents attempt to trade or steal. If the agents’ choices are indeterminable (at least

one does not have a dominant strategy) then they do not interact.

Fig. 10.4 below shows a time series of the number of interactions in the six different

scenarios shown in Fig. 9.1 above over the first 80 rounds of a typical simulation. We

can see that in the vast majority of interactions, one or both of the agents attempted

to steal (all scenarios except 1). Transactions make up only approximately 1% of all

interactions prior to the first agent dying in the simulation shown (in Round 22).

Looking at the data in Fig. 10.4, it seems surprising we observed interactions in Scenario

2A, which meant the instigating agent deliberately allows itself to be mugged (approx-

imately 7% of all interactions). This occurred when both the instigating agent and its

counterpart held no resources but pay-off errors meant the instigator expected to benefit,

i.e., it made a mistake.

It appears even more perplexing that an instigating agent would find itself in Scenario 2F

(approximately 0.2% of interactions). This occurred when the instigating agent wanted

to trade (and expected the same of its counterpart) but the other agent’s ‘reading’ of the

pay-offs (which were different to the instigator because it made different errors) meant

it wished to steal. This was also a mistake by the instigating agent.

The fight costs incurred by the agents (mostly in scenarios 3F, and 4) were sufficient

to ensure the agent population declined rapidly. This can be seen in Fig. 10.5 below

which illustrates the total agent population in the simulation shown in Fig. 10.4. The

3In the (very rare) event that these two pay-offs were identical, the agent chose one of the
strategies randomly.
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Figure 10.4: Agent interactions by scenario (5-round moving averages) when decisions
are made via substantive rationality. Note that ‘1’ refers to transactions; ‘2F’ refers
to interactions when the instigating agent attempts to trade but defends its resources
when the counterpart tries to steal; ‘2A’ is the same as 2F but the instigating agent
acquiesces; ‘3F’ is when the instigating agent attempts to steal and its counterpart
fights back; ‘3A’ is the same as 3F but the counterpart acquiesces; and ‘4’ is when the
agents both attempt to steal from each other. Substantive rationality leads agents to
attempt theft from each other most of the time.

population collapsed to only two agents by Round 49 - this was well below the carrying

capacity of the environment and the population began to increase from approximately

Round 1,300 (given enough time it would rise to approximately 6-7 agents for the same

reasons identified in the previous sub-section).

One additional point worth noting here is that approximately 340 unique interactions

were observed across 20 simulations4. This variety of game types, in addition to the

ability of the agents to defend their resources, is one of the reasons this model differs

from the Hawk-Dove game, which typically uses a single pay-off structure.

Moreover, the model compares every considered and enacted interaction with all of the

classic 2 × 2 games in the game theory literature (the Prisoners’ Dilemma, Matching

Pennies, Stag-Hunt, Hawk-Dove, etc.) and keeps a tally of each. Of the 2.82 million

games considered in 20 simulations, 13.0% had the same pay-off structure as the Hawk-

Dove game; and of the 0.34 million games enacted, 4.3% had this structure.

4A unique interaction type is defined here by the ranking of the pay-offs in the 2 × 2 reduced
form game, i.e., post-backward induction.
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Figure 10.5: Total agent population when decisions were made via substantive ratio-
nality. The data are taken from the same simulation depicted in Fig. 10.4. The fact
that most agents stole meant the population collapsed.

Overall we can see that the results were approximately similar to the second null model,

when agents only ever stole. The agent population collapsed and the surviving agents

never specialised.

10.1.3.1 Resource Concentration Effect

It is worth looking in some detail at a phenomenon we saw in these simulations because

it is also observed in the default simulations described below. A ‘resource concentration

effect’ is seen when the agents become clustered during the interaction phase: they start

the round with relatively dispersed resources (immediately after foraging and before

interacting) but as this phase of the round progresses, the resources become concentrated

in fewer hands.

Fig. 10.6 below illustrates this phenomenon during the interaction phase of Round 30

in a typical simulation.

An analysis of the data revealed that this concentration of resources was due to the

combination of two (related) factors: first, the proximity of agents to each other; and,

second, a bias of the agents toward interacting with others who had more resources than

them (and avoiding agents with fewer resources).

The proximity of agents to each other despite the high proportion of fights and

muggings was explained in Section 10.1.2 above.
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Figure 10.6: Agents’ resource holdings at the start, middle, and end of the interaction
phase of Round 30 of a typical simulation when agents made decisions via substantive
rationality. In these charts, the agents’ resource holdings were put in ranked order at
the beginning of the interaction phase (the first time period), in the middle (the 25th
time period) and at the end (the 50th time period). The charts show how the agents’
resource holdings became more concentrated over this phase of the round.

In terms of the bias to interact with agents holding more resource, recall from

Section 9.5 that an agent chooses to interact with other agents according to which

interaction is most beneficial to the agent. It is general preferable, ceteris paribus, to

interact with an agent holding more resources (whether stealing or trading).

The data shows that in the first 40 rounds or so, agents on the whole chose to steal

from those who had more resources than them. There were a few transactions and these

typically took place early on during the interaction phases (when holdings were more

balanced). However, we observed a positive feedback effect: as resources became more

concentrated in fewer hands, agents with a few resources (or none) would attempt to

steal from those with more. This resulted in resources becoming more concentrated.

For example, in the middle sub-plot of Fig. 10.6 we can see that one agent held 12 units

of resources (two agents held 4 units). In this situation, all the agents within sight of

the most ‘wealthy’ agent would attempt to steal its resources (including those who held

4 units) because the gain was easily worth the cost of fighting.

This concentration of resources explains the time series shown in Fig. 10.4 above. Ap-

proximately 92% of interactions were in scenarios 3F, 3A, or 4: here, the instigating

agents attempted to steal from other agents5.

5In general, if the instigating agent has no resources and the counterpart has 1 unit, the
counterpart would acquiesce (3A) because the expected (reduced) loss of defending its resources
will be approximately 1.1 units: there is a 50% chance of losing 0.6 units via fight costs if it wins
the fight, and a 50% chance of losing 1.6 units if it loses. This means it is preferable not to fight
in this situation. If the counterpart has more than 1 resource unit then it is preferable for it to
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10.1.4 Null Scenario: Fixing Agents’ Propensities at 0.5

In these simulations, we use the agents’ propensities to determine whether they attempt

to trade or steal, and whether they would acquiesce or defend their resources. All the

agents’ propensities to steal and defend are fixed at 0.5.

An important point to note here is that while the agents’ decisions were determined by

their propensities, they did have discretionary power over who they interacted with. In

general we (again) found that instigating agents typically chose to interact with coun-

terparts who had more resources than them: this was beneficial to all agents whichever

scenario they ended up in.

This bias led to the same concentration effect noted above: resources began the in-

teraction phase of each round relatively dispersed but subsequently they became more

concentrated among the agents.

Fig. 10.6 above, which shows this concentration effect for when agents made choices via

substantive rationality, also included a gini coefficient for the agents’ resource holdings

at the beginning (0.287), middle (0.604), and end (0.870) of the interaction phase of a

typical round. Fig. 10.7 below shows a time series of this gini coefficient (for resource

holdings at the start and end of the interaction phases of each round) for the first 200

rounds of a typical simulation when the agents’ propensities were fixed at 0.5. It shows

how the coefficient started the interaction phase of each round at approximately 0.3 in

the first 100 rounds but ended much higher (as high as 0.8 between rounds 10 and 70).

This phenomenon meant that, in effect, the agents with no or few resources persistently

interacted with those who held more resources, in the hope of eventually acquiring all

their resources. By contrast, agents with resources generally attempted to evade other

agents.

Ultimately, the results of these simulations were similar to the second null scenario

when we fixed PS = 1: the agent population eventually collapsed and any surviving

agents never specialised. In these simulations, the agents typically lived a little longer

on average due to lower fight costs.

As a final note, variations of this experiment were run to reveal the propensity to steal

at and below which agents would specialise and bear children. We saw in the first null

experiment that agents specialise and bear children if their propensities to steal were

fixed at zero and we saw that the population collapsed when these propensities were fixed

at 0.5. This begs the question of the threshold at which the agents were comfortable

specialising.

defend its resources. Interactions in Scenario 3A made up approximately 17% of all interactions
and typically occurred earlier in the interaction phases.
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Figure 10.7: Time series of the gini coefficient of agents’ resources holdings over the
first 200 rounds of a typical simulation when all the agents’ propensities were fixed at
0.5. In each round the gini coefficient was recorded at the beginning of the interaction
phase and then at the end. The chart shows that resources became more concentrated
in approximately the first 100 rounds (when the dark blue line was higher than the light
blue line) but not thereafter (when most agents had died and those remaining generally
avoided each other).

If we fix all the agents’ propensities to defend at 1 we find that the propensity to

steal threshold at and below which agents specialise is approximately 0.05. In these

simulations we found that some of the agents died in the first 500 rounds or so but those

who survived specialised and had children. However, the drain on the agents’ resources

due to any fighting approximately balanced the productivity gains from specialisation

such that a total population of approximately 25 agents was maintained.

When we fix the agents’ propensities to defend at 0, the propensity to steal threshold

below which agents specialise and bear children is approximately 0.15. In these simula-

tions the environment is less harsh for the agents in the sense the total cost of fighting

is lower (agents always acquiesce in scenarios 2 and 3). In effect, the agents ‘accept’ a

higher propensity to steal before they specialise.

These simulations tell us that the agents’ propensities to steal had to decline to a rel-

atively low level (irrespective of their propensities to defend) in order for the turnover

ratio to be sufficiently high to encourage specialisation.

Let us now look at the results of simulations that use the default parameter set, which

is when the agents’ propensities are allowed to evolve via reinforcement learning, given

their experiences in interactions.
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10.2 Property Rights Model: Default

Parameter Set

The results for simulations that use the new default parameter set are described and

analysed in this section. In these simulations the agents’ initial propensities to steal and

defend are both drawn from a normal distribution with a mean of 0.5 and a standard

deviation of 0.1; and both are allowed to vary in the way described in Section 9.46.

The results of these simulations can be summarised by the following four points:

• the agents’ propensities to defend increased on the whole as they learned it was

generally preferable not to acquiesce when other agents attempted to steal from

them (we refer to this as defence of property);

• when the agents’ propensities to defend were below approximately 0.8 on average,

the agents’ propensities to steal increased ;

• when their propensities to defend were above approximately 0.8, the agents’

propensities to steal decreased toward and below 0; and

• when all the surviving agents’ propensities to steal were negative (which looked

like the institution of property rights), the agents specialised and, ultimately, the

results of the first model were replicated.

Let us now examine these results in more detail.

10.2.1 Propensities to Defend

Fig. 10.8 below illustrates a fan chart of the (living) agents’ propensities to defend

over the first 250 rounds of a typical simulation. The chart illustrates how the agents’

propensities increased immediately after the simulation started (the mean exceeded 1

after Round 28).

The chart shows that, on the whole, defence of property emerged across the popula-

tion. An analysis of the data shows that in most interactions the agents learned it was

preferable to defend their resources than to acquiesce7.

Fig. 10.9 below shows a time series of the cumulative contributions to the agents’ propen-

sities to defend by scenario. The y-axis represents the cumulative net contribution to

6We examine the effect of different initial propensities when we explore the parameter space.
7The only exception to this general rule was when the instigating agent had no resources and

its counterpart had a total of approximately 1 resource unit: here, the agents’ propensities to
defend were driven lower on average.
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Figure 10.8: Fan chart of the agents’ propensities to defend over the first 250 rounds of
a typical simulation when the default parameters were used. The black line represents
the mean and each red band represents one standard deviation (skew-adjusted) away
from the mean. Note the data shows how the agents’ propensities were allowed to
increase above 1 and to decline below 0 (the probability an agent defended its resources
was restricted to between 0 and 1, which are limits shown by two green dashed lines).
In this simulation the mean propensity to defend increased above 1 in Round 28.

all the agents’ propensities to defend in each of the scenarios shown (1 and 4 are omit-

ted because the agents did not learn anything about defending their resources in those

scenarios).

Figure 10.9: Time series of cumulative contributions to the agents’ propensities to
defend by scenario over 250 rounds in the simulation depicted in Fig. 10.8. The model
records changes in the agents’ propensities to defend by interaction (scenarios 2F, 2A,
3F, and 3A). These were aggregated in each round by scenario and the cumulative time
series for one of these simulations is shown here. The chart shows that agents mostly
learned to defend their resources in scenarios 2A and 3A.
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There are two main observations: first, in scenarios 2A and 3A agents learned it was

preferable to defend their resources; and, second, the contributions of scenarios 2F and

3F varied but their net contributions were positive (albeit less than 2A and 3A).

10.2.2 Propensities to Steal

Fig. 10.10 below illustrates a fan chart of the (living) agents’ propensities to steal over

the first 250 rounds of the simulation shown in figures 10.8 and 10.9.

Figure 10.10: Fan chart of the agents’ propensities to steal over the same simulation
as that depicted in figures 10.8 and 10.9. The black line represents the mean and each
blue band represents one standard deviation (skew-adjusted) away from the mean. Note
the data uses the agents’ propensities, which were allowed to increase above 1 and to
decline below 0 (the probability an agent attempted to steal was restricted to between
0 and 1, which are shown by two green dashed lines). The chart shows how the mean
propensity to steal initially increased but then declined to below 0.

We can see from this chart there was a slight tick up in the mean of the agents’ propen-

sities in the first few rounds: this mean peaked at 0.65 in Round 9 when the mean

propensity to defend was 0.74. This was typical of all 20 simulations.

The relationship between the agents’ propensities to defend and their propensities to

steal will be examined in more detail when we explore the parameter space in Chapter

11 and Appendix C. For now, it is worth noting that when the agents’ propensities to

defend were below approximately 0.8 on average, their propensities to steal tended to

increase, and vice versa8.

To help us understand this better, Fig. 10.11 below shows the net impact of interactions

in each scenario on the agents’ propensities to steal over the first 250 rounds of the

8In extremis, if we hold the agents’ propensities to defend at zero, the agents’ propensities to
steal increase to above 1; and if we hold them at 1, the agents’ propensities to steal decline to
below 0.
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simulation depicted in figures 10.8 to 10.10 above. It is similar to Fig. 10.9 but this

chart shows gross, not cumulative, contributions and it includes an aggregated value in

black.

Figure 10.11: Time series of contributions to the agents’ propensities to steal by sce-
nario over 250 rounds in the simulation depicted in figures 10.8 - 10.10. The model
records changes in the agents’ propensities to steal by interaction. These were aggre-
gated in each round by scenario and the time series for one of these simulations is shown
here. The chart shows that agents mostly learned to steal in scenarios 3A and 3F but
they learned to trade in scenarios 2F and 4. Ultimately, the agents learned to respect
each other’s property.

The small upward movement in the mean propensity to steal at the beginning of the

simulations appears to be a result of agents learning that it was preferable to steal after

interactions when they attempted to trade but then acquiesced to a stealing counterpart

(Fig. 10.11 shows this phenomenon as a sharp rise in the contribution of Scenario 3A

in the first few rounds). However, this did not last for very long: as the agents learned

it was preferable to defend their resources (fewer counterparts acquiesced) they also

learned it was preferable to trade (not to steal) on the whole.

A more detailed analysis of the data indicates there were a total of six different ‘patterns’

acting on the agents’ propensities to steal. These were discussed in Chapter 6 and are

summarised here:

• The first is described above: a movement up in the agents’ propensities to steal

when their propensities to defend were below approximately 0.8.

• The second is the reverse of the first: after the agents’ propensities to defend

exceed 0.8 on average, the agents learn it is preferable to trade than to steal, i.e.,

their propensities to steal decline. This is mainly due to fight costs, which on the

whole exceed the benefits of theft.
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• The third pattern is observed when the rate of decline of agents’ propensities to

steal decelerates because agents fight less.

• The fourth pattern is observed more as propensities to steal decline: the benefits

of transacting further reduces these propensities.

• The fifth pattern was unexpected. When one agent has a positive propensity to

steal and all the other agents’ propensities are negative, this single agent benefits

disproportionally from the resource concentration effect, which is ‘centred’ around

this agent. This encourages it to steal so its propensity to steal increases. Ulti-

mately, other agents learn from this agent, which leads to an increase in total fight

costs.

• The final pattern is when all the agents’ propensities to steal are negative, leading

to lock-in below zero. Here, agents only trade (which they can only benefit from),

so their propensities become more negative.

To help illustrate the net effect of these six patterns, Fig. 10.12 below shows the agents’

propensities to steal over the first 200 rounds of a typical simulation. The chart shows

four sets of data: the propensities to steal of the agents who survive until the end of

the simulation (the blue ‘cloud’), the mean of these propensities (the blue line), the

propensities to steal of the eleven agents who die (the red ‘cloud’), and the mean of

these (the red line). It is replicated from Chapter 6 for convenience.

The chart shows how (on average) the propensities to steal of the agents who survived

were sustained below those of agents who died (the last one died in Round 102). Note

that the mean propensities to steal of the agents who died (the red line) declined roughly

in parallel with the mean propensities of those who survived (the blue line).

Let us refer to the agents with relatively higher propensities to steal as ‘Al Capone’

agents, and those with relatively lower propensities as ‘passive-aggressive’ agents. The

latter name reflects the idea that, ultimately, these agents prefer to trade but will defend

their resources if necessary.

When we introduce habituation in to the model (see Section 10.3 below), the hetero-

geneity depicted in Fig. 10.12 is strengthened such that the agents bifurcate into two

distinct strategies: those with propensities to steal above 1 and those with propensities

below zero.

The net impact of these six patterns and the fact that agents with positive propensities

to steal tended to die before those with lower and/or negative propensities mean that

property rights eventually emerge.

There are two final points to note here. The first is that the resource concentration

effect was seen in these default simulations. Fig. 10.13 below shows the time series of
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Figure 10.12: The ‘cloud’ of agents’ propensities to steal over 200 rounds in a typical
simulation when the default parameter set was used (copied from Chapter 6 for con-
venience). The chart shows the propensities to steal of the agents who survived until
the end of the simulation as blue ‘dots’. The blue line is the mean of these values. The
red dots represent the propensities to steal of the agents who died before the end of the
simulation, and the red line is the mean of these values (it ends in Round 102 when the
last of these agents died). The chart shows how, on the whole, the propensities to steal
of the agents who died was sustained, initially, above those who survived. This figure
is replicated from Chapter 6 for convenience.

the mean gini coefficient for resource holdings at the beginning and of the interaction

phases of rounds, averaged over 20 simulations that used the default parameter set. The

data are consistent with resource concentration until approximately Round 200.

One of the most interesting features of this effect was the observation of ‘passive-

aggressive theft’ by the passive-aggressive agents. We observed agents with low or nega-

tive propensities to steal choosing to interact with agents with much higher propensities

to steal. An analysis of the data tells us that these agents expected to attempt to trade,

their counterparty to steal, and then to defend their resources. If they win this fight,

they get to keep the other agent’s resources.

This tactic was employed by passive-aggressive agents when they had fewer resources

than their Al Capone counterpart. The benefit to the instigating agent exceeded the

expected fight costs. This phenomenon contributed to resource concentration.

The second point is that it is tempting to expect a population in which property rights

have fully emerged to be susceptible to ‘hawks’ or ‘invading defectors’, i.e., agents who

steal. However, the trading agents in these simulations should perhaps be thought of
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Figure 10.13: Time series of the gini coefficient of agents’ resources holdings (means
over 20 simulations). In each round the gini coefficient was recorded at the beginning
of the interaction phase and then at the end. Mean values were also recorded over
all 20 simulations in a set, which are shown here. The chart shows that resources
became more concentrated in approximately the first 200 rounds (when the dark blue
line was higher than the light blue line) but the gap between the two declined until
approximately Round 250. The decline in resource concentration this demonstrated
was a result of the agents’ propensities to steal declining.

as ‘contingent doves’ (rather than ‘pure’ doves in the Hawk-Dove game): they will first

seek to trade with other agents but they will defend their resources if provoked. We will

see this phenomenon at work in the next chapter, when we allow children to be born

with positive propensities to steal (they always die because other agents defend their

property).

10.2.3 Fights and Transactions on the Grid

Let us look briefly at the transaction and fight locations in a typical simulation. Three

figures are presented below, which show (for the same simulation) heatmaps of:

1. fight locations during the first 100 rounds (Fig. 10.14);

2. transaction locations also during the first 100 rounds (Fig. 10.15); and

3. transaction locations during the last 100 rounds (Fig. 10.16).

No heatmap for fights in the last 100 rounds is shown because there were no fights.

Figures 10.14 and 10.15 show that agents converged on the same area on the grid to

trade and steal in the first 100 rounds.

At first blush it seems odd that agents converged on an area where they might lose

their resources and/or incur fight costs. However, as mentioned previously, this was
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Figure 10.14: Heatmap of fight locations in the first 100 rounds of a typical simulation
when the default parameter set is used. The chart shows how agents congregated on
the same area and fought.

Figure 10.15: Heatmap of transaction locations in the first 100 rounds of a typical
simulation when the default parameter set is used. The chart shows how agents con-
gregated in the same location shown in Fig. 10.14 above, i.e., where fights took place.

due to the process of target selection at the start of the interaction phases: agents with

positive location weights in memory within this area were insensitive to negative weights

for adjacent squares, which meant agents tended to congregate. Note we increase this

sensitivity to neighbouring squares with negative weights when we explore the parameter

space.

Fig. 10.16 shows a single market area at the end of the simulation.
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Figure 10.16: Heatmap of transaction locations in the last 100 rounds of the same
simulation depicted in figures 10.14 and 10.15. The chart shows how agents congregated
in the same location shown in those charts. However, agents only ever traded at this
stage of the simulation.

10.2.4 Specialisation & Child Birth

After the Al Capone agents died and the propensities to steal of all the surviving agent

declined to below zero, the simulations essentially replicated the outcome of default

simulations that used the first model: agents specialised and bore children until the

total population reached approximately 43 agents.

Fig. 10.17 below shows the turnover ratio from the same simulation from which figures

10.14 - 10.16 are taken9.

The turnover ratio shown in Fig. 10.17 increases progressively to almost 1 over 200

rounds as the agents’ propensities to steal declined toward and below zero and agents

with positive propensities died off.

This rise in the turnover ratio catalysed specialisation among the surviving agents.

In the default simulations the children were born with propensities to steal and defend

equal to the mean of their parents’ propensities. This meant children were only ever

born with negative propensities to steal.

Fig. 10.18 below shows the total agent population in the same simulation as that depicted

in figures 10.14 - 10.17 above, over the first 1,000 rounds. The first child was born in

Round 403. The total population continued to increase after Round 1,000 and plateaued

at 43 agents.

9Recall that the turnover ratio is the actual volume of transactions divided by the market
clearing volume.
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Figure 10.17: Time series of the turnover ratio in the first 250 rounds of the same
simulation depicted in figures 10.14 - 10.16. The ratio increased progressively toward 1
as the Al Capone agents died off.

Figure 10.18: Time series of the total agent population from the same simulation de-
picted in figures 10.14 - 10.17 above. The population initially declined to 15 agents but
property rights emerged among these agents who met at the same market, specialised
and then bore children.

Now that we have discussed the results of the new default simulations, let us consider

whether habituation has a material impact on the simulation results.

10.3 Habituation Experiments

In this section we discuss the results of experiments in which habituation plays a role in

the model.
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Consistent with the equivalent experiments based on the first model, this is done by

applying a habituation parameter (here, ha2) to the agents’ propensities to steal and

defend: if an agent chooses to steal (trade), ha2 is added to (deducted from) its propen-

sity to steal; and if an agent chooses to defend its resources (acquiesce), ha2 is added to

(deducted from) its propensity to defend.

Two sets of experiments are discussed below: those in which reinforcement learning is

‘switched off’ such that propensities change only as a result of habituation; and those

in which reinforcement learning and habituation both change the agents’ propensities.

As with the experiments based on the first model, the interesting question here is what

impact habituation has on the emergence of the institution. We can imagine that af-

ter property rights emerge across the population, habituation serves to reinforce the

institution (agents’ propensities to steal would be more negative) but what about when

property rights are emerging?10

Note that for these experiments the agents’ starting resource values were increased to

1,000 units of each resource and the agents were prevented from siring children. In

addition, 20 simulations were run for each value of ha2, each for 1,000 rounds. These

parameters allowed us to focus on the underlying mechanisms at play and to minimize

run time.

Main Results

The results of both sets of experiments provide us with two key observations.

The first, drawn from both experiments, is that reinforcement learning is necessary to

guarantee that property rights emerge. More specifically, this is to avoid a scenario in

which one or two hawkish agents (with positive propensities to steal) are allowed to

thrive by exploiting a large group of ‘doves’.

The second observation, which is taken from the second set of experiments, is that

habituation catalyses the emergence of property rights by strengthening the strategy

bifurcation mechanism. In these experiments there is a much clearer emergence of Al

Capone and passive-aggressive agents (with more extreme propensities): the former die

off more quickly as a result of debilitating fight costs.

10This is a particularly relevant question in light of the general movement of the agents’
propensities to steal in the default simulations. These propensities tend to move up early on
in the simulations, when the agents’ propensities to defend are relatively low; and then decline
when these propensities are high. Furthermore, when the data was disaggregated and analysed,
we observed a relatively weak bifurcation of ‘strategies’ (denoted ‘Al Capone’ and ‘passive-
aggressive’): does habituation effect this split? These questions are addressed in Section 10.3.2
below.
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10.3.1 Reinforcement Learning ‘Switched Off’

In these experiments, agents do not learn anything from their interactions. Their propen-

sities to steal and defend change only as a result of ha2 being added to or deducted these

propensities, as described above.

We find there are two simple mechanisms at play here. First, there is a positive feed-

back effect in which propensities above 0.5 tend to move higher, which increases the

probability that it moves higher in the future; and vice versa. We can think of this as

inherent bifurcation.

This process leads to a four-way split in the agents’ propensities (creating three ‘types’ or

‘strategies’), determined by the movement in the agents’ two propensities: (i) both the

propensities to steal and defend are negative (denoted ‘doves’); (ii) a negative propensity

to steal and a propensity to defend above 1 (the ‘passive-aggressive’ agents we have

seen before); and (iii) agents with propensities to steal above 1 (‘hawks’ who can have

propensities to defend above 1 or below zero - these are irrelevant, ultimately, because

these agents never have to choose between acquiescing or defending their resources).

The speed at which these strategies emerge depends on ha2 and the number of interac-

tions an agent is involved in. If ha2 > 1, the agents’ strategies are determined by the

first time they choose to steal / trade and defend / acquiesce11. For smaller value of ha2,

the agents’ propensities change more slowly. Fig. 10.19 below helps us visualise this (it

shows the agents’ propensities to steal over the first 500 rounds of a typical simulation

when ha2 = 0.0001).

The second mechanism at play is lock-in when an agent’s propensity to steal exceeds 1

or falls below 0, which is more relevant when ha2 < 1. When this happens, the agent’s

decision (to steal / trade or defend / acquiesce) is certain and its propensity will carry

on increasing above 1 or declining below 0. We see propensities exceed 1 or decline

below zero in the default simulations but, there, agents can learn in a way that brings

their propensities back over either threshold. For the simulations discussed here, once

an agent’s propensity exceeds 1 or declines below zero, this is locked in.

Table 10.1 below shows some key results for selected values of ha2. The table shows the

total population of agents at the end of Round 1,000 and the percentage of 20 simulations

(for each value of ha2) in which property rights emerged by the same stage.

When we analyse the data, we make three broad observations.

11The agents’ starting propensities are drawn from a normal distribution with mean 0.5 and
standard deviation of 0.1, which means all the agents’ propensities will almost always start
between 0 and 1. If ha2 = 1, therefore, the agent’s propensities will move above 1 or below zero
immediately after their first decision.
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Figure 10.19: A time series of the agents’ propensities to steal over the first 400 rounds
of a typical simulation when ha2 = 0.0001 and when there was no reinforcement learn-
ing. Here, the agents’ propensities changed too slowly for property rights to emerge.

ha2 Population % Property
Rights

0 2.9 (0.7) 0
0.00001 3.0 (0.7) 0
0.0001 6.4 (3.3) 50
0.0002 7.3 (4.0) 40
0.0005 11.6 (3.0) 85
0.001 13.4 (2.2) 95
0.005 12.6 (3.0) 80
0.01 12.1 (2.8) 85
2.0 12.0 (2.2) 80

Table 10.1: Main results for simulations when there was no reinforcement learning, for
selected values of ha2. The middle column shows the total population of agents at the
end of 1,000 rounds, and the right hand column shows the percentage of simulations
in which property rights emerged (defined as when the propensities to steal of all the
surviving agents at the end of the simulation were negative).

The first is related to the ‘null’ scenario, when ha2 = 0, and for very small values of ha2.

When ha2 = 0, there is neither reinforcement learning nor habituation so the agents’

propensities never change. The agent population always collapses due to debilitating

fight costs and, clearly, property rights can never emerge. We see the same for very low

values of ha2.

The second observation is that as ha2 is increased from very small values, property rights

are more likely to emerge and the mean total population of agents increases as a result.

Let us consider this in more detail by examining the results for when ha2 = 0.005, which

are typical of this category.
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In 17 of the 20 simulations in this set, the agents’ strategies split relatively evenly (about

half the agents become hawks, about 1/4 doves, and about 1/4 passive-aggressive). Fig.

10.20 below shows the agents’ propensities to steal in a typical simulation (first 400

rounds only). Here, 13 hawks (shown in red) emerge alongside 6 doves and 6 passive

aggressive agents (both are shown in blue). All of the hawks die by Round 300 because

of debilitating fight costs, and the rest of the agents survive.

Figure 10.20: A time series of the agents’ propensities to steal over the first 400 rounds
of a typical simulation when the agents’ propensities changed as a result of reinforcement
learning and habituation (here, ha2 = 0.005). The red lines depict ‘hawks’, whose
propensities increased above 1, and who all died. The blue lines depict ‘doves’ and
passive-aggressive agents (who all survived).

Fig. 10.21 shows a time series of the total stock of resources held by agents over 1,000

rounds from the same simulation. The three agent groups can be seen clearly: all of the

hawks’ total resources reached zero; the lower group of 6 lines above zero represent the

passive-aggressive agents; and the higher group of 6 lines are the doves.

In these simulations, an efficient market emerged after the hawks died off, and the agents

specialised.

It is tempting to conclude from this that we have essentially replicated the outcome of

default simulations without any reinforcement learning. After all, property rights emerge

across the population. This would be a mistake, however, given the third observation.

The third and final observation is that in simulations when (approximately) ha2 ≥ 0.0005

we observe scenarios in which property rights do not emerge. This is due to the ‘split’ of

agents between the three strategies: the problem is observed when there is a relatively

large number of doves relative to passive-aggressive agents.

To help us understand this better, Fig. 10.22 below shows the agents’ propensities to

steal in a simulation when 14 hawks emerged alongside 8 doves and 3 passive aggressive
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Figure 10.21: A time series of the agents’ total resources over 1,000 rounds (taken
from the same simulation as that depicted in Fig. 10.20 above). The y-axis shows for
each round the sum total of resources held by each agent (Resource 1 + Resource 2).
The chart shows that all the ‘hawks’ died; all the passive-aggressive agents (the lower
group of lines above zero) survived; and the ‘doves’ (the higher group of lines above
zero) also survived.

agents (ha2 = 0.01). Fig. 10.23 shows the the agents’ total resources in the same

simulation.

Figure 10.22: A time series of the agents’ propensities to steal of an atypical simu-
lation when the agents’ propensities changed as a result of reinforcement learning and
habituation (here, ha2 = 0.005). The red lines depict ‘hawks’, whose propensities in-
creased above 1, all of whom died with one exception. The blue lines depict doves
passive-aggressive agents. This pattern is observed when a relatively large number of
‘doves’ are seen relative to passive-aggressive agents. The surviving hawk thrives in
this environment.

The significant point here is that a lone hawk (sometimes two) can thrive in this en-

vironment because there are several doves to bully, i.e., for these hawks, the theft of
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Figure 10.23: A time series of the agents’ total resources over 1,000 rounds (taken
from the same simulation as that depicted in Fig. 10.22 above). The y-axis shows for
each round the sum total of resources held by each agent (Resource 1 + Resource 2).
The chart shows that all the ‘hawks’ but one died - this surviving hawk was able to
bully the doves (after all the other hawks died) allowing its resource stock to increase
significantly.

resources from doves exceeds the loss in resources from fight costs. This is not true

when more than two hawks are alive. The line in Fig. 10.23 that rises steeply after

Round 350 represents a single surviving hawk. The lines declining gently over the 1,000

rounds represent the doves.

There was some variation in these scenarios. As mentioned above, sometimes 2 hawks

survive and thrive. In others, a single hawk thrives by being parasitic on the doves but

a single passive-aggressive agent thrives by being parasitic on the surviving hawk! Here,

the hawk mugs the doves but the passive aggressive agent shares in this success to some

degree by successfully stealing (in a passive aggressive way) from the hawk. The spoils

of theft are split between the two on average.

These scenarios in which doves are bullied by one of two hawks are unsustainable: if we

extend the simulations beyond 1,000 rounds we see that, eventually, the doves die off.

The critical point to emphasise here is that in the default simulations, reinforcement

learning ensured that no doves emerged: agents learned it is best to defend their re-

sources. This scenario, in which 1-2 hawks thrived among doves, was avoided.

Let us now turn to the experiments in which reinforcement learning coexists with ha-

bituation.
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10.3.2 Reinforcement Learning and Habituation

It is helpful to first demonstrate what happens under these conditions when ha2 = 0,

as a type of null scenario12. 20 simulations were run and we found that in 7 of these,

property rights emerged successfully by Round 1,000. Fig. 10.24 below shows the ‘cloud’

of the agents’ propensities to steal in a typical simulation. It shows that all the agents’

propensities to steal declined to below zero soon after Round 550.

Figure 10.24: The ‘cloud’ of the agents’ propensities to steal over 1,000 rounds of a
simulation when the agents’ propensities change as a result of reinforcement learning
but not habituation, i.e., ha2 = 0. Each blue ‘dot’ represents the propensity to steal of
a living agent in each round. In this simulation, the agents’ propensities fell below zero
after Round 550 (approximately): property rights emerged.

In the other 13 simulations, property rights did not emerge across the population by

Round 1,000. Fig. 10.25 below shows the cloud of agents’ propensities to steal in such a

simulation: by the end of the simulation, about half the agents had propensities above

zero and half below.

The difference between the simulations depicted in figures 10.24 and 10.25 is due to

the outcome of the six patterns discussed above. On the one hand, fight costs tend to

reduce the agents’ propensities to steal but, on the other, there were forces at play which

encouraged propensities to steal higher at lower (and negative) levels. These combined

in different ways in these simulations, leading to distinctly different outcomes as shown

in figures 10.24 and 10.25 above13.

12This replicates the default parameter set except, now, agents start with 1,000 units of each
resource and can never sire children.

13Note that in the default simulations agents had much lower starting resources - this meant
agents who sustained relatively high propensities to steal were prone to dying more quickly. In
the simulations shown in figures 10.24 and 10.25, these agents survived for longer.
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Figure 10.25: The ‘cloud’ of the agents’ propensities to steal over 1,000 rounds under
the same conditions as those in Fig. 10.24 above. In this simulation, the agents’
propensities did not fall below zero before the end of the simulation: property rights
did not emerge.

We should note that if the simulations are extended and agents allowed to have children,

all of the simulations typified by Fig. 10.25 would see property rights and an efficient

market emerge, followed by specialisation and childbirth, i.e., the default simulations

would be replicated. This is not shown here because we are focused on the impact of

habituation on the emergence of property rights.

Table 10.2 below shows some key data from the results for selected values of ha2. For

each value of ha2, the table shows: (i) the mean total population of agents at the end

of Round 1,000; (ii) the percentage of 20 simulations in which property rights emerged

across all surviving agents by the end of Round 1,000 (this is when all surviving agents

had propensities to steal below zero); (iii) the peak propensity to steal (mean across

20 simulations); (iv) the mean number of ‘doves’ observed across the simulations (by

Round 1,000); (v) the mean number of ‘passive-aggressive’ agents observed by Round

1,000; and (vi) the mean number of ‘hawks’ observed by Round 1,000. The table’s

caption contains a more detailed description of the data.

When we analyse the data we observe two noteworthy phenomena, corresponding to

higher and lower values of ha2.

The first phenomenon, which is related to higher values of ha2 (approximately 0.01 ≤
ha2), is easier to understand because it mimics the results we saw when reinforcement

learning was switched off. Higher values of ha2 dominate changes in the agents’ propen-

sities: reinforcement learning was relatively weaker. The results, therefore, converge on

those discussed in the previous sub-section. Understandably, therefore, higher values of
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ha2 Pop’n % Prop Max Prop No. No. No.
Rights Steal Doves PA Hawks

0 24.1 (1.5) 35 0.563 0.0 (0.0) 19.1 (3.8) 0.1 (0.3)
0.0001 23.9 (0.8) 100 0.543 0.0 (0.0) 20.4 (2.0) 0.0 (0.0)
0.001 24.4 (0.6) 100 0.555 0.0 (0.0) 21.5 (1.7) 0.0 (0.0)
0.0025 22.9 (1.0) 100 0.550 0.0 (0.0) 22.8 (0.7) 0.0 (0.0)
0.005 15.5 (1.3) 100 0.597 0.0 (0.0) 15.5 (1.3) 0.0 (0.0)
0.0075 10.8 (2.0) 100 0.643 0.0 (0.0) 10.8 (2.0) 0.0 (0.0)
0.01 10.1 (2.4) 100 0.68 0.0 (0.0) 10.1 (2.4) 0.0 (0.0)
0.02 9.6 (3.0) 95 0.926 0.5 (0.7) 8.9 (3.3) 0.1 (0.7)
0.03 10.1 (2.3) 95 1.184 1.6 (1.3) 8.4 (2.8) 0.1 (0.4)
0.04 10.9 (2.6) 95 0.607 2.5 (1.1) 8.3 (2.6) 0.1 (0.2)
0.05 11.2 (2.4) 90 0.534 3.7 (1.7) 7.3 (3.1) 0.2 (0.6)
0.1 11.7 (3.0) 90 0.569 5.7 (2.1) 5.9 (2.5) 0.1 (0.3)
2.0 12.1 (3.7) 80 0.615 6.5 (2.7) 5.3 (3.3) 0.2 (0.5)

Table 10.2: Main results of simulations in which the agents’ propensities changed
via reinforcement learning and habituation, for selected values of ha2 (shown in the
left hand column). Data correspond to 20 simulations for each value of ha2 (standard
deviations in parentheses). ‘Pop’n’ refers to the mean total population of agents at
the end of 1,000 rounds; ‘% Prop Rights’ indicates the percentage of 20 simulations in
which property rights emerged (this is when all the agents alive at the end of Round
1,000 had negative propensities to steal); ‘Max Prop Steal’ is the mean propensity to
steal at which the agents’ propensities peaked in the simulations; ‘No. Doves’ is the
mean number of doves alive at the end of 1,000 rounds; ‘No. PA’ refers to the mean
number of passive-aggressive agents alive at the end of 1,000 rounds; and ‘No. Hawks’
shows the same data for the number of hawks alive.

ha2 are associated with doves emerging and an increase in the likelihood of the scenario

in which one or two hawks survive, bully the doves, and property rights do not emerge.

The second phenomenon is when small values of ha2 help to catalyse property rights

(here, habituation is weak relative to reinforcement learning). We can see this most

clearly in Table 10.2 when ha2 is increased from 0 to 0.0001.

Fig. 10.26 illustrates what happens in these simulations. It shows the agents’ propensities

to steal in the first 400 rounds of a typical simulation when ha2 = 0.01. The chart shows

how the agents split into two different strategies (Al Capone and passive aggressive

agents) in a much more extreme way than in the default simulations: Al Capone agents

saw their propensities to steal increase (significantly) above 1 and, equivalently, the

propensities of passive aggressive agents decline (well) below 0.

This bifurcation of the agents’ propensities to steal looks similar to that seen when

reinforcement learning was switched off; however, the results are significantly different

with respect to the agents’ propensities to defend. In these simulations, reinforcement

learning meant no doves emerged: all of the agents with negative propensities to steal

had propensities to defend well above 1.
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Figure 10.26: A time series of the agents’ propensities to steal over the first 400 rounds
of a typical simulation when the agents’ propensities change as a result of reinforcement
learning and habituation (here, ha2 = 0.01). The red lines depict ‘hawks’, whose
propensities increase above 1, and who all died. The blue lines depict passive-aggressive
agents (who all survived). In these simulations there were no doves.

The Al Capone agents always died off because fight costs were debilitating. All of the

passive aggressive agents survived in all of the simulations: after the Al Capone agents

had died off, these agents thrived in an environment in which property rights were

established, and specialised. Fig. 10.27 below shows a time series of the agents’ total

resources in the same simulation as that shown in Fig. 10.26 but over 1,000 rounds:

the passive-aggressive agents’ resources decline while the Al Capone agents are alive but

then increase after they die.

Figure 10.27: A time series of the agents’ total resources over 1,000 rounds (taken
from the same simulation as that depicted in Fig. 10.26 above). The y-axis shows for
each round the sum total of resources held by each agent (Resource 1 + Resource 2).
The chart shows that all the ‘hawks’ died and all the passive-aggressive agents survived.
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Agent-Level Data: Reinforcement Learning and Habituation

The model records the contributions of reinforcement learning and habituation to changes

in the agents’ propensities to steal. These data show some particularly interesting results

when habituation is relatively low so let us examine them in more detail.

Three figures are shown below. The first, Fig. 10.28, shows a passive-aggressive agent’s

propensity to steal over the first 100 rounds of a typical simulation when ha2 = 0.005,

and four different contributions to that propensity over the same period (when reinforce-

ment learning contributed positively and negatively, and when habituation contributed

positively and negatively). See the figure’s caption for a more detailed description of

the data. The figure is reproduced from Chapter 6 for convenience.

The second figure (10.29) below shows the same data but over 1,000 rounds; and the

third figure (10.30) below shows the equivalent data for a ‘hawk’ while it was alive, taken

from the same simulation as the previous two figures.

In Fig. 10.28, the agent’s propensity to steal started at 0.5 and declined to below zero

in Round 26. The contributions data show us that the net contribution of reinforcement

learning over the first 26 rounds was -0.61 and the net contribution of habituation was

+0.03 over the same period. This tells us that this agent came to respect others’ property

because of reinforcement learning and despite a positive contribution (albeit small) from

habituation. This same pattern was seen for all passive-aggressive agents and doves.

Fig. 10.29 shows that the contributions from reinforcement learning stabilized after the

last hawk died (in Round 235). The reason for this is that the feedback from transactions

to propensities to steal was much smaller for transactions than fights. The contribution

from habituation was also larger than transactions so that by the end of the simulation,

habituation dominated reinforcement learning in terms of contributions. The agent’s

propensity to steal was -228.8 at the end of the final round: the net contribution of

reinforcement learning was -0.6 and the net contribution of habituation was -228.2.

For passive-aggressive agents and doves, therefore, we observe an interesting result:

property rights emerge because of reinforcement learning but in terms of the doves’

mental models, habituation comes to dominate over time. Put another way, the ‘rule’

of property rights emerges through reasoning and learning but, eventually, it resembles

a habit.

Fig. 10.30 shows the equivalent data for a hawk in the 235 rounds it was alive. Here, the

agent’s propensity to steal starts at 0.5 and exceeds 1 by the end of Round 18. The net

contribution of reinforcement learning over this period is -0.5 and the net contribution

of habituation +1.18.
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Figure 10.28: A time series of a passive-aggressive agent’s propensity to steal (the
black line) over the first 100 rounds of a typical simulation when propensities change as
a result of reinforcement learning and habituation (here ha2 = 0.005). The four ‘areas’
denote contributions to the agent’s propensity to steal over time: the upper (dark red)
area shows positive contributions by habituation; the second (dark blue) area shows
positive contributions by reinforcement learning; the third (light blue) represents neg-
ative contributions by reinforcement learning; and the lower (light red) area represents
the negative contribution by habituation. This chart shows how the agent’s propensity
to steal declines below zero (this occurred in Round 26) mainly as a result of reinforce-
ment learning.

It is noteworthy that, ceteris paribus, reinforcement learning on its own would have seen

this agent’s propensity to steal decline to zero. This particular agent’s experience in

the simulation, however, meant that its propensity to steal rose more quickly than the

passive aggressive agent depicted in figures 10.28 and 10.29, resulting in a persistent

positive contribution by habituation.

By the time the hawk died at the end of Round 235, its propensity to steal was 7.41

(the contribution of reinforcement learning was -10.44 and habituation +17.35).

10.4 Discussion of Results

As with the results from the Market Emergence Model, here we focus on whether the

property rights we observed in the default simulations meet the definition of institutions

adopted in this thesis (Section 10.4.1); and whether those we observe in the habituation

experiments do so also (Section 10.4.2). Here, a third section is added which considers

whether property rights emerged in our simulations via generalized Darwinism (10.4.3).
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Figure 10.29: The same time series as shown in Fig. 10.28 above but for 1,000 rounds.
See the above figure for descriptions of the data. This chart shows how habituation
came to dominate the agent’s propensity to steal over time.

Figure 10.30: A time series of a hawk’s propensity to steal (the black line) over the 235
rounds it was alive. The data were taken from a typical simulation when propensities
changed as a result of reinforcement learning and habituation (here ha2 = 0.005). See
Fig. 10.28 above for a description of the data. The chart shows that the agent’s
propensity to steal increased above 1 because the net impact of habituation exceeded
that of reinforcement learning.

10.4.1 Organic (Unplanned) Institutions

The definition adopted in this thesis is repeated here for convenience: institutions are

“durable systems of established and embedded social rules that structure social inter-

actions.” (Hodgson, 2006a, p. 13). Organic institutions meet this definition but are

unplanned.
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Looking at this in more detail:

• The property rights we observe appear durable for at least three reasons. First,

there is a consistency between what agents expect of other agents and their actions;

second, when all the living gents’ propensities are negative, they can no longer

become positive (lock-in); and, third, when we allow children to be endowed with

positive propensities to steal (see the next chapter), we find that the agents’

defence of property protects these property rights. These children either die or

they learn to respect property.

• In terms of systems, these property rights appear to be mainly cognitive with no

‘artefacts’ but they exist within a family of institutions, including language.

• Property rights are both established within and embedded across the population.

The lock-in of property rights mentioned above (and the continued decline of

propensities to steal over time) ensures this is the case.

• These rights appear to structure social interactions in that the agents are disposed

to trade rather than steal others’ resources.

• Below we consider whether these property rights ought to be considered rules.

Should we view the emergent property rights as unplanned? It appears so. It is tempting

to believe that the decline of propensities to steal below zero is inevitable after agents

learn to defend their property; however, this is an oversimplification. There were six

patterns observed in addition to selection pressure which in general led to those with

higher propensities to steal dying. It seems reasonable to state that the emergence of

property rights across the population was both unplanned and surprising.

Rules

Do the property rights we observed fit Hodgson’s definition of rules? Recall that the

“term rule is broadly understood as a socially transmitted and customary normative in-

junction or immanently normative disposition, that in circumstance X do Y .” (Hodgson,

2006a, p. 3, emphasis included).

In terms of socially transmitted, we can say that while emerging, it is better to think

of property rights as ‘socially constructed’ due to co-adaptive reinforcement learning,

rather than socially transmitted. We concluded the same for single market institutions

in Chapter 7.

However, when we relax the assumption of infinite lives, social transmission seems to

take place: ‘replication’ occurs from one generation to the next. The mechanism here is

an assumed one whereby children are born with propensities equal to the mean of their
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parents’ propensities. However, this represents children learning from their parents, and

we can assume this occurs through language, at least in part. Once emerged, therefore,

property rights appear to be ‘socially transmitted’.

Looking at rules as immanently normative dispositions14, it appears that the prop-

erty rights we observe sit comfortably with the words ‘immanent’ and ’dispositions’.

Furthermore, is we accept the Oxford English Dictionary (OED) definition of a norm,

stated in Section 7.7.1, property rights also appear normative given the agents form

expectations which prove to be consistent with their experience of other agents.

Moreover, the idea of a rule that in circumstances X do Y (and not Y ∗) appears con-

sistent with our property rights. Once again, the “not Y ∗” component seems reasonable

if we consider this pragmatically in the context of a human agent. An individual would

be aware that theft is an option but experience leads him or her to trade.

In all, therefore, the property rights we observed in the default simulations appear

consistent with Hodgson’s definition of institutions as rules which we have adopted in

this thesis.

10.4.2 Organic Institutions with Habituation?

Recall that when reinforcement learning is switched off, and for high values of ha2 when

reinforcement learning is used, three strategies emerged and in most simulations we saw

the ‘hawks’ die off, leaving the doves and passive-aggressive agents to thrive.

The property rights that emerged in these simulations appear to meet our definition of

institutions, broadly for the reasons discussed above. However, habituation appeared to

make them more durable, established, and embedded in the population.

Furthermore, it seems reasonable to categorise these property rights as ‘unplanned’: the

movements in the propensities to steal were driven entirely or mostly by habituation.

Looking at the experiments with reinforcement learning and weak forms of habituation,

the property rights that emerged also appear to meet our definition of institutions, also

for the reasons discussed above; and they also appear unplanned.

In summary, it appears that the property rights that emerged in the default simulations

and in all the habituation experiments all meet the definition of organic institutions

adopted in this thesis.

14Again this phrase seems more relevant than “customary normative injunction” in Hodgson’s
definition of rules.
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10.4.3 Generalized Darwinism?

Here we argue that property rights emerged in a way that was consistent with generalized

Darwinism as described in Section 2.3.3.5. Most importantly, selection pressure ensured

that agents with higher propensities to steal died and those with lower propensities

survived.

Let us look at how variation, selection, and durability worked in the simulations.

Variation

This occurred through changes in the agents’ propensities to steal and defend, which in

turn resulted from co-adaptive reinforcement learning (and habituation when this was

included in the mental models). Recall the six ‘patterns’ described above.

Clearly, this variation is not ‘blind’ in the same way that genetic mutations are but here

that does not matter: we stated in Chapter 2 that in generalized Darwinism, variation

can result from phenomena like conscious deliberation or reinforcement learning.

Variation was most clear in simulations with both reinforcement learning and a weak

form of habitation: two very distinct strategies emerged among the agents, which we

referred to as ‘Al Capone’ and ‘passive-aggressive’. Indeed, we saw three strategies

emerge when habituation was stronger and when agents’ mental models only changed

as a result of habituation.

Selection

We stated in Chapter 2 (restated here for convenience) that selection is “a process of

sifting and preservation of fortuitous adaptations.” (Hodgson, 2003a, p. 89).

In both the default simulations and when a weak form of habituation was added to the

agents’ mental models, Al Capone agents tended to die before passive-aggressive agents.

While there were six patterns, or forces, acting on the agents, the debilitating effect

of fight costs impacted the Al Capone agents the most. It appears that the passive-

aggressive strategy was selected for.

The results of simulations with stronger habituation and when mental models changed

only as a result of habituation indicated that the selection of agents who respected

others’ property was conditional on the proportions of the three strategies observed.

In most simulations, the doves and passive-aggressive agents survived and the hawks

died. However, one or two hawks could thrive if there were significantly more doves

than passive-aggressive agents (until the doves all died).
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Durability

In Chapter 2 we stated that durability ensures “that much of the pattern and variety is

passed on from one period to the next.” (Hodgson, 2003a, p. 89).

A number of factors ensured that after property rights emerged (i.e., when all the living

agents’ propensities to steal were below zero), they were sustained:

• the lock-in of these propensities when they were all below zero;

• the assumption that children were born with propensities equal to the mean of

their parents, i.e., they inherited respect for (and defence of) property;

• the fact that agents would defend their property against any children born with

positive propensities to steal, leading to these children dying; and

• consistency between agents’ expectations of other agents’ propensities and their

actions.

Now that we have discussed the results of the null and default simulations, and experi-

ments that incorporate habituation, let us look at the results arising from the exploration

of the parameter space.





Chapter 11

Property Rights Model: An

Exploration of the Parameter

Space

With great power comes great responsibility.

– Uncle Ben to Peter Parker, Spiderman

In this chapter and Appendix C we adjust various parameters used in the default sim-

ulations presented in the last chapter. We also explore what happens to the results

when we change our approach in various parts of the model, e.g., adopting substantive

rationality when agents are strangers.

As stated previously, we are as interested in knowing the conditions under which property

rights emerge as much as when they do not.

Appendix C contains a detailed analysis of the results of ten different experiments, each

of which adjusts a single parameter, or multiple parameters, or some structural part of

the model.

This chapter contains a summary of that work (Section 11.1).

It is worth stating here that property rights and defence of property emerge in a large

volume of the parameter space, i.e., the results presented in the previous chapter are

broadly robust.

313
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11.1 Summary of Results

• Agents’ starting propensities. In the default simulations, each agent was

born with propensities to steal and defend drawn from a normal distribution

with a mean of 0.5 and a standard deviation of 0.1. In these parameter tests,

five different ‘initial conditions’ tests were conducted for the agents’ propensities

to steal and defend: we found the results of the default simulations were

replicated in all of these tests.

• Cost of fighting. Various tests were run with different fight costs (the default

value c was 0.3 for each resource): we found that these costs had to be between

approximately 0.1 and 0.6 for the results of the default simulations to

be replicated. If fight costs were less than 0.1, the agents were less discouraged

from stealing so their propensities to steal failed to decline to below 0. If fight

costs exceeded 0.6, the agents became reluctant to interact for fear of incurring

the cost of fighting, which meant they failed to learn and their propensities hardly

changed.

• The influence of the counterparty’s reduced values on the adjustments

of the propensities. In the default simulations the agents learned from the

experience of their counterpart in all interactions (with a weight of β = 0.5 applied

to counterpart experiences). This weight was adjusted within a range of 0 and 1:

we found these tests had no material impact on the results.

• Errors included in agents’ estimations of expected pay-offs. We assumed

agents made errors in evaluating each pay-off in potential interactions in the de-

fault simulations (accurate pay-offs were adjusted by an error taken from a normal

distribution with mean 0 and standard deviation of 0.05). We found that for the

default simulation results to be replicated, the standard deviation of

the pay-off error had to be between approximately 0 and 0.6. If the

error was above 0.6, agents were less able to discern between those with whom

they should and should not interact. On the whole this led agents to lose more

resources when they defended them, which put downward pressure on the agents’

propensities to defend. The resulting failure of these propensities to rise above 0.8

(approximately) meant the agents’ propensities to steal did not decline.

• The standard deviation applied to children’s propensities to steal and

defend. In the default simulations, children were born with propensities to steal

and defend equal to the mean of their parents’ propensities. In this parameter test

we added an error to these means: the main result was that the agent popula-

tion demonstrated resilience to children born with positive propensities

to steal (‘black sheep’) who typically died within approximately 70 rounds of their



Chapter 11 Property Rights Model: An Exploration of the Parameter Space 315

birth. The defence of property (high propensities to defend), which was latent in

the agents’ mental models was an important factor in this resilience: this was an

evolutionary stable strategy.

• Initial resource endowment. Agents instantiated at the beginning of the sim-

ulations were provided with two resources in their personal resource arrays, each

drawn from a normal distribution with mean 200 and standard deviation of 5.

These initial resources acted as a ‘buffer’ that enabled the agents to learn without

dying (and for property rights to emerge). In this parameter test we adjusted the

mean value: we found the default simulation results were replicated for

values of 180 units or higher. The lower this value was, the more simula-

tions we observed in which the agent population collapsed to 1-3 agents. When

the agents start simulations with more than 200 units of each resource, we find

that property rights emerge more slowly than in the default simulations (this is

explained in more detail in Section C.6 below).

• The nature of the feedback from each interaction to the agents’ propen-

sities. Section 9.4 above described how the agents learned from their interaction

experiences: their propensities to steal and defend were adjusted by a value that

adapted the reduced gain / loss from each interaction. There were three compo-

nents to this (a rate of change coefficient (r), cognitive coarseness (δ), and the

use of absolute and relative changes in reduced values). All three of these were

adjusted. We found that for the default simulation results to be replicated, r had

to exceed 0.004 and δ had to be less than or equal to 0.9. In addition,

propensities to defend had to be adjusted by the agents’ reduced gain

/ loss relative to the expected gain / loss as in the default simulations; and

the propensities to steal had to be adjusted by absolute gains / losses,

also as in the default simulations. This is discussed in more detail in Section C.7

of Appendix C.

• The reputations architecture. In these experiments we considered two differ-

ent approaches to how agents handle strangers, i.e., when they had no reputational

information about their (potential) counterpart. In the first approach the agents

used substantive rationality to make decisions, and in the second they ‘assumed

the worst’, that any stranger had propensities to steal and defend of 1. In both

experiments we found the impact on the results was negligible: defence

of property and property rights always emerged. In a third set of tests we adjusted

the length of the agents’ memories for reputational data (which was 20 rounds in

the default simulations): we found that memories had to exceed 3 rounds for the

default simulations results to be replicated, i.e., memory was important in

institutional emergence.
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• The weights of grid locations in agents’ memories (when choosing a tar-

get). When agents selected a grid target at the beginning of the interaction phase

of each round, they used the weights existing in memories for each grid square.

In the default simulations these weights were adjusted by +1 for transactions and

successful conflicts; and -1 for unsuccessful conflicts and when the agent had been

mugged. Here, these crude weights were replaced with the agents’ reduced gains

/ losses. This had no material impact on the results.

• Reducing agent clustering and resource concentration. One of the features

of the default simulation results was the clustering of agents in an area of the grid

during the interaction phase (e.g., Fig. 10.14) despite the fact they frequently lost

all their resources. This could be viewed as unrealistic. In these experiments we

enhanced the ability of the agents to avoid previous fight / mugging locations:

we found this slowed down agent interaction but defence of property and

property rights nonetheless emerged. In a different set of experiments we

allowed agents to remove themselves from the grid if they had increased their

holdings by more than 2 resource units during the interaction phase: we found

this also mitigated but did not eliminate the resource concentration effect and the

main results of the default simulations were nonetheless replicated. In a

third set of experiments we used both of these methods: the interaction of agents

was slowed down enough that in 3 of the 20 simulations run for this experiment,

defence of property and property rights did not merge and the agent population

collapsed to 1-2 agents. This tells us that some concentration of resources was

necessary for institutions to emerge.



Chapter 12

Property Rights Model: Liberal

Legislation

All right, tinkerbell. You’re nicked!

–Sweeney! D.I. Jack Regan

In this chapter we examine the relationship between legal rules and the emergence of

institutions. In particular, we are interested in whether the former can be used to

catalyse the latter.

Four sets of experiments are presented below, three of which introduce legal rules to

the experiments developed in Appendix D. In addition, we introduce these rules to a

scenario in which the cost of fighting (c) was below the range required for property rights

to emerge endogenously (c < 0.1).

In the first section below (12.1) we look at attempts to use legal rules when the agents

acquiesce if they want to trade and their counterpart attempts to steal (so-called ‘Yellow

Agents’). This corresponds with Section D.1 of Appendix D.

The second section (12.2) considers the impact of legal rules when fighting costs are ‘too

low’. When the parameter space was explored (Chapter 11 and Appendix C) we found

that the default simulation results were replicated when the cost of fighting was within a

range of approximately 0.1 - 0.6 resource units. Here we assume that the cost of fighting

is 0.05.

The final two sections focus on legal rules when power determines the outcome of con-

flicts. Section 12.3 looks at power via fighting skills, and Section 12.4 includes a wealthy
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agent when power results from the agents’ aggregated resource holdings. These experi-

ments correspond with sections D.2 and D.3 of Appendix D, respectively.

Types of Legal Rule

Two legal rules are tested in the experiments reported below.

In the first, legal rules are applied to all interactions with a fine equal to ζ for all agents

who attempt to steal (without any compensation paid to the ‘victims’). Agents are not

fined for defending their resources. This legal rule is applied, therefore, to instigating

agents in scenarios 3F, 3A, and 4; and to counterpart agents in scenarios 2F, 2A, and 4.

Fig. 12.1 below summarises the fight costs incurred and the fines applied to the agents

in the six scenarios.

Figure 12.1: A diagram summarising which agents incur fight costs and fines when
the legal rules do not include compensation payments to victims.

We assume all the agents are aware of these new parameters when they form expectations

of their gains (losses) from any interaction. We also assume they are risk neutral.

The fine is deducted from both resources in the personal resource array of the fined

agent in the same way that a fight cost is. For clarity, the reader should assume that a

“fine of x” below refers to x being deducted from both resources in an agent’s personal

resource array.

A second type of legal rule is also employed: agents are fined as above but now this fine

is transferred to any ‘victim’ as compensation1. Fig. 12.2 below summarises the fight

1The assumption made in the original model that resources in the agents’ personal resource
arrays could not be un-consumed or transferred is relaxed in these simulations.
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costs incurred, the fines applied, and compensation received by the agents given this

type of rule.

Figure 12.2: A diagram summarising which agents incur fight costs and fines, and
which receive compensation, when the legal rules include compensation payments to
victims.

Corruption

We observed that in all four sets of experiments reported below that a rule could be

found that meant agent populations always came to respect property rights and never

collapsed2.

It is tempting to conclude from this that laws and regulations should be used to success-

fully engineer pro-social institutions. However, this would be näıve because corruption

might undermine the efficacy of such rules3. In each of the experiments reported below,

therefore, we also ran simulations that included corruption. This was done by assuming

a probability that the policing authority accepted a bribe from a transgressing agent

(which was always less than the fine required by the legal rule).

Moreover, the probability of there being any corruption was assumed to be equal to

the median propensity to steal of the agent population (bounded by 0 and 1). This is

assumed because we can think of corruption as linked to respect for property: corrupt

officials can be thought of as not respecting the agents’ property as stated in some legal

rule. These mechanics of corruption are explained further in Section 12.1.2 below.

2As we shall see, this rule varied between experiments. Also, this result might appear unsur-
prising given we are ‘merely’ adjusting pay-offs. We shall see, however, that the impact of legal
rules on the population is more complex - they effect the co-adaptive dynamics of whole systems.

3Other phenomena might also undermine legal rules, e.g., difficulties / costs in detecting
transgressions of the rule. In this chapter we focus on corruption.
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It is worth emphasising here that corruption is explored in these experiments with respect

to the implementation of a given legal rule and not in the setting of the legal rule.

12.1 Yellow Agents

In the Appendix D we found a clear result that when agents always acquiesced, their

propensities to steal increased rapidly and plateaued at approximately 0.9. The agent

population then collapsed. Can legal rules prevent this outcome by encouraging the

emergence of property rights?

12.1.1 Legal Rules without Corruption (Yellow Agents)

In the first set of experiments reported in this sub-section we introduced fines to agents

who stole and no compensation was paid to ‘victims’. A range of fines were tested in

these experiments and we found there was no level of fine that catalysed the emergence

of respect for property.

An analysis of the data showed that when fines were less than approximately 1.5 resource

units, the fine was too weak to bring about a decline in the agents’ propensities to

steal. Fig. 12.3 below shows a fan chart of the agents’ propensities to steal in a typical

simulation when the fine was 0.5: the mean propensity of approximately 0.65 was lower

than 0.9 observed in Section D.1 but the agent populations nevertheless collapsed here

too.

For fines exceeding approximately 1.5 units, agents were reluctant to interact at all.

Recall that the initial 25 agents started the simulations with propensities to steal drawn

from a normal distribution with a mean of 0.5. When estimating the gains / losses

from interaction with potential counterparts the agents knew it was possible they would

steal and incur a fine. Therefore, fines exceeding approximately 1.5 units generally

discouraged agents from interacting at all.

Compensating Victims

The second type of legal rule - when perpetrators were fined and ‘victims’ compensated

- was also applied to this ‘Yellow Agents’ scenario. We found that a fine / compensation

of 0.4 units or higher was sufficient to catalyse respect for property emerging within the

agent population.

Note that in this chapter we refer to the range in which ζ catalysed respect for property

as the ‘efficacy range’. Here this is ζ ≥ 0.4.

Fig. 12.4 below shows the ‘cloud’ of agents’ propensities to steal over the first 500 rounds

of a typical simulation when the fine / compensation was 0.4 units. Here, only three
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Figure 12.3: Fan chart of living agents’ propensities to steal when a fine of 0.5 was
applied to stealing agents in a ‘Yellow Agents’ experiment. The black line represents
the mean and each band shows one standard deviation (skew-adjusted) away from the
mean. This chart shows the fine did not work in that agents did not come to respect
each other’s property.

agents died and all the surviving agents’ propensities had declined to below zero by

Round 275.

Figure 12.4: The cloud of agents’ propensities to steal over the first 500 rounds of a
typical simulation in a ‘Yellow Agents’ experiment when 0.4 resources units was paid
as a fine and compensation. Each dot represents a living agent’s propensity to steal
in each round. This chart shows that property rights emerged among the surviving
agents.

An analysis of the data showed there were two mutually-supporting phenomena: more
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agents with resources (and lower propensities to steal) were encouraged to interact be-

cause they knew they would be compensated if they traded and their counterpart at-

tempted theft; and the compensation of agents in Scenario 2A generally encouraged

propensities to steal lower.

12.1.2 Legal Rules with Corruption (Yellow Agents)

For the simulations reported in this sub-section we introduce corruption to the ‘Yel-

low Agents’ scenario. Here, if an agent attempts to steal then it is possible the agent

pays a bribe to the policing authority instead of the full fine as dictated by the legal

rule. In addition, if the legal rule includes compensation payments, corruption means

compensation was not paid to victims4.

We assume that bribes are a fixed proportion of the fine determined by the legal rule,

i.e.,

B = λζ

where:

• B is the bribe paid to the policing authority (agents pay this amount in both

resources from their personal resource arrays);

• ζ is the fine prescribed by the legal rule; and

• λ is a proportion that determines the bribe as a proportion of the fine (0 < λ < 1).

If an agent is able to pay a bribe instead of the full fine then we assume they always do.

Moreover, an important assumption made in these simulations is that the probability

a bribe payment is offered to a stealing agent is equal to the median of the agent

population’s propensities to steal.

Let us consider this last point further. There is a good argument that corruption can

be linked to property rights: if a legal rule dictates fines (and possibly compensation)

then the rule can be interpreted as defining the transfer of resources (property) between

agents. Corruption can be viewed here as ignoring what is prescribed by the rule in

addition to acquiring resources (the bribe itself).

In these experiments we assume that the policing authority is a representation of the

whole population. Here that means the authority is corrupt if agents in the population

4and victims had no access to any sort of ombudsman scheme.
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do not respect others’ property, i.e., if the agents’ propensities to steal are relatively

high; and vice versa.

Corruption is implemented in the model by assuming that after any interaction when

a legal rule ought to have been applied, there is a probability the policing authority is

corrupt5.

The median propensity to steal is used because it is less influenced by outliers and skews

in the distribution of the agents’ propensities to steal than other first moments. It gives

us a propensity not to respect others’ property that is ‘typical’ of the population as a

whole.

This approach means that, in a sense, corruption is a cultural phenomenon linked to the

population’s respect for property.

It is worth highlighting that equating corruption with respect for property introduces

an additional ‘layer of complexity’ to the model because of the co-influence of property

rights and corruption. We might expect corruption to undermine the efficacy of legal

rules, which in turn might influence the agents’ respect for property and, therefore, the

prevalence of corruption; etc.

Results

A range of experiments were run with different values of ζ and λ. In all of the experi-

ments, the legal rule included both a fine and compensation.

It seems reasonable to expect the distribution of the initial agents’ propensities to steal

at instantiation to have an impact on the results because this would determine the

median propensity to steal of the whole population at the start of each simulation.

Recall that the initial set of agents began each simulation with a propensity to steal

drawn from a normal distribution with a mean of 0.5 and a standard deviation of 0.1.

The experiments below therefore also explored different mean starting values for the

initial agents’ propensities (denoted p̄s).

The first noteworthy result was that corruption did not prevent the emergence of respect

for property if ζ ≥ 1.1. This threshold was found by applying the harshest corruption

conditions possible in the simulations (λ = 06, p̄s = 1, and a mean starting propensity to

defend of zero7)8. However, while respect for property always emerged when ζ ≥ 1.1, we

5A random decimal number is selected from a uniform distribution between 0 and 1. If this
random number is lower than the population’s median propensity to steal then the policing
authority accepts the bribe. If it is higher, the legal rule is applied.

6This was a proxy for a trivially small fine.
7This was ‘harsh’ from a corruption point of view because low propensities to defend encour-

aged propensities to steal (and therefore the incidence of corruption) higher, ceteris paribus.
8The agents’ initial resources were increased to 500 units each to compensate for the harsher

conditions.
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always observed substantial transitory problems: property rights emerged more slowly

than if there had been no corruption, which meant fight costs were higher.

For values of ζ < 1.1, corruption undermined the efficacy of the legal rule to the extent

that in some of the simulations the agent population never came to respect others’

property and the agent population collapsed. Furthermore, the closer ζ was to the 0.4

(the bottom of the ‘efficacy range’), the more significant was the impact of corruption

on the emergence of property rights.

Fig. 12.5 below summarises the results of a range of experiments when ζ = 0.6, and

when λ was varied between 0 and 0.95 (the Y axis)9, and p̄s was varied between 0 and

1 (the X axis).

Figure 12.5: A 3-dimensional surface showing the proportion of ‘successful’ simulations
(the vertical axis) in ‘Yellow Agents’ experiments when the legal rule included fines and
compensation of 0.6 resource units. The left-hand horizontal axis, labelled ‘Lambda’
(λ), was the bribe stated as a proportion of the fine; and the right-hand horizontal
axis, labelled ‘Prop. Steal’ (p̄s), was the mean starting propensity to steal of the initial
agents. Here, success meant the agents population did not collapse and property rights
emerged in the surviving population. We can see that success increased monotonically
in both λ and p̄s when λ < 0.75 and p̄s > 0.25.

9A value of λ = 1 was viewed as irrelevant: this would mean a stealing agent would have to
pay a bribe equal to the fine.
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In Fig. 12.5 the Z axis shows the proportion of 10 simulations that were ‘successful’:

here that was defined as when at least 4 agents, all of whom respected others’ property,

were alive after 500 rounds.

There are a number of points worth noting. First, if p̄s ≤ 0.25, the simulations were

always successful, irrespective of λ: the simulations started with low levels of corruption

and this ensured the agents’ propensities to steal eventually declined. In a sense, the

economy started and remained locked in to a situation with low levels of corruption and

an efficacious legal rule.

Second, when λ ≥ 0.75, the simulations were also always successful, irrespective of p̄s.

The combination of the fine, the bribe, and any compensation paid to the victims had

sufficient ‘bite’ to encourage the agents’ propensities to steal lower. When the data was

analysed it was clear that the bribe could be thought of as a weak fine, which meant

higher values of λ led to what were in effect stronger fines.

Third, for values of λ < 0.75 and p̄s > 0.25, success increased with higher values of

λ (bribes became stronger fines) and decreased with higher values of p̄s (the policing

authority started more corrupt).

Moreover, an interesting fact to note about higher values of λ was that, in a sense,

corrupt officials ultimately undermined their own corruption if λ was set too high: the

agents learned to trade rather than steal.

12.1.2.1 The Emergence of Successful and Unsuccessful Economies

Some of the simulations that generated the results in Fig. 12.5 showed a phenomenon

that is worth considering in more detail: the emergence of successful and unsuccessful

economies given the same starting conditions.

To explore this, let us examine a point on the surface of Fig. 12.5, when p̄s = 0.5 (as

in the default simulations) and λ = 0.25. In these simulations, we observed that agents

came to respect each other’s property in six of the ten simulations (the agents specialised

and bore children). In the other four, they did not and the agent population collapsed.

Note that these experiments went beyond starting with the same set of parameters: the

initial agents were instantiated with precisely the same state variables across all the

simulations. These included starting resources, foraging strategies, and propensities to

steal and defend, which meant the experiments started identically to each other.

Fig. 12.6 below shows the ‘cloud’ of the living agents’ propensities to steal over 500

rounds in a typical simulation when the agents did not come to respect property (an

unsuccessful economy). The black line shows the median propensity to steal, i.e., the

incidence of corruption.
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Figure 12.6: The cloud of agents’ propensities to steal over the first 500 rounds of an
‘unsuccessful’ simulation in a ‘Yellow Agents’ experiment when fines and compensation
of 0.6 resource units were applied and there was corruption (λ = 0.25). Each dot
represents a living agent’s propensity to steal in each round and the black line is the
median of these propensities. Property rights did not emerge in this simulation.

Fig. 12.7 shows the equivalent data for agents in a successful economy.

Figure 12.7: The cloud of agents’ propensities to steal over the first 500 rounds of a
‘successful’ simulation in a ‘Yellow Agents’ experiment using the same parameters as
Fig. 12.6. Each dot represents a living agent’s propensity to steal in each round and the
black line is the median of these propensities. Despite the same parameters as Fig. 12.6
being used, here property rights did emerge among the surviving agents.

The reason why the results of the two simulations differed was due to the same positive

feedback effect working in two different ways. In Fig. 12.6 the agents on the whole entered

a feedback loop that meant increasing propensities to steal gave rise to worsened legal

rule efficacy, and further increasing propensities. We can think of the economy as getting
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locked in to an unsuccessful state, which includes higher fight costs and a population

which never specialised. The agent population collapsed.

By contrast, the agents in Fig. 12.7 were locked in to a ‘successful’ state which meant

a relatively low propensity to steal was maintained in the population because the low

level of corruption underpinned a legal rule that was increasingly applied. The agents

specialised and bore children.

In the context of the complexity sciences, these unsuccessful and successful states re-

semble ‘basins of attraction’ in the systems’ dynamics. Once a system enters one of

these it is very unlikely that it will escape into the other. When initial conditions are

near the boundary (known as the ‘separatrix’) between the two basins, stochasticity can

determine which way the system tips near the start of a run.

This result, that economies can get locked in to successful or unsuccessful states, corre-

lates with what we observe empirically vis-à-vis economically poor and wealthy countries.

Note that this is not a claim that corruption is the only explanatory factor for different

productivity levels but these results are consistent with a great deal of empirical evidence

concerning the link between corruption and economic wealth, e.g., Gupta, Davoodi and

Alonso-Terme (1998).

Moreover, the link between corruption and economic success seen in the above simula-

tions raises a question about policy implications. We might be tempted to conclude that

corruption would not be a problem in the long run provided the legal rule was stringent

enough, i.e., ζ should exceed 1.1 resource units in the above experiments. However,

corruption might also apply to the creation of the legal rule in the first place: it would

be wrong to think that policy makers exist outside of the whole system. Put another

way, societies in which corruption is endemic might well have corrupt policy makers.

Let us now turn to the second set of experiments.

12.2 Low Cost of Fighting

We saw in Chapter 11 that if fight costs are too low (below approximately 0.1), the

agents do not learn to respect others’ property. Fig. 12.8 below shows the fan chart

of the agents’ propensities to steal over 2,000 rounds of a typical simulation when the

cost of fighting was 0.05: it shows these propensities typically declined to -0.1 to 0.5 on

average (with a standard deviation of approximately 0.5) in the last 1,000 rounds. In a

sense, fight costs act like a discipline on the agents: if they are too weak, property rights

do not emerge in the population as a whole.

Note that agents learned to defend their resources when other agents attempted theft

irrespective of the cost of fighting. For example, when the cost of fighting was 0.05
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Figure 12.8: Fan chart of living agents’ propensities to steal over a typical simulation
when the cost of fighting was 0.05 resource units. The blue line represents the mean
and each colour band represents one standard deviation (skew-adjusted) away from
this mean. Here, the cost of fighting was known to be below the threshold required for
property rights to emerge, hence they did not.

units, the agents’ propensity to defend moved above 1 by Round 31 on average (over 20

simulations).

In these simulations we found that agents specialised to some degree (their mean max-

imum detection probability averaged approximately 0.92 by the end of 2,000 rounds).

This is explained in Section C.2.1 of Appendix C10. These productivity gains counter-

balanced fight costs such that the population typically stabilized at approximately 25

agents.

What happens if we apply a legal rule in simulations when the cost of fighting was 0.05

units? We consider this question now.

12.2.1 Legal Rules without Corruption (Low Cost of

Fighting)

When we ran the simulations with fines (ζ) only being applied to transgressors (without

compensation to victims), we found that the agent population came to respect property

rights if 0.06 ≤ ζ < 1.5.

10Agents often spent 50-100 rounds without consuming any resources, which meant the re-
source in which they were most deficient stayed the same for this period. They would then
typically focus on foraging for this resource, which improved their foraging skill for it.
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It is noteworthy that only a small fine was required in these experiments: agents only

needed a small ‘inducement’ to respect others’ property. As mentioned above, agents

came to respect each other’s property when fight costs exceed 0.1. If we contrast this with

an assumed fight cost of 0.05 we can appreciate why only a modest fine was required

to encourage respect for property11. This stands in contrast to the ‘Yellow Agents’

experiment above where we found fines alone never enabled the emergence of property

rights.

Within the range of 0.06 ≤ ζ < 1.5, all the agents who survived the initial learning phase

came to respect each other’s property. Fig. 12.9 below shows the agents’ propensities

to steal over the first 500 rounds of a typical simulation when ζ = 0.1: property rights

emerged comfortably. Note the two Al Capone agents in this simulation (with higher

propensities): fines ensured these agents died.

Figure 12.9: The cloud of agents’ propensities to steal over the first 500 rounds of a
typical simulation when the cost of fighting was low and a fine of 0.1 resource units was
applied without compensation to victims. There was no corruption. Each dot represents
a living agent’s propensity to steal in each round and the blue line is the mean of these
propensities. The chart shows the fine was sufficient to encourage property rights to
emerge.

When 1.5 ≤ ζ ≤ 2, whether the whole population came to respect property rights or not

depended on the probability of a location being ‘seeded’ by two agents who transacted

(this was unlikely but not impossible). For higher fines, this became increasingly unlikely

as the risk of paying the fine made interactions non-viable.

For values of ζ > 2, agents never interacted even if one had no resources and the other

5: the size of the fine meant it was too big a risk for any agent.

11We can think of a fine as a crude proxy for fight costs.
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Compensating Victims

As in the previous section, in these experiments we imposed fines on transgressing agents

(equal to ζ for each resource) and transferred this amount to the victims.

We found agents came to respect property when ζ ≥ 0.06. There was no upper bound

for the reasons explained in Section 12.1.1.

The results of these simulations were broadly similar to those with legal rules when

only fines were applied. When ζ < 0.03, the agents did not come to respect property

rights (the legal rule was too ‘weak’); and when 0.03 ≤ ζ < 0.06, most of the agents’

propensities to steal declined to below zero but some Al Capone agents were sustained.

Higher values of ζ had a different impact on the agents than applying fines only because

compensation acted like a ‘carrot’ to the agents in contrast to the ‘stick’ of fines. This

was also explained in Section 12.1.1 above. As an example, Fig. 12.10 below shows

the ‘cloud’ of living agents’ propensities to steal over the first 200 rounds in a typical

simulation when ζ = 3. Note how the decline in these propensities to below zero was

swift.

Figure 12.10: The cloud of agents’ propensities to steal over the first 500 rounds of
a typical simulation when the cost of fighting was low and a fine of 3 resource units
was applied along with compensation to victims. There was no corruption. Each dot
represents a living agent’s propensity to steal in each round. The chart shows property
rights emerged swiftly when this legal rule was applied.

Finally, the agents’ propensity to defend increased overall but none of them exceeded 1

in any simulation. In the default simulations, defence of property acted as a deterrent

to other agents against stealing. Here, however, this defence of property was largely
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redundant because the legal rules provided the impetus for agents to respect others’

property.

12.2.2 Legal Rules with Corruption (Low Cost of

Fighting)

A range of experiments were designed to explore the impact of corruption on the efficacy

of legal rules that were intended to induce property rights within a population when the

cost of fighting was 0.05. This involved two sets of experiments, one given a fine only

within the efficacy range noted above (0.1 ≤ ζ < 1.5) and another with a fine and

compensation within the range of ζ ≥ 0.06.

The results showed that while corruption had a transitory impact (higher fight costs and

slightly more deaths on average) on the agent population, it never prevented the eventual

emergence of property rights when the legal rules used the above efficacy ranges. This

result differs from that noted in the ‘Yellow Agents’ experiments.

We can understand this result by considering two factors: first, Fig. 12.8 above showed

that the agents’ propensities to steal tended to decline to approximately 0.25 on average

given a fight cost of 0.05 without a legal rule. This meant the median propensity to

steal (which determined the incidence of corruption) was also relatively low. Second, as

mentioned in the previous section, from the agents’ point of view, a bribe can be viewed

as a weak fine.

If we combine these two points, we can appreciate how (i) the ‘naturally low’ propensities

to steal meant, eventually, the legal rule was applied most of the time; and (ii) even bribes

helped to reduce the agents’ propensities below that seen in Fig. 12.8. Hence, corruption

never prevented the eventual emergence of property rights.

To illustrate this, Fig. 12.11 below shows the first 500 rounds of a typical simulation

when the legal rule included a fine and compensation of 0.1 resource units (the bottom

of the ‘efficacy range’) and under the harshest corruption conditions possible12. The

black line represents the median propensity to steal of the population - it fell to below

zero by Round 113.

We can see in Fig. 12.11 how the propensities to steal of all but one agent had declined

to below zero by Round 165. As was typical in these simulations, one agent sustained

an Al Capone strategy for a long period (here, until Round 321); however, the efficacy

and effectiveness of the legal rule meant this strategy was unsustainable so this agent

eventually came to respect others’ property.

Let us now consider the impact of legal rules on power.

12Recall this was when λ = 0, p̄s = 1, and the mean starting propensity to defend was 0.
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Figure 12.11: The cloud of agents’ propensities to steal over the first 500 rounds of
a typical simulation when the cost of fighting (c) was 0.05 and a fine of 0.1 resource
units was applied along with compensation to victims. Here, the harshest corruption
conditions possible were applied at the beginning of the simulation. Each dot represents
a living agent’s propensity to steal in each round and the black line is the median of
these propensities. The chart shows property rights emerged despite extreme corruption
early in the simulation. This corruption was eliminated after the median propensity to
steal declined to below zero in Round 113.

12.3 Power from Fighting Skill

Recall from Section D.2 that two problems existed when agents were given fighting

skills: propensities to steal were generally higher (which meant the population collapsed

in about 2/3 of simulations even when no black sheep were born); and the birth of black

sheep who became Al Capone agents in the other 1/3 of simulation and when such births

were allowed by the model.

From a legal rule perspective, these two represented different challenges because they

occurred under different social conditions. We will see that, as a result of this, the

efficacy ranges of the legal rules required to encourage property rights to emerge were

also different.

Most notably, the agents instantiated at the beginning of each simulation were initially

unproductive and they were born in an environment where none of the agents fully

respected other agents’ property. By contrast, children were born in to an environment

in which property rights prevailed, all or most of the agents were fully specialised, and

fighting skills were low. Children born with positive propensities to steal (black sheep)

therefore faced a very different society to the initial agents.
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In the simulations run for this section, black sheep were always allowed, which meant

we could explore both of these challenges.

12.3.1 Legal Rules without Corruption (Power from

Fighting Skill)

The key question here is whether legal rules prevent the emergence of these Al Capone

agents in either situation.

When we ran simulations with fines only, we found a narrow range of fines resulted in a

population that respected property and that was resilient to black sheep: 1 ≤ ζ ≤ 1.4.

Above this range, agents generally avoided interacting (which we have seen before) and

below it the fine was too weak to prevent black sheep bullying the agent population to

the point of collapse.

Fig. 12.12 below shows the ‘cloud’ of agents propensities to steal over 2,000 rounds in

a typical simulation when ζ = 1. Five black sheep were born in this simulation, all of

whom died within approximately 250 rounds of their birth.

Figure 12.12: The cloud of agents’ propensities to steal over a typical simulation
when the outcome of fights was determined by relative fighting skills, black sheep were
allowed, and a fine of 1 resource unit was applied. Each dot represents a living agent’s
propensity to steal in each round. The chart shows five black sheep were born but they
all died. In addition, the agent population was resilient to these black sheep: their
propensities to steal remained negative and they survived.

Fig. 12.13 below shows the time series of all the living agents’ fighting skills in the same

simulation. The initial agents came to respect each other’s property (by Round 192),

after which they never fought until the first black sheep was born in Round 630. The

agents’ fighting skills had declined to below 1 on average (having previously peaked at

approximately 140) by the time the first black sheep was born.
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We can see from Fig. 12.13 that the fighting skills of the five black sheep increased

quickly after their birth: the fighting skills of the other agents increased too but not as

much: fights with the black sheep were distributed across the population.

Figure 12.13: Time series of the agents’ fighting skills in the simulation depicted in
Fig. 12.12 above. The chart shows how the five black sheep became skilled at fighting;
however, the combination of fines and fight costs meant they all died.

From the simulations run in Appendix D (Section D.2) we know that the first black

sheep would have bullied the parent population until it collapsed. When a fine of 1 was

levied on this agent, however, its Al Capone strategy was unsustainable and it eventually

died. This was the case for all five black sheep agents in Fig. 12.12. Note that most of

the children born were instantiated with negative propensities to steal (i.e., they were

not black sheep) - these survived and the population ultimately reached approximately

43 agents, all of whom respected others’ property.

Two Challenges

An analysis of the data showed that whereas a fine of 1 ≤ ζ ≤ 1.4 was required to

prevent black sheep from bullying the population to death, we found that a range of

0.16 ≤ ζ ≤ 1.4 was required to encourage the initial set of agents to respect each

other’s property, i.e., a smaller fine sufficed. This was because the social conditions were

different between the two challenges, as mentioned above.

Black sheep were born in to a population of agents, all of whom respected others’ prop-

erty, were fully specialised (and therefore productive), and with relatively low fighting

skills. This was a very fertile environment for an Al Capone strategy and it meant a

much more stringent fine was required to make this strategy non-viable. Indeed, we can

say that a fine of 0.16 ≤ ζ < 1 would have sufficed to encourage the initial agents to

respect property but not the black sheep.
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Compensating Victims

The fine and compensation required to encourage the whole population to respect prop-

erty (including the surviving initial agents and any black sheep) was ζ ≥ 0.5. We saw

again that there was no upper bound for the reasons discussed in Section 12.1.1.

Fig. 12.14 below shows the ‘cloud’ of the agents’ propensities to steal over 2,000 rounds

in a typical simulation when ζ = 0.5; and Fig. 12.15 shows the agents’ fighting skills in

the same simulation.

Figure 12.14: The cloud of agents’ propensities to steal over a typical simulation
when the outcome of fights was determined by relative fighting skills, black sheep were
allowed, and a legal rule applied fines and compensation of 0.5 resource units. Each dot
represents a living agent’s propensity to steal in each round. In this simulation, seven
black sheep were born: four of them were ‘reformed’ by the legal rule (their propensities
to steal declined to below zero) but three of them died (those born with propensities
above 2.3).

Seven black sheep were born in this simulation and we can see a clear difference with

the simulations when fines only were applied (Fig. 12.12): some of the black sheep were

‘reformed’ such that they came to respect other agents’ property. In the simulation

depicted in figures 12.14 and 12.15, the four black sheep born with propensities to steal

of below 2.3 were reformed and those with propensities above 2.3 died. The latter did

not reform quickly enough before their resource reserves became depleted from fines and

fight costs.

Fig. 12.15 shows how the fighting skills of the black sheep who survived initially increased

but then declined rapidly after their propensities to steal fell below 0.

These results beg the question of why black sheep were reformed in the simulations when

compensation was paid to victims and not when a fine was levied without compensation.

After all, black sheep were fined twice as much in the first set of simulations than in the

second set, which on its own ought to lead to the opposite result.
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Figure 12.15: Time series of the agents’ fighting skills in the simulation depicted in
Fig. 12.14 above. The chart shows how the black sheep again became skilled at fighting.
However, the four ‘reformed’ sheep saw their skills decline when their propensities to
steal fell below zero.

An analysis of the data indicated that it was the behaviour of the other (i.e., non-black

sheep) agents that made the difference. Specifically, when compensation was paid to

victims the agents who respected others’ property and who held no resources (which

happened mostly because they had been robbed by the black sheep) used the legal rule

to passively-aggressively steal from the black sheep (we saw this phenomenon earlier).

These agents would initiate an interaction and offer to trade (despite having no resources)

knowing the black sheep would attempt to steal (assuming its propensity to steal was

close to or above 1). The initiator would then either acquiesce or defend their resources

- either way it would not lose any resources because it had none. However, a fine would

be levied on the black sheep that would then be transferred to the initiators.

This strategy was persistently used against the black sheep to the extent their propen-

sities to steal declined: they learned from their counterparts that it was preferable to

trade. Black sheep born with higher propensities to steal died before coming to respect

property rights; but those born with lower propensities were ‘reformed’ quickly enough

to survive.

Two Challenges

In the previous sub-section we noted that a less stringent fine was required to encourage

the initial set of agents to respect property than it was any black sheep. We found the

same for legal rules that also included compensation: if ζ ≥ 0.03 the initial agents came

to respect others’ property. We can say, therefore, that fines and compensation within

the range 0.03 ≤ ζ < 0.5 would have led to the initial agents respecting property but

not black sheep. Fines and compensation of ζ ≥ 0.5 were required to prevent that.
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12.3.2 Legal Rules with Corruption (Power from

Fighting Skill)

Two experiments were run to test the impact of corruption. First, simulations were

designed in which a fine was applied to transgressors (with no compensation to victims)

of ζ = 1, i.e., at the bottom of the ‘efficacy range’. As was done in the previous sections,

we applied a set of parameters that was designed to maximize the impact of corruption.

In the second experiment, simulations were designed in the same way but assuming a

fine and compensation was paid of 0.5 (also at the bottom of the efficacy range).

We observed across all simulations in both experiments that property rights emerged

among the initial agents who survived the learning phase. These agents then specialised

and bore children.

Some of these children were black sheep but the policing authority was never corrupt

when these black sheep were born because the median propensity to steal was (sig-

nificantly) negative. The efficacy of the legal rule was absolute by this stage of the

simulations.

In summary, therefore, provided legal rules were designed with fines / compensation

within the more stringent efficacy ranges noted above, corruption did not interfere with

the eventual emergence of property rights nor with ensuring the agent population was

resilient to black sheep. However, fighting costs were notably higher than they would

have been without corruption.

12.4 Power from Accumulated Resources: A

Wealthy Agent

In Section D.3 of Appendix D we observed that when a single wealthy agent was in-

cluded in the agent population (with 8,000 units of each resource), the population always

collapsed. The wealthy agent adopted an Al Capone strategy - its propensity to steal

increased to well above 1 and it bullied the other agents until most of them died.

12.4.1 Legal Rules without Corruption (Power from

Resources)

For this experiment we applied legal rules to all the agents in order to explore whether

this prevented the wealthy agent from over-exploiting the rest of the population.

As with the ‘Yellow Agents’ experiments, fines on their own were never fully successful

in preventing the wealthy agent from exploiting the population. There was a range of
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fines (approximately 0.8 < ζ < 1.2) in which the wealthy agent came to respect the

other agents’ property in 50 - 80% of the simulations; but no range existed in which

fines were always successful.

Compensating Victims

When compensation was paid to victims and fines levied on perpetrators, we found that

the wealthy agent always came to respect others’ property when ζ ≥ 0.3. Again there

was no value of ζ above which compensation and fines did not work, for reasons discussed

in Section 12.1.1.

Fig. 12.16 below illustrates the ‘cloud’ of the agents’ propensities to steal over the first

500 rounds of a typical simulation when the legal rule included a fine and compensation

of 0.4 units. The wealthy agent’s propensity is shown as a red line: it came to respect

other agents’ property.

Figure 12.16: The cloud of the agents’ propensities to steal over the first 500 rounds of
a typical simulation when fight outcomes were determined by relative resource holdings
and one wealthy agent (who started with 8,000 units of each resources) was included
in the population. A fine of 0.4 resource units was applied to transgressors along-
side compensation to victims. Each blue dot represents a (non-wealthy) living agent’s
propensity to steal in each round and the red line represents the wealthy agent. In this
simulation the legal rule encouraged the wealthy agent to adopt a Passive Aggressive
strategy, which meant its propensity to steal became negative quite quickly. Ultimately,
property rights emerged across the whole population.
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12.4.2 Legal Rules with Corruption (Power from

Resources)

In the experiments run for this sub-section (which test for various values of λ and p̄s

within the efficacy ranges identified above) we found that corruption had no impact on

the wealthy agent respecting other agents’ property eventually for reasons we saw in the

last section. When a majority of the agents respected others’ property13 there was no

corruption. In many of the simulations corruption did have a short-term effect which

meant the wealthy agent’s propensity to steal increased to above 1; but it eventually

declined to below 0.

To help us understand this, Fig. 12.17 below shows the ‘cloud’ of the agents’ propensities

to steal in a typical simulation under the harshest corruption conditions possible, with

a legal rule of ζ = 0.5 (note p̄s = 1 in this scenario). The red line shows the wealthy

agent’s propensity to steal and the black line is the median propensity of the whole

population.

An analysis of the data indicates that the propensities to steal of the non-wealthy agents

declined from approximately 1 because of the cost of fighting (as in the default simu-

lations) and then declined further as the policing authority became less corrupt (the

efficacy of the legal rule increased).

The wealthy agent saw its propensity to steal increase initially because corruption was

rife (p̄s started at 1) and the legal rule had no effect.

The propensities to steal of the non-wealthy agents entered a positive feedback loop

whereby reduced corruption encouraged these propensities lower (which further reduced

corruption). This happened until all of these propensities had declined to below 0 (by

Round 189 in Fig. 12.17).

What happened to the wealthy agent’s propensity to steal depended on the efficacy

of the legal rule. We know from earlier simulations that a fine and compensation of

ζ = 0.5 ought to encourage it to respect other agents’ property provided there was no

corruption. The black line in Fig. 12.17 shows the median propensities to steal of all

the agents (the degree of corruption): we can see that the wealthy agent’s propensity to

steal generally increased when this median was above approximately 0.5 and fell when

it was below this value.

In summary, we can say that this was a second set of experiments in which we observed a

majority of agents who respected property rights and who, as a result, applied a credible

legal rule that affected those with power. In the case of black sheep in Section 12.3.2

13and the median propensity to steal was negative.
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Figure 12.17: The cloud of the agents’ propensities to steal over the first 500 rounds of
a typical simulation when fight outcomes were determined by relative resource holdings
and one wealthy agent (who started with 8,000 units of each resources) was included
in the population. A fine of 0.5 resource units was applied alongside compensation to
victims and the simulation was started with the harshest corruption conditions possible.
Each blue dot represents a (non-wealthy) living agent’s propensity to steal in each round
and the red line represents the wealthy agent. The black line is the agents’ median
propensity to steal. In this simulation the propensities to steal of the non-wealthy
agents were driven lower by fight costs but, initially, the wealthy agent became an Al
Capone agent. However, as the efficacy of the legal rule improved, this agent paid more
fines and fewer bribes, which ultimately led it to respect property rights.

above, this power was due to fighting skill; and in the experiments discussed above, it

was a result of wealth differentials.

It should be noted that transitory problems were observed in both experiments: in

the previous sub-section, black sheep fought other agents and were either starved to

death by the legal rule or they were ‘reformed’; and, in this sub-section, all the agents

incurred substantial fighting costs before respect for property emerged across the whole

population, including the wealthy agent.

12.5 Conclusion

In this section we discuss how the property rights that arise after the imposition of a

legal rule appear to meet our definition of institutions.
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Much of the content discussed in Section 10.4.1, where we concluded the endogenously

emerged property rights meet our definition, is relevant here too. Below we outline

pertinent differences only.

For convenience, we repeat the definitions of institutions and rules assumed in this thesis.

Institutions are “durable systems of established and embedded social rules that structure

social interactions.” (Hodgson, 2006a, p. 13).

The “term rule is broadly understood as a socially transmitted and customary norma-

tive injunction or immanently normative disposition, that in circumstance X do Y .”

(Hodgson, 2006a, p. 3, emphasis included).

The main points are:

• In the property rights that emerged in the above simulations, we can add legal

rules to the ‘systems’ that makes up these institutions.

• ‘Social transmission’ still occurred from one generation to the next when we relax

the infinite lives assumption and after property rights have emerged.

• Most interestingly, property rights now appear to be both customary normative

injunctions and immanently normative dispositions. The former is now relevant

because the legal rule represents an injunction which can be interpreted as cus-

tomary. Indeed, the customary nature of the property rights is seen in both agent

interactions and in the lack of corruption.

• Here, property rights cannot be categorised as ‘unplanned’ so they are not ‘or-

ganic’. However, it is noteworthy that they emerged via the same co-adaptive

reinforcement learning observed in the default simulations but this time with the

support of a legal rule.

Finally, the property rights that emerged after the imposition of legal rules seem to

sit comfortably with the following quote from Hodgson, which is reproduced from the

Introduction for convenience:

For laws to become rules in the sense discussed here, they have to become

customary. As discussed later in this essay, there are examples of laws that

are widely ignored and have not acquired the customary or dispositional

status of a rule. Ignored laws are not rules. For new laws to become rules,

they have to be enforced to the point that the avoidance or performance

of the behavior in question becomes customary and acquires a normative

status (Hodgson, 2006a, p. 6)
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Conclusion

I am sorry to have made such a long speech, but I did not have time

to write a shorter one.

Winston Churchill

In this concluding chapter we focus on five topics which are aligned with the five sections

below.

The first topic answers the first research question. Here we delve more deeply into

the mechanisms by which organic institutions emerge / immerge in the simulations

based on the two models. A generalised framework is described which contains the

different mechanisms seen (to varying degrees) in these simulations but we also note an

idiosyncratic mechanism that plays a role in the emergence / immergence of property

rights: selection within a generalised Darwinian process (discussed in Section 10.4.3

above).

In this first section we also consider whether the institutions that emerge in the simula-

tions should be considered as forms of spontaneous order.

The second topic answers the second research question regarding ‘liberal legislation’.

In the third section we revisit the question of whether models of institutional emergence

can start from an institution-free state of nature or whether pre-existing institutions

should be assumed. To that end, we look briefly at how the simulations based on the

second model gave rise to four distinct ‘layers’ within a stratified ontology.

The fourth section looks more closely at the procedure of the research that preceded

this thesis, specifically how the models were used as tools of investigation.

343
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The fifth and final section discusses potential future research.

13.1 First Research Question: Symmetry

Breaking via Immergence and Emergence

This section seeks to answer the first research question, which is stated below for con-

venience:

Can organic institutions emerge spontaneously across a population while also immerging

within individuals’ mental models via reasoning, learning, and habituation?

In light of the simulation results presented in chapters 7 and 10, the answer to this

question seems to be ‘yes’. The agents in these simulations were endowed with mental

models that allowed them to reason and make decisions under conditions of uncertainty;

and we explored versions when changes to these mental models occurred via reinforce-

ment learning and/or habituation. The agents’ mental models co-adapted in such a way

that organic institutions appeared to immerge and emerge provided their environment

was sufficiently enabling.

The rest of this section discusses the mechanisms we observed in more detail. First, we

describe a generalised framework of these mechanisms (Section 13.1.1). This is followed

by a discussion of different ‘downward effects’ (Section 13.1.2).

We then look at how closely this generalised framework resembles the simulation results

of both models (sections 13.1.3 and 13.1.4). Finally, in Section 13.1.5 we look briefly at

how commonality of institutions was achieved in the emergence of markets and property

rights.

13.1.1 A Generalised Framework of Organic Institutional

Emergence

It is important to state two qualifications before proceeding. First, the description below

builds on:

• the work of Hodgson in various articles (notably his emphasis on upward and

downward ‘effects’ and the role of habits);

• Hodgson and Knudsen’s (2004) traffic convention model and their discussion of

upward and downward effects;

• Conte and Castelfranchi’s (1995a) concept of cognitive emergence as well as the

EMIL Project and subsequent work focused on immergence, e.g., Andrighetto,

Campenǹı and Conte (2010), Castellani (2010), and Conte et al (2013); and
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• various concepts from the complexity sciences, discussed in Chapter 2.

The added value of the generalised framework below is two-fold: (i) it emphasises the

specific roles of both reinforcement learning and habituation, observed in various simu-

lation results discussed above; and symmetry breaking; and (ii) the components appear

to form a coherent whole, the totality of which helps to explain (at least in part) organic

institutional emergence in the two models’ simulations.

It is important to emphasise that symmetry breaking plays a central and cohering role

in what follows. We start with an environment prior to the emergence of a new organic

institution1 and show how specific mechanisms give rise to emergence and immergence,

resulting in the breaking of symmetry.

The second qualification is that this framework identifies features common to the two

models’ simulation results: it should not be treated as a complete theory that attempts

to explain all organic institutions. It is a step further towards such a theory.

We should add, however, that the results reported in Hodgson and Knudsen (2004) and

the four EMIL models (see sections 5.1 and 5.2.3.2, respectively) appear to be broadly

consistent with this generalised framework. Symmetry is broken in these simulations

too. In fact, below we use Hodgson and Knudsen’s results to exemplify some of the

mechanisms described.

Fig. 13.1 below includes a visual summary of the generalised framework from the point of

view of a single agent. Note that here we focus on the process of institutional emergence

and comment on the final results at the end.

There are seven ‘parts’. The description that follows is fragmented and sequential for

reasons of clarity but we can appreciate that agents manifesting these mechanisms can

act, learn, and form habits in parallel. Let us briefly list the component parts and then

discuss each in turn:

1. An emerging property within the external environment (from the point of view

of the agent).

2. Downward effects which are the influences the emerging property has on the

agent.

3. Upward effects. These are the impact the agent has on the emerging property.

4. Positive feedback (‘outer emergence’) emphasises that the agents’ overall

impact on the emerging property is to augment it.

1As mentioned in the Introduction, we assume pre-existing institutions but focus on the
emergence of new institutions within a stratified ontology. This is discussed further in Section
13.3 below.
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Figure 13.1: An illustration of the generalised framework of organic institutional emer-
gence. This framework contains two ‘learning loops’: the first corresponds to the emer-
gence of a property in the environment; and the second corresponds to the reconstitution
of the agents’ mental models. See the main text for a detailed description of the seven
features this framework contains.

5. Reconstitution of Mental Models is concerned with: (i) the agent learning

from the impact of its actions on the external environment (including the emerging

property), and (ii) the impact of habituation on its mental model.

6. Positive feedback (immergence) emphasises how repeated reconstitution gives

rise to an ‘immergent property’ within the agents’ mental models.

7. An enabling environment is necessary for the above components to give rise

to symmetry breaking.

From these brief descriptions and Fig. 13.1 above we can appreciate that this generalised

framework corresponds to “double-loop learning” (Argyris, 1977; and Argyris and Schön,

1978). Interpretations of this mechanism vary slightly but here we refer to the first of
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the two loops as when agents make decisions with a given mental model, and the second

loop involves a recalibration, or reconstitution, of these mental models2.

We should also note that here we distinguish between downward and upward effects for

the purposes of clarity but these two should be considered together. This is discussed

in more detail below but downward effects correspond to information being input into

the agents’ mental models, and upward effects are the impact of decisions that arise in

part from that information.

Let us now look at each of these mechanisms in detail.

13.1.1.1 An Emerging Property

We start from a state in which there is no emerging property. However, changes in the

system, such as perturbations, might give rise to some marginal bias in the external

environment. In Hodgson and Knudsen’s (2004) simulations, this would be a slight

tendency for drivers to drive on one side of the road. This change might also start from

the prior emergence of a new stratum in a stratified ontology (such as agents learning

to defend their resources).

From an individual agent’s point of view, this change occurs ‘outside’ of its boundaries

but it will be represented in its mental model in some way. In fact, as the phenomenon

emerges, it might not be recognised as such by the agent as an identifiable concept3. The

agent might have only an incomplete representation of some local part of that property

(Aoki, 2001).

In the case of Hodgson and Knudsen’s (2004) simulations, when a convention is emerging,

more than half but less than all of the agents drive on the same side of the road. Each

agent will experience this through the information input into its mental model (see

Section 5.1.1).

13.1.1.2 Downward Effects

This occurs when the emerging property influences an agent in some way.

There are two parts to this. First, information related to the emerging property will be

part of a possibly wider set of information (about, for example, the physical environment

and other agents) incorporated into an agent’s mental model.

2We might ask how ‘learning’ corresponds to a static mental model. Below we look at the
example of ants whose mental models are hard-wired: when an ant discovers a food source, it
lays down a pheromone trail so other ants can find it. Learning here is a new decision with new
information but in the context of a given mental model.

3Recall from the Introduction, Gilbert’s (2002) two types of cognitive emergence: in the first
there is no new cognitive phenomenon whereas in the second, there is.
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Second, this information is perhaps best viewed as influencing the agent in some way,

in the context of its goal(s). Consistent with Hodgson (2011), the emerging property

does not fully determine an agent’s behaviour.

Note that when an agent makes a decision, its mental model is taken as given. We

discuss changes to mental models (reconstitution) separately below.

In the context of Hodgson and Knudsen’s (2004) traffic convention, this would mean

that if the cars ahead of an agent are (say) driving on the left, the agent would tend to

drive on the left given its current mental model.

Note that this description of downward effects is different from Hodgson and Knudsen’s

(2004) references to strong and weak downward causation / effects. This is discussed

further in Section 13.1.2 below.

13.1.1.3 Upward Effects

The impact an agent has on the emerging property is referred to as an ‘upward effect’

here.

As a computational entity (cf Section 2.3.3.1, page 47), an agent will take in information,

process it, and reach some decision (even if this means doing nothing). If the agent’s

decision influences the emerging property in some way, then this is an ‘upward effect’.

Consistent with previous comments, the agent might not be aware of its impact on the

whole property: it simply makes a decision it expects will help it achieve its goal(s).

In the traffic convention example, if an agent chooses to drive on the left because it sees

that most the cars ahead of it are doing so, its decision will contribute to the emergence

of a convention to drive on the left (and vice versa).

13.1.1.4 Positive Feedback (‘Outer Emergence’)

This component recognises that the combination of upward and downward effects aug-

ments the emergent property, i.e., feed back positively to it. This is obvious from the

last two items but it is possible for decisions to dampen some phenomenon (negative

feedback) so this component clarifies the overall effect.

This is not to suggest that every decision made by every agent will feed back positively to

the emergent property. For symmetry breaking to occur, the net effect of these decisions

must be positive.

Moreover, this feedback occurs with a given mental model (changes to which are con-

sidered below). In principle, ‘outer’ emergence can occur with fixed mental models. An

example would be when ants foraging for food leave a pheromone trail back to the nest

that is reinforced by subsequent ants: there is no change in the ants’ mental models;
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however, this hard-wired behaviour results in self-organisation (Kirman, 1993). More-

over, when the food has all been transported to the nest the trail fades away and the

ants return to random wandering.

In the traffic convention model, this positive feedback is clear: an agent who observes

people mostly driving on the left will contribute to this emerging convention by also

driving on the left given the current state of its mental model.

13.1.1.5 Reconstitution of Mental Models

In the simulations discussed in earlier chapters, changes in the agents’ mental models

can occur through reinforcement learning and habituation.

Reinforcement learning can take a number of forms (including conscious and sub-conscious

processes). The critical point is that an agent experiences positive or negative effects

(or neither) from its actions from the point of view of its goal(s). There is an enormous

literature on this, especially in the fields of machine learning and artificial intelligence;

but (as mentioned in the Introduction) this success / failure feedback is the essence of

reinforcement learning.

Here, habituation is assumed to take the same form as stated in the Introduction: a

tendency to repeat decisions made in the past, which is insensitive to the losses or gains

made by these decisions.

In Hodgson and Knudsen’s (2004) results, reconstitution takes the form of changes to

the habituation variable in the agents’ mental models. Interestingly, as noted by the

authors, this change was similar to but not the same as reinforcement learning: the

habituation variable merely reflects which side of the road a car had driven on in the

past.

13.1.1.6 Positive Feedback (Immergence)

We can think of immergence as resulting over time from a second positive feedback loop

that includes reinforcement learning, habituation, and future actions. This feedback

loop is slightly more complicated than the first loop described above: here, the change

in the agent’s mental model enhances the likelihood that the agent will make the same

decision as previously, bringing about the same (or augmented) feedback and a further

change in the mental model.

Note that we observed in simulations based on the Market Emergence Model that when

habituation is strong relative to reinforcement learning, it can interrupt this positive

feedback process.
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As stated above, in the traffic convention model, reconstitution occurs through the habit-

uation variable. If an agent chooses to drive on the side of the emerging convention and

survives, this variable would change accordingly, increasing the chance that it chooses

the same side in the future and repeating the same learning process.

13.1.1.7 Enabling Environment

This feature recognises that in practical situations, many of the component parts above

have to be enabled by factors not mentioned. These will be context-specific so it is

difficult to generalise.

In the traffic convention model, cars have to exist and the agents require a range of

cognitive features, including knowing how to drive, what left and right mean, and a

whole range of other concepts. Also, agents have to be able to reason in a particular

way.

Some of these enabling factors will be pre-existing institutions, which is discussed further

in Section 13.3 below.

13.1.1.8 Final Results

The above framework is focused on the process of institutional emergence / immergence.

The end of result will include two main features.

The first feature is an emergent property. In the case of Hodgson and Knudsen’s (2004)

traffic convention, this is all the drivers driving on the same side of the road. The

second feature is an immergent property (agents fully habituated in the case of the

traffic convention model).

Note that the corresponding emergent and immergent properties of the simulations based

on the two models above were summarised in Section 6.4.7 (p. 211) above and will not

be repeated here.

Finally, we have mentioned Hodgson’s Klein bottle analogy a few times in this thesis

already. The end results of the above framework correspond neatly with this: while

the immergent property is not exactly the same as the emergent property, the two are

closely associated.

13.1.1.9 Mutually Supporting Emergence and Immergence

It is tempting to frame emergent properties as manifestations of their immergent coun-

terparts, i.e., as the outer products of immanent dispositions. This is not unreasonable

but it obscures the mutually supporting role the two have while forming (and being

maintained).
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This happens in two ways. The first and most obvious is via the change in the agents’

mental models augmenting the emergent positive feedback loop. In the fourth component

above (positive feedback - emergence) we assume a static mental model but changes

in the agent’s mental model (the fifth component) enhance this feedback process. In

the traffic convention example, assuming that a convention is emerging, if an agent’s

habituation variable becomes more positive or negative (consistent with the emerging

convention), it will be more likely to drive on the side of the road of that convention in

the future.

The second way is by an enhanced emerging property contributing to immergence. This

is because the feedback from the environment changes as the ‘outer’ property emerges. In

the traffic convention example, as a convention emerges, the environment makes it more

likely that a decision to drive on the ‘conventional’ side of the road will be successful.

In a sense, therefore, there is a higher level positive feedback loop between the two

positive feedback effects associated with emergence and immergence.

Note that the ‘higher’ loop identified here is fully consistent with that discussed in

the EMIL Project Report and other research that emphasises cognitive emergence and

immergence, e.g., Andrighetto, Campenǹı and Conte (2010), Castellani (2010), and

Conte et al (2013), i.e., it is not new.

13.1.2 Types of Downward Effects

In previous chapters we noted two types of downward effects: strong and weak, following

Sperry (1969) and Campbell (1974), respectively. These were discussed in Hodgson and

Knudsen (2004).

Here, strong downward effects are identical to reconstitution in the above framework

(for clarity we refer to this as ‘reconstitution’ but acknowledge that it is a type of

downward effect). Weak downward effects correspond with the selection pressure seen

in simulations based on the second model, which is discussed further below.

The downward effects described above can be viewed as a third type. Here, this simply

refers to the impact an emerging property has on the agents’ decisions with a given

mental model. This is helpful because it implicitly acknowledges that, in principle at

least, inter-group properties can emerge from static mental models. The example of

ants’ pheromone trails is pertinent.

The main reason for identifying this third type of downward effect is to acknowledge

that an emergent property can influence agents’ decisions at the point of decision making

and not only via reconstitution. This is not to argue that organic institutions always

emerge without any counterpart immergence.
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Let us now discuss the extent to which the generalised framework described above is

relevant for the results of simulations of the two models developed for this thesis.

13.1.3 First Model

The framework above is a close fit for the results of simulations based on the first model.

The following points are worth noting:

• The emerging properties here are the concentrated transactions at different loca-

tions on the torus. These locations are initially seeded by agents bumping into

each other during a random walk. The final emergent property is when all trans-

actions occur on one grid square4.

• Each agent is aware of a subset of all transactions and these translate into weights

in the agents’ memories. These mental representations of historical transactions

have a downward effect on the agents, i.e., they influence its choice of target

location.

• Equivalently, the upward effect is concerned with the impact of an agent’s actions

(location visited and transactions) on the transactions known to all agents.

• An agent augments the total volume of transactions at some location by: (i)

visiting it and transacting; (ii) communicating with other agents about it; and (iii)

becoming specialised, which, ceteris paribus, increases the volume of transactions.

• Reinforcement learning means that each time an agent visits a location and suc-

cessfully transacts, its weight in memory increases (offset by memory decay). Also,

if habituation is included in mental models, the fact of visiting the location will

also increase its weight.

• Immergence takes two different forms here. The first occurs when an agent has

multiple locations in memory and, ultimately, one comes to dominate. We can

think of this as intra-agent immergence: generally speaking, provided other agents

turn up to transact, the location with the highest weight is more likely to see its

weight increase, and vice versa.

• The second form of immergence relates to the mechanism described in Chapter

7, when agents at smaller markets are more likely to hear about and visit larger

markets than vice versa. This is a form of inter-agent immergence and is essential

for system-wide symmetry breaking (the eventual dominance of one market) in

these simulations.

4Or a small number of grid squares when a weak form of habituation is included in the agents’
mental models.
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• The necessity of an enabling environment for market emergence was made clear

in Chapter 8.

In general, we can say that the generalised framework described above fits the first

model’s simulation results comfortably but there are a few idiosyncratic features worth

highlighting, notably the inter-agent immergence mentioned above.

We should also note here how the end result of a single emergent market ensures consis-

tency between each agent’s expectations and other agents’ actions. The role of institu-

tions as mitigators of uncertainty was an important part of North’s work (e.g., North,

1990) and many researchers have commented on the role of institutions in shaping (and

stabilizing) expectations, e.g., Hayek (1973), North (1990), Ostrom (1991), Aoki (2001),

Hodgson (2006a), and Gräbner and Ghorbani (2019).

The location weights that agents hold in memory can be interpreted as their expecta-

tions of where other agents are likely to be on the torus during the interaction phase.

Moreover, when more than one location exists in an agent’s memory, this can be inter-

preted as a state of uncertainty: a ‘Roulette Wheel’ approach is used to choose between

different locations.

In the default simulations, it appears that the immergence of a single location in mem-

ory corresponds to an expectation that other agents will go to the same location; and

the single emergent market corresponds to the agents going to that location. Put an-

other way, the ‘mirroring’ of the immergent and emergent properties appears linked to

expectation fulfilment.

13.1.4 Second Model

The second model’s simulation results were ‘noisier’ than the first model’s, and slightly

more complicated, but the generalised model is nonetheless relevant for understanding

the mechanisms at play.

Note that in what follows we discuss the results from simulations in which a weak form

of habituation was included in the agents’ mental models. These largely include the

results of the default simulations and are more interesting.

• There are three emerging properties relevant to us in these simulations: the group

of Al Capone agent; the group of passive-aggressive agents; and resource concen-

tration. The mechanisms described below lead to the latter undermining itself,

ultimately; and selection pressures mean the Al Capone agents die off, leaving the

passive-aggressive group, who respected property, as the sole surviving emergent

property.
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• The three mechanisms of (2) downward and (3) upward causation, and (4) positive

feedback in the generalised framework above work in the second models’ simula-

tions through the resource concentration effect, discussed in Chapter 105. This

phenomenon catalyses the emergence of the Al Capone and passive-aggressive

strategies (explained further below).

• Here, downward causation is the influence of resource concentration on the agents

via their mental models, which, again, are assumed to be fixed in this mechanism.

Agents nonetheless use these mental models to decide: (i) their target locations

on the grid; and (ii) which agents to interact with.

• In terms of upward causation, resource concentration generally leads the agents to

choose to interact with others who hold the concentrated resources. This is true

of both Al Capone agents and passive-aggressive agents (recall from Chapter 10

how the latter engage in ‘passive-aggressive theft’6).

• There is, as a result, a clear positive feedback effect in which the agents contributes

to the resource concentration effect. But how is this related to the emergence of

property rights? We find that resource concentration accelerates the number of in-

teractions between the agents, which leads it to catalyse reconstitution (discussed

below). Therefore, while the positive feedback observed in the first model was

directly related to the emergence of a market, here, the ‘outer’ emergence has an

indirect impact on the emergence of property rights.

• Reconstitution takes the form of both reinforcement learning and habituation in

these simulations. The former includes the six ‘patterns’, or ‘forces’, discussed in

chapters 6 and 10, which saw each agent’s propensity to steal increase or decrease

depending on its experiences in interactions. Four of these forces encouraged

propensities to steal lower (including the impact of fight costs, which was the

most significant) and two of them higher.

• It is clear from the simulation results that the bifurcation between the Al Capone

and passive-aggressive strategies arose because of the agents’ different experiences

of immergence. On the one hand, we saw in Section 7.6 that the effect of habitua-

tion on the Al Capone agents overwhelmed that of reinforcement learning. On the

other hand, for passive-aggressive agents, reinforcement learning dominated and

their propensities to steal declined to - and eventually below - zero. We can think

of these two extreme strategies as resulting from two opposing positive feedback

loops.

5See Section 10.1.3.1.
6This is described in Section 10.2.2: passive-aggressive agents work out that if they initiate

an interaction with an Al Capone agent (holding lots of resources), the latter will try to steal
from the former, which gives the passive-aggressive agent a 50% chance of acquiring its resources
when defending their own.
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• A mechanism that contributed to property rights in these simulations, which was

additional to the seven described in the generalised framework above, was se-

lection pressure within a generalised Darwinian process. This was discussed in

Section 10.4.3. The Al Capone ‘strategy’ proved to be less advantageous than the

passive-aggressive strategy. After these Al Capone agents died, habituation and

the benefits of transactions further enhanced immergence, leading to system-wide

property rights.

• When this happened, the resource concentration effect, which centres around theft,

was replaced with a concentration of transactions in a market.

• As discussed in Chapter 11, property rights only emerged under certain enabling

conditions.

The final point to note here is, as in the previous sub-section, about expectations fulfil-

ment.

In Chapter 9 we noted that each agent maintains memories of other agents’ actions such

that it could form expectations about their propensities to defend and steal. In the

default simulations, these memories employed data from the previous 20 rounds, made

up of information gleaned from an agent’s direct experience and that provided by other

agents.

When all the living agents respected property rights, they never stole and we observed

perfect consistency between expectations and actions7.

13.1.5 Commonality

In this final sub-section we briefly discuss how markets and property rights became

common to agents in their respective simulations.

In Section 4.5.6 we discussed three mechanisms by which institutions might become

common within a population: (i) mimicry (after Hayek); (ii) the same rational choice

(after Becker); and (iii) population-wide legal rules. Furthermore, in Section 5.1.4 we

added a fourth mechanism: symmetry breaking via the co-adaptation of agents’ mental

models (after Hodgson and Knudsen, 2004).

It appears that the emergence of a single market fits with the symmetry breaking ob-

served in Hodgson and Knudsen (2004).

7Note that this was also true in experiments when the agents’ propensities to steal all increased
above 1.
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For property rights, this symmetry breaking was also observed but only after all the Al

Capone agents had died. Put another way, ‘selection’ played a role in the commonality

of property rights.

13.2 Second Research Question: Liberal

Legislation

The second research question asks:

Can ‘liberal legislation’ catalyse institutional emergence when it does not occur endoge-

nously?

As discussed in Chapter 6, the liberal legislation experiments indicate that certain legal

rules change a non-enabling environment into an enabling one. This means the answer

to the question is clearly ‘yes’. But can we be more specific about the mechanisms at

play?

The generalised framework above helps us understand more clearly what happens: per-

haps unsurprisingly, legal rules work through the feedback loop between actions and

changes in the agents’ mental models, i.e., reconstitution.

We should note, however, that other (indirect) mechanisms are at play that result from

the co-adaption of the agents’ mental models. If an agent’s propensity to steal declines,

e.g., after being fined for theft, this changes the social environment for other agents,

which in turn changes the feedback on these agents from their actions. For example,

the decline in one agent’s propensity to steal will lead to an increase in the number of

trades, ceteris paribus, which will put more downward pressure on others’ propensities

to steal.

If we look more closely at the results of the legal rules experiments, we see that fines

either supplement or substitute for fight costs in all of them. This creates a positive

feedback loop that had been missing, leading to the immergence of property rights:

agents who only trade.

In the context of the above discussion, we should note that the interesting outcome here

is not that legal rules can incentivise a change in behaviour (there is an enormous body

of work related to this point). The added value is to identify the mechanisms through

which legal rules work within a complex and co-adapting environment.

One of the more interesting implications of the mechanisms noted above is that legal

rules require that mental models in the second model include reinforcement learning:

habituation alone would not be sufficient. Agents have to be sensitive to the feedback

from the legal rule.
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The final point to make here is to re-emphasise the idea of spontaneous order that is

enabled by planning, which was discussed in the Introduction. Legal rules were used

to plan property rights in the ‘liberal legislation’ experiments but this planning subse-

quently enabled the organic institution of markets (as a form of spontaneous order). We

can also say that the division of labour was also enabled by this planning.

13.3 Pre-Existing Institutions & Stratified

Ontologies

Here we discuss briefly how the simulation results presented in this thesis fit into the

discussion of pre-existing institutions in the Introduction. Recall Field’s and Hodgson’s

criticisms of how some new institutional and game theoretic models of institutional

emergence give rise to an infinite regress problem.

In the models developed for this thesis we accepted that pre-existing institutions might

help enable new institutions. The most obvious example of this is language: agents

were able to communicate. Therefore, the question is not whether organic institutions

can emerge from some institution-free state of nature but whether new institutions can

emerge within a stratified ontology.

We can note, also, that the change between the first and second model fits neatly with

Field’s and Hodgson’s criticism. The first model assumes property rights - this is a pre-

existing institution. The second model, which relaxes this assumption, can be viewed

as a movement ‘down’ in the analysis, to a prior stratum within a stratified ontology.

Indeed, the results presented show organic institutions (and other structures) emerge

across multiple strata8. In the default simulations based on the second model, defence

of property emerges first and this part-enables the emergence of property rights (due to

debilitating fight costs). Once established across the whole population, property rights

enable the emergence of an efficient market; and this in turn enables agents to specialise.

In this description there are four strata, three of which were enabled by a prior social

structure.

Furthermore, the legal rule experiments indicate that these rules can play an enabling

role when defence of property does not emerge, or is insufficient to counter those with

‘power’. In a sense, legal rules substituted for a stratum.

8In terms of the relationship between ‘social structures’ and ‘institutions’, we follow Hodgson
(2006a) who states that “Social structures include sets of relations that may not be codified in
discourse, such as demographic structures in animal species or in human societies before any
understanding of demography.” (p. 3). Also, “an institution is a special type of social structure”
(p. 4). This approach seems consistent with the use of these terms in the rest of the Institutional
Economics literature.
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13.4 Research Involving Agent-Based Models

In this section we look briefly at how the research reported in this thesis, which integrated

agent-based models, proceeded in a practical sense. This is done in order to assist other

researchers in similar situations in the future.

We discussed this to some extent in chapters 1 and 6, noting that the research iterated

between modelling and theory. The models were tools of research and not used merely

to support some preconceived theory. This approach was made particularly necessary

by the specific focus on ‘surprising’ emergent phenomena in the research.

The metaphor of exploring some unknown terrain is helpful in what follows.

The first component is to have a clear but approximate destination for the research.

Identifying a goal is obviously a common part of research but the important point

here is that awareness of the destination should be maintained throughout the process

because the iteration between theory and model can lead a researcher to lose sight of

that destination over time. Furthermore, the results of the research (while iterating)

might lead to an appropriate re-consideration of the destination (or new avenues for

future research).

The second component is to accept that the focus on ‘surprising’ outcomes means the

process is one of ‘trial and error’. Some research efforts will lead to uninteresting results.

Adapting the models, however, can be helpfully informed by related research (the models

reported in Chapter 5 are examples) and intuition.

At the outset, it is necessary to create a first ‘best attempt’ model which is related to

the research destination and other goals. This is the third component. For the research

presented here, a rudimentary economy was created in which agents did some work

(foraging) and then had to find each other to transact. Subsequent versions arose from

that core model.

If the research is being conducted by one individual, it is very helpful to brainstorm

with others (from different disciplines, if appropriate). This is true of most research but

it seems even more appropriate when dealing with emergent surprises.

Furthermore, if the research is being conducted by a team, it would be beneficial for

at least one researcher writing the code to be also immersed in the theory. This would

ensure the theory is correctly represented in the models; and it would help with the

interpretation of results. Specialist coders can be helpful: the point is that there is

value in at least one researcher working on both so that iteration is internalized to some

degree.
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The final point to make here is to be on the lookout for unintended consequences. A

continuous iteration between modelling and theory might generate at least one. In

the simulations developed for this thesis, the identification of an explanation for the

‘paradox’ regarding markets and specialisation, discussed in Section 6.4.4, is an example.

13.5 Future Research

There are a number of areas in which the research presented in this thesis could be

improved or extended. Below we briefly look at six different themes:

1. Simplification;

2. Bottom-up development of the model;

3. Further development of the existing model;

4. Empirical studies;

5. An expansion of the institutional scope and simplification; and

6. Guiding principles and other work

Let us look at these in turn.

13.5.1 Simplification

The most obvious piece of future research would simplify the models presented in this

thesis.

As mentioned in Chapter 6, Edmonds and Moss (2005) argue for a ‘KIDS’ approach in

computational research; however, they note that a researcher should start with a detailed

model and then simplify matters as much as possible while maintaining the underlying

results. This thesis did the first of these but not the second. With more research time,

the models could have been scaled down to focus on the generalised framework identified

in Section 13.1 above.

The identification of this framework helpfully points to the key features of a simplified

model, which could be developed in the future.

The absence of a simplified model does not mean the final models and simulation results

discussed above have no value without this simplification. The two research questions

were answered despite this.
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13.5.2 Bottom-Up Development

Consistent with the approach taken in the complexity sciences, as well as Field’s (2007)

reference to a lack of “satisfactory microanalytics” (p. 1), a valuable piece of research

would be to draw on the cognitive and neuro-sciences, as well as psychology, in the

understanding (and computational modelling) of reasoning under conditions of uncer-

tainty. This could also draw further on research concerned with reinforcement learning

and habituation.

Examples for inclusion in the framing and computational modelling of agents’ mental

models would be particular phenomena noted in social psychology. For instance, Elsen-

brioch and Gilbert (2014) discuss how conformity, obedience, and compliance all seem

to influence pro-social behaviour.

13.5.3 Development of the Existing Model

There are several ways in which the underlying model could be developed, even without

any changes arising from the two previous sub-sections. For example, we made a simple

assumption that agents were given a home location which could not be changed over

their lives. A simple adjustment would be to allow agents to move closer to market

locations (say, for a ‘resource fee’). This might have an impact on symmetry breaking,

and it would reduce the resource concentration effect if agents are allowed to return

home (as in Section C.10.2 of Appendix C).

We could also develop the approach for how children learn in the models. In the second

model we assume that children inherit the mean propensities to steal and defend of their

parents (with some variation allowed in certain experiments). We could look at different

learning processes, notably those related to social constructivism (Simon, 1987).

13.5.4 Empirical Evidence

A potential criticism of the research presented in this thesis is the lack of empirical

testing. After all, the tenth principle of Complexity Economics (CE) listed in Section

2.3.3 concerns empirical evidence.

In addition, we saw in Chapter 5 how Brown (1996), Duffy and Ochs (1999), and Duffy

(2001) all contributed (very constructively) to the monetary emergence literature by

conducting empirical research.

This thesis has focused on theoretical and modelling matters because the gaps identified

in the literature, discussed in the Introduction, were of this nature.

Nonetheless, empirical research could help improve the realism of the models. Two areas

would be of particular interest: (i) the conditions under which organic institutions do
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and do not emerge; and (ii) the relationship between legal rules and the immergence of

organic institutions.

13.5.5 Expansion

The research in this thesis has focused on the emergence / immergence of two different

organic institutions: markets and property rights. These arose from different mental

models and, as a consequence, the nature of these institutions were also very different.

Future research could look at different ‘institutional spaces’. The key ingredients appear

to be:

• a ‘problem’ that agents have to deal with under conditions of uncertainty;

• the creation of a ‘space’ in which agents’ mental models can co-adapt (like a

geographic area or behavioural propensities);

• forms of interaction which are economically interesting;

• reinforcement learning from agents’ experiences to changes in their mental models;

and

• habituation.

If we were to speculate, it is possible that certain institutional types could be found

within a wider range of experiments. For example, it is possible the market institutions

we observed are one of a class of geographic-related institutions; and perhaps property

rights are part of a propensity-related class.

13.5.6 Guiding Principles & Other Domains

The final point is to emphasise the use of CE and Agent-Based Models (ABMs) in

economic research. The research presented in this thesis can be thought of as an example

that makes use of both fields.

We saw in Chapter 2 how CE can be viewed as a more generalised form of economics

than Neoclassical theory. Moreover, CE seems to provide a set of guiding principles for

research in other domains of economics that: (i) are non-ergodic, (ii) where uncertainty

prevails, and (iii) where agents’ mental models seem to exist within a stratified ontology.

Moreover, if we accept the argument in Chapter 2 that human cognition is computational

in nature (assuming a broad definition of computation) then ABMs appear to be a more

appropriate modelling technology for economics than closed-form mathematics. This

is not to suggest mathematical approaches have no value - as mentioned a number of
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times in this thesis already, Arthur (2013) argues that these can be useful as first-order

approximations of economic activity.

On the value of CE and ABMs in economics, Arthur captures it well when he writes

that “in the ocean the interesting things happen not at the equilibrium sea level which

is seldom realized, they happen on the surface where everpresent disturbances cause

further disturbances. That, after all, is where the boats are.” (Arthur, 2013, p. 12).
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Appendix A

Interaction Typologies

In this appendix we briefly look at alternative typologies presented by different re-

searchers concerning human interactions. We present Schultz’s (2001) framing as prefer-

able and exhaustive1: this is used in the main text.

We begin with Schotter (1981) who developed Ullmann-Margalit’s (1977) framing (Sec-

tion A.1). Section A.2 then discusses Schultz’s (2001) typology.

A.1 Schotter’s Typology

Schotter (1981) includes four categories of interaction (the first three are taken from

Ullmann-Margalit, 1977). The first three assume games “are played non-cooperatively

or without communication among the agents.” (Schotter, 1981, p. 28), which means the

agents cannot make any binding agreements, including forms of utility transfer.

The four categories are:

1. Problems of coordination;

2. Prisoners’ dilemma games;

3. Problems of inequality preservation; and

4. Cooperative games.

We look at these briefly in turn.

1Strictly speaking, it is exhaustive for interactions in which participants have overlapping
preferences. This is discussed further below.
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Coordination Situations

The following 2 × 2 game is a typical (pure) coordination-type interaction:

Agent j
L R

Agent i
U 1, 1 0, 0
D 0, 0 1, 1

Table A.1: A Pure Coordination Game: “Matching Pennies”

If we rank the agents’ preferences we find (for both agents): UL = DR > UR = DL.

This is a simple coordination problem in the sense that the agents’ choices have to be

coordinated in some way to ensure UL or DR. Both of these states are Nash equilibria,

i.e., neither agent would want to change their strategy in these states.

Prisoners’ Dilemma Games

In these interactions, assuming substantive rationality, the agents have strongly domi-

nant strategies (D and R); however, the resulting outcome is pareto inferior.

Agent j
L R

Agent i
U 3, 3 0, 4
D 4, 0 1, 1

Table A.2: The Prisoners’ Dilemma

If we were to rank their preferences, we find:

• Agent i: DL > UL > DR > UR

• Agent j: UR > UL > DR > DL

Note how UL > DR is common to both agents.

Problems of inequality preservation

As Schotter (1981) notes, these are simply non-pure coordination games. Consider the

game in Fig. A.3 below.

Agent j
L R

Agent i
U 2, 1 0, 0
D 0, 0 1, 2

Table A.3: A Non-Pure Coordination Game: “Battle of the Sexes”
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Here the agents face a coordination situation but their preferences are not identical as

they were in Table A.1 above. This time:

• Agent i: UL > DR > UR = DL

• Agent j: DL > UL > UR = DL

Schotter (1981) writes that for reasons of taxonomy it is helpful to classify them differ-

ently (p. 26) to pure coordination games.

Cooperative Games

In this category of interaction, agents can communicate and bargain, or a social planner

can attempt to influence the decisions of the agents. The preferences of the agents can

take the form of the three interaction types listed above and many others.

A.2 Schultz’s Typology

Schotter’s typology described above is a typical way of distinguishing between interaction

types in the literature although many combine Schotter’s first and third types as a single

category of coordination games (pure and non-pure). Vanberg and Buchanan (1988),

for example, distinguish between coordination and prisoners’ dilemma situations.

Assuming we are only interested in non-cooperative games (as defined above), there are

types of interaction other than coordination games and the prisoners’ dilemma in which

organic institutions might be helpful. This is the problem with Schotter’s typology: it

is non-exhaustive.

Consider the following game:

Agent j
L R

Agent i
U 2, 3 3, 4
D 1, 2 4, 1

Table A.4: A Game with No Nash Equilibrium But Coinciding Preferences: “Around
the Houses”

In this situation, the agents’ preferences can be ranked as follows:

• Agent i: DR > UR > UL > DL

• Agent j: UR > UL > DL > DR
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There are two interesting features here. First, the agents’ preferences share some com-

monality. They are not identical but they both include:

UR > UL > DL.

The second interesting feature is that there is no Nash equilibrium.

The overlapping of preferences means there might be a role for an institution of some

sort to bring about UR because it is preferred by both agents to two other potential

outcomes. Clearly, however, if we assume substantive rationality then Agent i would

prefer D over U if j chose R. This makes UR a challenging state to achieve: it is not a

Nash equilibrium.

Schultz’s (2001) framing is preferred in this thesis because it is exhaustive: it accommo-

dates interactions like those in Table A.4 above (and it includes the Prisoners’ Dilemma).

In fact, it includes all interactions where agents might share preferences but where no

Nash equilibrium exists.

Schultz (2001) notes how interactions can be described by two factors: (i) the agents’

preferences; and (ii) their strategies.

The situations we are interested in are those where the agents share some commonality

of preferences (this was the case in the games described in tables A.1 to A.4 above).

Schultz (2001) describes situations where preferences strictly conflict as “moot” (p. 64).

These types of interactions might be interesting for other reasons but here we limit

ourselves here to where pareto superior outcomes can be achieved by institutions.

In respect of strategies, Schultz (2001) states that “[t]wo strategies coordinate ... if both

were taken, both agents would achieve their desired social state.” (p. 64). This appears

to be identical to the concept of a Nash equilibrium: a combination of strategies where

neither agent would choose to change.

From these two factors, Schultz (2001) develops two categories of interest, which he

refers to as:

(1) coordination situations where “[a]t least one of each agent’s preferences coordi-

nates and each agent’s best strategy coordinates with every other agent’s best strategy.”

(p. 65); and

(2) collective action situations where “[a]t least one of each agent’s preferences coor-

dinates but each agent’s best strategy conflicts with every other agent’s best strategy.”

(ibid).
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Put another way, in both situations agents’ preferences share some commonality; but

in the first, a Nash equilibrium exists at all the agents’ (shared) most preferred state,

whereas in the second there is no Nash equilibrium at this state.

We can use the four games illustrated above to illustrate Schultz’s typology:

1. the pure coordination game fits in to the first category: UL and DR are preferred

(equally) by both agents and both states are Nash equilibria;

2. the Prisoners’ Dilemma game fits in to the second category: both agents prefer

UL to DR but there is no Nash equilibrium at UL;

3. the non-pure coordination game fits in to Schultz’s first category since DR > UR

= DL and UL > UR = DL are shared by both agents, and both DR and UL are

Nash equilibria; and

4. the “Around the Houses” game fits in to the second category: the agents’ pref-

erences share some commonality but there is no Nash equilibrium at the jointly

preferred state (UR).

If we compare Schultz’s (2001) typology with Schotter’s (and that of many others),

it appears the main difference is that researchers often use the Prisoners’ Dilemma

to represent Schultz’s collective action situations. However, while Schultz’s category

contains the Prisoners’ Dilemma, it is broader: it contains all situations when a pareto

superior state cannot be achieved (assuming no enabling mechanism). This thesis uses

Schultz’s (2001) typology vis-à-vis types of human interaction because it seems, in a

sense, more fundamental than others (including Schotter’s).

The final point to note here is that Schultz (2001) categorises ‘solutions’ to coordination

situations as conventions; and solutions to collective action situations as normative

constraints.





Appendix B

Exploration of the Parameter

Space: First Model

This appendix contains detailed discussions of the results when the parameter space of

the first model was explored. A summary of this material was included in the main text

(Chapter 8).

B.1 Memory Decay

The default rate of decay of the agents’ memories (denoted here as mdec) was 0.2, i.e.,

the weight of any grid square in memory decayed by 20% between rounds. To explore

this, mdec was adjusted between 0 and 1 in 0.05 increments. Three additional sets of

simulations were run, when mdec = 0.9501, mdec = 0.9751, and mdec = 0.01, for reasons

that are explained below.

B.1.1 Low Values of mdec

There was one noteworthy observation when mdec was below approximately 0.02, which

is that in many simulations more than one market was sustained. An analysis of the

data showed that very low values of mdec slowed symmetry breaking.

For example, when mdec = 0 (which is when agents gave equal weight to every trans-

action they ever took part in), we observed a mean of 1.85 (and standard deviation of

0.48) markets (across 20 simulations) between rounds 900 and 1000.

The data showed signifiant variation between the 20 simulations analysed. For example,

in one of the 20 simulations, two markets of approximately equal volume and attendance

emerged and was sustained (see Fig. B.1 below). In six of the 20 simulations, one
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dominant market emerged on its own, as in the default scenario. For the remaining

thirteen simulations, two markets existed: one major and one minor.

Figure B.1: A time series of the total number of agents visiting specific target locations
when the memory decay rate was zero and two markets of equal size emerged. These
markets were maintained because symmetry breaking was weakened by the fact that
all transactions were sustained in the agents’ memories.

Very small increases in mdec from 0 significantly increased the prevalence and speed of

symmetry breaking. For example, when mdec = 0.01, the mean number of markets over

20 simulations fell from 1.85 (0.48) to 1.20 (0.40) between rounds 900 and 1,000. In

sixteen of 20 simulations, one dominant market emerged.

B.1.2 Intermediate Values of mdec

When (0.02 < mdec < 0.95), a single market always emerged by the end the 1,000th

round, the agents specialised, and the total population stabilized at approximately 43

agents, as in the default simulations.

B.1.3 High Values of mdec

When the decay rate was set at 100% agents had no memories so the results of the

second null scenario (Section 7.3)1 were replicated.

When considering the impact of high values of the decay rate (0.95 ≤ mdec < 1), it is

worth recalling that locations were removed from memory when their weight declined

1This was when the agents had no memories but could specialise.
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to below 0.05. This means that a single transaction at some location would not be

remembered in the next round if mdec > 0.952.

Given that the proto-markets observed in the default scenario simulations were due to

single transactions involving only two agents, we might expect that no markets would

emerge when the mdec > 0.95. We found, however, that this was not the case: in

some simulations we occasionally observed 3 agents (sometimes more), who had walked

around randomly and then transacted at the same location at least twice.

When 0.95 < mdec < 0.975, markets emerged in 55% of simulations: the agents’ home

locations were sufficiently close to each other that occasionally 3 (or more) agents would

meet and record 2 or more transactions each. This meant all three of the agents would

remember the location in the next round and go back to it. If all three agents did this

and transacted more than twice each in every round, they would continue to return.

Fig. B.2 demonstrates this in one of the simulations. This time series chart agents’

target locations when a market emerged. In this simulation, 3 agents met at location

[25, 8] in Round 326 and transacted 10 times. All of these agents revisited this location

in the next round when 7 transactions were recorded. One of these agents transacted 4

times and communicated this to another agent, which meant 4 agents visited the market

in Round 328 (when 24 transactions were recorded). Sufficient volume was maintained

at the market for these 4 agents to return and also for the location to be communicated

to more agents, until most of the agents learnt of its location.

This example raises the question of why 3 agents would transact twice (or more) each.

In fact, it was not unusual, as in the above example, for as many as 10 transactions to

occur between 3 agents who happened to come across each other simultaneously. The

reason for this is that transacting was bilateral and there was no mechanism built in to

the model that optimized transactions between 3 agents. These two factors resulted in

multiple transactions per agent.

Transactions between two agents were optimized in the sense that after any transaction,

neither of the agents wanted to (or could) transact again. However, to achieve an

equivalent optimization between 3 agents, we would have to calculate the Walrasian

equilibrium price between the agents, given their holdings and personal resource arrays,

and allow them to transact at that price only.

In these simulations, it was often the case that Agent i would transact with Agent j,

and then with agent k, and then with Agent j again. Also, after transacting with i, j

would also transact with k, and so on. In general we saw several transactions between

the 3 agents but in diminishing quantities. Approximately speaking, the three agents

2Two transactions at the same location would not be remembered if the decay rate was above
0.975, etc.
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Figure B.2: A time series of the total number of agents visiting specific target locations
when the memory decay rate was 0.9501. No market was sustained until Round 326
when 3 agents met at location [25, 8] and transacted (10 times). This market was
sustained after it was reported to several agents who met and transacted, which ensured
the market was maintained despite the agents’ poor memories.

would iterate closer to a balance of resources that would have been achieved had the

agents only traded at the equilibrium price. Sometimes this required 10 transactions.

It is important to mention here that a minimum value was imposed on the agents’

transaction volume, of 0.01 units for either resource. This was in order to limit the run

time of simulations: had agents been able to transact for infinitesimally small amounts

of resources, the run time of the simulations would have been prohibitively long. This

is important here because reducing this volume floor would have increased the number

of transactions, even between 3 agents, which would have increased the transaction’s

weight in memory, ceteris paribus.

As it was, in the simulation shown in Fig. B.2 the number of transactions between the

three agents was sufficient for them to continue returning to the same location and for

other agents to be informed about this emerging market. Given a weight of 0.5 of other

agents’ transaction locations in memory, for an additional agent to visit the market it

would have had to hear of at least four transactions for the location to remain in memory

in the next round. This was observed. In fact, the number of transactions at the market

per capita increased each time a new agent visited: approximately speaking, 3 agents

created a mean of 3 transactions per agent and 4 agents created about 5-6 transactions
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per agent3.

All of these factors meant markets emerged in 55% of the simulations when 0.95 <

mdec < 0.975.

If we set 0.975 < mdec < 0.983 it was only possible for locations to remain in memory if

an agent had participated in 3 or more transactions. Given the discussion above, when

mdec = 0.9501, it should be clear that this was possible in principle. However, to be

sustained, the initial transacting agents had to transact at least 3 times in every round

and for another agent to join they had to hear about at least 6 transactions. These were

very high thresholds for maintaining and increasing the participation at the market.

Ultimately, these thresholds were too high, which meant any markets that emerged were

eventually forgotten. Fig. B.3 below shows a rare simulation, when a market emerged

in Round 929 and was sustained for 40 rounds.

Figure B.3: A time series of the total number of agents visiting specific target locations
when the memory decay rate was 0.9751. No markets were sustained until Round 929
when 3 agents met at location [32, 32] and transacted. This location was not, however,
sustained because the agents had such poor memories that they eventually forgot about
it.

When 0.983 < mdec < 0.990, four transactions were required for an agent to sustain a

location in memory, which was highly improbable and no market was ever sustained.

3This exponential increase in transactions was part of the reason for capping transaction vol-
umes at 0.01 units. It was also mitigated by limiting the agents to initiating only one transaction
in any of the 50 time periods during the trading phase.
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In summary, for simulations when mdec > 0.975 we saw, in essence, a replication of the

second null scenario4, and when any markets that did emerge they were ephemeral.

B.2 Population Density

The default torus was a grid of 50 × 50 and the 25 agents at instantiation had home

locations evenly distributed across this grid (Fig. 7.2). This meant that at the start of

the simulation there were on average 102 grid squares per agent.

What happened if we changed the density of the agents? This was done by adjusting

the number of grid squares per agent while keeping the number of agents constant at

25. The total number of moves in the trading phase was adjusted pro rata so agents

could still access the whole torus: the total number of moves was kept equal to a grid

dimension e.g., for a 100× 100 the agents were allowed 100 moves.

We found that if the population density was too low then no markets emerged. More

specifically, if the population density of the grid was greater than approximately 1002

grid squares per agent then the sparsity of the population meant agents never met.

The agents would start the simulation moving randomly but the likelihood of any two

agents meeting was trivially small so no transactions occurred and therefore no market

emerged.

B.3 Communication

In the default scenario each agent had a 1% chance of communicating with any other

agent at the end of each round. Here we first look at eliminating communication alto-

gether and then, second, at increasing the probability of communication from zero.

What happened if we eliminated communications between the agents? Specifically, was

market emergence dependent on - or catalysed by - agents communicating about their

transactions?

We found three things: (i) markets emerged more slowly than in the default scenario

(this slower emergence meant it was necessary to increase the number of rounds in the

simulation to 5,000 in order to explore this in more detail); (ii) multiple markets emerged

and were sustained; and (iii) the turnover ratio was slightly lower than in the default

scenario, at approximately 0.95 after 1,000 rounds, and most agents specialised.

The slower emergence of the markets was a result of agents not being able to learn

of other agents’ transaction locations: they either had to originate markets themselves

by repeatedly going back to the same location of a previous transaction (which other

4When agents had no memories but could specialise.



Appendix B Exploration of the Parameter Space: First Model 407

agents had to discover) or by discovering markets that other agents had formed (via

their random walk).

The speed of emergence is probably best demonstrated by looking at Fig. B.4 below,

which shows the turnover ratio during the first 500 rounds of a typical simulation. This

can be compared with Fig. 7.8, which shows the same metric over 500 rounds in a

simulation that used the default parameters.

Figure B.4: Time series of the turnover ratio over 500 rounds when the agents did
not communicate. The turnover ratio increased towards 1 more slowly than in Fig.
7.8: agents’ convergence on markets was slowed down when they were prevented from
communicating.

Multiple markets emerged in all of the simulations, with an average of 9.7 markets5

sustained in the last 100 rounds of the simulations. This was because agents tended to

remain faithful to ‘local’ markets they first encountered or originated: this prevented

symmetry breaking.

The third point noted above is that the turnover ratio was below 1 on average, albeit is

relatively high at about 0.95. An analysis of the data suggests that this slightly lower

ratio was a result of new agents spending more time (than in the default scenario) finding

a market.

What happen if we increase the probability of agent communication? Unsurprisingly,

markets emerged much more quickly. In the extreme case of all agents communicating

with all the other agents, every agent was informed about every transaction at the end

5In fact, only 2 agents visited some of these locations, which made them more like ‘private
understandings’ between these agents than markets.
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of the round it took place in. This meant that as soon as two agents bumped in to each

other, this location became the market all agents visited for the rest of the simulation6.

B.4 Trading on the Way to the Target Location

In the default scenario, when transactions were located in agents’ memories they would

only attempt to trade after they had reached their target destination on the grid. What

if they are allowed to transact on the way to that target? This meant that if two agents

were within sight of each other (on the same or an adjacent square), they could transact

and then continue on their way to their target locations.

The results are broadly similar to the default scenario, i.e., markets emerged and agents

specialised. The main difference was that one square typically emerged as a ‘main’

market (where 82.6% of transactions took place on average), with the remainder of

transactions spread across other nearby squares. Also, the turnover ratio remained high

despite transactions being more dispersed than in the default scenario (a mean of 0.96

here versus 1.00 in the default scenario). This enabled specialisation once again.

B.5 Speed of Foraging Skill Change

Equation 7.3 above is the logistic equation used to update agents’ foraging detection

probabilities. The only parameter in this equation is t, which controls the rate of

change of agents’ skills: a higher value means agents’ detection probabilities change

more rapidly. Here we allow t to vary from its default value of 0.01.

The discussion of the emergence of specialisation in Section 7.5.2 is useful context for

understanding changes in t. With this in mind, Fig. B.5 below shows the detection

probabilities, the probability threshold (Equation 7.10), and the expected probability

of transacting, for one agent in the first 500 rounds of a typical simulation using the

default parameter set, i.e., when t = 0.01. It is equivalent to Fig. 7.12 but the chart

below is shown over 500 rounds.

When analysing the simulation data, it was important to consider the value of t in

the context of the availability of resources to the agents. This includes: the agents’

starting resources (a mean of 50 units of each resource in the default simulations), their

opportunity to forage for resources (the number of time slots during the foraging phase),

the resources available at the fountains, and the number of agents competing for these

resources.

6If there was more than one transaction in the first round in which any of the agents transacted
then the agents would be fully informed about all of these locations. There would then be more
than one market in subsequent rounds, until symmetry breaking meant one market dominated.
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Figure B.5: A time series of agent specialisation. This chart depicts an agent’s skilled
(blue line) and non-skilled (green line) resource detection probabilities, the probability
threshold above which the agent chose to specialise (the red line), and the expected
probability of transacting (the black line). The data is shown over the first 500 rounds
of a typical simulation that used the default parameter set. The increase in the blue
line to 1 depicts specialisation.

In the default scenario, agents typically saw their resource stocks decline by 5-10 units

in approximately the first 50 rounds. Their stocks at instantiation were sufficiently high

that none of the agents died in any of the simulations. After approximately 50 rounds,

the agents’ detection skills typically increased, which raised the overall productivity of

the agents (who also traded).

What happened when t was adjusted?

When t = 0 the agents’ detection probabilities were static, i.e., they could not specialise.

The results from the third null scenario were replicated (Section 7.4)7. The population

fell to the environment’s carrying capacity of 15-16 agents where it stabilized and where

the agents’ foraging yields were about 1 on average for each resource.

When t was relatively low but non-zero (e.g., t = 0.0025) it took longer for the agents

to specialise. See Fig. B.6 below, which is equivalent to Fig. B.5 above but over 1,000

rounds. Note how the agent shown in this chart did not fully specialise until almost

Round 1,000.

7This is when the agents had memories but could not specialise.
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A low value of t meant that, typically, a few agents died because they did not specialise

quickly enough. However, it was never the case that all the agents died: most of the

agents lived long enough to specialize, survive, and bear children.

Figure B.6: A time series of agent specialisation when the speed of adjustment of
detection probabilities was set very low, at 0.0025. See Fig. B.5 above for a description
of the data, which here is shown over 1,000 rounds. The chart shows how specialisation
was slowed down in these simulations.

A high value of t had a predictable effect: agents specialised much more quickly. For

example, when t = 0.4, most of the agents were fully specialised by Round 100. None

of the agents died and they bore children earlier.

B.6 Randomizing Agent Home Locations

In the default scenario, agents were placed evenly on a grid (Fig. 7.2), which had the

effect of maximizing the space between agents (and minimizing the probability they met

while walking around randomly). What if agents were assigned random home locations

on the grid?

An analysis of the data showed there was no discernible difference between these simula-

tion results and those of the default scenario. An examination of the data indicated that

markets had a slight bias toward emerging in locations closer to any clusters of homes.

This should not be surprising: agents in close proximity were more likely to bump in to

each other when walking around randomly in the early stages of the simulations.



Appendix B Exploration of the Parameter Space: First Model 411

Another interesting result was observed when we assigned home locations randomly and

prevented the agents from using their memories to find each other, i.e., they only ever

walked around the grid randomly. Fig. B.7 below shows the home locations of the agents

surviving after the 10,000th round of a typical (extended) simulation. It shows a type

of agglomeration effect whereby agents were more likely to survive if they were located

close to other agents.

Figure B.7: Agent home locations after 10,000 rounds when the agents did not store
transaction information and when their homes were allocated randomly. Agents walked
around the grid randomly and tended to survive if their home locations were in close
proximity to others. This is a type of agglomeration effect.

This agglomeration effect was sufficiently strong to ensure a high turnover ratio (an

average of 0.84 by the end of the 10,000th round across all simulations). The agents

whose homes were clustered ended up specialising and bearing children.

In effect, what happened here was that the clustering of homes took on the role of the

market in the default scenario.

B.7 Expectations Accuracy When Adjusting

Foraging Strategies

When the agents adjusted their foraging strategies at the end of each round they had

to estimate their expected total foraging yields under different scenarios. This was done

by the model calculating accurate estimates and then adding an error term (ϵ), taken

from a normal distribution with mean 0 and standard deviation (IQi) of 0.1. We can
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think of this standard deviation as representing the agents’ ability to estimate foraging

yields: the higher it was, the less accurate the agents’ estimates were. Here we look at

the results of varying this metric.

The data tell a simple story: (i) changing the standard deviation had little impact on

the emergence of the markets (the turnover ratio remained high), which should not

be surprising because this value was not directly relevant in this process; (ii) when

the standard deviation was zero, the results of the default simulation were replicated,

essentially, with the agents specialising slightly more rapidly (they made no errors); and

(iii) the higher the standard deviation, the less likely it was agents specialised.

When the standard deviation was approximately 0.1 < ϵ < 0.7, agents specialised more

slowly or not at all. To illustrate this, Fig. B.8 below shows the emergence of spe-

cialisation for a typical agent when the standard deviation was 0.4. This chart can be

compared with Fig. B.5 above. In Fig. B.8, the agent reached skill perfection by ap-

proximately Round 500 whereas in the default scenario this happened by approximately

Round 300.

Figure B.8: A time series of agent specialisation when the agents made inaccurate
estimations of future foraging yields (here, IQi = 0.4). See Fig. B.5 above for a
description of the data, which is shown in this figure over 1,000 rounds. The chart
shows how specialisation was slowed down relative to the default simulations but the
agent nonetheless specialised.

For extremely high values of the standard deviation (approximately ϵ > 0.7), agents in

effect adjusted their foraging strategies by the flip of a coin, i.e., foraging strategies were

essentially random. Agents, therefore, did not specialise. Consequently, the results were
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similar to the third null scenario (Section 7.4), when the agents had memory but were

not allowed to specialise.

B.8 The Weight of Other Agents’ Transactions

Agents’ memories of transactions were made up of (i) those in which they were a counter-

party; and (ii) those they were informed about by other agents. In the default scenario,

the former were given a weight of 1.0 in memory and the latter a weight (β) of 0.5.

What happened if this latter parameter was adjusted?

A weight of 0 had the same effect as when there was no communication between the

agents (see Section B.3): symmetry breaking was eliminated and approximately 10

markets emerged.

An analysis of the data of simulations that used various positive values for this weight

showed there is one point worth noting here: only a very small weight was required for

a single market to emerge but this had to exceed 0.0625 for reasons mentioned below.

In the early stages of the simulations, the agents who had not originated a proto-market

(approximately 15 agents in the default scenario) were informed about other agents’

transactions. These would be the only transactions known to this group of agents. They

would head toward the locations associated with these transactions even if the weight in

memory of these locations was relatively small. However, a weight of above 0.0625 was

required: any transaction communicated to the agent could only exist in memory in the

next round if this were true because locations were removed from memory if the weight

fell below 0.05 and weights decayed by 20% between rounds.

In colloquial terms, having a single location in memory with a very small weight is

equivalent to a person hearing about a vague, unsubstantiated rumour of a transaction

from a non-credible source. In the absence of any other information, the agent may as

well check this location out. If they did not transact, they forgot about this location in

the next round.

B.9 Travel Distance

In the default scenario, agents could travel for up to 50 grid squares, which meant in

principle they could traverse the whole torus (which had dimensions of 50× 50)8. If an

agent moved to a target square, it waited at this location for the remainder of the 50

moves and attempted to trade if they met other agents.

8Because it was a torus, agents could access any square within 25 moves.
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What if this travel distance is allowed to vary? Here we limit the number of moves in

the trading phase in which agents can move.

This was done by splitting the agents’ time on the grid in to two: the number of time

period in which they could travel (say, in moving to a target location) and the number

of time periods they had for waiting (for other agents) and transacting. The latter was

fixed at 25.

For example, in one of the simulations sets the agents were limited to 6 moves for travel

and 25 moves for waiting and transacting.

Table B.1 below shows some key data for travel distances of between 6 and 24 grid

squares, in increments of 2.

Included in the table is data labelled ‘serviced location’: this is the percentage of agent

home locations falling within any market catchment area (defined as the grid squares

within travel distance from any location where transactions had occurred in the previous

4 rounds).

We should note that the agents’ homes were placed at 10 grid square intervals (Fig. 7.2),

which means there were 9 grid squares between the agents: it was therefore impossible

for agents to meet if the travel distance was 4 grid squares or less.

The three main observations from Table B.1 were that shorter travel distances were

consistent with: (i) more squares with transactions; (ii) a lower turnover ratio; and (iii)

a lower serviced ratio. We observed that in all these simulations, most of the agents

were able to specialise and subsequently bear children.

Fig. B.9 and Fig. B.10 below help us to visualise what happened during the simulations.

The first figure is a heatmap of transactions in the last 100 rounds of one simulation

when the travel distance was 10 grid squares; and the second shows the ‘catchment areas’

of six emergent markets (the green boxes) in addition to the agents’ home locations (the

diamond shapes). The catchment areas are represented by grid squares that were within

reach of the markets (darker greens were within the catchment areas of more than one

market).

In Fig. B.10 we can observe that all but two agents fell within the six observed market

catchment areas. In fact, on average 93.48% of agents’ homes were within the catchment

area of at least one market when the travel distance was 10 grid squares (in the last 100

rounds of all 20 simulations). The right hand column of Table B.1 shows this metric for

a range of travel distances.

The emergence of multiple local markets raises a question about the optimality of market

locations: even when travel distances were limited to 6 grid squares it was still possible

(in theory) to achieve 100% market coverage and a turnover ratio of 1, e.g., if markets
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Travel Mean Max Mean Max Squares with Turnover Serviced
Distance Spec Value Detection Prob Trans’s Ratio Loc’s (%)

6 4.17 (0.10) 0.81 (0.21) 14.80 (2.14) 0.87 (0.08) 77.90 (4.47)
8 4.37 (0.10) 0.87 (0.19) 12.20 (2.04) 0.85 (0.06) 88.18 (3.67)
10 4.39 (0.08) 0.90 (0.17) 7.40 (1.36) 0.92 (0.07) 93.48 (2.44)
12 4.48 (0.02) 0.92 (0.17) 5.20 (0.98) 0.92 (0.05) 93.49 (1.66)
14 4.53 (0.09) 0.94 (0.15) 4.00 (0.00) 0.96 (0.05) 99.18 (0.22)
16 4.53 (0.09) 0.93 (0.15) 5.00 (1.79) 0.94 (0.04) 97.46 (1.68)
18 4.50 (0.09) 0.93 (0.15) 3.80 (0.75) 0.93 (0.04) 97.86 (0.98)
20 4.52 (0.09) 0.94 (0.15) 2.60 (1.20) 0.95 (0.03) 95.70 (1.66)
22 4.55 (0.10) 0.95 (0.13) 2.00 (0.00) 0.95 (0.03) 99.65 (0.45)
24 4.57 (0.08) 0.94 (0.15) 1.30 (0.90) 0.99 (0.00) 99.28 (0.29)

Table B.1: Results of simulations when the agents’ travelling distance on the grid was

adjusted (last 100 rounds only). The data show that as the distance was increased,

agents congregated at fewer markets, the turnover ratio increased, more agents were

within the catchment area of at least one market, and the agents became more

specialised.

Notes:
1. Mean max spec value is a scale from 3 to 5 where 3 means the agents were
generalists and 5 means they were specialists.
2. Mean max detection probabilities measures the highest of each agent’s two
detection probabilities and then takes the mean of these for all agents.
3. Squares with transactions measures the total number of squares on the grid
in which agents traded.
4. The turnover ratio is the actual net transactions divided by the market
clearing volume of trade.
5. Serviced locations refers to the average percentage of agent homes locations
that were within at least one market’s catchment area, i.e., when the market
was within the travel distance from an agent’s home.

were placed evenly across the grid between agent homes. The fact this did not happen

indicated there was a coordination failure.

B.10 Selection of Target Location: Winner

Takes All

In the default scenario, when agents had memories of previous transaction locations

they selected their ‘target’ location using a ‘Roulette Wheel’ approach: agents selected

a location in memory randomly but with probabilities of selection proportional to their

weight in memory.

An alternative selection process is ‘Winner Takes All’, which is when the location with

the largest weight is chosen.
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Figure B.9: Heatmap of transactions in the last 100 rounds of a typical simulation
when the agents’ travel distance was limited to 10 grid squares. The chart shows that
several ‘local markets’ emerged when the agents could not traverse the whole grid.

Figure B.10: Market catchment areas in the last 100 rounds of the same simulation
depicted in Fig. B.9. Each green square shows locations within 10 grid squares of the
market; and the ‘diamonds’ represent agent homes. We can see that all but two agents
lived within at least one catchment area.

The results of these simulations showed no discernable difference with those that used the

default parameter set. Though minor, the only interesting feature was the mean number

of squares with transactions in the last 100 rounds of the simulations (1.1 versus 1.0 in

the default scenario). This was because symmetry breaking was more difficult when

the agents used ‘Winner Takes All’, which meant occasionally more than one market



Appendix B Exploration of the Parameter Space: First Model 417

location existed toward the end of the simulations.

B.11 The Agents’ Initial Resource Endowment

In the default scenario, agents were endowed with two resources in their personal resource

arrays: both these values were drawn from a normal distribution with mean 50 and

standard deviation of 5 9. Here we examine whether varying either of these numbers

influences the simulation results.

As mentioned above, the availability of resources to the agents in the default scenario

meant that, typically, they saw the resources in their personal resource arrays decline by

approximately 5-10 units in the first 50 rounds of the default scenario. After this, agents

tended to specialise, which meant their foraging yields increased as did the resources in

their personal resource arrays.

It should be clear from this that changes in the mean allocation of resources at in-

stantiation would only make a significant difference if it was below approximately 15

units.

The results from simulations that set the initial mean resource allocations at 5, 10, and

15 units demonstrated that this was indeed the case. For example, when the agents’

initial resource endowments were fixed at 5 units of each resource, we typically saw the

population decline to approximately 12-14 agents by Round 100 (see Fig. B.11 below,

which shows the agent population in a typical simulation). This was slightly below the

carrying capacity of the environment, which begs the question of how this could happen.

The answer seems to lie in the combination of perturbations / noise during the foraging

phase and the ‘asymmetry of death’: when an agent had few resources in its personal

resource array and was particularly successful in foraging for a few rounds, its resources

simply increased. However, if it was particularly unsuccessful, one or both of its resources

declined to or below zero, so it would die. This asymmetry meant the agent population

tended to undershoot the carrying capacity slightly before recovering on account of

trading and specialisation.

9Note that the starting resources for children were adjusted in line with this, i.e., each child
was instantiated with the same mean value as the original agents. When a child was born, half
of this value was deducted from each of the parents’ personal resource arrays. For example, if
the original agents began with 20 units of each resource, the children did so too and 10 units
were deducted from both resources in the parents’ personal resource arrays.
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Figure B.11: The total agent population, births and deaths when agents were born
with 5 units of each resource over 1,000 rounds of a typical simulation. The total
population initially declined to below the carrying capacity, which enabled 11 agents to
survive. Agents eventually specialised and the increased productivity meant they bore
children.

In these simulations, markets were formed before the population declined significantly

and these were sustained by the agents who survived the initial population decline. The

surviving agents traded with each other, specialised, and subsequently bore children10.

One other point worth noting about the simulations where agents started with 5 units of

each resource was that the population plateaued at approximately 36 agents, which was

less than in the default scenario where the equivalent number was 43. This was because

children were born with initial resources of 5 each and in an environment that contained

a large number of specialised agents who crowded them out during the foraging phases.

When the population was 36 or more, none of the children born had the opportunity to

specialise and survive.

For initial resources of between 5 and 15 units, we saw a similar pattern but with less

of a decline in the population.

10In the extreme case of agents being endowed with no resources at all, the population fell
to approximately 2-6 agents before recovering (unless only 1 agent survived in which case no
children could be born). The reason why the agents did not all die immediately was because
they would only be removed from the simulation at the end of the round if either of their resources
declined to zero or less. This meant they could still forage and trade in the first round, allowing
those agents who successfully collected more than one of each resource in that round to survive.
The collapse in the population at the end of the first round then made it easier for these agents
to continue surviving (the population was well below the carrying capacity) until markets were
formed and they specialised.
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Given the above analysis, the impact of varying the standard deviation of the initial

resource endowment should be fairly obvious (assuming a mean of 50 units). Irrespective

of the standard deviation, provided an agent started the simulation with resources in

excess of approximately 3 units of each resource, they survived. Most of those with fewer

resources died. For the population as a whole, the results of the simulations showed

that there were always a sufficient number of agents who survived, formed markets

and bore children for the population to always recover after an initial decline (rising to

approximately 43 as in the default scenario).

B.12 The Fountains’ Initial Endowments

The environment for agents was relatively harsh by design: Section 7.2 above showed

that not all the agents were able to collect sufficient resources to survive if they could

not trade or specialise: we saw that the carrying capacity of the environment was about

15-16 agents.

In the default scenario, each fountain began each round with 50 resource units (L = 50),

or 2 units of each resource per agent at instantiation. Recall, also, that agents had five

time slots in which to forage for resources during the foraging phase of each round.

When simulations were run for values of L ≥ 1 we found two main results: first, the

population declined to 0 or 1 when L < 7 (approximately); and, second, for values

of L > 7, the resulting total population stabilized at a level that was approximately

0.85×L (this was consistent with the default simulation results when L was 50 and the

population stabilized at approximately 43 agents).

The decline of the population to 0 or 1 when L ≤ 7 is perhaps surprising if we consider

that a value of L = 7 should in principle allow 7 agents to survive. There were two

problems: first, agents started the simulations with detection probabilities of 0.5, which

meant their foraging yield was expected to be approximately 2.2 units of resources (in

total) even if no other agents competed for resources11; and, second, 25 agents began

each simulation so the competition for resources was fierce (this meant agents’ personal

resources declined rapidly in the early stages of the simulations). This combination of

factors meant that when L ≤ 7, either no agents, or just one agent, survived12.

When L = 8, an average of 2.5 agents (over 20 simulations) survived an initial decline

in the population over the first 100 rounds. In most simulations, a market formed early

on when most of the initial 25 agents were alive. In some, however, it took several

11Recall that one of each resource was deducted as a metabolism cost at the end of each round.
12If the agents started the simulations as specialists and there was a liquid market they knew

about then a small group of agents could have survived. However, the agents started these
simulations as generalists.
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hundred rounds for 2-3 surviving agents to find each other. When the simulations were

extended we saw that, occasionally, it took thousands of rounds for 2 agents to find

each other but, if they did, they traded regularly and eventually specialised in different

resources. Children were then born and the population increased. In a steady state, the

environment sustained 6 specialised agents. Occasionally a seventh agent was born but

it never survived.

For higher values of L, more agents survived the initial population decline and, as

mentioned above, the agent population tended to stabilize at a value of approximately

0.85× L.

Another question worth exploring here is whether abundant resources would lead agents

not to specialise: would a market still emerge and would agents still specialise in this

scenario? To test this, L was set at 200.

An analysis of the results indicated that the agents’ behaviour was the same even if

resources were not in short supply: agents sought out others to trade with, a market

formed, and a high turnover ratio led the agents to specialise. When L = 200 the

population stabilized at approximately 170 agents.

B.13 Geographically Locating Resource

Fountains

In the default scenario we assume that the resource fountains are not geographically

located. Here, we assume that the fountains are given random locations on the grid,

and that the agents started trading at the last fountain they visited during the foraging

phase (as determined by their foraging strategy arrays).

An analysis of the data showed there was no significant difference between these simu-

lations and those of the default scenario vis-à-vis the turnover ratio, specialisation, and

agent births. However, there were a number of interesting points worth noting.

In the early part of the simulations, markets invariably emerged at the two fountain

locations. Agents typically returned to the location where they first traded even if they

subsequently started the trading phase at the other fountain (this happened when the

last slot in their foraging strategy changed).

Fig. B.12 shows the evolution of the agents’ marginal rates of substitution (MRSs)

during the first 40 moves of the trading phase in Round 20 of a typical simulation.

Recall that an agent’s MRS was the ratio of its holdings of one resource divided by its

holding of the other. Fig. B.12 shows these ratios for each agent over the first 40 moves

during the trading phase of Round 20 of a typical simulation.
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Figure B.12: Agents’ marginal rates of substitution during Round 20 of a typical
simulation when resource fountains were located on the grid and agents started the
trading phase from the last fountain they visited. The chart shows time series for
each agent during the trading phase: their marginal rates of substitution converged on
two different values, corresponding to transactions at each fountain location (agents
remained at these locations so there was no arbitrage).

At this stage of the simulation the agents were generalists and there was a market located

at both fountains.

The most striking feature of this chart is the different convergences of MRSs at the two

markets. All the agents travelled to their target (if they were not already there) and

only transacted at that location, so there was no opportunity for arbitrage (this would

require agents to transact at more than one location).

As the simulations progressed, all of the agents came to trade on a single market square

that was located at one of the two fountains: symmetry breaking occurred here too.

Fig. B.13 below shows the MRS data during Round 139 of the same simulation as that

depicted in Fig. B.12 above. A single market had emerged by this stage; however, agents

were not fully specialised.

An interesting feature of this chart is the two-stage convergence of MRSs at the market.

Here, the market was located at the Fountain for Resource A: the agents at that location

traded with each other during the first 10 moves or so and their MRSs converged on

0.95 (approximately). This can be seen in the upper left part of the chart.

At this stage the agents at Fountain B did not trade with each other because agents

could not trade until they reached their target (here, the market at Fountain A).
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Figure B.13: Agents’ marginal rates of substitution during Round 139 of the same
simulation depicted in Fig. B.12. Resource fountains were located on the grid and
agents started the trading phase from the last fountain they visited. The chart shows
time series for each agent during the trading phase: here, the agents were not fully
specialised but their marginal rates of substitution converged on a single value because
all agents targetted the same location on the grid. This market was located at one of
the two fountain sites.

Fountain B was about 13 moves away from Fountain A in this simulation: after the agents

from Fountain B had arrived at Fountain A, there was a second flurry of transactions, this

time involving all the agents. The MRSs eventually converged on 0.89 (approximately).

As with the default scenario, the turnover ratio was sufficiently high in these simulations

that agents fully specialised. Fig. B.14 below shows the agents’ MRSs during Round

999 of the same simulation.

The interesting point to note here is that the two-stage MRS convergence phenomenon

had disappeared by this round. This is because the agents at Fountain A only had

Resource A in their baskets so they could not trade. They had to wait for the agents

from Fountain B to arrive before any of them could transact. Similarly, the agents who

started at Fountain B had to wait until they reached Fountain A to trade. When this

happened, all of the transactions in the round occurred within about 10 time periods

and the agents’ MRSs converged on 1.31 (approximately).

B.14 Agents with Limited Life Spans

In the default parameter set, agents would die if one of their resources stocks declined

to or below zero but they never died of old age.
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Figure B.14: Agents’ marginal rates of substitution during Round 999 of the same
simulation depicted in figures B.12 and B.13. Resource fountains were located on the
grid and agents started the trading phase from the last fountain they visited. The chart
shows time series for each agent during the trading phase: the agents were now fully
specialised and their marginal rates of substitution converged because the single market
location enabled arbitrage. Specialisation meant none of the agents could trade until
they all met at the market square.

Here we will examine the impact of limiting life spans.

This was done by adjusting two parameters. First, a maximum age for the agents (e.g.,

500 rounds) was introduced in to the model and all the agents died when they reached

this age. Second, each of the agents at instantiation were given an age drawn from a

uniform distribution with a minimum of 0 and a maximum of the age of death. Children

were born with an age of zero.

Sets of 20 simulations were run with ages of death ranging from 100 to 500 in intervals

of 50.

The data showed that the total population always declined to zero when the age of

death was set at approximately 200 or less. The higher the age of death, the more

likely it was that the population remained above zero. For values of the age of death of

400 and above, the agent population was always sustained. Table B.2 below shows the

mean total population (and standard deviation) in the last 100 of 1,000 rounds in the

simulations.

To help understand these data better it is worth recalling that agents were endowed

with resources at instantiation that were drawn from a distribution with a mean of 50;

and that agents bore children as soon as two of them had 125 units of both resources.
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Age of Death
Mean Population
(last 100 rounds)

Pop’n Survived
(% of simulations)

100 0.0 (0.0) 0
150 0.0 (0.0) 0
200 0.0 (0.0) 0
250 1.80 (3.8) 20
300 11.8 (8.5) 70
350 14.7 (6.6) 90
400 21.4 (2.8) 100
450 21.4 (2.8) 100
500 21.8 (2.4) 100

Table B.2: Adjusting life spans. The table shows the mean population in the last 100
of 1,000 rounds and the percentage of simulations in which the agent population did not
collapse. Unsurprisingly, as the agent’s life span was increased, the mean population
increased and the population collapsed fewer times.

When the simulation data was analysed, two phenomena were important vis-à-vis whether

individual agents survived. The first was the total population relative to the carrying

capacity of the environment. When the total population was above the carrying capac-

ity, the surviving agents’ resources declined on average (assuming they were generalists);

and vice versa. Furthermore, this effect was more significant the greater the difference

between the total population and the carrying capacity.

The second phenomenon was the degree of specialisation (and, therefore, productivity)

among the population.

Both of these factors worked against the agents at the beginning of every simulation:

the initial population of 25 agents exceeded the carrying capacity of 15-16 agents; and

the agents started as generalists. The population therefore declined as the older initial

agents died and were not replaced; however, consistent with the default simulations, the

surviving agents became more productive as they specialised.

In order for the agent ‘species’ to survive, the agents at instantiation had to specialise

(and benefit from any decline in the population to below the carrying capacity) quickly

enough for at least 2 agents to have sufficient resources to bear more than one child. It

was also necessary for these children to accumulate resources quickly enough for them

to bear more than one child themselves.

For lower ages of death (200 or less) all the agents died before this could happen. By

contrast, in the simulations where the ages of death were 400 or more, the agent ‘species’

always survived.

Fig. B.15 below shows the total population in a simulation when the age of death was

set at 300.
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Figure B.15: Total agent population over 1,000 rounds in a typical simulation when
the agents’ lifespan was limited to 300 rounds. In this simulation the total population
fell to just 3 agents but these lived long enough to specialise and bear children. Their
children also specialised and bore children, etc., which allowed the total population to
recover.

The chart shows how some of the agents at instantiation survived long enough to bear

3 children before dying. These 3 agents benefited from a high per capita resource

availability due to the population being significantly below the carrying capacity. In

addition, they formed a market that enabled them to specialise13. These agents had 6

children between them before dying and these new agents then bore 15 agents before

they died. The population then oscillated around a mean of approximately 22 agents.

B.15 Skill Acquisition: A Linear Approach

Equation 7.3, which has a logistic form, was used to updated the agents’ foraging skills

at the end of each round.

What happened when a linear approach was used? To test this we replaced the logistic

equation with a linear one (see below Equation 7.3 for definitions of terms):

∆pji = t.[wj
i − d/x]

13The initial population of agents died before they could inform the 3 children of the location
of their market. Two of the children formed a proto-market that the third agent was eventually
informed about.
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The main difference between this equation and Equation 7.3 is that learning did not

slow down at high and low levels of skills (but skills were limited to a maximum of 1

and a minimum of 0.2).

This had no impact on the results. Agents still specialised and bore children after

markets emerged. The only marginal change from the default simulations was that for

the same value of t, the linear approach meant agents reached full specialisation slightly

more quickly14.

14When the logistic equation was used, skills increased (decreased) more slowly at higher
(lower) levels of skill.



Appendix C

Exploration of the Parameter

Space: Second Model

This appendix contains a detailed analysis of the exploration of the parameter space of

the second model. A summary of these results was presented in Chapter 11.

C.1 Adjusting Agents’ Starting Propensities

In the default simulations each agent was instantiated with propensities to steal and

defend drawn from normal distribution with mean 0.5 and a standard deviation of 0.1

(children inherited propensities equal to the mean propensities of their parents). The

question we address here is whether the default simulation results are sensitive to these

starting values.

This question was tested by running 5 experiments. The first used a uniform distri-

bution of between 0 and 1 to set the initial agents’ propensities. The other 4 used

various combinations of high (0.9) and low (0.1) values for the mean of the agents’

initial propensities1:

(i) pSi = 0.1 and pFB
i = 0.1 for all i;

(ii) pSi = 0.1 and pFB
i = 0.9 for all i;

(iii) pSi = 0.9 and pFB
i = 0.1 for all i; and

(iv) pSi = 0.9 and pFB
i = 0.9 for all i.

1Values were again drawn from a normal distribution with this mean and a standard deviation
of 0.1

427
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We found that in all five experiments the results of the default simulations were (essen-

tially) replicated. For experiments (i) and (iii) above it was necessary to increase the

agents’ starting resources (by 50%) to compensate for the increased cost of fighting (the

agents’ propensities had further to ‘travel’ in these simulations) to see the same results

(otherwise the population collapsed).

By way of illustration, Fig. C.1 below shows the ‘cloud’ of all living agents’ propensities

to steal in the first 150 rounds of a typical simulation (and a mean value - the blue line)

when a uniform distribution was used to determine the agents’ initial propensities.

Figure C.1: The cloud of agents’ propensities to steal over the first 150 rounds of a
typical simulation when the agents’ propensities were determined by a uniform distri-
bution at the start. Each dot represents a living agent’s propensity in each round and
the blue line is the mean of these propensities. The propensities evolved as they did in
the default simulations, approximately speaking.

Perhaps the most interesting of these four experiments was when the agents’ propensities

started at pSi = 0.1 and pFB
i = 0.1 for all i. Fig. C.2 below shows the cloud of the agents’

propensities to steal in a typical simulation: the mean increased from 0.1 to 0.71 in

Round 11 before declining back to and then below zero. This pattern reflected something

noted before: when the agents’ propensities to defend were below approximately 0.8 on

average, their propensities to steal increased, and vice versa.

C.2 Adjusting the Cost of Fighting

In the default scenarios, the cost of fighting (c) was 0.3 units of both resources.

A range of fighting costs were simulated for this section, from 0 to 2.0 for each resource.

Here, we focus on what happened when these costs were at both ends of this spectrum.

Overall we found that fight costs had to be between approximately 0.1 and 0.6 for the

results of the default simulations to be replicated.
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Figure C.2: The cloud of agents’ propensities to steal over the first 250 rounds of a
typical simulation when the agents’ propensities to steal and defend started relatively
low (0.1 on average). Each dot represents a living agent’s propensity to steal in each
round and the blue line is the mean of these propensities. In this chart, the propensities
to steal increased aggressively to approximately 0.5 - 1.0 before declining to below zero.

C.2.1 Fight Cost of Zero

When the fight cost was zero, the agents essentially passed the foraged resources between

each other via transactions, fights, and muggings, without any cost if they fought.

We observed that the mean propensities to steal of all the agents increased toward (and

beyond) 1, albeit with considerable variation. Fig. C.3 below shows the ‘cloud’ of agents’

propensities to steal over a typical simulation.

The agents’ propensities to defend also increased but these became redundant as the

propensities to steal exceeded 1 (defending resources was only relevant to agents whose

initial choice was to trade).

The main reason for this trend was the removal of an important ‘discipline’ on agents

(fight costs), which tended to reduce propensities to steal.

An unintended consequence of fixing fight costs at zero was that many of the agents

became specialised (though not fully) in these simulations. This was particularly sur-

prising given that so far in this thesis specialisation has only been observed after the

agents respected each other’s property and markets emerged.

An analysis of the data showed that this was caused in large part by the resource

concentration effect we have now observed several times. The gini coefficient of resource

holdings at the end of the interaction phase was typically about 0.88 after most of the

agents’ propensities to steal reached above 1 (Fig. C.4 below shows resource holdings

before, mid-way through, and at the end of the interaction phase of Round 800 of the
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Figure C.3: The cloud of agents’ propensities to steal over the first 1,000 rounds of
a typical simulation when the cost of fighting was 0. Each dot represents a living
agent’s propensity to steal in each round. The chart shows how, in general, the agents’
propensities to steal increased to and above 1: with no cost associated with fighting,
agents did not learn to respect others’ property.

simulation represented in Fig. C.3 above). This persistent concentration of resources

meant agents would often go many rounds without consuming any resources.

Recall from the first model that if the turnover ratio was low (as it was in these simu-

lations) agents would choose to forage for the resource in which they were deficient. If

agents did not consume any resources for, say, 10 rounds, then this deficiency would be

the same for all of these 10 rounds.

In fact, given the volatility of consumption patterns, agents would often be deficient in

the same resource for hundreds of rounds. The agent would then persistently choose to

forage from the corresponding fountain in all of its time slots in all these rounds, which

would increase its foraging skill for that resource. To quantify this, the mean maximum

detection probability of the living agents at the end of Round 1,000 in the simulation

shown in figures C.3 and C.4 was 0.82.

This productivity, combined with no fight costs, meant the agents bore some children.

If we extended the simulations to 10,000 rounds we found the total population of agents

oscillated around 25 agents2.

2Recall that the carrying capacity of the environment was approximately 16 agents when the
agents did not specialise and approximately 43 agents when they did.
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Figure C.4: Agents’ resource holdings at the start, middle, and end of the interaction
phase of Round 800 of the same simulation depicted in Fig. C.3 above. In these charts,
the agents’ resource holdings were put in ranked order at the beginning of the trading
phase (the first time period), in the middle (the 25th time period) and at the end (the
50th time period). The charts show how the agents’ resource holdings became more
concentrated over the round.

C.2.2 Fight Cost of 2.0

When fight costs were fixed at 2.0 (for each resource), there were no transactions and

no fights. All of the agents’ propensities to steal and defend therefore remained static.

This lack of interaction was due to agents knowing their own propensities to steal and

defend (all instantiated above zero) and the consequential risk of incurring a high cost

of fighting were they to fight. The expected pay-off from any interaction was therefore

always negative.

The outcome of these simulations was the same as when agents could only forage as

in the first null scenario of Chapter 7: if we extended the simulations for long enough,

the agent population declined to 15-16 agents. Fig. C.5 below shows the total agent

population over 10,000 rounds in a typical simulation - the total population at the end

of the simulation was 15 agents.

C.2.3 Intermediate Fight Costs

The last two sub-sections have demonstrated the two main patterns vis-à-vis fight costs:

at zero fight costs, agents were not discouraged from attempting to steal; and when these

costs were high (approximately above 1), agents did not interact for fear of incurring

these costs.



432 Appendix C Exploration of the Parameter Space: Second Model

Figure C.5: Time series of the total agent population in a typical (extended) simu-
lation when the cost of fighting was high. The agents ignored each other: the lack of
transactions and specialisation meant the total population declined to 15 agents, which
was the carrying capacity of the environment (in the absence of specialisation).

We found that the default simulation results were replicated when fight costs were be-

tween approximately 0.1 and 0.6. Below this range the disciplining effect was too weak

for property rights to emerge across the population, and above this cost, agents were

reluctant to interact, so they did not learn.

C.3 Adjusting the Influence of Other Agents’

Experience

Recall from Section 9.43 that agents learned from their own experience in interactions

and they learned from their counterparties. In the default simulations, a parameter

(β = 0.5) was used as a weight attributed to other agents’ experience4.

This weight of β was adjusted between 0 and 1. The main result is that the results of

the default simulations were replicated in all of these experiments: β had a marginal

effect on the emergence of property rights and the defence of property.

An analysis of the data showed that the main impact of adjusting β concerned the

speed of change in the agents’ propensities to defend. If β = 0, agents could only learn

when they themselves acquiesced or defended their resources; whereas if β > 0 they

3Table 9.1 shows the impact of β on the changes to the agents’ propensities.
4Recall that the rationale was for agents to use all relevant information when learning, which

includes what happened to their counterpart.
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also learned when other agents acquiesced or defended their resources. The net result

of β > 0 was to accelerate this learning: when β = 1, the mean propensity to defend

of living agents exceeded 1 after 27 rounds on average whereas when β = 0 it took 55

rounds.

Figure C.6: The cloud of agents’ propensities to steal over the first 175 rounds of a
typical simulation when the agents accounted for the experiences of other agents as
much as their own when learning (β = 1). Each blue dot represents a living agent’s
propensity to steal in each round and the blue line is the mean of these propensities.
The chart shows how more Al Capone agents emerged in these simulations but they
eventually died: these are the four blue dotted lines that can be seen drifting higher in
the chart. The surviving agents’ propensities to steal declined to below zero as in the
default simulations.

C.4 Adjusting the Errors Made in Expected

Pay-Offs

Recall from Section 9.5 that agents evaluated the payoffs from all six scenarios (for both

agents) in every interaction and that an error was added to each pay-off (drawn from a

normal distribution with mean 0 and standard deviation of 0.05). We can think of this

standard deviation as scaling the degree of information-related uncertainty concerning

each interaction.

Below we look at the effect of adjusting this standard deviation.

C.4.1 Standard Deviation of Zero

When the standard deviation was set to zero, the agents had perfect knowledge of all

the pay-offs. We found that the results of these simulations almost exactly replicated
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the default simulations. The only point worth noting is that agents made fewer mis-

takes when deciding which agents to interact with, e.g., in the default simulations we

sometimes observed agents with no resources attempting to steal from agents who also

had no resources. This type of mistake never happened when the standard deviation

was zero; however, the impact of this on the final results was immaterial: respect for

property still emerged across the population.

C.4.2 High Standard Deviation

When a very large standard deviation was applied to pay-offs, the agents in effect inter-

acted with other agents randomly5. To examine the implications of this, an experiment

was run in which the standard deviation was set at 100.

The main result of these simulations was that the living agents’ propensities to defend

and to steal remained at approximately 0.5 on average, and the agent population col-

lapsed to a handful of agents who tended not to interact with each other. Fig. C.7 shows

the ‘cloud’ of the agents’ propensities to defend over the first 300 rounds of a typical

simulation6. The agents’ propensities to steal followed approximately the same pattern.

Figure C.7: The cloud of the agents’ propensities to defend over the first 300 rounds in
a typical simulation when the agents made very large errors in estimating their pay-offs
in interactions. These propensities remained at approximately 0.5 on average over the
whole simulation: in effect the agents interacted randomly. These simulations showed
that for property rights to emerge it was necessary for agents to discern between other
agents.

5This was not quite true: in general, agents preferred to interact with agents who had low
propensities to steal and defend.

6Here, the mean of the agents’ initial resource endowments were increased to 1,000 units each,
for purposes of illustration.
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It is also worth noting that more interactions took place between the agents in these

simulations because those with resources tended not to avoid interacting with other

agents (there were approximately 4 times as many fights and interactions as in the

default simulations).

An analysis of the data showed that an important factor in the increase in the agents’

propensity to defend in the default simulations was their discerning of potential counter-

parts: this discernment was in effect missing in the simulations with large pay-off errors.

Simply put, in the default simulations there were many interactions involving initiat-

ing agents with no or few resource and counterparts with multiple units of resources:

whether the interaction was in Scenario 2F or 3F, initiating agents generally learned it

was better to defend in such situations. This was because if they lost the fight, the cost

was small but if they won, the gain was large.

By contrast, when the pay-off error term was large, there was no such discernment: the

initiators of interactions held more resources on average and counterparts fewer. Here,

agents learned it was not preferable to defend their resources because they lost more of

their own resources.

To quantify this, if we look at the total resource holdings of agents in scenarios 2F and

3F in the default scenario, we saw that initiating agents typically held an average of

approximately 0.5 resource units but the counterpart held a mean of approximately 5

units. In the simulations when the pay-off error term was 100, both the initiators and

counterparts held a mean of approximately 2 units each.

Overall, the agents learned that defending their resources was preferable when they

acquiesced but learned it was better to acquiesce when they defended their resources:

the two effects approximately balanced out and the propensities to defend remained at

0.5 on average.

Resource Concentration

One of the surprising observations made when the data from these simulations was

analysed was that resources became concentrated in the same way they did in the default

simulations. At first blush, one might expect resource concentration to be caused by

discernment (agents chasing resources).

An analysis of the data showed that resources became concentrated even when agents

interacted randomly (which is effectively what happened in these simulations). It was

only necessary for the agents to have target locations within close proximity to each

other for resources to become concentrated.

To check this, a (separate) simple computation model was designed in which 25 agents,

each with 2 units of both resources, interacted randomly with another agent in multiple
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rounds (when agents did not discern between other agents). We assumed there was a

25% chance any one agent would interact with another agent and a 50% chance that one

or the other agent would win the other’s resources. The number of rounds it took for

resources to become fully concentrated (i.e., when one agent held all 50 resource units

and the gini coefficient was 1) was recorded.

When 100,000 simulations of this model were run, we found the mean number of rounds

it took for full concentration was 92.1 rounds (with a standard deviation of 51.5 rounds).

By comparison, if we allowed the agents to target the agent holding most resources, this

mean fell to 13.0 (4.0) rounds. We can conclude from this that both proximity of the

agents and discernment catalysed the resource concentration effect.

C.4.3 Intermediate Sizes of the Standard Deviation

As we reduced the standard deviation from 100 to 0, the agents become more discerning

about who they interacted with and, ceteris paribus, on balance they learned it was

preferable to defend their resources than to acquiesce.

We found that for the default simulation results to be replicated, the pay-off error had

to be between approximately 0 and 0.6. Above 0.6, the agents were not sufficiently

discerning which meant the agents’ propensities to defend failed to rise high and quickly

enough for the agents’ propensities to steal to subsequently decline.

C.5 Adjusting the Standard Deviation of

Children’s Starting Propensities

In the default simulations children were born with propensities to steal and defend equal

to the means of the corresponding propensities of their two parents. Here we take the

same approach but add an error term to each child’s starting propensities.

In the default simulations we saw that the surviving agents’ propensities to steal were

all well below zero by the time the first child was born7. Children were typically born

when the mean propensity to steal was below approximately -2. Similarly, the surviving

agents had propensities to defend close to or above 1 when the first child was born.

A range of values were used to test the impact of the standard deviation of the children’s

starting propensities. In each experiment, each child was born with a propensity to

steal drawn from a normal distribution with a mean equal to the mean of its parents’

7This should not be surprising. There was typically a gap of approximately 200 rounds
between the moment that all surviving agents had negative propensities to steal and the first
child being born. During this period the agents’ propensities to steal declined further below zero
and the agents became fully specialised.
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propensities to steal and the test standard deviation (the child’s propensity to defend

was found using the same approach).

We found that for smaller values of the standard deviation (approximately below 0.7),

all the children were born with propensities to steal below zero (because their parents’

propensities were typically below -2). This meant the agents continued to respect prop-

erty rights and they only ever traded (and propensities to steal continued to decline).

Under such circumstances, the propensity to defend with which any child was born was

irrelevant and remained static: they were never involved in interactions when they or

their counterpart acquiesced or defended their resources, and therefore no learning took

place.

For standard deviations above approximately 0.7, some children were born with propen-

sities to steal above zero (the higher the standard deviation, the more children were

born with positive propensities). Fig. C.8 below shows the living agents’ propensity to

steal ‘cloud’ over 1,000 rounds in a typical simulation when the standard deviation was

set at 5.

Figure C.8: The cloud of the agents’ propensities to steal over the first 1,000 rounds of
a typical simulation when ‘black sheep’ children could be born (these were new agents
instantiated with positive propensities to steal). Each blue dot represents a living
agent’s propensity to steal in each round. In this simulation, six of such children were
born but they all died: the population proved resilient.

There are three noteworthy points. First, six children were born with propensities to

steal above 0 (‘black sheep’) and all of them died within approximately 70 rounds of
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their birth (these data look like blue ‘wisps’ in the chart). An analysis of the data

showed these agents attempted to steal from agents with propensities to steal below 0

but these agents invariably defended their resources. The black sheep agents endured

considerable fighting costs whereas the costs to the agents who defended their resources

were, broadly speaking, spread across the population.

Second, a number of children were born with propensities to steal below that of their

parents (we can see four of these in Fig. C.8).

Third, property rights remained relatively resilient to the ‘black sheep’, i.e., most propen-

sities to steal remained below zero.

We can see in Fig. C.8 there was one agent with a negative propensity that became

positive as a result of the agent’s interactions with the black sheep. This agent had been

born in Round 437 with a propensity to steal of -1.7 and a propensity to defend of -2.6,

i.e., the agent was very doveish. Eventually its propensity to steal increased to above 0

and its propensity to defend rose to -2.1: it learned it was preferable to steal from the

black sheep instead of attempting to trade and then doveishly acquiescing. This agent

eventually died as a result of the fight costs it incurred (and the loss of resources from

acquiescing).

In any case, if we extended the simulations we found the respect for property rights

endured: ultimately the total population increased to approximately 43 agents, all of

whom had propensities to steal below 0. This was true of any standard deviation.

C.6 Adjusting the Agents’ Initial Resource

Endowments

In the default simulations, the 25 agents instantiated at the start were given personal

resource arrays with two values, each drawn from a normal distribution with a mean of

200 and standard deviation of 5. Here we describe the results of simulations for different

values of this mean.

In the first sub-section below we look at the two types of simulation observed in these

experiments. We will look at the split of these two types when the starting resources

were below or equal to 200 units (the second sub-section). The third sub-section look

at the results when the starting resources exceeded 200 units.

The results can be summarised by stating that if the agents’ starting resources exceeded

approximately 180 units, the results from the default simulations were replicated. For

starting resources of below 160 units, the agent population was at risk of collapsing before

property rights emerged. However, if 2 or more agents survived in these simulations,



Appendix C Exploration of the Parameter Space: Second Model 439

the population typically recovered and the agents in the resulting population eventually

respected each other’s property.

C.6.1 The Two Types of Simulation

To contextualise the results presented below, it is worth noting that in the default simula-

tions, the cost of fighting during the ‘learning phase’ meant that typically approximately

14 agents lost all their resources and died, and those agents who survived typically saw

their resource arrays decline to approximately 50 units of each resource, on average.

Furthermore, in the simulations discussed below, the simulations fell in to two broad

categories: (i) population collapse; and (ii) where the emergence of property rights

prevented such a collapse.

In the first type of simulation, the total population would collapse to approximately

1-3 agents (and the mean propensity to steal of the surviving agents was positive). In

these simulations, if only one agent remained then no new agents could be born so the

population never recovered8.

If the population collapsed then fountain resources per capita were relatively high, i.e.,

resources were abundant (per capita) because the population was well below the (non-

specialised) carrying capacity of the environment. If two or more agents survived then,

eventually, they accumulated resources and had children and, if the simulations were

run long enough, the agent population saw their propensities to defend rise above 1 and

their propensities to steal fall below 0, i.e., they came to respect property.

The second type of simulation were those seen in all the default simulations: the

population did decline but in general the surviving agents saw their propensities to

defend rise above 1 (mostly) and their propensities to steal declined below 0. This

happened sufficiently quickly for a population collapse to be averted.

C.6.2 Starting Resources of Below and Equal to 200

Units

Table C.1 below shows for various starting resource values, how many of 20 simulations

run were of the first type of simulation and how many the second type.

The table shows a simple and neat shift from the first type of simulation to the second

as the starting resources increased from 20 to 200 units.

8Very occasionally, all the agents died.
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Starting
Resources

Type 1
Simulations

Type 2
Simulations

20 20 0
40 20 0
60 20 0
80 19 1
100 15 5
120 9 11
140 4 16
160 3 17
180 1 19
200 0 20

Table C.1: Adjusting the agents’ starting resources and the resulting simulation types.
The left hand column corresponds to the mean starting resources for each agent upon
instantiation. The number of type 1 simulations (when the agent population collapsed)
is shown in the middle column, and the number of type 2 simulations is shown in the
right hand column (when the population survived). The data show that as the mean
starting resources was increased, the agent population collapsed fewer time.

C.6.3 Higher Values of Starting Resources

When agents start the simulations with resource stocks exceeding 200 units of each

resource, property rights emerge but this happens more slowly than in the default sim-

ulations.

Recall from chapters 6 and 10 we observed six ‘patterns’ at work (see Section 6.4.1,

p. 198). These patterns were seen in these simulations also; however, the ‘selection’

of passive-aggressive agents was delayed because the agents had more resources. As a

result, the fifth pattern, which occurred when a single agent had a positive propensity

to steal and the other agents’ propensities were negative, was more prominent.

Fig. C.9 below is typical of what we observe in simulations when the agents started each

round with 1,000 units of each resource. In the simulation shown, property rights did

not emerge until Round 1,054. This is much slower than in the default simulations.

Let us examine the fifth pattern in more detail as it mostly explains what we observed

in these simulations. Consider a situation in which one agent has a low but positive

propensity to steal (say, 0.1) and all the other agents’ propensities are below zero (all

of them ‘passive-aggressive’). In this situation, the ‘lone wolf’ agent can find that it

benefits more from stealing than transacting and its propensity to steal increases as a

result.

The reason for this is that the resource concentration effect has a disproportional and

beneficial impact on the lone wolf. Suppose it successfully steals from another agent,
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Figure C.9: The cloud of the agents’ propensities to steal over the first 1,400 rounds of
a typical simulation when agents were instantiated with a mean of 1,000 units of each
resource. Each blue dot represents a living agent’s propensity to steal in each round.
It took approximately 1,200 rounds for all the agents’ propensities to decline to below
zero.

and then other agents attempt to passive-aggressively steal from it9. There is a small

concentration of resources but here it is ‘centred’ around the lone wolf in a way that

means there is approximately a 50% chance of it being left with the concentrated re-

sources by the end of the simulation. The data shows that, over multiple rounds, the

benefits of this tend to outweigh the additional fight costs: in net terms the agent learns

it is advantageous to steal so its propensity to steal increases.

If this occurs, the lone wolf’s interaction counterparts learn this lesson indirectly and

their propensities rise on average. In this scenario we often observed several agents’

propensities rise above zero. Moreover, this mechanism tends to enable a few agents

to benefit in the same way (the benefits can outweigh the costs for approximately 3-4

agents). In these simulations we often observed an ‘outbreak’ of several agents’ propen-

sities to steal suddenly increasing after the population’s propensities had compressed

close to zero.

However, as more agents learn it is preferable to steal, this mechanism benefits agents

less because the profit from the resource concentration effect is spread across multiple

agents. Eventually, fight costs outweigh the benefits of stealing.

We might ask why the system does not settle into an equilibrium whereby propensities

to steal stabilise at a positive but low value. This would be where the downward impact

of fight costs and transactions equal the upward impetus of the resource concentration

effect. The answer is due to the stochastic and complex nature of the whole system

9Note that agents often interact 20-30 times in each round.
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which ensures the overall behaviour of the agents and the changes to their propensities

is much ‘noisier’ than in equivalent equilibrium-based frameworks.

We might also ask how, even in light of these upward and downward ‘forces’, all the

(surviving) agents’ propensities to steal eventually decline to below zero. There are two

points worth noting. First, fight costs will eventually see the agents’ resource stocks

decline toward zero (roughly evenly) and in any one round it is more likely that agents

with positive propensities to steal will die first. This can give rise to all the agents with

positive propensities to steal dying off, leaving only agents who respect property rights.

We see this in Fig. C.10 below, which shows the total stock of resources (Resource 1

+ Resource 2) for the agents depicted in Fig. C.9 above. In this simulation, 20 agents

died in various ‘outbreaks’. The last agent that died did so in Round 1,045. Property

rights emerged almost immediately after this.

This tendency for agents with positive propensities to steal to die earlier explains why

property rights emerged more quickly in the default simulations. Agents had fewer

resources at the start of each round so these agents died earlier on, leaving agents with

lower and negative propensities. The ‘selection’ of passive-aggressive agents occurs more

quickly.

The second point to note is the combination of stochasticity and a natural asymmetry

whereby property rights get locked in as soon as all the agents’ propensities decline below

zero. This is a form of symmetry breaking: it is irreversible provided that children are

not born with positive propensities to steal.

C.7 Changing the Nature of Agent Learning

In Section 9.4 above we looked at how the agents’ propensities to steal and defend

changed as a result of interaction. This involved transforming the reduced values of the

agents’ gains / losses in three ways:

• The use of expected reduced gains / losses as a comparator for actual reduced

gains / losses when adjusting the agents’ propensities to defend in scenarios 2 and

3 (but the use of absolute values for adjusting propensities to steal);

• A ‘cognitive coarseness’ parameter (δ) that was an exponential term that could

range from 0 to 1 (the default value was 0.5); and

• A rate of change coefficient (r) that mapped the resulting values on to propensity

changes (the default value was 0.01).

See Table 9.1 on page 264 for the resulting equations used in the default simulations.
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Figure C.10: A time series of the agents’ total resources over 2,000 rounds (taken from
the same simulation as that depicted in Fig. C.9 above). The y-axis shows for each
round the sum total of resources held by each agent (Resource 1 + Resource 2). The
chart shows how all but 5 of the agents died but when property rights emerged, these
surviving agents thrived.

In the next three sub-sections we will look at the three factors listed above, in reverse

order.

C.7.1 Rate of Change Coefficient (r)

This metric can be viewed as determining the speed at which the agents’ adjusted

reduced gains / losses from an interaction impacted their propensities.

The experiments discussed below showed that the default simulation results were repli-

cated when, approximately, r > 0.004.

C.7.1.1 Low Values of r (≤ 0.004)

In extremis, if this value was set at 0, the agents’ propensities never changed. When

we ran 20 simulations using this value of r, the agent population always collapsed to

1-2 agents. It was not possible for respect for property to emerge because the agents’

propensities never changed.

For positive but low values of r (0 < r ≤ 0.004), the results were approximately the

same: the agents simply did not learn quickly enough for property rights to emerge.

Most notably, their propensities to defend increased relatively slowly, which meant their

propensities to steal spent longer above 0.5, resulting in higher fight costs than in the

default simulations.
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C.7.1.2 Higher Values of r (> 0.004)

For these values of r, the results of the default simulations were replicated. The agents

went through the same learning process, whereby their propensities to defend rose above

1 and their propensities to steal declined below 0. The higher r was, the quicker this

learning was. For example, when r = 0.2 (20 times its default value), the living agents’

mean propensity to defend increased above 1 within 10 rounds (versus 39 rounds in the

default simulations), and the mean propensity to steal declined below zero within 13

rounds (versus 233 rounds in the default simulations).

C.7.2 Cognitive Coarseness (δ)

As mentioned in Section 9.4, a value of δ = 0 meant that the agents’ reduced values

were transformed to +1 in the case of a beneficial interaction (of any magnitude) and

-1 in the case of a detrimental interaction10. We can think of this as ‘coarse-graining’ in

the agents’ perceptions of the interaction results (Gell-Mann and Hartle, 2007).

By contrast, when δ = 1 the agents’ precise reduced values were used to adjust their

propensities without any manipulation. We can think of this as a ‘fine-grained’ approach

to agents’ perceptions of the interaction results.

Simulations were run for values of δ between 0 and 1 in increments of 0.1. Below, the

data is presented and analysed for simulations at the two ends of this spectrum, when

δ = 0 and δ = 1.

The main conclusion we can draw from these simulations is that δ had to be less than

or equal to 0.9 for the default simulation results to be replicated, i.e., for property rights

to emerge in all 20 simulations. This means that at least a small degree of cognitive

coarseness was required for property rights emergence to be guaranteed.

C.7.2.1 Coarse-Grained Cognition (δ = 0)

The main effect of setting δ = 0 was that it magnified the impact of transactions

(Quadrant 1) on the changes to agents’ propensities to steal (putting more downward

pressure on them). In the default simulations, transactions typically led to a very small

decline in propensities to steal (approximately -0.001). When δ = 0, this was typically

ten times greater: it accelerated the emergence of respect for property rights because

agents ‘felt’ they benefited more from transactions. In fact, property rights typically

emerged before the agents’ propensities to defend had reached 1.

To quantify this, the mean of the agents’ propensity to steal declined to below zero

in Round 50 on average (over 20 simulations), which compares with Round 233 in the

10For example, v∗i = sign(vi) × |vi|δ = +1 when vi > 0 and vice versa, and v∗∗ii = sign(vi −
EQ2

i (vi))× |vi − EQ2
i (vi)|δ = +1 when vi − EQ2

i (vi) > 0 and vice versa.
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default simulations. Fig. C.11 below shows the ‘cloud’ of the agents propensities to steal

over the first 80 rounds of a typical simulation when δ = 0.

Figure C.11: The cloud of the agents’ propensities to steal over the first 80 rounds of
a typical simulation when agents’ cognition was ‘coarse-grained’ (δ = 0). This meant
agents attached +/-1 values to beneficial and detrimental interactions, respectively.
Each blue dot represents a living agent’s propensity to steal in each round and the blue
line is the mean of these propensities. All of the agents survived in this simulation and
they came to respect property rights much more quickly than in the default simulations.

C.7.2.2 Fine-Grained Cognition (δ = 1)

By increasing the value of δ from 0.5 to 1, agents became more sensitive to ‘windfall’

gains and losses (observed when the resource concentration effect was prominent) and

less sensitive to gains from trade. In general, we would expect changes in the agents’

propensities to be more volatile and that it would be more difficult for property rights

to emerge given the reduced dampening effect on propensities to steal from trading.

The results of 20 simulations showed that the agents’ propensities to defend increased

as it did in the default simulations; however, there was much greater volatility seen in

the agents’ propensities to steal. Fig. C.12 below shows the ‘cloud’ of the living agents’

propensities to steal over the first 160 rounds of a typical simulation when δ = 1.

The cloud of propensities shown in Fig. C.12 displays much greater dispersion than

in the default simulations. This resulted from the ‘windfall’ volatility noted above. In

general this meant there were more fights, higher fight costs, and the agent population

tended to decline more than in the default simulations.

However, the pressure on the agents’ propensities to steal was still net negative, and

agents with higher propensities tended to die. In all, the mean total population of

agents (over 20 simulations) bottomed out at approximately 7.9 agents when δ = 1 which
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Figure C.12: The cloud of the agents’ propensities to steal over the first 160 rounds of
a typical simulation when agents’ cognition was ‘fine-grained’ (δ = 1). Each blue dot
represents a living agent’s propensity to steal in each round and the blue line is the mean
of these propensities. In this chart the agents’ propensities declined more reluctantly
than when their cognition was ‘coarse-grained’. Nonetheless, property rights eventually
emerged in this simulation.

compares with 11.3 in the default simulations. In addition, in 2 of the 20 simulations

run for this parameter test, the total agent population collapsed to 1-2 agents.

Simulations run for lower values of δ indicated that only a small reduction from 1 was

needed for the default simulation results to be replicated in all 20 simulations in a set.

For this to be true, δ ≤ 0.9.

C.7.3 Relative and Absolute Approaches

As mentioned above, when it came to changes in propensities to defend (in scenarios 2

and 3), the agents’ reduced values were compared with the expected gains / losses in

the relevant scenario. By contrast when it came to changes in propensities to steal, an

absolute value was used (this was discussed in Section 9.4).

What happened if we used absolute value of the agents’ reduced gains / losses for

changing propensities to defend? and what happened if we contrasted the agents’ gain

/ loss with an expected gain / loss for the whole interaction when adjusting the agents’

propensities to steal? We consider these questions in the next two segments.
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C.7.3.1 Using Absolute Reduced Values When Adjusting the

Propensities to Defend

When absolute values of the agents’ reduced gains / losses were used to adjust propen-

sities to defend, these propensities tended to plateau at approximately 0.73 on average.

Fig. C.13 below shows these propensities for all living agents in the first 100 rounds of

a typical simulation. As a result of these propensities not moving higher, the agents’

propensities to steal seemed to oscillate between 0.5 and 0.611. Fig. C.14 below shows

the living agents’ propensities to steal in the same simulation as that shown in Fig. C.13.

Figure C.13: The cloud of the agents’ propensities to defend over the first 100 rounds
in a typical simulation when the agents used absolute gains / losses to adjust these
propensities. Each red dot represents a living agent’s propensity to defend in each
round and the red line is the mean of these propensities. The agents’ propensities
increased as in the default simulations but they tended to remain below 1.

An analysis of the data showed that when expectations of pay-offs were incorporated in

to the adjustment of the agents’ propensities to defend, this had the effect of increasing

the agents’ propensities than if absolute values were used. This was most important when

resources were concentrated. In fact, agents got stuck in this ‘phase’ of the simulations,

when resources were concentrated, because defence of property did not emerge.

To understand this better, the results from an example interaction is shown below (Table

C.2), which shows the outcomes of interaction when Agent i had no resources and Agent

j had 10 units in total (assuming i attempted theft and j wanted to trade). This example

was typical of interactions in the resource concentration phase.

Most notably, when an agent with no (or few) resources attempted to steal from an

agent with lots of resources, the latter expected to lose significantly from the interaction

11Recall that agents’ propensities to steal tended to decline when the agents’ propensities to
defend exceeded approximately 0.8 on average.
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Figure C.14: The cloud of the agents’ propensities to steal over the first 100 rounds
of the same simulation depicted in Fig. C.13. Each blue dot represents a living agent’s
propensity to steal in each round and the blue line is the mean of these propensities.
Here, because defence of property did not emerge, the agents’ propensities to steal did
not decline as they did in the default simulations.

Scenario vj − EQ3
j (vj) → ∆P FB

i vj → ∆P FB
i

3F - Counterpart wins +7.2 +0.027 -0.6 -0.008
- Counterpart loses -2.8 -0.017 -10.6 -0.033
3A - Counterpart acquiesces -2.2 +0.015 -10.0 +0.032

Table C.2: An example of changes to a counterpart agent’s propensity to defend using
(i) relative outcomes (vj − EQ3

j (vj)); and (ii) absolute outcomes (vj), when the agent
defended its resources (scenarios 3F, win or lose), and when it acquiesced (scenario 3A).
The initiating agent (i) had no resources and the counterpart (j) had 10 units in total,
and we assumed PFB

i = 0.5. The most significant difference between the two was that
j’s propensity to defend increased when it won the fight and the relative outcome was
employed but it decreased when the absolute outcome was used.

(EQ3
j (vj) = −7.8 in the example). In Quadrant 3 this meant that if j defended its

resources and won, it was (in effect) ‘relieved’ and PFB
i increased despite the agents

incurring fight costs.

In addition, if the agent fought and lost, its losses relative to expectations were much

less than its gross losses, so PFB
i fell less than it otherwise would have. On average,

propensities to defend increased in such situations when agents defended their resources

(when expectations were incorporated) whereas they fell if absolute reduced gains /

losses were used.

The counter-balance to this was that when j acquiesced, relative losses were again less

than gross losses, hence the counterpart increased in PFB
i was less when expectations

were incorporated. When we switched to using absolute values of vj , this had the effect
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of increasing the agents’ propensities to defend. However, this effect undermined itself

when PFB
i increased (fewer agents acquiesced).

In the simulations when absolute values of vj were used without expectations, the com-

bination of a more aggressive increase in PFB due to agents acquiescing and an average

decline in propensities when agents defended their resources meant that the agents’

propensities to defend plateaued at approximately 0.73, as noted above.

We can summarise the results presented here by stating that a relative measure of gains

/ losses (versus expected gains / losses) was necessary for property rights to emerge.

C.7.3.2 Using Relative Reduced Values When Adjusting the

Propensities to Steal

As mentioned previously, in the default simulations the agents’ propensities to steal were

adjusted using absolute gains / losses. Here we deduct the agents’ expectations of their

gains / losses for each interaction, and adjust their propensities to steal by this relative

measure.

The agents’ propensities to defend increased in a way similar to that seen in the default

simulations but plateaued at approximately 0.8, similar to those seen in Fig. C.13 above.

Fig. C.15 below shows the ‘cloud’ of the living agents’ propensities to steal over the first

100 rounds of a typical simulation: in these simulations the agents generally learned it

was preferable to steal.

An analysis of the data showed that when resources were concentrated, agents’ expecta-

tions of their gains / losses from an interaction incorporated expected fight costs. As a

result, in these simulations, changes to agents’ propensities to steal became desensitized

to these costs, which was most significant when both agents attempted to steal (Scenario

4). This had an impact that was equivalent to simulations fight costs being too low.

To quantify this, we observed that the mean aggregated impact of Scenario 4 interactions

on the agents’ propensities to steal in the default simulations was -26.6 per simulation,

which compares with -5.9 in this parameter test. This reduced dampening effect meant

that agents’ propensities to steal remained high.

The lesson we can take from this parameter test is that for property rights to emerge,

agents had to be sensitive to the detrimental impact of fight costs. The simulations de-

scribed above reduced this sensitivity significantly because fight costs were incorporated

in to the agents’ expected gains / losses in each interaction.
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Figure C.15: The cloud of the agents’ propensities to steal over the first 100 rounds
of a typical situation when these propensities were adjusted by outcomes relative to
expectations. Each blue dot represents a living agent’s propensity to steal in each
round and the blue line is the mean of these propensities. Property rights did not
emerge in this simulation. In fact, agents learned it was generally preferable to steal
than to trade.

C.8 Adjusting the Reputations Architecture

Recall from Section 9.4 that agents were given the ability to store information about

other agents’ interaction histories in order to estimate the propensities to steal and

defend of potential counterparts. This included information from the agent’s own expe-

riences of interacting with other agents and what had been learned from others.

In the following sub-sections we adjust this reputations architecture in three ways. First,

we assume agents employ substantive rationality if they have no historical information

about a potential counterparty, i.e., if they are strangers; second, agents assume the

very worst of strangers by prudently assuming their propensities to defend and steal are

both 1; and, third, we adjust the agents’ memory lengths for retaining any information

about other agents.

C.8.1 Strangers: Use of Substantive Rationality

In the default simulations, if an interaction counterpart was a stranger, the instigating

agent assumed the stranger’s propensities to steal and defend were both 0.5.

An alternative approach in this scenario was to employ substantive rationality (still

using propensities when the counterpart was not a stranger). We made this assumption

in a set of 20 simulations.
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This approach served to inflate the perceived propensities to steal and defend of other

agents during the first interactions (because decisions using substantive rationality al-

most always led agents to steal and defend). However, interactions in the first 100

rounds or so were typically dominated by the resource concentration effect, when the

reputations of other agents were largely irrelevant12. Furthermore, the length of the

agents’ reputations array was 20 rounds, which meant any impact of a first interaction

was soon forgotten.

Overall, therefore, the effect of this use of substantive rationality for strangers on the

results was immaterial: it was mostly employed in the first interaction between two

agents but it became irrelevant and was soon forgotten anyway.

C.8.2 Strangers: Assuming the Worst

Here, if a potential counterpart was a stranger to an initiating agent, it prudently as-

sumed the counterpart would always steal and defend. If the two agents did interact,

their actual propensities were used to determine behaviour.

The overall effect on the results was marginal for the same reasons as stated in the pre-

ceding sub-section: this prudence assumption was typically used in the first interactions

but it soon became irrelevant and was forgotten. The results of these simulations were,

therefore, essentially the same as those that used the default parameter set.

C.8.3 Adjusting the Memory Length of the Agents’

Reputations Arrays

In the default simulations, agents could store information about other agents’ interaction

histories for the previous 20 rounds. In this section we look at the impact of varying

this memory length.

In the first set of simulations below we look at results of simulations when the memory

length was zero: here, the agents always assumed the propensities to steal and defend

of potential counterparts was 0.5. In the second set we look at simulations when the

agents had short memories (1-4 rounds).

We can summarise the results of these simulations by stating that the default simulation

results were replicated when the agents’ memory length was above 3 rounds.

12If an agent held a large number of resources, other agents would seek to interact with them
irrespective of their perceptions of this ‘wealthy’ agent’s propensities.
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C.8.3.1 No Memories

The data generated over 20 simulations showed that agents came to defend their re-

sources and respect property rights in a way similar to the default simulations in seven-

teen simulations; and the population collapsed in the remaining three.

An analysis of the data indicated that the main consequence of agents assuming all their

potential counterparties had propensities to steal and defend of 0.5 was that the agents

consistently overestimated the likelihood that other agents would acquiesce in scenarios

2 and 3. In general this meant on average the agents’ estimated gains from interactions

were higher than they ought to have been.

As a result of this, more interactions took place in the earlier rounds than in the default

simulations and agents with resources were more likely to interact.

We observed a slightly wider spread in the agents’ propensities to defend and steal than

in the default simulations. However, the social environment was not so much harsher

that the agents population always collapsed: approximately 2 more agent died on average

than in the default simulations. As a consequence, the agents came to respect property

rights within 1,000 rounds in 17 of the 20 simulations.

C.8.3.2 Short Memory Lengths (1 - 4 Rounds)

In the simulations run for these parameter tests we saw the same phenomenon as when

agents’ memory lengths were zero (a wider dispersion of propensities) but for longer

memories, this was less significant. Simply put, the longer the agents could remember,

the more information they stored about potential counterparts and the more accurate

their propensity estimates became.

When the agents’ memory lengths were four or more rounds, these estimates were suf-

ficiently accurate that the results of the default simulations were replicated.

C.9 Changing the Agents’ Target Location

Weights

In the default simulations, the agents stored information about the grid locations where

they (and other agents) transacted and fought, which was used to select grid targets

at the beginning of the interaction phase of each round. If the agent benefited from a

transaction or from theft on a particular grid square, the weight attributed to that square

was increased by 1. If they lost out, the weight was decreased by 1. For interactions
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they heard about from other agents, the weights were increased by 1/2 or decreased by

1/2, respectively13.

This approach was somewhat crude because these weights were not sensitive to the

degree of benefit or loss from an interaction. One way of incorporating such sensitivity

was to use the agents’ reduced benefit / loss from each interaction to incrementally

change the weight of each grid square. We took that approach for the simulations run

for this section.

The main impact of this was to reduce the (positive) weights of transactions because

these reduced values were typically very small (below 0.1). However, the overall impact

of this was negligible and the results of the simulations were essentially identical to those

using the default parameter set.

C.10 Reducing Agent Clustering & Resource

Concentration

It was notable in the results of the default simulations that agents tended to cluster in

approximately the same part of the grid even when they repeatedly experienced losing

the resources they had collected during the foraging phase. This raises questions of

whether such congregation is reasonable and whether measures to reduce this would

have an impact on the results.

In this section we employ two methods to reduce this clustering of agents. First, we

enhance the impact of detrimental interactions by both decreasing the weight attributed

to the locations where they took place (as in the default simulations) and also reducing

the weights of all the adjacent (‘king’s moves’) squares (by the same amount). The

rationale is that agents would prefer to avoid getting even close to squares where they

had experienced a detrimental interaction14.

Second, we allow agents to remove themselves from the grid if they had accumulated a

certain amount of resources during the interaction phase. This was done by the agents

heading back to their home locations if the reduced value of their basket arrays had

increased by at least 2 resource units since the foraging phase.

These two methods are discussed in the next two sub-sections. The third sub-section

employs both of them simultaneously.

13Recall that these weights were depreciated by 20% in between rounds.
14Recall that agents can see others on adjacent squares.
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C.10.1 Enhanced Avoidance of Previous Fight Locations

An analysis of the data showed that agents were indeed better at avoiding potential

thieves than in the default simulations. They also spent more time moving around the

grid randomly because it was more often the case that no grid squares existed in memory

with net positive interactions (which was required for a target location to be chosen).

Fig. C.16 below shows a heatmap of fights during the first 100 rounds of a typical

simulation, and can be contrasted with Fig. 10.14 in Section 10.2 (a typical simulation

that used the default parameter set). It shows that fights were much more dispersed

than in the default simulations (we saw the same patterns in the transactions heatmaps),

which is consistent with agents moving randomly or targetting a broader range of grid

squares during the interaction phase.

Figure C.16: A heatmap of fight locations in first 100 rounds of a typical simulation
when agents used an enhanced target selection technique. This allowed them to better
avoid locations they associated with their resources being stolen. Fights were much
more dispersed in this simulation than in the same period in the default simulations
(see Fig. 10.14 as a contrast).

Furthermore, if we look at the gini coefficient of agents’ resource holdings at the end of

the interaction phase, we found this was notably lower than in the default simulations.

In those simulations, the resource concentration effect meant the gini coefficient typically

peaked at approximately 0.8 (see Fig. 10.13). By contrast, in the simulations run for

this parameter test, the coefficient typically peaked at approximately 0.6.

Despite this ‘thinning out’ of agent interactions and a reduced resource concentration

effect, the agents interacted and learned, which meant their propensities changed. This

process took longer then in the default simulations, e.g., it took an average of 148 rounds
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for the agents’ mean propensity to defend to increase above 1 (versus 37 rounds in the

default simulations).

In the 20 simulations run for this parameter test, the agent population never collapsed

- the surviving agents always came to respect each other’s property quickly enough for

such a collapse to be averted.

In summary, therefore, we can state that the default simulations results were largely

replicated and property rights emerged, albeit more slowly than in the default simula-

tions.

C.10.2 Allowing Agents to Go Home

As mentioned above, in the simulations discussed here, agents were allowed to return

home (which meant they were removed from the grid) if they had gained at least two

more resources during the interaction phase15 (this would require them to steal). Note

that agents attempted to return home: other agents could steal from them on their

return journey16.

The results of this parameter test were broadly similar to those described in the previous

sub-section in that the resource concentration effect was reduced; however, here agents

tended to congregate as they did in the default simulations.

Fig. C.17 below shows time series for the gini coefficient of the agents’ resource holdings

at the beginning and end of the interaction phase of each round (averaged over all 20

simulations). It shows that the coefficient peaked at 0.64, which compares with 0.8 in

the defaults simulations (Fig. 10.13).

Despite the reduced resource concentration effect, the agents came to respect each other’s

property in all 20 simulations, albeit slightly slower than in the default simulations (and

the agent population never collapsed).

C.10.3 Enhanced Avoidance of Previous Fight Locations

and Allowing Agents to Go Home

Here we combine the two methods used above. Note their effects had no discernable

impact on each other: they were cumulative.

The overall impact was to further slow down the learning processes of the agents. Fig.

C.18 below shows time series of the gini coefficients of agent resource holdings at the

15Strictly speaking, the reduced value of the resources in their baskets had to increase by more
than 2.

16If this theft was successful, the agent remained on the grid and moved toward its original
target location.
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Figure C.17: Time series of the gini coefficient of agents’ resources holdings (mean
of 20 simulations) over the first 600 rounds when the agents removed themselves from
the grid if they had gained more than 2 resource units during the interaction phase. In
each round the gini coefficient was recorded at the beginning of the interaction phase
and then at the end. This chart shows that resources became more concentrated in
approximately the first 250 rounds (when the dark blue line was higher than the light
blue line) but less so than in the default simulations.

beginning and end of the interaction phases of each round (averaged over 20 simulations).

This metric is a useful proxy for the speed of learning among the agents: it shows

the end-of-interaction coefficient peaked at approximately 0.5, which compares with

approximately 0.8 in the default simulations.

An analysis of the data showed there was essentially a race (in approximately the first

1,000 rounds) between the agents learning to defend their resources (and respect others’

property) and the fact the total agent population was higher than the (non-specialised)

carrying capacity of the environment. In eighteen of the 20 simulations, the agent

population learned quickly enough that a population collapse was averted. However, in

two of the simulations they did not and the total population fell to 5 agents with low

but positive propensities to steal17.

17Again, the population would recover if the simulations were run for long enough because
the population was less than the (non-specialised) carrying capacity of the environment. The
resulting population would then eventually come to respect others’ property.
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Figure C.18: Time series of the gini coefficient of agents’ resources holdings (mean
of 20 simulations) over the first 600 rounds when the agents removed themselves from
the grid if they had gained more than 2 resource units during the interaction phase
and when they used an enhanced target selection technique. In each round the gini
coefficient was recorded at the beginning of the interaction phase and then at the end.
This chart shows that resources became more concentrated in approximately the first
400 rounds (when the dark blue line was higher than the light blue line) but less so
than in the default simulations and in Fig. C.17 above.





Appendix D

Property Rights Model:

Experimentation

In this appendix and Chapter 12 we focus on power and legal rules. The latter represents

the main motivation for this appendix but power is interesting in and of itself.

Below we describe and examine the results from three sets of experiments that were

developed using the second model set out in Chapter 9.

The first set of experiments below assumes agents never defend their resources in a

conflict, i.e., their propensities to defend are fixed at zero. The second and third sets

introduce power in to the model through its impact on the outcome of any conflict.

All three sets of experiments prepare the way for using legal rules to catalyse the emer-

gence of property rights in the Chapter 12. In that chapter we will also consider a fourth

experiment that assumes fight costs are too low to facilitate respect for property within

the population. We will also consider the impact of corruption on the efficacy of legal

rules in all four sets of experiments.

Representing Power in the Model

In the default simulations, we assumed agents had an equal chance of winning any conflict

over resources, i.e., they had the same ‘power’. In social systems, however, conflicts are

often not symmetric because one party might have more power than the other. This

asymmetry can take many forms, e.g., physical differences and fighting skills matter in

altercations; in legal disputes, financial power might mean one side can afford better

lawyers; and in political disputes, one person might have more influence than others.

For the second and third set of experiments presented in this appendix we change the

even-power assumption and look at two different ways in which the outcome of fights
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might be decided. In Section D.2 we introduce a new variable for each agent: fighting

skill, which evolves depending on the number of fights an agent has participated in. The

greater an agent’s skill, the more likely it is to win the fight. Two types of experiment

are developed: those in which no ‘black sheep’ children1 are born; and those in which

they are.

In the third set of experiments (Section D.3), we use the agents’ personal resource

arrays to represent power: the more resources an agent has, the more likely it is to win

a fight. This set of experiments is also divided in to two: in the first, all agents are

born approximately equally vis-a-vis resources (as in the default simulations); and in

the second, one of the agents is instantiated with 20 times the resources of each of the

other agents.

In all of the experiments in sections D.2 and D.3, we assume the agents know the

‘power’ their counterpart has in any fight. This information is incorporated into their

expectations of the likely gains (losses) from interactions.

D.1 Yellow Agents

In this experiment all the agents propensities to defend are fixed at zero, i.e., they all

acquiesce in quadrants 2 and 3.

The results of the experiments were consistent across all 20 simulations in the set: the

agents’ propensities to steal increased to a mean of approximately 0.9 (Fig. D.1 below

shows the mean propensity to steal in the first 200 rounds over 20 simulations for all

of the living agents). The social environment was, therefore, hawkish and harsh enough

that the population always collapsed.

This result should not be surprising given the observation in the default simulations that

the agents’ propensities to steal tended to increase when the prevailing propensity to

defend was less than approximately 0.8.

Fig. D.2 below shows the gross contributions to the agents’ propensities to steal by

scenario in the same simulation. Both agents in an interaction learned it was preferable

to steal when the instigating agent attempted theft and the other acquiesced (Quadrant

3A); and they learned it was better not to steal when both attempted theft (Quadrant

4). The former outweighed the latter so, on balance, the agents’ propensities to steal

increased.

This experiment presents us with a challenge vis-à-vis legal rules: property rights did

not emerge endogenously so might some legal rule encourage the agents to respect each

other’s property? This is addressed in the first section of Chapter 12.

1Recall that ‘black sheep’ are children born with propensities to steal above 0.
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Figure D.1: Time series of living agents’ propensities to steal (mean of 20 simulations)
over the first 200 rounds when the agents never defended their resources. The chart
shows that agents learned it was generally preferable to steal rather than to trade.

Figure D.2: A time series of contributions to the agents’ propensities to steal by
scenario over the first 200 rounds of a typical simulation within the ‘Yellow Agents’
experiment. The chart shows agents learned it preferable to steal when the instigating
agent attempted to steal and the counterpart acquiesced (Scenario 3A); but they learned
it was preferable to trade when both agents tried to steal from each other (Scenario 4).
The net effect was positive so the agents’ propensities to steal increased.

D.2 Power from Fighting Skill

For these experiments a new state variable was created for each agent: fighting skill.

These skill values were equal to the total number of fights the agent had been involved

in over its life (deflated by 1% between rounds). In these experiments, the outcome of
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a fight (i.e., which agent won) was determined by the agents’ relative skill in fighting.

The following equation was used to calculate each agent’s skill at the end of each round:

ft+1 = (1− rf ).ft + ni (D.1)

where:

ft+1 is the fighting skill of an agent in Round t+ 1.

rf is the deflation variable.

ft is the fighting skill of the agent in Round t.

ni is the number of fights the agent was involved in during Round t.

We set f0 = 10, i.e., we instantiated agents with a fighting skill of 10.

In terms of fight outcomes, if agents i and j have fighting skills of fi and fj , respectively,

then the probability i wins is:

πi =
fi

fi + fj

For this experiment, we increased the agents’ initial resources to 400 units of each

resource (this counter-balanced the fact the agents fight more in these simulations).

D.2.1 Simulations without Black Sheep

In this set of simulations we endow the agents with fighting skills, as stated above,

and we maintain the assumption that children are born with propensities to steal and

defend that are equal to the means of their parents’ propensities. This means the chil-

dren’s propensities are constrained to be within the population’s minimum and maxi-

mum propensities (when born) and they are always born with negative propensities to

steal.

We add variation to the children’s starting propensities in the next sub-section, to allow

‘black sheep’ to be born. This means that some of the children’s propensities start

outside of the population’s range and above 0.

Recall from Chapter 10 that we identified two broad groups of agents: ‘Al Capone’

agents, with relatively high propensities to steal; and ‘passive-aggressive’ agents, with

relatively lower propensities. In general, Al Capone agents fought more in the default

simulations: this is important for understand the results of the experiments discussed

below.
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In general, fighting skills encouraged propensities to steal higher. However, the cost

of fighting sustained downward pressure on these propensities after defence of prop-

erty emerged. The overall results were, therefore, dependent on the degree to which

agents’ fighting skills depreciated between rounds (rf above). When rf was higher (ap-

proximately rf ≥ 0.01), propensities to steal stayed so high for so long that the agent

population collapsed most of the time. By contrast, when rf was lower (approximately

rf < 0.01), the agent population collapsed fewer times.

Looking more closely at the data, property rights did not emerge and the population

collapsed in 3 / 20 simulations when rf = 0; this happened in 13 / 20 simulations when

rf = 0.01; and 17/20 simulations when rf = 0.04.

Fig. D.3 below shows the agents’ propensities to steal over the first 500 rounds of a

typical simulation when rf = 0.01 and when the agent population did not collapse.

Fig. D.4 shows the corresponding fighting skills in the same simulation. The seven Al

Capone agents are noticeable in the second chart: they all died before Round 250 and,

eventually, the surviving agents came to respect each other’s property.

Figure D.3: Time series of living agents’ propensities to steal over the first 500 rounds
of a typical simulation when the agents had fighting skills, the change coefficient used
(rf ) was 0.01, and the agent population did not collapse. Each blue dot represents
a living agent’s propensity to steal in each round. In this particular simulation the
surviving agents came to respect each other’s property.

D.2.2 Simulations with Black Sheep

In this set of simulations we made one adjustment to the model used in the above sub-

section: now the agents’ children were born with propensities to steal and defend drawn

from a normal distribution with a mean equal to the mean of their parents’ propensities
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Figure D.4: A time series of the agents’ fighting skills over the first 500 rounds of
the simulation depicted in Fig. D.3 above. Each line depicts the fighting skill of a
single agent. The chart shows how all the agents’ fighting skills increased and that the
Al Capone agents with higher fighting skills (and propensities to steal) all died. The
surviving agents’ fighting skills declined toward zero as their propensities to steal also
fell.

and a standard deviation of 3. This enabled the birth of ‘black sheep’ (children born

with positive propensities to steal)2.

Note that in the simulations discussed below, we assume rf = 0.01.

Recall from the parameter tests in Chapter 11 that agent populations that came to

respect each other’s property were resilient to these ‘black sheep’. Do fighting skills

make a difference to this result?

We found that they did: eventually a ‘black sheep’ would be born that became a single

Al Capone agent. It then developed a much higher fighting skill than the other agents

and then bullied them until all (or almost all) of them died, i.e., the population collapsed.

Fig. D.5 and D.6 below show the agents’ propensities to steal and their fighting skills

over 2,000 rounds of a typical simulation when property rights emerged among the initial

agents. In this simulation, the sixth child (born in Round 1,174) was instantiated with

a propensity to steal of approximately 1.5: in its first few interactions it learned it was

preferable to steal and its fighting skill increased rapidly. Eventually, all the agents in

this simulation, except the lone ‘black sheep’, died.

2See Section C.5 of Appendix C.
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Figure D.5: Time series of living agents’ propensities to steal over a typical simulation
when the agents had fighting skills and ‘black sheep’ were born. Each blue dot represents
a living agent’s propensity to steal in each round. Here, a group of the initial agents
came to respect each other’s property; however, when the first ‘black sheep’ was born,
it bullied the other agents until they all died.

Figure D.6: A time series of the agents’ fighting skills over the simulation depicted in
Fig. D.5 above. The fighting skills of the initial agents declined toward zero after prop-
erty rights emerged. When the first ‘black sheep’ was born, its fighting skill increased
more rapidly than the other agents because it bullied all of them, successfully, to the
point of population collapse.

D.3 Power from Personal Resources

In the section above we introduced a new state variable in to the model (fighting skill)

that determined the outcome of fights. In this section we use the agents’ own personal

resource arrays to determine these outcomes.
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Here, if two agents, i and j, interact, then the probability that Agent i wins a fight

against Agent j is:

πi =

∑
h ri∑

h ri +
∑

h rj

where:

ri is Agent i’s personal resource array and rj is Agent j’s

h denotes resources

For example, if i has 200 resource units in total and j has 50 units then the probability

i wins a fight is 200/250, or 0.8.

The first sub-section below considers experiments when all the agents were instantiated

with two resources (A and B), each drawn from a normal distribution with mean 4003

and standard deviation of 5. The second sub-section takes exactly the same approach

but this time one of the 25 agents is given 8,000 units of each resource, i.e., approximately

20 times that of the other agents4.

Furthermore, in both sets of simulations, we assumed that the experiences of each agent’s

counterpart in any interaction had no effect on the agent’s propensities to steal or

defend, i.e., β = 0 (see Section C.3 of Appendix C). In these experiments we found

that heterogeneity was more significant than in the default simulations (due to a single

wealthy agent) so this assumption was more reasonable.

D.3.1 Equal Starting Resources

At first blush we might expect the agents’ propensities to change as they did in the

default simulations since the agents started the round with almost identical resources.

However, we found this was not the case because of the different strategies adopted by

the agents, which led to resource (and therefore power) divergence.

An analysis of the data showed there was a general increase in the agents’ propensities to

defend and a decline in their propensities to steal as in the default simulations. This was

for the same broad reasons: the agents learned it was preferable on the whole to defend

their resources than to acquiesce; and to trade rather than steal (when the prevailing

propensities to defend were high).

Fig. D.7 below shows the ‘cloud’ of the agents’ propensities to steal over the first 250

rounds of a typical simulation.

3This was higher than in the default simulations because agents incurred more fight costs in
these simulations and it helps us identify particular mechanisms.

4The wealthy agent is prevented from having children so that its ‘power’ is sustained.
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Figure D.7: The cloud of the agents’ propensities to steal over the first 250 rounds of a
typical simulation when fight outcomes were determined by relative resource holdings.
Each blue dot represents a living agent’s propensity to steal in each round. Approx-
imately speaking, these simulations replicated the results of the default simulations;
however, the passive aggressive strategy was more successful in these simulations and,
as a result, more of the initial 25 agents survived and specialised.

In general we found that Al Capone agents incurred greater fight costs than passive

aggressive agents, which meant the former had fewer resources and, therefore, less power.

This balance of power in favour of passive aggressive agents meant these agents ‘preyed’

on Al Capone agents who tried to avoid interacting with them. Al Capone agents tended

to either die (as they did in the default simulations) or their strategy changed due to

their experiences in interacting.

These observations raise the question of how passive aggressive agents can prey on Al

Capone agent. This is the passive-aggressive theft noted in Chapter 11. Here, this was

augmented by the passive-aggressive agents having more ‘power’ than the Al Capone

agents.

In summary, when power was determined by resources it favoured passive aggressive

agents who generally survived, bore children, and specialised. Note that this was the

opposite of what we observed when fighting skills determined outcomes (this favoured

Al Capone agents).

D.3.2 One Wealthy Agent

Wealth concentration can occur for a variety of reasons not captured by the simula-

tions presented in this thesis, e.g., successful entrepreneurship or exploiting a natural

monopoly. Here we assume that one agent is wealthy for reasons outside of the model.
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In these simulations, 24 agents are instantiated with a mean of 400 units of each resource,

and one agent is instantiated with 8,000 units of each resource.

The outcome of these simulations was simple: the wealthy agent became an Al Capone

agent who was able to bully the other agents. It quickly learned it was preferable to

steal and its propensity to steal increased throughout the simulation.

Fig. D.8 below shows the ‘cloud’ of the agents’ propensities to steal over 100 rounds

of a typical simulation. The wealthy agent’s propensity is shown as a red line: it

increased immediately after the agent began interacting with others. In this simulation,

its propensity increased to approximately 13.

Figure D.8: The cloud of the agents’ propensities to steal over the first 100 rounds of
a typical simulation when fight outcomes were determined by relative resource holdings
and one wealthy agent (who started with 8,000 units of each resource) was included
in the population. Each blue dot represents a (non-wealthy) living agent’s propensity
to steal in each round. The red line represents the wealthy agent, which adopted an
Al Capone strategy in this simulation. This meant it bullied the other agents and the
population collapsed.

The bullying of the other agents meant the population collapsed to 2-4 agents who on

the whole managed to avoid the wealthy agent.

Reducing the Wealthy Agent’s Initial Resources

When we reduced the wealthy agent’s initial resources from 8,000 units, we observed

a surprising outcome in some of the simulations: the wealthy agent came to respect

property rights - its propensity to steal declined rather than increased. Fig. D.9 below

shows the ‘cloud’ of the agents’ propensities to steal over 1,000 rounds of a typical

simulation when the wealthy agent started with 4,000 of each resource (again, its metric

is shown as a red line).
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Figure D.9: The cloud of the agents’ propensities to steal over the first 1,000 rounds of
a typical simulation when fight outcomes were determined by relative resource holdings
and one wealthy agent (who started with 4,000 units of each resources) was included
in the population. Each blue dot represents a (non-wealthy) living agent’s propensity
to steal in each round. The red line represents the wealthy agent. Here, this wealthy
agent adopted a passive aggressive strategy, which meant its propensity to steal became
negative quite quickly. Ultimately, property rights emerged across the whole population.

When the wealthy agent came to respect other agents’ property, the results of the

simulations approximately replicated those of the default simulations: property rights

emerged across the whole population.

This raises the question of why the wealthy agent was more likely to become an Al

Capone agent when it started simulations with more resources, and vice versa. The

answer is related to two different positive feedback effects. With more resources, the

wealthy agent learned early on in the simulations it was preferable to steal (encouraged

by propensities to defend being relatively low). It then entered a positive feedback loop

in which it was more likely to steal and learn this was beneficial.

With fewer resources, it was more likely to enter a ‘passive-aggressive feedback loop’.

The wealthy agent in these simulations had less power and was more likely to lose

resources to other agents, which put more downward pressure on its propensity to steal

than otherwise. A relatively lower propensity to steal meant that when it attempted

passive-aggressive theft, its propensity fell further, making a repeat more likely, etc.

Now that we have looked at three sets of experiments, in Chapter 12 we use some of

these scenarios to conduct our ‘liberal legislation’ experiments.
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