

Ladder Logic
Programming Techniques

By Duane Snider
Version 1.0

Ladder logic Programming Techniques By Duane Snider

 1-2

COPYRIGHT © 2005 by Duane Snider
All Rights Reserved
Reproduction or translation of any part of this work
beyond that permitted by Sections 107 and 108 of the
1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Request for permission
or further information should be addressed to
Duane Snider 8921 Cedar Mills Cv Cordova Tn 38016

Due to the nature of this publication and because of the different applications of programmable controllers, the
readers and users and those responsible for applying the information herein contained must satisfy themselves as to
the acceptability of each application and the use of equipment therein mentioned. In no event shall the publisher,
editors, contributors and others involved in this publication be liable for direct, indirect or consequential damages
resulting from the use of any techniques or equipment mentioned.

The illustrations, tables, and examples in this book are intended solely to illustrate the methods used in each
application. The publisher, editors, or contributors and others involved in this publication cannot assume
responsibility or liability for actual use based on the illustrative uses and applications.

No patent liability is assumed with respect to use of information, circuits, illustrations, equipment, or software
described in this text.

 1-3

Table of Contents

Chapter 1 The Basics ... 1-9

Hello World ... 1-9
Stating the logic ... 1-10
Rung Scan Order .. 1-11
Program Scan ... 1-11
I/O Scan ... 1-12
Variables and Data Types .. 1-12
Array Access and Pointers ... 1-13

Direct Access ... 1-14
Indirect Array Access using Pointers ... 1-14

Aliasing .. 1-15
Program Structure .. 1-16

Chapter 2 Documentation .. 2-17
Machine and Conveyor Documentation .. 2-17
ISA Process Standard ... 2-22
ISA Batch Standard.. 2-24

Chapter 3 Controllers ... 3-25
Discrete Motor Controller .. 3-28
Variable Frequency Drive .. 3-33
Single Solenoid Valve Controller .. 3-36
Double Solenoid Valve Controller ... 3-40
Analog Indicator with Alarms ... 3-42
PID Controller .. 3-49
Ratio Controller ... 3-57

Chapter 4 State Logic... 4-60
State Logic – First Form .. 4-61
State Logic – Second Form .. 4-63

Gain in Weight Feeder ... 4-65
State Logic – Third Form ... 4-74

Chapter 5 Batch Control .. 5-79
Batch Logic .. 5-80
Recipe Organization ... 5-82
Recipe Management ... 5-85
Batch Control ... 5-86
Phase Logic .. 5-92
Defining the phases .. 5-92

Start .. 5-95
End ... 5-96
Feed Material 1 .. 5-97
Feed Material 2 .. 5-100
Tare Scale ... 5-100
Start Heat ... 5-101
End Heat... 5-101
Start Cooling .. 5-102

Ladder logic Programming Techniques By Duane Snider

 1-4

End Cooling ... 5-102
Start Agitator .. 5-103
Stop Agitator .. 5-103
If Process Variable ... 5-104
Delay .. 5-106
If Ok Operator Prompt ... 5-107
If Yes Operator Prompt .. 5-108
Wait for Phase Complete ... 5-111
Go to Step .. 5-112

Creating a Recipe ... 5-113
Chapter 6 Sequential Machine Logic ... 6-114

The Sequence Diagram .. 6-114
Programming the steps ... 6-115
Programming the end of cycle ... 6-118
Programming a timed step ... 6-118
Maintaining the step with power loss .. 6-119
Programming the Outputs .. 6-119

Bumpless transfer to manual .. 6-119
Transitioning outputs to the off state ... 6-121

Programming faults and cycle hold ... 6-121
Programming sequence paths .. 6-125

Initiating the sequence ... 6-125
Selection branch diverge .. 6-127
Parallel branch diverge .. 6-129

Chapter 7 Determining Priority ... 7-131
First Logic for 2 stations .. 7-131
First Logic for 3 or more stations .. 7-133
Priority Stack ... 7-135

Chapter 8 Sortation .. 8-138
Tracking with an encoder... 8-138
Tracking with timers .. 8-144

Chapter 9 Zone Control ... 9-148
Power and Free, Stop to Stop, no accumulation .. 9-148
Power and Free, Choke Zone ... 9-151
Power and Free, Count Zone ... 9-153
Power and Free, Merge into a count zone.. 9-154
Power and Free, Track Switch ... 9-157

Chapter 10 Tips and Tricks .. 10-161
Toggle Push Button ... 10-161
Cascading Start Stop .. 10-161
A simple message display .. 10-164
Buffering Transactions ... 10-165

Appendix A Binary Numbers ... A-171
Appendix B Useful Calculations .. B-173

Unit Conversions .. B-173
Scaling... B-174

 1-5

Appendix C Instruction Set ... C-175
Bit Instructions .. C-175
Timers and Counters ... C-176
Compare instructions .. C-177
Compute/Math Instructions .. C-178
Move/Logical Instructions .. C-179
File Misc. Instructions .. C-180
File/Shift Instructions.. C-181
Sequencer Instructions .. C-182
Program Control Instructions .. C-183
For/Break Instructions .. C-183
Special Instructions ... C-184
Trig Functions ... C-185
Advance Math Instructions ... C-185
Math Conversions ... C-186
ASCII Serial Port .. C-187
ASCII String Instructions ... C-188
ASCII Conversion ... C-189

Appendix D Table of Figures ... D-190

Ladder logic Programming Techniques By Duane Snider

 1-6

About The Author

I was born in Winters California in 1961. My father worked for PG&E as an electrician installing
substations around the state. My mother was a homemaker with 4 children. Because of my
fathers job we moved around a lot, mostly around central California. I remember that when I was
in the first grade, this nation had begun the journey that would take us to the moon. Young
engineers were on television, and Walter Cronkite was telling us how smart they were. The eyes
of the nation were watching this new form of hero carry us into the 21st Century on the top of a
Saturn five Rocket. They were the Rock Stars. They were the Sports heros. They were ordinary
looking men who were doing extraordinary things. .And one first grade class room and one little
boy in Oriville California began dreaming about the future. My mother told me years later that
my first grade teacher thought I was really smart. She said I was always asking questions that she
couldn’t answer. And of course this was one of those stories that my mother told over and over.

When I was in the second grade we moved to Atkins Arkansas. My grandparents and parents had
bought about 90 acres of pasture and woodland at the foothills of the Ozark Mountains. My
grandparents had moved to Arkansas some years earlier. Each year we would make the annual
pilgrimage to see them. I can still remember a few images of deserts and tall cactuses and
Indians. All of this came pouring in through the back windows of a brown two tone Chevy
station wagon. At first Arkansas seemed like one big camping trip. We drew our water from a
well. We had outdoor plumbing as we liked to say. Others would call it a 2 hole outhouse. We
heated the house with a wood stove and there was no air conditioner. We did however have
electric fans. And if it got too hot and the bugs weren’t too bad, and of course if it wasn’t raining,
we would move the beds outside and sleep. Of course it wasn’t long until we were adding rooms
onto the small house and running indoor plumbing. At first we had chickens and pigs. We
eventually made it through just about all of the farm animals. They included rabbits, goats,
turkeys, ducks, guinnes, dogs, and cats. At one time my grandmother even had a milk cow. But, I
never did get used to drinking 100% milk fat from a cow that had been grazing on wild onions.
We eventually put fencing around most of the acreage and we bought beef cattle. Our farm sat
between two small mountains, Pea Ridge to the north and Crow Mountain to the south. When I
would get home from school I would go outside and play. I could tell when it was time to do my
chores, by gaging the length of the shadow that was cast by the south mountain onto the north.
The nearest town where we went to school was 4 miles away.

By the time I was in high school I was taking college prep courses and participating in most of
the sports programs. When I was seventeen I took a summer job at the local Pickle factory. My
first paying job came with a title. I was lead man on the onion line. Responsibilities included
taking a forklift down to the loading docks. Get a crate of onions. Proceed to open a sack of such
onions and pour those onions into the onion peeler. Run the peeled onions onto a conveyor and
then help cut the tops with a knife. Repeat these steps until the crate is empty, then, go get
another crate. Over time I managed to do almost every job in the factory. These included pickle
netting, truck unloading, heading pickle tanks, running slicers, packers, and labelers. By the time
I was in college I was third shift supervisor over production.

I attended my first two years of college at North Arkansas Community College in Harrison
Arkansas. I had received a basketball scholarship. I also did work study. My first work study job

 1-7

was doing the laundry for the basketball team. Our colors were red and white and for my
freshmen year we wore pink socks and pink jocks for practice. By my sophomore year I had
improved my laundry skills. I also worked as a laboratory assistant for the freshmen chemistry
class. My grades were pretty good in my freshmen year so in my sophomore year I was asked to
do tutoring. I tutored basic math, college algebra, chemistry and American history. At one time I
was tutoring nine students one or two hours a week. I received an associate of applied science in
the field of engineering. I also received an award for the outstanding graduate in the field of
engineering. After Junior college, I attended Arkansas Tech University in Russellville Arkansas
where I received a bachelor of science in general engineering. This degree included mechanical
and electrical course work. I took my electives in electrical.

I took my first degreed job in Little Rock Arkansas at a small company called Engram Systems.
There, I programmed laboratory data collection system for the National Center for Toxicological
Research in Pine Bluff Arkansas and other government laboratories around the country. Mostly
they did rat, mouse, or monkey studies to determine if certain chemicals would cause cancer or
other diseases. The famous Sacrin study was done in Pine Bluff. The biggest system that I
worked on was written in Z80 assembly. This was before Big Blue had come out with their PC. I
also worked in Basic and “C”. With the Reagan budget cuts, I found myself looking for a job
after two and half years. I did a bit of contract work for a few months mostly doing small
business database systems. Then, I went to work for a small engineering firm Koehler Engineers
in Little Rock. We were doing PLC systems for a small conveyor company and other
manufacturers. But the conveyor work ran out pretty quick and I found myself out of a job again.
So, I started doing contract work again. I did an instrument design for a company in Houston, I
also did some PLC and process work for the engineering firm Garver and Garver in Little Rock.
During this time a fellow from Memphis had been calling me and asking if I would go to work
for a conveyor company there. I didn’t pay much attention at first because I did not want to
move. But, he called me about six months later when I was sitting at home with no work in site
and a stack of unpaid bills. So, after contracting for a little over two years I made the move to
Memphis. I had worked at Southern Systems about six months when they put me in charge of the
electrical engineering department. In that position I hired and trained the electrical engineering
staff. Our customers were primarily automotive and appliance manufacturers. Southern makes
several types of heavy duty conveyor systems including, Power and Free, Tow Line, Chain
Driven Live Roller, Chain on Edge, Chain on Flat, Slat conveyors, Lifts, and Transfers. We
would also purchased conveyor components from other manufacturers. We designed sortation
systems and package and pallet handling system. Of course all of this work required travel and I
found we had a fairly high turnover among my staff. I usually had between three to six full time
engineers. Most of these engineers would stay one to two years and then take there experience to
a job requiring less travel and fewer hours. I did manage however to keep two really good
engineers for several years. Of course with the high turnover I found myself playing the role of
teacher and drawing upon my experience as a tutor in college. At the time and still today I found
that there are few books, if any, that would provide a young engineer with a solid background in
the most common techniques of ladder logic programming. I left Southern systems after having
worked there for a little over six years. The work load, the stress, and the travel had taken its toll
and I was ready for new challenges. I also had a family with one two year old boy and a baby girl
that had just arrived. I decided to take a job with a local integrator. This integrator serves mainly
local industries based in the Memphis area. There I broadened my experience with projects in the

Ladder logic Programming Techniques By Duane Snider

 1-8

process world. These included the food and beverage, chemical, pharmaceutical, and pulp and
paper industries. Projects included batching systems, continuous processes, instrumentation, data
collection, and inventory tracking. I also began working with several DCS (Distributed Control
Systems) controllers.

I still find myself playing the role of teacher. And so, with the encouragement from my
coworkers I began the process of pulling together some of the most common programming
techniques that I have come across. Some of these techniques I have taken from programming
examples that others have done. In chapter 2, I discuss techniques for sequential machine
control. I found this method in a Whirlpool electrical specification while I was working at
Southern.

Chapter 1 The Basics
Ladder logic is an unstructured programming language. In order to make sense of complex logic
we need to apply some structure to it. This book will look at several programming techniques
that apply structure to your program. These techniques will allow you to program many common
applications resulting in a program that is both easy for you to troubleshoot and easy for others to
understand.

In this chapter, we will introduce you to ladder logic programming. We will also look at some
guidelines on how to document your program.

Hello World
The first “Basic” language program that I learned was “Hello World”. The code is listed below

Print “Hello World”;

When I ran this program, “Hello World” was displayed on the screen.

In ladder logic we will also consider a simple program to illustrate how the language works. A
pushbutton labeled “PRINT” is wired to a PLC input. A light labeled “HELLO_WORLD” is
wired to a PLC output. In Figure 1-1 the “PRINT” input is assigned to a normally open contact
instruction. The output “HELLO_WORLD” is assigned to an output instruction. The two
instructions are connected together to form a ladder logic rung. When the pushbutton is pressed,
the state of the PLC input changes from off to on. When the normally open contact instruction
sees the state of the input change from off to on it passes that true state to the output instruction.
The output instruction then changes the state of the output to on. The light “HELLO_WORLD”
is then turned on. The output is turned off when the pushbutton is released.

Figure 1-1 Normally Open Logic

The rung is read from left to right. If we translate the logic into English we would say, when
PRINT is on, then HELLO_WORLD is turned on.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 1-10

In Figure 1-2 the normally closed contact works in the opposite way as the normally open
contact. The English translation for the rung is, when “A” is off, “B” is turned on. When “A” is
on, then “B” is turned off. “A” determines the state of “B” and “B” does not affect the state of
“A”.

Figure 1-2 Normally Closed Logic

Stating the logic
We can interpret the rung in Figure 1-3 to English. If “A” is on and “B” is on and “C” is not on
then turn on “D”. We can also say, if “A” is not on or “B” is not on or “C” is on then “D” is not
on. A, B and (not C) are in series. We can say they are “anded” together.

Figure 1-3 And Logic

In Figure 1-4 the English translation is, If “A” is on or “B” is on or “C” is off then “D” is on. We
can also say that “D” is off, if “A” is off and “B” is off and “C” is on. A, B and (not C) are in
parallel. We can say they are “or-ed” together.

Figure 1-4 Or Logic

Chapter 1 The Basics

 1-11

Figure 1-5 shows how a latch circuit is implemented. We can say that “C” is on when “A” is on.
“C” will remain on until “B” is on. Because “C” is in a branch around “A”, “C” will remain on
even when “A” is turned off. We would say that “C” is latched on.

Figure 1-5 Latch Logic

In this example we used “C” as an output and as an input. In ladder logic, any bit can be
examined with an input instruction such as a normally open contact or a normally closed contact.
There is not a set limit to the number of times this bit can be used.

Rung Scan Order
In Figure 1-6 the order in which the instructions in a ladder logic rung are solved is shown. The
logic is solved from left to right. When a branch occurs the top branch is solved first. The next
lower branch is then solved.

Figure 1-6 Scan Order

Program Scan
A ladder logic rung is scanned from left to right in order to determine the state of the outputs.
Multiple rungs make a ladder logic program. The PLC scans these rungs beginning with the first
rung and then ending with the last. The PLC then begins the scan again at the first rung. The time
that it takes the PLC to complete one scan of the program is called the scan time. There are some
variations on this theme also. In the Allen Bradley Control Logix processor there are continuous,
periodic, or event driven programs. You can also have routines that can be called from a main
program. These routines can also be executed in a for-next loop. Different PLC makers may scan
their rungs in different manners. This may have some affect on the way some logic is evaluated.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 1-12

I/O Scan
In the Allen Bradley PLC5, and SLC500 PLC’s the I/O (Inputs/Outputs) is updated at the
beginning or the end of the program scan. When an input changes state, the entire program sees
that input during the next program scan. This is important if two or more rungs are examining the
same input. In the Allen Bradley Control Logix processor, the I/O cards update the I/O tags in
the PLC asynchronously from the program scan. This means that when an input changes state,
the first part of the program could see the input off while the second part sees the input on. In
some logic this difference could cause the logic to behave in unexpected ways. Even though the
outputs are also updated asynchronously, usually this will have no effect on the way the logic is
solved. If your program requires that all of the logic see the inputs change state at the same time,
then you can program each input to change the state of an internal tag in the PLC. In Figure 1-7
the I/O address is used to update an internal tag. This logic would be placed at the beginning of
the program for each input, in order to synchronize the inputs with the rest of the program.

Figure 1-7 I/O Synchronization to Program Scan

In the first rung, the Control Logix format for the input address specifies that the input is in local
slot three bit zero. It is tempting to use a MOV instruction to move a block of inputs into an array
of discrete elements. But, by doing this you will not be able to force inputs from the ladder logic
screen. And, then it will be harder to find these forces in the data table than it would be to find
them in the ladder logic.

Variables and Data Types
Variables of different types can be created in the PLC. In Table 1-1, the primary data types are
listed.

Type Description Range Memory
BOOL A binary digit, Boolean. 0 or 1 1 bit
INT A 16 bit integer that expresses

whole numbers
-32768 to 32767 1 16 bit word

SINT A 8 bit integer that expresses
whole numbers

-128 to 127 8 bits

DINT A Double integer, 32 bit integer -2,147,483,648 to
+2,147,483,647

1 32 bit word

Real Expresses a 32 bit IEEE floating
point number

 2 16 bit words

String Holds character data Up to 82 characters 2 characters per word
Table 1-1 Primary Data Types

Chapter 1 The Basics

 1-13

When a variable is created, it is given a tag and a data type. For example, the tag
MIXER_WEIGHT would be given a Real type.

An array of variables can also be created. The array SILO_WEIGHT[21] contains the weights of
silos 1 to 20. The array contains elements SILO_WEIGHT[0] to SILO_WEIGHT[20]. The data
type for the array would be Real.

The Control Logix processor also has predefined data types. These data types are collections of
other data types (structures). For example, in Table 1-2, a timer tag is composed of the following
elements.

Mnemonic Description Type
PRE Preset Value Dint
ACC Accumulated Value Dint
EN Enable Bit Boolean
TT Timing Bit Boolean
DN Done Bit Boolean
Table 1-2 Predefined Timer Data Type

If we create a timer tag called TIMER_1, then we can examine the done bit in a normally open
contact by using the TIMER_1.DN tag.

In addition to the pre-defined tags, you can create user defined data types. These data types are
also a collection of other data types. In Table 1-3, you can create a silo user defined data type.

UDT Member Description Type
DESC Silo description String
PRODUCT Product description in silo String
WT Actual weight in the silo Dint
CAP Capacity of the silo Dint
LOAD_EN Loading into silo enabled Boolean
DISCH_EN Discharging from silo enabled Boolean
Table 1-3 User Defined Data Type SILO

You can then create an array of the silo data type. For ten silos, the tags would be SILO[0] to
SILO[10]. If the silos are labeled 1 to 10, I would not use element zero in the program. Now, if
we want to access the weight in silo one, the tag is SILO[1].WT.

Array Access and Pointers
When an array is created in the PLC, this array can be accessed in the ladder logic in two ways,
directly and indirectly.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 1-14

Direct Access
You are already familiar with direct access of an array. Let’s assume we want to add up all of the
weights in group of silos. If we use the example of the SILO[] array, then the weights of five
silos can be added by using ADD instructions.

Figure 1-8 Direct Array Access

Indirect Array Access using Pointers
If we create a double integer variable called POINTER, then SILO_WT[POINTER] can be used
to access the silo weight array. By setting POINTER to 2 we can access element 2 of the silo
weight array, i.e. SILO_WT[2], with the expression SILO_WT[POINTER].

In Figure 1-9, the program scan is used as the looping mechanism to determine the total weight
of all of the silos. The TOTAL_WT is updated on every fifth program scan. The temporary
variable TEMP_WT is used to hold the summed weight until all of the silo weights have been
added.

Figure 1-9 Using the Program Scan to Loop thru an Array

The FOR instruction can also be used to loop through logic using a pointer. In Figure 1-10 the
total weight variable is initialized. The FOR instruction calls the WT_LOOP routine to add the
silo weights. The FOR instruction is placed in the main body of the program.

Figure 1-10 Using the FOR Instruction to Loop thru an Array

Chapter 1 The Basics

 1-15

In Figure 1-11 the routine WT_LOOP adds the weight of each silo when it is called with the
FOR instruction.

Figure 1-11 Routine WT_LOOP

In Figure 1-12 the FAL instruction is used to add the silo weights. The FAL instruction loops
through the expression to determine the total weight.

Figure 1-12 FAL instruction Loop

Aliasing
An Alias name allows you to assign a new tag name to an existing tag. An alias can be used to
assign a tag name to an I/O point for example. Another use for an alias would be to assign a tag
name to an array element. For example in our SILO[] array we could assign the alias tag
UNLOAD_SILO to array element 1, SILO[1]. Now in your program you can use the more
descriptive tag UNLOAD_SILO in place of SILO[1].This new alias tag does not allocate a new
storage location for your data. It only allows you to assign a new name to it. This new alias tag
points to the original tag. Another common use assigns an alias to an I/O point. The alias name
MIX_1_VLV1_ZSO could be assigned to the discrete I/O point Local:3.I.Data.0.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 1-16

Program Structure
Structure your program. Group logical portions of your program together. The beginning of the
process, conveyor or machine should usually be toward the beginning of the program with the
end of process etc. toward the end.

The Control Logix processor uses tasks to organize and prioritize programs. The MainTask is
scanned continuously. Periodic tasks are scanned at a specific period. Within a task programs
contain the routines. The order in which the programs are scanned within the task is
configurable. Routines contain the ladder logic within a program. Only the MainRoutine can be
configured to execute within a program. Any other routines within the program must be called
from the MainRoutine. Figure 1-13 shows the programming structure of the Control Logix
processor.

Figure 1-13 Control Logix Program Structure

Chapter 2 Documentation
Maintaining good documentation in any programming language is essential. I believe this is
especially true in ladder logic and other control languages. You are rarely the only person who
will be viewing your code. Most PLC programs will require that some person do troubleshooting
using the online view of the ladder logic documentation. Good documentation will also allow
you to navigate the program efficiently.

Symbols or tags should be used on all I/O, internal bits, counters, integers, floats etc. that are
used in your program. These same tags should also be used for the HMI application! If an
external simulator is used then the simulation should also use the same tag names as the HMI
and the PLC. Use a spreadsheet to enter your tags and then import those tags into your
programming documentation and HMI.

There are three primary camps when it comes to documentation.

• In machines and conveyors there are industry accepted documentation standards.
• In process, there is the ISA process standard which has been used for years prior to the

development of the ISA batch standard.
• The ISA batch standard includes documentation standards which complement the

batching methodology.

Machine and Conveyor Documentation
In machine and conveyor applications, you want to create symbol formats with an equipment
abbreviation as the first character(s) of your symbol. This will then group your symbols by
equipment when they are sorted alphabetically.

Create a symbol format based on your application. A typical symbol should be capable of
expressing a description associated with that symbol. For example, the symbol ST1SVOP could
represent the description “OPEN STOP ST1”. The symbol ST1SV could also represent the same
description if it understood that the solenoid will open the stop. A typical symbol format is
represented by the components EQUIPMENT, EQUIPMENT NUMBER, DEVICE, and
FUNCTION.

[EQUIPMENT][EQUIPMENT NUMBER][DEVICE][FUNCTION]

Since the DEVICE such as a push button or solenoid is associated with I/O it is left out for
internal tags.

[EQUIPMENT][EQUIPMENT NUMBER][FUNCTION]

Also, notice that in ST1SVOP the equipment number visually divides the tag making it easier to
read. If the symbol abbreviations you are using get too long, or there is no number to divide the
symbol, you may want to include underscores to separate each abbreviation. For example, you
could use ST_1_SV_OP or ST1_SV_OP. What ever method you choose, be consistent.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 2-18

The same equipment number should be used if the equipment is physically grouped together. For
example, if a work area contains a physical stop to stop the product, a clamp to secure it, and a
lift to raise it then the equipment should be labeled ST3, CMP3 and LFT3.

The tags that you create should be used on the IO drawings. They can also be engraved into a
plastic tag to identify the device in the field. For this reason, you should limit the size of your
abbreviations.

Table 2-1 contains a list of equipment abbreviations and their associated descriptions that could
be used on a conveyor or machine system.

Equipment Description
AIR AIR COMPRESSOR
BAN BANDER
BAR BELT DRIVEN ACCUMULATION

ROLLER(ROLLER)
BC BELT CONVEYOR
BDR BELT DRIVEN LIME ROLLER(BELT)
BOR BELT OVER ROLLER(BELT)
CAR CAROUSEL
CC CHAIN CONVEYOR
CDR CHAIN DRIVEN LIVE ROLLER(CHAIN)
CMP CLAMP
COE CHAIN ON EDGE(CHAIN)
CP CONTROL PANEL
CRN CRANE
DIV DIVERTER
DPAL DEPALLETIZER
DR DRIVE
DSP DISPENSOR
HST HOIST
LFT LIFT
LN LANE
LUB LUBRICATOR
LVR LIFTVEYOR
LWR LOWERATOR
MRG MERGE
OV OVEN
PAL PALLETIZER
PFD POWER FACE DIVERTER
PLR PULLER
PMP PUMP
POS POSITIONER
PSR PUSHER
RC ROLLER CONVEYOR
RES RESERVOIR
SBD SLIDER BED (BELT)

Chapter 2 Documentation

 2-19

SLT SLAT CONVEYOR
ST STOP
STA STATION
STK STACKER
SW TRACK SWITCH
TLT TILT TABLE
TT TURNTABLE
TTS TILT TRAY SORTER
TU TAKE-UP
WRP WRAPPER
XFR TRANSFER OR XFER
Table 2-1

Table 2-2 is a list of device abbreviations that are commonly used in a conveyor or machine
application. I would not normally include the device description in tag description. It should be
known by the abbreviation what the device is. For example for LFT1LSUP the description would
be “LIFT 1 RAISED” and not “LIFT 1 RAISED LIMIT SWITCH”. The device type is either
analog input, analog output, discrete input, discrete output, ASCII, or field.

Device Type Description
AM ai AMP METER
AMT do AIR MOTOR
CB di CIRCUIT BREAKER
CBC do CLUTCH BRAKE CONTROLLER
CR do CONTROL RELAY
CRX di CONTROL RELAY AUX
CRT acii CRT DISPLAY
CT f CURRENT TRANSFORMER
DEC ai DECODER (SCANNER)
DISP ascii DISPLAY
DSC di DISCONNECT
ENC ai ENCODER
FL do FIELD LIGHT
FS di FOOT SWITCH
HC do HOLDING CONTACTOR
HCX di HOLDING CONTACTOR AUX.
HN do HORN
IK di,do INTERLOCK
INPT f INPUT STATION
ISB f INTRINSIC SAFE BARRIER
ITR di INSTANTANEOUS TRIP RELAY
KPD ascii KEYPAD
KS di KEYSWITCH
LS di LIMIT SWITCH
M f MOTOR
MS do MOTOR STARTER
MSX di MOTOR STARTER AUX.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 2-20

PB di PUSH BUTTON
PE di PHOTO EYE
PL do PILOT LIGHT
PS di PRESSURE SWITCH
PV f PANEL VIEW
PX di PROXIMITY SWITCH
SCA ascii SCANNER
SCL ai SCALE
SS di SELECTOR SWITCH
SV do SOLENOID VALVE
TR di,do TIMER
VFD f VARIABLE FREQ. DRIVE
Table 2-2

Table 2-3 contains a list of devices and functions. I have included the devices and functions
together in one table to illustrate how the same abbreviation for the function can have a different
description depending on whether the device is an input or an output. For example, the
description for LSOP is “opened”. The description for SVOP is “open”. Use the past tense for
the input and the present tense or command tense for the output. A push button will also use the
command tense, open stop.

Device &
Funciton

IN/OUT Description

CR_RUN I RUNNING
HN O WARNING HORN
LS_AP I CARRIER APPROACHING
LS_CCW I COUNTER CLOCKWISE
LS_CL I CLOSED
LS_CLR I CARRIER CLEAR
LS_CLRL I CLEAR LEFT
LS_CLRR I CLEAR RIGHT
LS_CW I CLOCKWISE
LS_DEC I DECEL
LS_DECDN I DECEL DOWN
LS_DECUP I DECEL UP
LS_DN I LOWERED
LS_EOL I END OF LINE
LS_EXT I EXTENDED
LS_FULL I FULL
LS_L I LEFT
LS_OL I TORQUE OVERLOAD
LS_OP I OPENED
LS_POS1 I POSITION 1
LS_POS2 I POSITION 2
LS_POS3 I POSITION 3
LS_PR I PRESENT
LS_R I RIGHT

Chapter 2 Documentation

 2-21

LS_RET I RETRACTED
LS_UP I RAISED
MCR I MASTER CONTROL RELAY
MS O MOTOR STARTER
MS_OL I OVERLOAD
MSX I MOTOR STARTER AUXILIARY
PB_DN I LOWER
PB_EXT I EXTEND
PB_OP I OPEN
PB_REL I RELEASE CARRIER
PB_RET I RETRACT
PB_UP I RAISE
PE_PR I PRODUCT PRESENT
PL_DN O LOWERED
PL_FLT O FAULT
PL_OL O TORQUE OVERLOAD
PL_RUN O RUNNING
PL_UP O RAISED
PX_EXT I EXTENDED
PX_RET I RETRACTED
SSA I AUTO SELECT
SSM I MANUAL SELECT
SV_CCW O ROTATE COUNTER CLOCKWISE
SV_CL O CLOSE
SV_CW O ROTATE CLOCKWISE
SV_DN O LOWER
SV_EXT O EXTEND
SV_L O LEFT
SV_OP O OPEN
SV_R O RIGHT
SV_RET O RETRACT
SV_UP O RAISE
Table 2-3

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 2-22

ISA Process Standard
The original ISA documentation format consists of the DEVICE and the EQUIPMENT
NUMBER.

[DEVICE][EQUIPMENT NUMBER]

The device is broken into components. The abbreviations for the device components are in Table
2-4

Abbr. Description
T Temperature
P Pressure
F Flow
L Level
C Conductivity
Z Position
O Open
C Closed
H Hand
C Control
C Controller
I Indicator
V Valve
T Transmitter
E Element
S Switch
S Solenoid
M Motor
H High
L Low
X Discrete
Table 2-4

The documentation for a typical flow control loop on vessel 100 is described in Table 2-5. These
devices would be indicated on the engineering drawing for the vessel.

Tag Description
FE_100 Flow Element
FT_100 Flow Transmitter
FIC_100 Flow Indicating Controller
FCV_100 Flow Control Valve
Table 2-5

Chapter 2 Documentation

 2-23

If the PLC is used to control the flow then the flow transmitter is an analog input to the PLC.
And, the flow control valve position is set by an analog output from the PLC. The flow controller
then exists in the PLC. In Table 2-6 the PLC documentation associated with the control loop is
described.

Tag Description
FT_100 Flow input
FIC_100 PID controller
FIC_100_PV Process Variable
FIC_100_CV Control Variable
FIC_100_SP Setpoint
FIC_100_DV Deviation
FIC_100_SSA Auto selector switch
FIC_100_SSR Remote selector switch
FIC_100_DV_H Deviation alarm high
FIC_100_DV_L Deviation alarm low
FIC_100_PV_H Process variable high alarm
FIC_100_PV_HH Process variable high high alarm
FIC_100_PV_L Process variable low alarm
FIC_100_PV_LL Process variable low low alarm
FCV_100 Valve position output
Table 2-6

If your control system includes multiple flow control loops then sorting the PLC tags in
alphabetic order puts all of the tags associated with the flow controllers together. The flow
control valves would appear next, then the flow transmitter tags. This is why I do not like this
method of documentation. In a large system it can be difficult to determine all of the devices that
are associated with a loop. This becomes even more apparent when we consider the devices in a
discrete valve as shown in Table 2-7.

Tag Description
XCV_100 Discrete control valve
SVO_100 Open solenoid valve
SVC_100 Close solenoid valve
ZSO_100 Open limit switch
ZSC_100 Close limit switch
HS_100 Hand switch
Table 2-7

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 2-24

ISA Batch Standard
When the ISA batch standard came out, it included documentation standards that conformed to
the batch structure. Field devices are now associated with a unit. A unit can be a tank, a mixer, or
a reactor for example. Instead of using a three digit equipment number we can create an
abbreviation that corresponds to the unit. The device is then tagged with the unit followed by the
device.

[UNIT][DEVICE]

Tag Description
R1_FE Reactor 1 Flow Element
R1_FT Reactor 1 Flow Transmitter
R1_FIC Reactor 1 Flow Indicating Controller
R1_FCV Reactor 1 Flow Control Valve
Table 2-8

If there are multiple flow transmitters on the reactor then they are suffixed with a number. For
example, R1_FT_1 and R1_FT_2.

When the tags are sorted alphabetically, all of the tags associated with the unit are kept together.
This makes it a preferable method to the original ISA standard.

Chapter 3 Controllers
In most process systems each physical device such as a motor or valve will have logic that
controls the operation of that device. This controller logic handles the mode of the device such as
automatic, remote or manual. The mode is usually set by an operator through an HMI. The
controller also has setpoints which can then be set by an automatic sequence or some other
source outside of the controller logic. An HMI screen will have a graphic representation of the
physical process. The operator can display a faceplate for the device by selecting it on the HMI
graphic screen. This faceplate will then allow the operator to change modes on the controller and
enter setpoints. In this chapter we will look at several common types of controllers and their
associated faceplates, the discrete motor, the variable frequency drive, the single solenoid valve,
the double solenoid valve, the PID controller, and the Ratio controller.

Figure 3-1 shows a process mixer.

Figure 3-1 HMI Mixer process

The typical animations for a valve are listed in Figure 3-1. The discrete motor animations would
be similar. The valve body will change colors based upon the position of the open and closed
limit switches. If the valve is in transition the color will change to yellow. Red is closed and
green is open. I have seen some customers who have reversed these colors. The thinking being
that green is the safe off state and red is the unsafe on state. The valve will flash if the alarm bit
is on. Of course we have to choose two colors when flashing. I prefer to flash between the
current animated color and a neutral color like black or white. This is usually the kind of thing

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-26

that you have everyone to agree upon at the beginning of the job and then you still end up
changing it twice on one hundred plus valves before the end of the job.

Device Animations Description Logic
MIX_1_VLV1 Red Closed MIX_1_VLV1_ZSC
 Green Open MIX_1_VLV1_ZSO
 Yellow In transition NOT (MIX_1_VLV1_ZSC OR

MIX_1_VLV1_ZSO)
 Flashing Alarm MIX_1_VLV1.ALM

A Black Auto mode MIX_1_VLV1.SSA
M Red Manual mode NOT MIX_1_VLV1.SSA

IK Red visible Interlocked NOT MIX_1_VLV1.IK
Table 3-1 HMI Animations

Chapter 3 Controllers

 3-27

Figure 3-2 shows how the mixer plc program can be organized. The logic for each controller is in
a separate routine. The MainProgram is used for common logic. The MainRoutine in the MIX_1
program contains the jump to subroutine instructions (JSR) for each routine. Separate program
files contain the controllers for mixer 2 and 3. The ANALOG_ALARM routine is called by the
level indicator MIX_1_LI and the flow controllers MIX_1_FIC1 and MIX_1_FIC2. This routine
would have to be duplicated under the MIX_2 and MIX_3 program files because a subroutine
can not be called from one program file to another.

Figure 3-2 Controller Program Organization

The logic for each controller type is described in the sections that follow. Sequence logic is
described in Chapter 4.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-28

Discrete Motor Controller
The faceplate for a discrete motor controller is shown in Figure 3-3. This faceplate is shown
when the operator selects the motor on the overview graphic screen. The interlocks faceplate is
displayed directly adjacent to the motor faceplate when the Interlocks pushbutton is pressed at
the bottom of the motor faceplate.

Figure 3-3 Discrete Motor Controller Faceplate

The HMI you are using may have some built in faceplates that you can use or adapt to your
application. However, in most cases you will have to build your own faceplates. Most HMIs
support the use of some sort of indirect tags or parameters that will allow you to create only one
faceplate for all of the controllers of that same type in your system. If you have designed your
tags right, you may then only have to pass the faceplate the prefix for all of the tags that will be
displayed. In the case of this motor faceplate we could pass to the faceplate the prefix
MIX_1_M1. All of the tags and information could then be derived by appending the tag suffix to
this common tag prefix. Some information on the faceplate may not exist in a tag in the PLC, for
example, the description of the motor. For this type of descriptive information there are a few
options to consider. We can create a tag in the HMI that does not reference a tag in the PLC. This
string tag would then be set when the faceplate is selected on the overview screen. We could also

Chapter 3 Controllers

 3-29

set the description of a tag that we are already using to the description of the motor that will be
displayed. This will reduce the number of HMI tags which is an important consideration if you
are paying for your HMI on a per tag basis. Another option is to include this string tag in the
PLC user defined data type for the motor. A few years ago I would have rejected this option
because it would waste PLC memory, and it would require communication resources to the PLC.
There are however a few good reasons why this may be a preferable option. If there are multiple
HMIs, any change to the description of the motor would only have to be made one time in the
PLC. You may also find it more convenient to make the change in the PLC verses the HMI
software.

The interlock faceplate also requires a description for each interlock. We can use one of the
methods described for the motor description. Or, if you have an application that requires many
interlocks, some of which are used on multiple valves or motors, you may want to put the
interlock descriptions in an external database. An interlock number could be included in the PLC
user defined data type for each interlock. This number would be set by you, the programmer. The
HMI could then look up this number in the interlocks database and extract the description for
that interlock. These interlock descriptions could also exist in the PLC, either in the motor user
defined data type or in a separate interlocks description array.

In Table 3-2 we define some string types that we can then use in our user defined data type.
These strings will be displayed on the HMI faceplate.

String Description Size
DESC_STR HMI controller name 30 characters
TAG_STR HMI tag name 20 characters
UNITS_STR HMI unit abreviation 10 characters
IK_DESCR HMI interlock description 25 characters
Table 3-2 Controller String Definitions

A user defined data type MOTOR is defined for the motor controller in Table 3-3. In our motor
example, the variable MIX_1_M1 is defined as this variable type MOTOR.

UDT Member Description Type
DESC HMI description DESC_STR
TAG HMI tag name TAG_STR
SSA HMI Auto select Boolean
PB_START HMI start push button Boolean
PB_STOP HMI stop push button Boolean
AUTO Auto bit set by remote sequence Boolean
ALM Alarm Boolean
ACK HMI Alarm Acknowledge Boolean
MAN_OVR Interlock manual override Boolean
MAN_OVR_EN Interlock manual override enable Boolean
IK Interlock sum Boolean
IKS Interlock bits Dint
IK_OVR Interlock override bits Dint

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-30

IK_OVR_EN HMI Interlock override enable bits Dint
IK_VISIBLE HMI Interlock visible bits Dint
IK_DESC HMI Interlock description IK_DESC[11]
ALM_TM1 Alarm timer 1 Timer
ALM_TM2 Alarm timer 2 Timer
Table 3-3 User Defined Data Type MOTOR

In Table 3-4 an alias is assigned to the I/O for the motor.

I/O Alias Description Type
MIX_1_M1_HC Motor Holding Contactor Output Boolean
MIX_1_M1_HCX Motor Holding Contactor Auxiliary contact Boolean
Table 3-4 Discrete Motor I/O Definitions

In Figure 3-4, each motor interlock is programmed. The variable MIX_1_M1.IKS.1 is bit 1 of
the double integer (Dint) for sub-element IKS in the MIX_1_M1 variable. Bit 0 exists but I have
elected not to use it so that my interlocks will be numbered starting with 1.

Figure 3-4 Discrete Motor Controller Interlocks

These IKS bits exist so that they can be easily referenced on the motor interlock faceplate.
Multiple conditions can also be programmed into each interlock.

In Figure 3-5 the interlocks are summed into MIX_1M1.IK. This variable is displayed on the
HMI process overview screen Figure 3-1 indicating that all interlocks are clear.

Chapter 3 Controllers

 3-31

Figure 3-5 Discrete Motor Controller Interlock summation

The operator can override each interlock with MIX_1_M1.IK_OVR.1 for example. This button
is disabled on the HMI if the override enable bit is not set, MIX_1_M1.IK_OVR_EN.1. The
override enable bit would usually be set by an engineer or a supervisor as part of the system
definition. Either the PLC programming software or the HMI could be used to set the interlock
override enable. The variable MIX_1_M1.MAN_OVR determines if the interlocks are bypassed
when the mode of the motor is changed by the operator to manual. This button also has an enable
button that would be set from the HMI by an engineer or supervisor.

In Figure 3-6 the motor contactor MIX_1_M1_HC is programmed. This variable is defined as an
alias to the physical output connected to the coil on the motor contactor. The motor will operate
in the auto mode i.e. MIX_1_M1.SSA is on. Or, it will operate in manual with MIX_1_M1.SSA
off. The variable MIX_1_M1.AUTO would be set by some other part of the program which
would cause the motor to start in the automatic mode. The start and stop push buttons allow the
motor to be started in manual mode.

Figure 3-6 Discrete Motor Controller Contactor Circuit

In Figure 3-7 the motor alarm is programmed. An acknowledge from the HMI will reset the
alarm. The variable MIX_1_HCX is an alias to the physical input connected the motor contactor
auxiliary.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-32

Figure 3-7 Discrete Motor Controller Alarm Logic

Chapter 3 Controllers

 3-33

Variable Frequency Drive
The faceplate for a variable frequency drive controller is shown in Figure 3-8. This faceplate is
shown when the operator selects the motor on the overview graphic screen. This faceplate allows
the operator to change the mode of the controller to auto or manual. In manual, the start and stop
pushbuttons are used to control the motor. The remote/local mode determines the source of the
setpoint. In the local mode the operator can change the setpoint from the faceplate. In the remote
mode the setpoint would come from the remote setpoint. The remote setpoint could be set by
some other controller or an automatic sequence for example.

Figure 3-8 Variable Frequency Drive Controller Faceplate

The acknowledge button will reset a fault on the drive. The interlocks button displays the
interlock faceplate. The trend button displays a trend of the setpoint and the process variable.
The process variable is the speed feedback signal from the drive. In the manual mode the
setpoint can be adjusted in increments of 1 and 5 percent.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-34

The user defined data type for the variable frequency drive in shown in Table 3-5. You would
create this variable type with the name VFD. The variable MIX_1_M2 would then be defined as
type VFD.

UDT Member Description Type
DESC HMI description DESC_STR
TAG HMI tag name TAG_STR
SSA HMI Auto select Boolean
SSR HMI Remote select Boolean
PB_START HMI start push button Boolean
PB_STOP HMI stop push button Boolean
AUTO Auto bit set by remote sequence Boolean
SP Setpoint Real
SP_REM Remote Setpoint Real
PV Process Variable Real
ALM Alarm Boolean
ACK HMI Alarm Acknowledge Boolean
MAN_OVR Interlock manual override Boolean
MAN_OVR_EN Interlock manual override enable Boolean
IK Interlock sum Boolean
IKS Interlock bits Dint
IK_OVR Interlock override bits Dint
IK_OVR_EN HMI Interlock override enable bits Dint
IK_VISIBLE HMI Interlock visible bits Dint
IK_DESC HMI Interlock description IK_DESC[11]
ALM_TM1 Alarm timer 1 Timer
ALM_TM2 Alarm timer 2 Timer
Table 3-5 User Defined Data Type VFD

As you can see, the VFD variable type is similar to the MOTOR variable type. Variables
associated with the speed of the drive are also included.

The program for the VFD is the same as the discrete motor controller. The VFD controller
however, also includes code associated with the speed of the VFD. In Figure 3-9 the remote
setpoint of the controller is moved into the setpoint. If the controller is in the local mode, then the
operator can change the setpoint from the faceplate.

Figure 3-9 Variable Frequency Drive Controller Using the Remote Setpoint

Chapter 3 Controllers

 3-35

The setpoint MIX_1_M2.SP still has to get scaled to the physical output. If the output is on a
standard Control Logix analog card, then the scaling can be done by changing parameters on the
card configuration. MIX_1_M2.SP would just be moved into MIX_1_M2_OUT_RAW, which is
aliased to the output. On other I/O systems such as the Flex I/O, there are no provisions to scale
the output on the card. In this case the output must be scaled in the PLC logic. Table 3-6 shows
the user defined data type SCALING. The variable MIX_1_M2_OUT_SCL is then defined as
the SCALING data type.

UDT Member Description Type
RAW_MIN Raw unscaled minimum Real
RAW_MAX Raw unscaled maximum Real
EGU_MIN Engineering unit minimum Real
EGU_MAX Engineering unit maximum Real
Table 3-6 User Defined Data Type SCALING

 In Figure 3-10 the speed setpoint for the VFD is scaled into the physical output connected to the
drive speed reference.

Figure 3-10 Variable Frequency Drive Controller Scaling the Output

The PLC can also communicate to a drive via some network such as ControlNet, DeviceNet,
Ethernet, Profibus etc. Each of these networks would require different logic to pass information
back and forth.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-36

Single Solenoid Valve Controller
The faceplate for a single solenoid valve is shown in Figure 3-11. The operator can open and
close the valve in the manual mode.

Figure 3-11 Single Solenoid Valve Controller Faceplate

If the open feedback or the closed feedback does not exist for the valve, then an HMI variable
can be created which could toggle the visibility for these feedbacks on the faceplate. This
variable could be set when the faceplate is displayed. This will keep you from having to create a
separate faceplate for those valves where the feedbacks do not exist. This visibility variable
could also be put in the PLC user defined data type for the valve.

Chapter 3 Controllers

 3-37

Table 3-7 contains each variable in the user defined type SINGLE_SV. A variable of this type
would be created for each single solenoid valve in your application. The variable MIX_1_VLV1
would be defined as type SINGLE_SV.

UDT Member Description Type
DESC HMI description DESC_STR
TAG HMI tag name TAG_STR
SSA HMI Auto select Boolean
PB_OPEN HMI open push button Boolean
PB_CLOSE HMI close push button Boolean
AUTO Auto bit set by remote sequence Boolean
ALM Alarm Boolean
ACK HMI Alarm Acknowledge Boolean
MAN_OVR Interlock manual override Boolean
MAN_OVR_EN Interlock manual override enable Boolean
ZSO_VISIBLE Open feedback visible on HMI Boolean
ZSC_VISIBLE Closed feedback visible on HMI Boolean
IK Interlock sum Boolean
IKS Interlock bits Dint
IK_OVR Interlock override bits Dint
IK_OVR_EN HMI Interlock override enable bits Dint
IK_VISIBLE HMI Interlock visible bits Dint
IK_DESC HMI Interlock description IK_DESC[11]
ALM_TM Alarm timer Timer
Table 3-7 User Defined Data Type SINGLE_SV

In Table 3-8 an alias is assigned to the I/O for the valve.

I/O Alias Description Type
MIX_1_VLV1_SV Valve open output Boolean
MIX_1_VLV1_ZSO Valve open limit switch Boolean
MIX_1_VLV1_ZSC Valve close limit Switch Boolean
Table 3-8 Single Solenoid Valve Controller I/O Aliases

Each interlock is programmed in Figure 3-12.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-38

Figure 3-12 Single Solenoid Controller Interlocks

Like the discrete motor controller, the interlocks are summed in Figure 3-13 for the single
solenoid valve controller.

Figure 3-13 Single Solenoid Valve Controller Interlock Summation

Figure 3-14 shows the output logic for the single solenoid. MIX_1_VLV1_SV would be aliased
to the physical discrete output which energizes the solenoid.

Figure 3-14 Single Solenoid Valve Controller Output Logic

Chapter 3 Controllers

 3-39

Figure 3-15 shows the alarm logic for the single solenoid valve controller. MIX_1_VLV1_ZSO
and MIX_1_VLV1_ZSC are the open and closed position switches for the valve. The alarm will
occur if the valve does not reach the open or closed position within three seconds after the
solenoid output has changed states.

Figure 3-15 Single Solenoid Valve Controller Alarm Logic

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-40

Double Solenoid Valve Controller
The faceplate and the user defined data type for a double solenoid valve controller are the same
as the single solenoid valve faceplate. The ladder logic is different to account for the additional
output.

In Figure 3-16 the open output for the double solenoid is programmed.

Figure 3-16 Double Solenoid Valve Controller Open Output Logic

In Figure 3-17 the closed output is programmed for the double solenoid. In this case, if the
interlock permissive is lost then the valve is forced closed.

Figure 3-17 Double Solenoid Valve Controller Close Output Logic

Chapter 3 Controllers

 3-41

The alarm for a double solenoid valve is shown in Figure 3-18. Because either the outputs do not
have to remain on, the logic checks that one or the other of the position switches are made.

Figure 3-18 Double Solenoid Valve Controller Open Alarm Logic

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-42

Analog Indicator with Alarms
The faceplate for an analog indicator with alarms is shown in Figure 3-19. Each alarm that is
associated with the process variable is displayed as a triangle to the right of the process variable
bar graph. The position of these indicators along the bar graph are determined by the setpoint of
the alarm. The triangles are visible if the alarm has been enabled. The state of the alarm does not
determine the visibility of the triangle.

Figure 3-19 Analog Indicator Faceplate

Chapter 3 Controllers

 3-43

The alarm setpoints for the indicator are set on the faceplate in Figure 3-20.

Figure 3-20 Analog Alarm Faceplate

The user defined data type for the analog indicator is in Table 3-9. The data type would be called
ANA_ALM. The variable MIX_1_LI would be defined using this type.

UDT Member Description Type
DESC HMI description DESC_STR
TAG HMI tag name TAG_STR
UNITS HMI units UNITS_STR
EGUH High engineering unit Real
EGUL Low engineering unit Real
IN Input Real
H_SP High alarm setpoint Real
H High alarm Boolean
H_EN High alarm enable Boolean
H_PROG_EN High alarm program enable Boolean
H_ACK High alarm acknowledge Boolean

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-44

H_ACK_EN High alarm acknowledge enable Boolean
H_TM_ON High alarm delay on Timer
H_TM_OFF High alarm delay off Timer
H_DB High alarm deadband Real
HH_SP High High alarm setpoint Real
HH High High alarm Boolean
HH_EN High High alarm enable Boolean
HH_PROG_EN High High alarm program enable Boolean
HH_ACK High High alarm acknowledge Boolean
HH_ACK_EN High High alarm acknowledge enable Boolean
HH_TM_ON High High alarm delay on Timer
HH_TM_OFF High High alarm delay off Timer
HH_DB High High alarm deadband Real
L_SP Low alarm setpoint Real
L Low alarm Boolean
L_EN Low alarm enable Boolean
L_PROG_EN Low alarm program enable Boolean
L_ACK Low alarm acknowledge Boolean
L_ACK_EN Low alarm acknowledge enable Boolean
L_TM_ON Low alarm delay on Timer
L_TM_OFF Low alarm delay off Timer
L_DB Low alarm deadband Real
LL_SP Low Low alarm setpoint Real
LL Low Low alarm Boolean
LL_EN Low Low alarm enable Boolean
LL_PROG_EN Low Low alarm program enable Boolean
LL_ACK Low Low alarm acknowledge Boolean
LL_ACK_EN Low alarm acknowledge enable Boolean
LL_TM_ON Low Low alarm delay on Timer
LL_TM_OFF Low Low alarm delay off Timer
LL_DB Low Low alarm deadband Real
ALM_ONS Alarm one shot storage bits DINT
ALM_OS Alarm one shot Boolean
Table 3-9 User Defined Data Type ANA_ALM

The subroutine ANALOG_ALARM contains the alarm logic. The routine acts upon the variable
PV which is defined as type ANA_ALM. The Control Logix processor also has a built in
function block to do analog alarming. I have chosen to provide my own logic for this function so
that I can maintain the ability to customize it for my own needs and to provide functionality that
is not built into the standard block.

Chapter 3 Controllers

 3-45

In Figure 3-21, the first rung of the ANALOG_ALARM subroutine defines the input parameter
that the subroutine acts upon.

Figure 3-21 Analog Alarm Subroutine ANALOG_ALARM

The logic for the high alarm, PV.H is shown in Figure 3-22. The alarm is enabled from the
faceplate via the variable PV.H_EN. The variable PV.H_PROG_EN is used by the program to
enable the alarm. The alarm utilizes a delay in PV.H_TM_ON, a delay out PV.H_TM_OFF, and
a deadband PV.H_DB. The operator must acknowledge the alarm to reset it, if the acknowledge
enable has been configured by an engineer or supervisor with the variable PV.H_ACK.EN.

Figure 3-22 Subroutine ANALOG_ALARM High Alarm Logic

The logic for the High High alarm is the same as the High alarm in Figure 3-22. The HH variable
is used instead of the H variable, for example PV.HH.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-46

The logic for the Low alarm is shown in Figure 3-23. The Low Low alarm would be
programmed in the same way.

Figure 3-23 Subroutine ANALOG_ALARM Low Alarm Logic

Chapter 3 Controllers

 3-47

In Figure 3-24 we get the one shot of each alarm. We will use this one shot to reset the horn
silence.

Figure 3-24 Subroutine ANALOG_ALARM summation one shot

The ANALOG_ALARM subroutine then returns the same variable that is acted upon. In Figure
3-25 the last rung of the subroutine contains the RET instruction. The only purpose of this
instruction is to copy the contents of the PV variable into the return parameter.

Figure 3-25 Subroutine ANALOG_ALARM Process Variable Return

In Figure 3-26 we begin the first rung for the analog indicator. This logic would be located
outside of the subroutine. Each alarm is enabled. If there were any conditions that enable the
alarm they would be located here.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-48

Figure 3-26 Analog Indicator Alarm Enable

The variable MIX_1_LT is defined as a REAL. It contains the scaled value of the level
transmitter in engineering units. In this case it would be percent. The transmitter variable can be
an alias to an analog input card if the input is scaled in the card configuration. Otherwise it
would be an internal variable that has been scaled from the raw input of an analog card. In
Figure 3-27 we move the value from the level transmitter MIX_1_LT into the input of the level
indicator MIX_1_LI.IN. The contents of the user defined variable MIX_1_LI is then passed to
the subroutine variable PV. When the subroutine returns, the PV variable is then copied back to
MIX_1_LI via the jump to subroutine instruction JSR.

Figure 3-27 Analog Indicator Jump to Subroutine

In Figure 3-28 the alarm one shot that is returned from the subroutine is used to reset the horn
silence bit. Typically the horn silence bit is latched on by a horn silence push button. This bit
would then be used as a normally closed contact in the horn logic to turn the horn off. Each time
an alarm occurs in your system, a one shot from that alarm will reset the horn silence. This will
cause the horn to sound until the horn silence push button is pressed.

Figure 3-28 Analog Alarm Horn Silence Reset

Chapter 3 Controllers

 3-49

PID Controller
The faceplate for a PID (Proportional, Integral, Derivative) controller is shown in Figure 3-29.
The remote setpoint is located to the left of the local setpoint. The operator can change the mode
of the controller to local or remote. In the remote mode, the remote setpoint is copied into the
local setpoint. In the local mode the operator can change the local setpoint. The remote setpoint
would be written to by some sequential logic outside of the controller logic. The process variable
is shown to the right of the setpoint along with a corresponding bar graph. The process variable
alarms are indicated with triangles to the right of the process variable bar graph. They function in
the same way as was described in the analog indicator alarms in the previous section. The
deviation alarm setpoints are indicated by the bars to the right of the process variable bar graph.
The height of these bars are determined by the deviation setpoints. These deviation setpoints will
also move vertically with the controller local setpoint. The deviation setpoint is divided into four
components. The High High, the High, the Low and the Low Low. Each of these components
can be enabled. The deviation alarm indicators are visible if they have been enabled. The percent
change buttons will affect the setpoint if the controller is in local mode and automatic mode. If
the controller is in manual mode then the percent change buttons will affect the output.

Figure 3-29 PID Controller Faceplate

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-50

The range of the controller looks at the minimum and maximum engineering unit variables
within the PID.

The target setpoint before the ramp is displayed in the input box above the bar graph. This is
setpoint SP1. The actual setpoint is ramped until the target setpoint is reached. This actual
setpoint is SP2. The bar graph will indicate the value of SP2.

The faceplate for the alarm configuration of the PID controller is shown in Figure 3-29.

Figure 3-30 PID Controller Process Variable Alarm Faceplate

Chapter 3 Controllers

 3-51

Figure 3-31 shows the trended variables for the PID controller. The Proportional, Integral, and
derivative PID configuration variables are also set on this faceplate in order to tune the loop.

Figure 3-31 PID Controller Trending Faceplate

The use defined data type for the PID controller is defined in Table 3-10. Note that the process
variable alarm, PVA, and the deviation alarm DVA, are user defined variables of the type
ANA_ALM that was defined in the analog indicator controller that we discussed in the previous
section.

UDT Member Description Type
DESC HMI description DESC_STR
TAG HMI tag name TAG_STR
UNITS HMI units UNITS_STR
SSA HMI Auto select Boolean
SSR HMI remote Boolean
SSE HMI PID enable Boolean
SS_RAMP HMI setpoint ramp select Boolean
SS_RATIO HMI setpoint ramp select Boolean

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-52

AUTO Auto bit set by remote sequence Boolean
PID PID variable PID
PVA Process variable alarm ANA_ALM
DVA Deviation alarm ANA_ALM
DV Deviation Real
SP_REM Remote setpoint Real
SP1 Setpoint target before ramp Real
SP2 Setpoint actual during ramp Real
SP_RATE Ramp setpoint rate in units/min Real
PV Process variable Real
CV Control Variable Real
Table 3-10 User Defined Data Type PID

In Figure 3-32 we begin the logic for the PID controller. This rung enables the process variable
alarms when the feed pump is started. The timer prevents low flow alarms from occurring when
the pump is not running or is not up to speed. The low flow alarm would in turn be used to
interlock the pump off if there is no flow after the pump has been started. This will prevent the
pump from being damaged by running for an extended time with no fluid circulating through it.
MIX_1_M2_HCX is the auxiliary input of the pump holding contactor.

Figure 3-32 PID Controller Process Variable Alarm Enable

Chapter 3 Controllers

 3-53

In Figure 3-33 the deviation alarms are also enabled when the pump is started. The deviation
alarm requires a longer start up time than the process variable alarms to allow the PID controller
to stabilize.

Figure 3-33 PID Controller Deviation Alarm Enable

In Figure 3-34 the scaled value of the flow transmitter is moved into the process variable of the
PID controller. This is done primarily for convenience. During program development, if you
copy the code from one controller to the next, you only have to change this rung to change the
PV.

Figure 3-34 PID Controller Setting the UDT Process Variable

In Figure 3-35, after the process variable has been updated, it is moved into the input variable of
the process variable alarm. The subroutine ANALOG_ALARM is then executed. We described
this subroutine in the analog indicator controller in the previous section. The deviation is
calculated and then the routine is called again using the deviation as the input variable.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-54

Figure 3-35 PID Controller Calling the ANALOG_ALARM Routine

In Figure 3-36 the horn silence is reset if an alarm occurs.

Figure 3-36 PID Controller Horn Silence Reset

In Figure 3-37 the remote setpoint is moved into setpoint 1 if the controller is in the remote
mode. The remote setpoint could be written to by some other remote logic or some other
controller. SP1 is set by the operator from the HMI faceplate, if the controller is not in the remote
mode.

Figure 3-37 PID Controller Using the Remote Setpoint

The scan time is used to calculate the ramped setpoint. In Figure 3-38 the get system value
instruction, GSV, is used to get the current value of the clock. The elapsed time is then
subtracted from the previous clock value and the result is the total elapsed time for the current
program scan. The correct scan time is calculated when the wall clock wraps around from the
maximum double integer value to zero. It makes sense to locate this logic in th main routine of
the program so that other controllers can use this SCAN_TIME variable.

Chapter 3 Controllers

 3-55

Figure 3-38 Getting the System Variable WALLCLOCKTIME to calculate SCAN_TIME

The variables are defined in Table 3-11.

Tag Description Type
CLOCK_ARRAY[0] Accepts the current value of the WALLCLOCKTIME DINT[2]
CLOCK_PREV The previous scans CLOCK value DINT
SCAN_TIME The elapsed program scan time in microseconds DINT
Table 3-11 Clock Variable Definition

Figure 3-39 shows the logic to ramp the setpoint. If ramping is selected and a change occurs in
SP1 either by the operator or the remote program, SP2 is adjusted each program scan by the
amount defined by the setpoint rate, SP_RATE. The rate is in units per minute. In this case it is
gallons per minute. The expression in the compute statement converts the rate to units per
microseconds. That value is then multiplied by the scan time which gives the number of units
that the setpoint is adjusted for each program scan. Refer to Appendix B for a detailed
explanation of unit conversion calculations.

If ramping is not selected then SP1 is moved into SP2.

Figure 3-39 PID Controller Process Calculating the Ramped Setpoint

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-56

In Figure 3-40 the PID instruction is put in manual mode with the SWM element of the
predefined data type PID. The PID data type has many elements that determine how the PID
instruction behaves. The ramped setpoint, SP2, is moved into the PID element SP. The PID
instruction is enabled with the enable selector switch. I did not include this selector switch on the
faceplate. It could be eliminated altogether but I like to have the ability to disable the PID
instruction even if it only through the programming software.

Figure 3-40 PID Controller Instruction and Manual Mode

The PID instruction adjusts the control variable until the process variable is equal to the setpoint.

In Figure 3-41 the control variable is moved into the remote setpoint of the variable frequency
drive controller. The faceplate for the VFD controller is shown in Figure 3-8. If this controller is
in remote mode then the motor will change speed according to the PID control variable
MIX_1_FIC.CV.

Figure 3-41 PID Controller Setting the Control Variable to the VFD Remote Setpoint

Chapter 3 Controllers

 3-57

Ratio Controller
The ratio controller is used to ratio one feed ingredient to another. In this example the setpoint of
one MIX_1_FIC3 controller is ratioed to the setpoint of MIX_1_FIC2 controller. The faceplate
for the ratio controller is shown in Figure 3-42.

Figure 3-42 Ratio Controller Faceplate

The configure faceplate would be the same as the analog indicator configuration faceplate. This
faceplate allows you to configure the process variable alarms. The trend faceplate would show
the process variable and the output.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 3-58

The user defined data type for the ratio controller is shown in Table 3-12. You would name the
data type RATIO_CTRL. Then create a variable called MIX_1_FIC_RATIO using this data
type.

UDT Member Description Type
DESC HMI description DESC_STR
TAG HMI tag name TAG_STR
UNITS HMI units UNITS_STR
EGUH High engineering units Real
EGUL Low engineering units Real
SSA HMI Auto select Boolean
SSE HMI enable Boolean
PVA Process variable alarm ANA_ALM
SP Setpoint target before ramp Real
PV Process variable Real
CV Control Variable Real
Table 3-12 User Defined Data Type RATIO_CTRL

The logic for the ratio controller is straight forward. We multiply the process variable by the
ratio setpoint and put the result into the control variable. I did not include the enable selector
switch on the faceplate but you could if you want.

Figure 3-43 Ratio Controller Calculating the Ratio and Setting the FIC Remote Setpoint

Chapter 3 Controllers

 3-59

In Figure 3-44 the ratio alarms are setup using the ANALOG_ALARM routine. Remember that
the ratio process variable is the setpoint of the first FIC controller. The only time an alarm will
occur is when an operator enters a setpoint that is too high. If we were using the actual process
variable of the FIC to ratio from, then a high flow rate would cause a ratio alarm.

Figure 3-44 Ratio Controller Call to the ANALOG_ALARM Subroutine

Chapter 4 State Logic
State logic can be used to control a sequential process. In state logic an integer is used to
determine which step or state the process is in. one advantage to using an integer is that the
number can be changed manually to any step. There are however some disadvantages to using a
single integer to control the step.

Advantages

• The step can be easily changed manually.
Since the step is an integer it can be changed with an HMI.

• Steps can be repeated without resetting the sequence.
The sequence can move from one state to any other state just by checking the conditions
and then moving the appropriate value into the integer step number.

• The current step of the sequence can be easily seen by examining the integer value.

Disadvantages

• You can not do parallel branching with a single integer.

An integer can only have one value at any one time. If you need to do parallel branching,
then a new integer variable would be needed for each branch. This would make setting
the step manually from an HMI more difficult since the operator would have to deal with
multiple variables. You could limit the operator to changing the step to a number above
or below the branch. That would mean you have to write some code either in the HMI or
PLC to check the value that the operator has entered before the step can be changed in the
PLC. Create a new variable for the operator to enter the data. Check that variable against
a valid list of steps. If the step number is valid then move it to the PLC step. If it is not
then let the operator know that an invalid step number has been entered.

• You don’t have an output to tie a description of each step to.

This may seem trivial but it is not. Without this description you tend to go back and forth
between the step logic and the output logic verifying that you have programmed the
correct step numbers into the outputs.

I would tend to use state logic for a process control verses machine control. I find that I often
want to repeat steps in a process. For example, if I am feeding into a scale I may need to do a
bump cycle several times to achieve tolerance.

Chapter 4 State Logic

 4-61

State Logic – First Form
Figure 4-1 shows how the steps are implemented using state logic. Note how the step increments
by 10 for each step. This allows you to insert steps after the fact without having to re-write your
whole program. The second and third form of state logic that are described later in this chapter
are just variations of the first form described here. In the second form a bit is used for each
output affected by the sequence. That bit is set or reset during the execution of the sequence. The
third form uses an output for each step to allow us somewhere to tie a description of the step to.

Figure 4-1 State Logic First Form Example Step

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 4-62

Figure 4-2 shows how the end of cycle is programmed using state logic.

Figure 4-2 State Logic First Form End Of Cycle

Figure 4-3 shows how the outputs are programmed using the first form state logic. I have broken
the output logic up into 2 rungs for clarity. The OUTPUT_1_AUTO bit can be displayed on an
HMI to let the operator know what state the sequence is trying to move the output to when the
system is in auto. This is especially important if the manual mode does not reset the sequence. In
this case the operator can move an output to the off position in manual. When the sequence is
returned to the auto mode the output can change state.

Figure 4-3 State Logic First Form Output Logic

Chapter 4 State Logic

 4-63

State Logic – Second Form
The second state logic form is a variation of the first. An auto bit is assigned to each output that
is affected by the sequence. This bit is set or reset for each step that affects the output. I have
also seen this bit called a cascade bit. Since we are latching this auto bit, it will not reset at the
end of the sequence. We will have to write code that resets the auto bits when the step is equal to
zero. One disadvantage to this second form is that there is no indication of what step(s) are
affecting the output when we view the output logic. There is a bit more house keeping to deal
with since you have to make sure that the auto bits are reset at the end of the sequence. Another
disadvantage is that unless you include the state of all of the auto bits in each step you will be
unable to change the step manually and expect all of the auto bits to change to there correct state
for that step. One reason I like this form though, is that you can see what is supposed to happen
at each step when you browse through the sequence. Figure 4-4 shows how the second form state
logic is implemented.

Figure 4-4 State Logic Second Form Example Step

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 4-64

Figure 4-5 shows how the outputs are programmed using the second form state logic. Note that
we can not see which step is affecting the output when examining the output logic.

Figure 4-5 State Logic Second Form Output Logic

Chapter 4 State Logic

 4-65

Gain in Weight Feeder
The gain in weight feeder example consists of three dry ingredient silos feeding into a mixer.
Load cell sensors are connected to a weight transmitter. This transmitter could be an analog 4-
20Ma signal or it could be a smart transmitter that would make the weight available to the PLC
via some communication network. Each silo has an air actuated slide gate that discharges the
material into the mixer.

To weigh material into the mixer, the feed valve for the silo is opened. A cut-off weight is
calculated based upon the setpoint and the in-flight. When the cut-off is reached, the valve will
close and the settling timer is started. When the timer is done, the weight is checked to see if it is
within tolerance. If the weight is within tolerance the sequence will end. If the weight is under
tolerance then the valve will bump open for a preset time in order to achieve tolerance. The
bump cycle will repeat for up to 5 times. If the tolerance is not achieved then an under tolerance
alarm is generated after the 5th bump. The operator is prompted to reset the bump counter and
continue the bump or, the alarm can be acknowledged and the process will continue. If the
weight goes above the tolerance value, then an over tolerance alarm is generated and the operator
must acknowledge the alarm to continue the process.

In Figure 4-6 the gain in weight feeder is illustrated.

Figure 4-6 Gain in Weight Feeder Process Diagram

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 4-66

The sequence diagram can be used to visualize the steps in a sequence. It is similar to a flowchart
and can be considered to be the same as a sequential function chart (SFC). Although SFC
programming is a program language in some PLC and DCS systems, it is only used as a visual
aid in this book to show the progression of the process sequence being described. The SFC uses
steps and transitions to perform operations in the process. A step represents a state of the process
in which actions are performed. These actions will be in the form of outputs being manipulated
to control the process. The transition is a true or false condition of the process that must occur
before the next step in the process is executed.

In Figure 4-7 the SFC is used to illustrate the flow of the feed sequence.

Start

Step 0
Initialize variables

FEED_1, Start the feed

Step 10
Open the feed vlv

Step 20
Close the feed vlv

and delay

True

Wait for Cutoff

Step 30
Bump the feed vlv

Step 40
Bump alarm

Step 50
High alarm

Within
Tolerance

Under
Tolerance
and bump
count ok

Over
Tolerance

Operator
Retry

Bump time
done

Operator
End the feed

Step 60
Adjust inflight

Step 70
Set complete flag

End

True

True

Operator
End the feed

Under
Tolerance
and bump
exceeded

Figure 4-7 Gain in Weight Feeder SFC

Chapter 4 State Logic

 4-67

In Table 4-1 we describe the variables that we will use in the feed logic.

Tag Description Type
MIXER_WT The value of the mixer weight Real
FD1_STEP The feed sequence step Dint
FD1_START_WT The weight of the mixer when the feed is started Real
FD1_SETPOINT The required amount to feed into the mixer Real
FD1_TARGET The target weight of the mixer at the end of the feed Real
FD1_INFLIGHT The estimated or calculated amount that will drop into the mixer

after the valve is closed
Real

FD1_CUTOFF The weight at which the valve is closed in order to reach the target
weight.

Real

FD1_TOLERANCE The amount that the feed can vary and still be acceptable Real
FD1_LOW_POINT The lowest acceptable feed amount Real
FD1_HIGH_POINT The highest acceptable feed amount. Real
FD1_BUMP_CNT The number of times the feed valve has been bumped in order to

reach the target
Dint

FD1_FLT_INC The amount the in-flight will be adjusted for the next feed if the
original cutoff did not result in a feed that is within tolerance.

Real

Table 4-1 Gain in Weight Feeder Tags

In Figure 4-8 we initiate the feed sequence. FEED_1 is the sequence mode. In Chapter 5Batch
Control we will discuss how the feed mode can be set when the sequence is initiated by a batch
controller. The mode will also allow the sequence to be stopped and still maintain the step that
the sequence is on. This will allow the sequence to be restarted.

In this first step, the mixer weight is saved into the variable FD1_START_WT. the bump count
is reset FD1_BUMP_CNT, and the bump latch is reset. The bump latch is used at the end of the
sequence as a flag to adjust the in-flight.

Figure 4-8 Gain in Weight Feeder Initialize

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 4-68

In Figure 4-9 we calculate the target weight by adding the start weight with the setpoint. The
inflight is then subtracted from the target to give us the cutoff weight. This calculation will
remain active during the entire sequence. This will allow the operator to change the setpoint if
necessary during the feed.

Figure 4-9 Gain in Weight Feeder Calculate the Cut-Off

In Figure 4-10 the feed valve is opened to begin the feed. The mixer weight is monitored until it
reaches the cutoff. At the feed cutoff, the step is incremented. In the next step, the valve will be
closed.

Figure 4-10 Gain in Weight Feeder Opening the Feed Valve

Chapter 4 State Logic

 4-69

In Figure 4-11 the low point and the high point are calculated. These values are then compared to
the mixer weight to see if the weight is within tolerance. The bump count is also checked. Again
these calculations and comparisons will remain active during the entire feed sequence.

Figure 4-11 Determining the Bump Count, the Low Point and the High Point

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 4-70

At this point the mixer weight has reached the cutoff. In Figure 4-12 we close the valve and start
a settling timer. This settling timer will allow the material that is in the pipe after the valve closes
to reach the mixer. This is the in-flight material. The settling timer will also allow the scale to
stabilize. After the scale has stabilized, the weight is checked to see if it is within tolerance. If the
weight is under tolerance then we begin the bump cycle provided that the bump limit has not
been reached. If the weight is over tolerance then we will display an alarm and ask the operator
to acknowledge the high weight alarm before ending the sequence.

Figure 4-12 Closing the Feed Valve and Checking the Bump, Low Point and High Point

Chapter 4 State Logic

 4-71

The sequence reaches step 30 if the weight is under tolerance. In Figure 4-13 the feed valve is
bumped for ½ second and then the sequence returns to step 20 where the feed valve is closed.
We also increment the bump count. FD1_BUMP_LAT lets us know that the feed was under
tolerance so when the sequence is ended the in-flight can be adjusted automatically.

Figure 4-13 Gain in Weight Feeder Bumping the Feed Valve to Achieve Tolerance

We reach step 40 when we have bumped 5 times and the weight is still under tolerance. At this
point it is up to the operator to continue the bump cycle by resetting the bump count or allowing
the sequence to continue to the end.

Figure 4-14 Gain in Weight Feeder Bump Alarm

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 4-72

We reach step 40 if the weight is over tolerance. An alarm is displayed and the operator must
press the push button to allow the cycle to end. We decrease the in-flight for the next feed
provided that the cycle did not bump and automatic in-flight adjustment is selected. If the cycle
has bumped and we get a high alarm, it means that after the cutoff, the weight was originally
under tolerance. This means that the bump must have caused the high alarm. Under this
condition the in-flight will be adjusted to account for the under tolerance condition. Also, the
bump time may be too long. This will cause to much material transfer into the mixer during the
bump.

Figure 4-15 Gain in Weight Feeder High Weight Alarm

In Figure 4-16 we adjust the in-flight if the weight was under tolerance and automatic in-flight
adjustment is selected.

Figure 4-16 Gain in Weight Feeder Adjusting the In-flight

Chapter 4 State Logic

 4-73

In Figure 4-17 we reset the feed mode and turn on a complete bit. I have chosen not to reset the
feed step to zero. In this case it would be up to the batch controller to reset the step and turn on
FEED_1 in order to initiate the next feed from silo 1.

Figure 4-17 Gain in Weight Feeder Complete

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 4-74

State Logic – Third Form
The third form state logic sets all of the auto bits that are controlled by the sequence at each step.
This is done by copying the preset state for each bit and setpoint into the destination of each
controller.

Table 4-2 shows the elements in a user defined data type with all of the auto bits and setpoints
that are affected by the sequence. This data type is called SEQ_AUTO. We then create a variable
for each step with this data type, STEP20_AUTO, STEP30_AUTO, etc. We also create a
destination with the same type that the valve controllers will use, CTRL_AUTO. I would not
create an array of type SEQ_AUTO and then use these array elements in the steps. If I need to
insert a step, I would have to move all of the elements in the array that follow the step I want to
insert. By using separate variables, I can just create a new variable of type SEQ_AUTO when I
need to insert a step.

UDT Member Description Type
VLV1_AUTO_SET Valve 1 auto set Boolean
VLV1_AUTO_RESET Valve 1 auto reset Boolean
VLV2_AUTO_SET Valve 2 auto set Boolean
VLV2_AUTO_RESET Valve 2 auto reset Boolean
VLV3_AUTO_SET Valve 3 auto set Boolean
VLV3_AUTO_RESET Valve 3 auto reset Boolean
VLV4_AUTO_SET Valve 4 auto set Boolean
VLV4_AUTO_RESET Valve 4 auto reset Boolean
VLV5_AUTO_SET Valve 5 auto set Boolean
VLV5_AUTO_RESET Valve 5 auto reset Boolean
LVL1_AUTO_SET Level controller 1 auto on Boolean
LVL1_SP Level controller 1 auto setpoint Real
LVL1_GEQ_SP Level controller Greater or Equal to Setpoint Boolean
LVL1_LEQ_SP Level controller Less or Equal to Setpoint Boolean
LVL1_DELAY_SP Level controller at setpoint delay Dint
TEMP1_AUTO_SET Temperature controller 1 auto on Boolean
TEMP1_SP Temperature controller 1 auto setpoint Real
TEMP1_GEQ_SP Temp. l controller Greater or Equal to Setpoint Boolean
TEMP1_LEQ_SP Temp. controller Less or Equal to Setpoint Boolean
TEMP1_DELAY_SP Temp. controller at setpoint delay Dint
DELAY_SP Delay timer Dint
Table 4-2 User Defined Data Type SEQ_AUTO

Chapter 4 State Logic

 4-75

In Figure 4-18 the step setpoints are copied to the controller auto setpoints. A jump to the
subroutine CONFIRM is made. The subroutine will set the transition PENDING_CONFIRM and
allow the sequence to continue to the next step.

Figure 4-18 State Logic Third Form Example Step

Like the first form state logic, the third form allows the sequence step to be changed by the
operator to any state, and all of the outputs will be set correctly for that state.

In Figure 4-2 we monitor the variable STEP20_AUTO, and set the auto bits to open the first 2
valves and close the remaining valves. Valves VLV1 and VLV2 are opened. Valves VLV3 and
VLV4 are closed. Valve VLV5 is not changed. The level and temperature controllers are also
unchanged.

Name Value Type
STEP20_AUTO.VLV1_AUTO_RESET 0 Boolean
STEP20_AUTO.VLV1_AUTO_SET 1 Boolean
STEP20_AUTO.VLV2_AUTO_RESET 0 Boolean
STEP20_AUTO.VLV2_AUTO_SET 1 Boolean
STEP20_AUTO.VLV3_AUTO_RESET 1 Boolean
STEP20_AUTO.VLV3_AUTO_SET 0 Boolean
STEP20_AUTO.VLV4_AUTO_RESET 1 Boolean
STEP20_AUTO.VLV4_AUTO_SET 0 Boolean
STEP20_AUTO.VLV5_AUTO_RESET 0 Boolean
STEP20_AUTO.VLV5_AUTO_SET 0 Boolean
STEP20_AUTO.LVL1_AUTO_SET 0 Boolean
STEP20_AUTO.LVL1_SP 0 Real
STEP20_AUTO.LVL1_GEQ_SP 0 Boolean
STEP20_AUTO.LVL1_LEQ_SP 0 Boolean
STEP20_AUTO.LVL1_DELAY_SP 0 Dint
STEP20_AUTO.TEMP1_AUTO_SET 0 Boolean
STEP20_AUTO.TEMP1_SP 0 Real
STEP20_AUTO.TEMP1_GEQ_SP 0 Boolean
STEP20_AUTO.TEMP1_LEQ_SP 0 Boolean
STEP20_AUTO.TEMP1_DELAY_SP 0 Dint
STEP20_AUTO.DELAY_SP 0 Dint
Table 4-3 Step 20 Auto Setpoints

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 4-76

In Figure 4-19 the outputs are programmed using the user defined variable CTRL_AUTO. Each
valve would be programmed in a similar way.

Figure 4-19 State Logic Third Form, Valve Output Logic

The first rung in the routine CONFIRM is shown in Figure 4-20. The step is checked to see if it
has changed. This will indicate that this is the first scan of the routine since the step change. The
bit RESET_TIMERS will then be used to re-initialize the timers used in the routine. The current
step is moved into the PREVIOUS_STEP variable

Figure 4-20 Confirm Routine, Reset the Timers

Chapter 4 State Logic

 4-77

In Figure 4-21 the valve position is confirmed. The confirm bits for each transition type will be
summed at the end of the routine. This will allow the sequence to continue to the next step. Each
valve would be programmed in the same way. This code is also in the CONFIRM routine.

Figure 4-21 Confirm Routine Valve Position Confirm.

In Figure 4-22 the level is compared against the setpoint. When the setpoint is reached the
confirm bit is turned on. The delay timer allows the sequence to remain at or above the setpoint
for the duration of the delay preset. If the level falls below the setpoint then the timer is reset.
Each comparison transition is programmed similarly.

Figure 4-22 Confirm Routine Setpoint Comparison Confirm

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 4-78

In Figure 4-23 the delay transition is shown. This transition does not have an enable like the
others. If a delay is not desired then the preset is set to zero for that step.

Figure 4-23 Confirm Routine, DELAY_CONFIRM

In Figure 4-24 all of the confirm bits for each transition are summed into the
PENDING_CONFIRM bit. This variable is then used to transition the sequence to the next step.
This is the last rung in the CONFIRM routine.

Figure 4-24 The end of the Confirm Routine Confirm Summation

Chapter 5 Batch Control
Batch control can be divided into two categories. There is the ISA-88.01 Batch Control
Standard1. And, there is all the rest. There are several companies who are selling products that
comply with the ISA standard. These products are usually very functional and very expensive.
The architecture usually consists of a computer where the recipes reside and a controller where
the phases reside. The computer controls the execution of the recipe and instructs the controller
when to execute each phase in the recipe.

We will consider a method of batch control that implements part of the ISA standard. This type a
batch architecture is especially valid for an OEM user who is cost conscious and can reuse the
batch engine repeatedly on new systems. We will use a database to store our recipes and then
download those recipes into the controller where they will be executed. A phase is a specific task
that can be included in a recipe. A recipe will consist of phases and parameters which are
executed in a sequence that can be changed. Each phase will be represented by a unique number.
These numbers will be stored in PLC memory in the order that the phases are to be executed.

Figure 5-1 The batching process and instrumentation diagram P&ID

1 Refer to the ISA (Instrument Society of America) website for a copy of the 88.01 Batch standard.
http://www.isa.org . Or, refer to Rockwells RSBatch online manual for their implementation of the standard.
http://www.ab.com/manuals/swrsi/BATCHTD001AENP.pdf

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-80

Batch Logic
The batch logic is divided into the following groups.

• Recipe Management – This block of logic will control the editing and manipulation of
each recipe.

• Batch Control – This block of logic will control how and when each phase is executed in
the recipe.

• Phase Logic – Each phase is programmed separately. The batch control logic will initiate
the phase. When the phase is complete its status is changed to complete. This complete
status can be monitored to allow the sequence to continue.

• Controller Logic- Each physical device such as a motor or valve will have logic that will
allow the device to be controlled by the phase or by manual control.

Chapter 5 Batch Control

 5-81

Figure 5-2 shows how the batching program can be organized.

Figure 5-2 Batching program organization

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-82

Recipe Organization
We can organize the batch data into a few user defined data type arrays. Recipe data is stored in
one array. Phase data is stored in another. Another array will contain the report data. Table 5-1
shows the user defined data type for the recipe. An array of this data type will constitute a recipe
or sequence of phases that are executed by the batch controller.

UDT Member Description Type
STEP_ID Step Id Dint
PHASE_ID Phase ID Dint
P1 Parameter 1 Real
P2 Parameter 2 Real
P3 Parameter 3 Real
Table 5-1 Recipe User Defined Data Type REC

When a phase is initiated, the recipe parameters will be copied to the phase parameters. This will
allow the phase parameters to be changed manually without affecting the recipe. Also if the
phase is initiated externally outside the recipe sequence, it will have its own copy of the recipe
parameters. These phase parameters will be indexed by the phase number. The file length is
determined by the maximum number of phases.

Table 5-2 lists each variable in the phase user defined data type.

UDT Member Description Type
RS Running Start Boolean
R Running Boolean
RC Running complete Boolean
RP Report Pointer Dint
SI Step Index Dint
P1 Parameter 1 Real
P2 Parameter 2 Real
P3 Parameter 3 Real
Table 5-2 User Defined Data Type PHASE

This approach is efficient in the way it accesses all of the phases in the recipe. However, it is
wasteful in that all phases will not use all of the parameters that have been reserved in memory
for them. Another approach would save a parameter pointer for each phase. All of the parameters
would be stored in the same file and stacked one on top of the other. This approach would be
more efficient in memory but it would require more programming overhead to deal with the
variable length parameter storage. We could also stack the phases and parameters in the same file
in either a fixed or variable length block of memory. The phase type would determine how much
memory it would use in the variable length method. The phases and parameters can also be
organized contiguously in memory with each phase and parameters etc. requiring a fixed amount
of memory. I would tend to steer away from any method requiring a variable length block of
memory. This will simplify the logic required to deal with the data. Also, the type of processor
that you are using may determine the best method of organizing the data.

Chapter 5 Batch Control

 5-83

A record of the batch history would include report parameters for each instance of each phase in
the recipe. This batch history can be saved in its entirety in the PLC until the recipe has
completed or the history data can be uploaded to an HMI individually for each phase as it occurs
during the execution of the recipe.

Let’s assume we are storing all of the report parameters in the PLC until the end of the batch. If
we design our recipe where a phase can be ran more than once during the execution of the recipe
then we need to be able to save more report parameters than we have steps in the recipe. If we
are looping through some phases then the number of initiated phases can quickly exceed the
amount of memory reserved for the report parameters. This can be handled by truncating the
batch report when the memory is exceeded. Or, we can store the report parameters with a step
index thus saving only the report parameters for the last instance of the phase that has completed.

Table 5-3 shows the user defined data type for the report parameter array. As each phase is
initiated the batch controller will increment a report pointer. This pointer value is then associated
with the current phase that is initiated. This pointer will then give the phase a location for
recording its batch parameters so that each phase will be recorded in the order that it is initiated.
For example let’s assume that a feed material phase with a phase ID of 4 is at step 15 of the
recipe. Let’s also assume that there was some sort of loop in the recipe sequence which allowed
the report pointer to reach 21. Then as the batch controller initiates step 15 the data for that
phase is saved in position 21 of the recipe report array.

UDT Member Description Type
STEP_ID Report Step Dint
PHASE_ID Report Phase Dint
START_TM Report Phase Start Time Time
END_TM Report Phase End Time Time
MIX_WT Mixer Weight Real
MIX_TT Mixer Temperature Real
P1 Report Parameter 1 Real
P2 Report Parameter 2 Real
P3 Report Parameter 3 Real
Table 5-3 Report Parameter User Defined Data Type REP

Figure 5-3 shows the data flow for the recipe parameters. The stored recipes will be stored in an
array called STG[]. The running recipe is REC[]. The phase parameters are stored in array
PHASE[]. The controller parameters are stored in local controller variables. To start a batch the
recipe is selected from recipe storage. The recipe is then copied into the running recipe. At this
point the operator could modify the parameters in the running recipe without effecting recipe
storage. The batch is then started. As each phase is initiated the recipe parameters are copied to
phase parameters. The operator could modify the phase parameters after the phase is started or
the phase could be executed externally outside of the batch controller. In this case the phase
parameters could be modified without changing the running recipe parameters. When the phase
is initiated the phase logic copies the phase parameters to the controller parameters. For example,
the start heat phase would copy the temperature setpoint from the start heat phase parameters to

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-84

the local heating controller. The mode of the controller could then be changed to local control,
and the setpoint of the heat controller could be changed without changing the phase parameters.

Figure 5-3 Recipe Parameter Data Flow

Chapter 5 Batch Control

 5-85

Recipe Management
Before you can determine how to program the recipe management in the PLC we need to ask and
answer a few questions.

• How many recipes are there?
The answer to this question may determine how we store the recipes. If there are only a
few recipes we may be able to store them all in the PLC. If there are many we will need
to store them on a computer and download them when they are needed.

• Who is going to be responsible for managing the recipes?
The answer to this question may determine what type of application will be required to
develop and mange the recipes.

• Where are the recipes going to be stored?
• What kind of hardware is available to manage and edit the recipes?

We can either manage the recipes from a computer and then download them to the PLC
or we can edit recipes in the plc directly from a HMI or graphic terminal.

• How much time and money do you want to spend to write recipe management logic?
Time is money. You have to weigh your investment before you begin programming. We
will go into detail for the ladder logic portion of batch control. If you determine that you
need a database then you have to apply additional expertise in database and
communication programming.

The batch controller will execute one copy of the recipe. This is called the running recipe. The
recipe is edited using the edit recipe. The running recipe can also be viewed through the HMI. It
must however be loaded into the edit recipe for editing. Figure 5-4 shows how the recipes can be
organized.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-86

Figure 5-4 Recipe Storage Options

Batch Control
There are several ways that you can design the way your phases are executed. There are several
reasons why you may choose one method over the other. These could include PLC memory
limitations, Recipe simplicity, or data file length limits.

The first method would require that each phase complete before the sequence continues. This
would eliminate the need for any transitions since they would be built into the phase. The batch
controller would then only have to monitor the complete status of the current phase and then
continue to the next phase. This would make your recipes simple but by doing this, the batch
controller would only allow one phase at a time to be running.

With another approach we would include a continue flag with all or some phases. This flag
would be considered an additional parameter in each phase. The continue flag would be available
to the operator or recipe manager. If the flag were set the batch controller would initiate the
phase and then continue to the next. If the flag were not set the batch controller would wait for
the phase to complete before continuing to the next phase. An additional phase would be needed
to check the complete status of a phase. This phase would then be considered a transition. One of
the parameters to this phase would be the phase number which would act as a pointer to the
phase whose status we are checking. This approach will allow more than one phase at a time to
be running without necessarily increasing the size and complexity of the recipe.

Another approach would make the batch controller initiate the phase and then continue to the
next. The recipe would then consist of phases and transitions. This approach more closely

Chapter 5 Batch Control

 5-87

resembles the ISA-88.01 batch standard but it also makes the recipe longer and more complex.
We could store phases in one file and transitions in another. If we did this then there would need
to be a one to one relationship between phases and transitions so that we could use a single
pointer to point to both. For those phases that we would not want to stop and wait, we would
make a True or null transition. We could also store the phases and transitions in the same file. By
doing this we only need to include in the recipe those transitions where we are waiting for some
event. Since the phases and transitions reside in the same space we could consider them the
same. Transitions would then be hybrid phases that would cause the batch controller to stop and
wait for the phase to complete. This method would still use the continue flag to let the batch
controller know when to stop or continue without waiting for the phase to be done. The only
difference would be the continue flag would not be available to the recipe manager.

Up until now we have spoke of the batch controller as either stopping and waiting for the phase
to complete, or initiating a phase and then continuing. At any given point in time we could
monitor the batch and we would have one phase or transition where the batch controller was
waiting before it would continue. This type of batch control will allow more than one phase to be
active at a time but only in a limited way. In order to achieve true parallel branching in your
recipe we will consider an additional approach. The batch controller will scan the recipe in a
cyclical fashion. Each phase and transition will have an active status and a complete status. As
the batch controller scans the recipe it will consider the current phase and the next phase. If the
status is active the batch controller will move to the next phase without taking any action. If the
phase is complete then the batch controller will reset the active status. The next phase is marked
as active. If the next phase had been run previously then the complete status is cleared. A begin
branch phase will allow multiple phases to be activated. This phase activates the next phase and
then causes the batch controller to jump to the next branch phase. An end branch phase causes
the batch controller to continue on the next phase. Transitions would be treated like phases.
When the transition condition is true then the transition phase would be complete and the next
phase would be activated by the batch controller. As you can see this method would allow true
parallel branching in a recipe. However, this approach is complex and most processes I have
found that most small to medium sized applications don’t require true parallel branching in the
recipes.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-88

In Figure 5-5 the batch reset push button initializes the batch control variables. The report
parameters are cleared and the phase status and parameters are cleared. The report parameter
array is cleared by copying element zero of the array to element 1 with a length of 199. The copy
instruction works by copying the first element of the source to the first element of the
destination. Then the second element is copied and so on. Since the source and destination arrays
are the same, this has the effect of copying the first element, in this case REP[0] to the remaining
elements in the array. Since the report parameters will be stored in the REP array beginning with
element 1, element zero can be used to clear the array.

Figure 5-5 Batch Control Reset

After the sequence has been reset, the start push button is used to set the sequence step to the first
phase in the recipe. The batch controller can either be in the auto or single step mode.

Figure 5-6 Batch Control Initiate the Batch Controller

Chapter 5 Batch Control

 5-89

In Figure 5-7 the phase id pointed to by the sequence step is moved from the recipe user defined
array into the variable SEQ_PHASE. The transition bit is used to identify which phases that the
batch controller must stop at and wait for the complete bit to be set by the phase. The transition
bit is similar to the continue flag discussed earlier but it is not stored in the recipe or the phase
array. And, it can not be changed as part of the recipe.

Figure 5-7 Batch Control Identify Transition Phases

In Figure 5-8 the phase is started by setting the running start bit (.RS) for the phase. The running
complete bit is reset (.RC). The UPDATE_PHASE bit is set to update the phase parameters in
the next rung. The sequence phase must not be equal to zero. It will be zero when the end of the
recipe is reached.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-90

Figure 5-8 Batch Control Reset the Phase and Prepare to Update Parameters

In Figure 5-9 the parameters are copied from the recipe parameters into the phase parameters.
The report pointer is incremented and is moved into the phase parameter RP. The phase will use
this pointer to copy its report parameters into the report array. We also put the phase ID in the
report array along with the step ID.

UPDATE_PHASE

MOV
REC[SEQ_STEP].P1
PHASE[SEQ_PHASE].P1

MOV
REC[SEQ_STEP].P2
PHASE[SEQ_PHASE].P2

MOV
REC[SEQ_STEP].P3
PHASE[SEQ_PHASE].P3

LES
REP_PTR
300

ADD
REP_PTR
1
REP_PTR

MOV
REP_PTR
PHASE[SEQ_PHASE].RP

MOV
SEQ_PHASE
REP[REP_PTR].PHASE_ID

MOV
REC[SEQ_STEP].STEP_ID
REP[REP_PTR].STEP_ID

Figure 5-9 Batch Control Update the Phase Parameters and Set the Report Pointer

If the phase is a transitional then the complete bit must be set by the phase logic.

Chapter 5 Batch Control

 5-91

Figure 5-10 Batch Control Wait for Transition Phases to Complete

In Figure 5-11 the sequence step is incremented to point to the next phase in the recipe. The
batch control step CTRL_STEP is reset to initiate the next phase on the next program scan.

Figure 5-11 Batch Control Increment the Batch Controller Sequence Step

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-92

Phase Logic

Defining the phases
The following is a list of phases for a mixing process that we will use as an example. An alias is
defined for each element in the PHASE array.

Alias Array Phase Name Parameter 1 Parameter 2 Parameter 3
START PHASE[1] Start
END PHASE[2] End
FEED1 PHASE[3] Feed Material 1 Amount
FEED2 PHASE[4] Feed Material 2 Amount
TARE PHASE[5] Tare Scale
START_HEAT PHASE[6] Start Heat Temperature
END_HEAT PHASE[7] End Heat
START_COOL PHASE[8] Start Cooling Temperature
END_COOL PHASE[9] End Cooling
START_AGIT PHASE[10] Start Agitator RPM
STOP_AGIT PHASE[11] Stop Agitator
DELAY PHASE[12] Delay Preset
IF_PV PHASE[13] If Process

Variable
PV pointer Setpoint Operator

IF_OK PHASE[14] If OK Operator
Prompt

Message
Pointer

Value

IF YES PHASE[15] If Yes Operator
Prompt

Message
Pointer

Value Else GoTo

IF_DONE PHASE[16] Wait For Phase
Complete

Step Number

GOTO PHASE[17] Go To Step Step Number
Table 5-4 Phase List

Chapter 5 Batch Control

 5-93

Each phase will begin with the same logic as shown in Figure 5-12. The phase start time is
recorded in the report parameter. The word “Phase” would be replaced with the phase alias
name. For example, Phase.R would become START.R for the start phase. The report pointer,
Phase.REP_PTR, is set in the batch control logic. The report parameters are saved in the array
REP[] of user defined variables described earlier in Table 5-3. The batch engine will turn on the
phase running start bit Phase.RS. The batch engine will also reset the start phase step index
(Phase.SI). The step index is set to 10 and the phase running bit, Phase.R, is set.

Figure 5-12 Common Phase Logic Set the Start Time and Run

In Figure 5-13 additional report parameters are recorded. This logic will remain active as long as
the phase is running. Again this rung would be repeated in the logic for each phase. The mixer
weight and mixer temperature are recorded. The phase parameters are recorded. Any changes
that the operator makes to the phase parameters while the phase is active will show up in the
report parameter. The phase end time is also recorded.

Figure 5-13 Common Phase Logic Record the Phase Parameters and Set the End Time

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-94

Figure 5-14 contains the logic that is repeated at the end of each phase. The step index can be
adjusted to match the phase sequence.

Figure 5-14 Common Phase Logic Phase Running Complete

Chapter 5 Batch Control

 5-95

Start
The Start phase will close all valves and check any conditions that are necessary before the batch
begins.

In Figure 5-15 we reset the auto bit for each valve ie UNIT_1_SV_AUTO. This bit will be used
to open or close the valve when the mode of the valve is auto. The mode of the valve is changed
to auto with the auto select bit ie UNIT_1_SV_SSA. The start phase could also be used to clear
totals, set the start batch time, etc. The Start Phase could also just check to make sure that all of
the devices are in the auto mode and alarm if they are not. This would prevent the phase from
overriding an operator action.

Figure 5-15 Start Phase Logic

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-96

End
The End phase will close all valves and check any conditions that are necessary to end the batch.
The end phase would be used at the end of the recipe to do any housekeeping that is necessary to
put the mixer in a resting state. It could also be used to increment a batch count.

Figure 5-16 shows the auto bit being reset for all of the valves.

Figure 5-16 End Phase Logic

Chapter 5 Batch Control

 5-97

Feed Material 1
The Feed Material 1 phase will open the feed valve for material 1 and feed in the amount
specified in parameter 1. A cut-off will be calculated based upon the in-flight. When the cut-off
is reached, the valve will close and the tolerance timer is started. When the tolerance time is
reached the weight is checked to see if it is in tolerance. If the weight is within tolerance the
phase status is set to complete. If the weight is under tolerance then an alarm will occur and the
operator must manually feed additional material into the tank or press a continue button that will
allow the phase to complete. If the weight is over tolerance then an alarm occurs and the operator
must hit a continue button to allow the phase to complete.

We check to make sure that the feed amount is not zero and then we reset the flow total
FT1_TOTAL. The feed valve is opened and the step is incremented. If a recipe exists that does
not require this feed, then the feed amount will be set to zero. The feed phase could be eliminated
from the recipe also, but this would mean that we would have to keep track of an additional
recipe. The feed amount is stored in the recipe, in parameter 1. The batch controller moves this
parameter into a local phase parameter. In this case FEED1.P1. The phase could act directly on
the recipe parameter without moving it into a local phase variable. However, there are several
reasons why the recipe parameter should be moved to a local phase variable. By doing this we
make it easier to examine the amount from a computer terminal. Also, if the phase is executed
externally outside the control of the batch controller then the amount can be entered locally
without changing the recipe. If the phase fails to complete because of insufficient material the
operator has the option of changing the feed amount in order to allow the phase to complete. For
these reason it is always recommended that any recipe parameters be moved to local phase
parameters.

Figure 5-17 Feed Material 1 Phase Open the Feed Valve

In this example the flow total, FT1_TOTAL, is incremented when valve FCV1 is opened.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-98

In Figure 5-18 the feed cutoff is calculated based upon the inflight. The inflight is the amount of
material that will flow through the totalizer before the valve completely closes. If the mixer
weight is used to shut off the feed valve then the inflight would be the amount of material that
will drain into the mixer after the valve is closed. This value is usually measured during
commissioning. If the same material is always fed through the same line at the same rate, then
the inflight may not have to be adjusted. However, if the inflight can change based upon the
process then some method to change this value should be considered. One method of adjusting
the inflight would be to automatically increment or decrement this value if a tolerance alarm
occurs. If the inflight was based mostly on the material being fed then it could be put into the
recipe as a parameter.

The sequence will wait for the total amount fed to reach the cutoff amount. The valve is then
closed and the feed phase step index is incremented. This is the normal operation. Now let’s
consider what happens if there is insufficient material to complete the feed. The operator can
change the amount, FEED1.P1, in order to make the phase continue to the next step. We could
also have programmed a bypass switch around the greater than or equal to instruction (GEQ). Or
we could allow the operator to change the step index directly from a computer terminal.

Figure 5-18 Feed Material 1 Phase Open the Feed Valve

Chapter 5 Batch Control

 5-99

In Figure 5-19 the amount fed is checked to see if it is within tolerance. If the feed total is out of
tolerance then an alarm is sounded and the operator must press a push button to cause the
sequence to continue. The tolerance is in the same units as the feed amount such as pounds or
gallons. The tolerance could also be expressed in percentage. In this case the low point and high
point would be calculated from this percentage. The tolerance could be a recipe parameter or a
local phase variable. The feed tolerance timer has two functions it allows the valve to close and
the totalizer to settle. It also allows the pipe to drain into the mixer after the valve is closed
before continuing to the next step.

Figure 5-19 Feed Material 1 Phase Check for Tolerance

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-100

Feed Material 2
The Feed Material 2 phase will work the same as the Feed Material 1 phase. Your process will
dictate the number and types of feeds.

Tare Scale
The Tare Scale phase will issue a tare command to the scale. The phase will complete when a
valid tare is achieved.

In Figure 5-20 we set the tare output on for 2 seconds and then increment the step.

Figure 5-20 Tare Scale Phase Logic

Chapter 5 Batch Control

 5-101

Start Heat
The Start Heat phase will enable the jacket heat controller with the setpoint in parameter 1. The
temperature control valve is an on off valve. The controller will include a deadband. The End
Heat phase is used to disable the controller. The phase complete status will be set immediately.
The If Process variable phase is used to check the temperature in the process if necessary.

The start heat phase is started and ended the same as the previously described phases. In Figure
5-21 the setpoint of the start heat phase is passed to the heat controller and the heat controller is
turned on.

Figure 5-21 Start Heat Phase Logic

End Heat
The End Heat phase will disable the jacket heat controller.

Figure 5-22 End Heat Phase Logic

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-102

Start Cooling
The Start Cooling phase will enable the jacket cooling controller with the setpoint in parameter
1. This phase will work the same but opposite of the Start Heat phase.

Figure 5-23 Start Cooling Phase Logic

End Cooling
The End Cooling phase will disable the jacket cooling controller.

Figure 5-24 End Cooling Phase Logic

Chapter 5 Batch Control

 5-103

Start Agitator
The Start Agitator phase will start the agitator with a setpoint in RPM specified by parameter 1.
The phase complete status will be set when the Agitator reaches the setpoint. A tolerance value is
subtracted from the agitator setpoint to account for error in the feedback RPM of the agitator.

Figure 5-25 Start Agitator Phase Logic

Stop Agitator
The Stop Agitator phase will, you guessed it, stop the agitator.

Figure 5-26 Stop Agitator Phase Logic

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-104

If Process Variable
The If Process Variable phase is a transitional phase. The batch sequence will stop at this phase
until the phase is complete. The first parameter PV Pointer, is a number that determines which
process variable will be tested. Table 5-5 shows the PV Pointer table.

Pointer Process Variable
1 Temperature
2 Scale Weight
3 Agitator RPM
4 Process Timer
Table 5-5 If Phase PV Pointer Table

Parameter 2 is the value the process variable will be tested against. Parameter 3 is a number
which represents which operator will be used to test the process variable. Table 5-6 lists the
value of the operator.

Operator
1 Equal to
2 Less Than
3 Less Than or Equal to
4 Greater Than
5 Greater Than or Equal to
Table 5-6 If Pv Comparison Operator Table

Chapter 5 Batch Control

 5-105

Parameter 1, IF_PV.P1, determines which process variable is tested.

Figure 5-27 If PV Phase Set Process Variable for Comparison

Parameter 2, IF_PV.P2, determines what test is performed. Parameter 3, IF_PV.P3, is the value
that the process variable is compared to.

Figure 5-28 If PV Phase Wait for True Compare

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-106

Delay
The Start timer phase will reset and then a process timer. This timer can be used to agitate for a
certain amount of time, or to hold heat for a preset time. The If Process Variable phase can be
used to test the value of the process timer in the recipe. Or, the phase will complete when the
process timer is done.

In Figure 5-29 we reset the timer.

Figure 5-29 Delay Phase Reset the Delay Timer

In Figure 5-30 the retentive timer, RTO, instruction is started. If the sequence is put into hold the
timer will stop. When the timer is complete the step index is incremented and the phase will
complete. Parameter 1 ,DELAY.P1, is the phase parameter that contains the preset of the timer.
This parameter is set from the recipe parameter. The value can be changed by the operator if
necessary while the phase is active.

Figure 5-30 Delay Phase Wait for Delay Timer

Chapter 5 Batch Control

 5-107

If Ok Operator Prompt
When the If Ok Operator Prompt phase is active a message is displayed on the batch operator
terminal. Parameter 1 of the phase contains the message pointer. The message array size is 20 so
we make sure that parameter 1 does not exceed this value before we use it as a pointer.
Parameter 2 contains a value that can be displayed along with the message. The operator is
required to press an ok button on the screen before the phase will complete. This phase can be
used to prompt the operator to do a hand add to the mixer for example. The If OK phase is a
transitional phase. The batch sequence will stop at this phase until the phase is complete.

Figure 5-31 If OK Phase Display the OK Message to the Operator

In Table 5-7 we show the strings in the OK_MSG[] array. We used a message pointer instead of
the actual message in the recipe parameter to reduce the amount of processor memory used for
storing messages.

OK_MSG[1] Add syrup lbs
OK_MSG[2] Add butter lbs
OK_MSG[3] Add sugar lbs
OK_MSG[4] Add cocoa lbs
Table 5-7 OK Phase Operator Messages

In Figure 5-32 the one shot of the ok push button causes the step index to be incremented. The
one shot is necessary if there are consecutive ok messages that the operator must answer in the
recipe. The one shot forces the operator to release and then press the push button again for each
message. If the phase is running, i.e. IF_OK.R is on. Then the ok message is displayed along
with the OK push button. When the phase is complete the OK push button is made invisible
indicating that the question has been answered. The message can then remain visible letting the
operator see the last message that was displayed.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-108

Figure 5-32 If OK Phase Wait for the Ok Button From the Operator

If Yes Operator Prompt
The if Yes Operator Prompt phase displays a message to the operator specified by parameter 1 of
the recipe. Parameter 2 contains a floating point value that is displayed along with the message.
A Yes push button and a No push button are displayed to the operator. If the operator presses the
Yes push button, the sequence continues to the next step. If the operator presses no, then the
sequence step is changed to the If Else step which is set by parameter 3 of the recipe. The If Yes
phase is a transitional phase. The batch sequence will stop at this phase until the phase is
complete or the sequence step has been changed by the phase.

YES_MSG[1] Take a sample (yes, no)
YES_MSG[2] Sample ok (yes, no)
Table 5-8 If Yes Phase Messages

In Figure 5-33 the message is displayed along with a value in parameter 2.

Figure 5-33 If Yes Phase Display the Message to the Operator

Chapter 5 Batch Control

 5-109

In Figure 5-34 we check to see which push button the operator has chosen.

Figure 5-34 If Yes Phase Wait for the Operator Response

In Figure 5-35 the operator has chosen no. We then increment a pointer to find the matching step
ID in the recipe. The pointer is incremented by 1 each program scan until the step ID is found.

Figure 5-35 If Yes Phase When No is Selected Set the Else Step for the Batch

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-110

In Figure 5-36 we compare the step ID pointed to by ELSE_STEP. When we find the correct
step, the sequence step number is changed, the phase running bit is reset and the phase complete
bit is set.

Figure 5-36 If Yes Phase Set the Batch Controller to the Else Step

Chapter 5 Batch Control

 5-111

Wait for Phase Complete
The Wait for Phase Complete phase monitors the complete bit for a phase within recipe.
Parameter 1 is the step ID of the phase that is monitored. This phase is a transitional phase. The
batch sequence will stop at this phase until the phase is complete

Figure 5-37 If Done Phase Increment the Phase Done Pointer

In Figure 5-38 the recipe STEP_ID is checked to see if it matches parameter 1. The phase
number for that step in the recipe is moved to PH_PTR. The complete status is then checked for
that phase and the step index is incremented allowing the phase to complete and the recipe to
index to the next phase.

Figure 5-38 If Done Phase Check if the Phase is Complete

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 5-112

Go to Step
The Go to Step phase causes the batch sequence to jump to the recipe step with a step ID that
matches parameter 1.

Figure 5-39 Go to Step Phase Increment the Go To Pointer

After the step ID is found in the recipe the sequence step is changed.

Figure 5-40 Go to Step Phase When the Phase is Found Set the Sequence Step

Chapter 5 Batch Control

 5-113

Creating a Recipe
In Table 5-9 we put a simple recipe together using the phases that we have defined. The step id is
used as a label where other phases can refer to the step. The STEP_ID is incremented by 10 for
each step of the phase. This allows us to insert a step without renumbering all of the parameters
that refer to steps in the recipe. The IF_DONE phase is used to wait for the completion of some
phases. Other phases are assumed to be complete. We could however test for completion of each
phase if there is some doubt. Also note that FEED1 and FEED2 will both be running while the
operator is dumping two hand-add ingredients with the IF_OK phase.

Step Step_ID Phase P1 P2 P3 Comment
1 10 START Close all valves
2 20 TARE Tare the scale
3 30 FEED1 500 Start 500lb of feed 1
4 40 FEED2 300 Start 300lb of feed 2
5 50 IF_OK 1 120.5 Msg 1, Add syrup lbs, 120.5
6 60 IF_OK 2 4.0 Msg 2,Add butter lbs, 4.0
7 70 START_AGIT 50 Agitate at 50 rpm
8 80 IF_DONE 30 Wait for feed 1, ID 30
9 90 IF_DONE 40 Wait for feed 1, ID 40
10 100 START_HEAT 160 Heat to 160

11 110 IF_PV 1 5 160 Wait for GEQ 160 F°

12 120 STOP_HEAT
13 130 DELAY 300 Hold heat for 5 minutes
14 140 IF_DONE 130 Wait for delay to be done
15 150 STOP_AGIT
16 160 START_COOL
17 170 IF_PV 1 2 95 Wait for LEQ 95 F°

18 180 STOP_COOL
19 190 END
Table 5-9 Recipe Table

Chapter 6 Sequential Machine Logic
Sequential Machine logic defines steps or states through which your system progresses. Relay
logic can be used to execute those steps.

The Sequence Diagram
Figure 6-1 shows a sequence diagram.

Figure 6-1 The Sequence Diagram

The sequence begins with step 1 and continues until the last step is executed. The sequence can
not restart at step 1 until the end of the sequence has been reached and the sequence has been
reset.
Let’s assume we have a machine that we are programming. If this machine were to operate on
one part at a time then there may only be one sequence that would define the operation of that
machine. If the machine had several stages to it, and each stage operated on a part, then each
stage would have at least one sequence that would define its operation. As the part moves from
one stage to the next the last step of the first sequence could be part of the conditions that would
initiate the subsequent sequence. The first sequence could then be reset allowing the next part
into the first stage.

Chapter 6 Sequential Machine Logic

 6-115

Programming the steps

Figure 6-2 shows how the SFC is translated into ladder logic.

Figure 6-2 Sequential Machine Control Step Logic

Rung 1 represents all of the initial conditions that must be satisfied in order for the sequence to
start. The initial conditions should reflect the machine or process state that would allow it to
execute the automatic sequence. The SEQ_READY bit is the sum of all of these conditions and
is set to the on state when all of the initial conditions are met. Although there are only 3 initial
conditions shown in rung 1, more conditions can be added and multiple rungs can be summed
into the SEQ_READY bit. Once all of the initial conditions are met, there should be one
transition that would normally start the sequence. This could be a start push-button, a limit
switch, or a photo-eye for example. The first transition could have been put in with the initial
conditions and the function would be logically the same. However, by separating the first
transition from the initial conditions a distinction can be made between them. Each step cascades
into the next. In Rung 2, if step 1 is on, we are waiting for transition 2 to occur before the
sequence proceeds to step 3. The sequence continues until the last step is reached, step (N),
where N is the number of steps in the sequence.

A transition can include more than one limit switch or interlock for example. You may be
tempted to put multiple transitions in each step that would allow the sequence to continue. Try to
put in only those conditions that are necessary to verify that the machine or process is in the
correct state in order to move to the next step. The transition should indicate clearly what the

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 6-116

normal condition is that will cause the sequence to progress. Remember that we verified that the
machine was in safe and known position when we started the sequence in step 1. And, any
anomalies that occur during the execution of the sequence will be checked using fault logic.

The transitions in the examples given will be replaced by the actual limit switch or other device
that causes the sequence to progress. No internal bit is defined for the transition.

Each step in the sequence is represented by an internal bit i.e. STEP_1. The step bit will be used
later in the program to determine the state of outputs that are to be affected by the sequence.

I like to include the step number in a tag that is used as a step bit. An example would be
LFT1_STEP1. Translated this is lift 1 step 1. In this way I can quickly identify what type of bit it
is without having to read the associated description. The description would say “Lower clamp
and Raise the Lift”. The description then identifies 2 outputs that are affected by the step. The
down side to putting the step number in the tag however is that if you need to insert a step into
the sequence you will have to renumber all of your steps or add an additional suffix to the step.
An example would be LFT1_STEP1A. I like to reserve the “A”, “B” etc. suffixes for branching
steps. This means that we will have a conflict in the naming convention. If your sequence has a
lot of steps you may want to number your steps by 10. In this way, you can insert steps into your
sequence without having to renumber all of your steps.

The ladder logic implementation of the sequence differs from the SFC in one way that is worth
noting. In an SFC the step becomes active when the previous transition becomes true. The step
remains active until the subsequent transition becomes true. At that time the step becomes
inactive and is changed to a complete status. In the ladder logic form, the step remains active
until the entire sequence is complete. At which time the END_CYCLE bit is energized and the
sequence resets by resetting each step. This is important as you will see later because when we
program the outputs we can set an output to come on at one step and go off at another. You
might say that we could have done the same thing by latching an output-auto bit that would turn
on the output when a step comes on and unlatch it on a subsequent step. This is true, but the
disadvantage to this approach is that if you are examining the output rung, you can not determine
which step has turned the output on or off.

We could also have latched on the step and then unlatched that step in a subsequent step. This
method introduces several problems. The first problem is that a step can be latched and then
unlatched before rest of the program sees the step on. This will occur if two consecutive
transitions are true. We could overcome this by introducing an additional rung or branch that
would delay the unlatch by one scan. Another disadvantage to latching and then unlatching the
step is that when examining the sequence it is difficult to zero in on the step that is active. The
reason for this is if you examine a rung prior to the current step, the step will be off. If you
examine a rung past the current step, the step will also be off. If however, the steps remain on
and you examine a rung prior to the current step then you know to scroll down to get to the
current step. If you examine a rung past the current step then you know to scroll up to get to the
current step.

Chapter 6 Sequential Machine Logic

 6-117

Figure 6-3 Sequential Machine Control Manual Mode

Figure 6-3 shows how the auto mode can be implemented. AUTO_SELECT is an input, either
from an HMI or a hard-wired selector switch wired to an input on the PLC. If we are using an
HMI then we would use AUTO_SELECT to turn on the internal bit AUTO_MODE. This will
synchronize the HMI input with the rest of the program. If we are using a hard-wired switch to
an input then we do not have to synchronize the input. Since in most processors the inputs are
scanned at the beginning of the program scan, the entire program will see the same state of that
input. When an HMI is used to toggle an internal bit in the PLC, this is usually done
asynchronous to the program scan. That means that the bit can change states anywhere in the
program. By using AUTO_SELECT to turn on AUTO_MODE all of the program following this
rung will see the same state in the same scan. I have shown the auto logic here because it will be
used next to end the cycle. However, we could also move these rungs of the auto logic in Figure
6-3 to the beginning of the sequence logic for clarity if we wanted. You must maintain the order
of these rungs for the MANUAL_MODE to work correctly. We will use the AUTO_MODE later
to leave outputs in their last state when transitioning from the auto mode to the manual mode.
We will use MANUAL_MODE to transition outputs to the off state when going from the auto
mode to the manual mode. MANUAL_MODE will change states 1 program scans after
AUTO_MODE changes state. This will allow the END_CYCLE bit to kill the sequence which in
turn will turn all of the outputs off prior to the AUTO_MODE bit going to the off state.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 6-118

Programming the end of cycle
Figure 6-4 shows how the END_CYCLE bit is programmed.

Figure 6-4 Sequential Machine Control End of Cycle

The END_CYCLE bit comes on when the sequence completes or when the machine is put in the
manual mode (or not AUTO_MODE). Each step bit remains on until the cycle completes. The
END_CYCLE bit then resets all of the steps. It may be that you need to keep the machine in
manual without resetting the sequence. If so then exclude the not AUTO_MODE bit. You will
still need some way of resetting the sequence if the cycle does not complete normally. A separate
cycle reset button could be used.

Programming a timed step
Figure 6-5 shows how a timed step can be implemented.

Figure 6-5 Sequential Machine Control Timed Step

Chapter 6 Sequential Machine Logic

 6-119

Maintaining the step with power loss
Figure 6-6 shows how to implement the step logic in order to maintain the auto sequence when a
power loss occurs on the PLC. You would also have to ensure that a power loss to the auto mode
will not turn on the end of cycle.

Figure 6-6 Sequential Machine Control Latched Step

Programming the Outputs

Bumpless transfer to manual
Figure 6-7 shows how the outputs are programmed. The step bits will remain on as long as the
system remains in auto. We can see in this example the output will come on at step 1 and go off
at step 3. Also, the output will come on at step 5 and remain on until the end of cycle. You can
see that the output can then be programmed to come on and go off without having to latch up any
bits at one step and unlatch them at another. This is one of the main reasons why I like this
method over others. You can in one rung see how the sequence affects the output. To achieve a
bumpless transfer from auto to manual we use the AUTO_MODE bit described earlier. One of
the most important advantages of leaving the step bits on as the sequence progresses is that we
can directly program the outputs. By doing this we can immediately see what step is setting the
output on or keeping it off. If we had programmed the manual mode such that it does not reset
the sequence then we would need to precede the step bits by a normally open AUTO_MODE
contact.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 6-120

Figure 6-7 Sequential Machine Control Bumpless Transfer Output Logic

Chapter 6 Sequential Machine Logic

 6-121

Transitioning outputs to the off state
In Figure 6-8 the MANUAL_MODE bit is used to transition the output to the off state when
changing modes from auto to manual.

Figure 6-8 Sequential Machine Control Output Logic

Programming faults and cycle hold
Figure 6-9 shows a typical motor fault. The fault will occur if the motor fails to start or if the
contact freezes closed when the starter is de-energized. The fault is latched because the fault is
used to put the cycle in hold which in turn will shut off the output to the motor starter,
MOTOR_1_OUT. I have shown a reset push button to unlatch the fault. The manual mode (not
AUTO_MODE) could also be used to reset the fault. When the reset is placed at the bottom of
the rung it will override the fault condition even if the fault condition remains true. If you do not
want the reset to override the fault condition, then the reset can be moved above the fault logic or
a normally closed contact of the MOTOR_1_FLT_TM in series with the reset would prevent the
unlatch.

Figure 6-9 Sequential Machine Control Motor Fault

Figure 6-10 shows a typical fault for a single solenoid operated valve with an open and closed
limit switch. The valve is normally closed.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 6-122

Figure 6-10 Sequential Machine Control Single Solenoid Valve Fault

Figure 6-11 shows how a double solenoid valve fault is programmed. The normal condition of
the valve is to drive the valve fully open or closed when one or the other solenoid is energized.

Figure 6-11 Sequential Machine Control Double Solenoid Valve Fault

Chapter 6 Sequential Machine Logic

 6-123

Figure 6-12 shows a step excess time fault. You would use this type of fault on motions that
should occur within a minimum amount of time. If the time is exceeded it could mean that an
over-travel has occurred and the machine should be put in hold to avoid a safety problem. The
excess time fault could also mean that an operator had not pushed a button within the specified
time. In this case the fault should only be annunciated and should not put the cycle in hold. If we
don’t put the cycle in hold then we would probably use a normal output instead of a latched
output so that the fault would reset itself when the next step is achieved.

Figure 6-12 Sequential Machine Control Step Excess Time Fault

Figure 6-13 shows a typical sequence fault. This fault indicates that a transition has been missed.
It could be used for example on a lift which is supposed to go to slow speed on an intermediate
limit switch. If the limit switch is missed then the stop limit switch will cause the fault to occur
and put the sequence in hold.

Figure 6-13 Sequential Machine Control Sequence Fault

Figure 6-14 shows how all of the faults can be summed into the CYCLE_HOLD bit. When the
cycle is in the hold state all machine motion is stopped.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 6-124

Figure 6-14 Sequential Machine Control Cycle Hold

The CYCLE_HOLD bit could also be used in the step logic to prevent the sequence from
moving to the next step. You need to be careful if you do this however, so that you don’t miss a
transition. If it is possible for your machine to miss the transition then create an additional step
whose only transition is (not CYCLE_HOLD). If you are using the (not AUTO_MODE) to reset
your faults then the sequence is reset along with the cycle hold state. So, there is no reason to
keep the sequence from progressing with the hold mode. Figure 6-15 shows the CYCLE_HOLD
bit in the step sequence.

Figure 6-15 Sequential Machine Control Holding a Step with Cycle Hold

Chapter 6 Sequential Machine Logic

 6-125

Programming sequence paths

Initiating the sequence
There may be some intermediate step(s) in your cycle where you need to start the sequence
without going back to step 1. Figure 6-16 shows an SFC where the sequence can be started from
step 1 or from step 4. Let’s consider a lift that brings a part into the lift, raises it to upper level,
discharges the part, and then returns to the lower level. Step 1 would bring the part into the lift.
If the sequence was reset with a part on the lift heading up, then the operator would take the
cycle out of auto and move the lift to the raised position. The operator would then put the
sequence back into auto. The sequence would then pick up at an intermediate step that would
send the part out of the lift and then lower the lift.

Figure 6-16 Sequential Machine Control mid Cycle Start SFC

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 6-126

Figure 6-17 shows how the SFC is implemented in ladder logic. Note how step 1 and step 4 have
interposing interlocks. This keeps step 1 from starting after the sequence has been started from
step 4 and visa versa. If there are multiple start positions in the sequence then each step must
interlock out the rest of the start positions.

Figure 6-17 Sequential Machine Control mid Cycle Start Logic

Chapter 6 Sequential Machine Logic

 6-127

Selection branch diverge
Figure 6-18 shows how an SFC that separates into 2 divergent paths. The sequence will take
either path “A” or path “B”. Only one path is executed.

SEQ_READY

STEP_2A

STEP_1

TRANSITION_1

TRANSITION_2A

STEP_2B

TRANSITION_2B

TRANSITION_3B

TRANSITION_4B

STEP_3A

STEP_5

STEP_3B

STEP_4B

TRANSITION_3A

TRANSITION_5BTRANSITION_5A

Figure 6-18 Sequential Machine Control Selection Branch Diverge SFC

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 6-128

Figure 6-19 shows the ladder logic implementation of the divergent path which represents the
SFC in Figure 6-18.

DIVERGE

STOP
MOTION

BRANCH A

STOP
MOTION

BRANCH B

MERGE
BRANCH A

OR
BRANCH B

STEP_1 TRANSITION_2A END_CYCLE STEP_2A

STEP_2A

STEP_2A TRANSITION_3A END_CYCLE STEP_3A

STEP_3A

STEP_1 TRANSITION_2B END_CYCLE STEP_2B

STEP_2B

STEP_2B TRANSITION_3B END_CYCLE STEP_3B

STEP_3B

STEP_3B TRANSITION_4B END_CYCLE STEP_4B

STEP_4B

STEP_3A TRANSITION_5A END_CYCLE STEP_5

TRANSITION_5BSTEP_4B

STEP_5

STEP_2B

STEP_2A

Figure 6-19 Sequential Machine Control Selection Branch Diverge Logic

Chapter 6 Sequential Machine Logic

 6-129

Parallel branch diverge
Figure 6-20 shows the SFC for a parallel divergent branch. Step 2A and Step 2B are both
initiated when transition 2 is true.

SEQ_READY

STEP_2A

STEP_1

TRANSITION_1

TRANSITION_2

STEP_2B

TRANSITION_3B

TRANSITION_4B

STEP_3A

STEP_5

STEP_3B

STEP_4B

TRANSITION_3A

TRANSITION_5

Figure 6-20 Sequential Machine Control Parallel Branch Diverge SFC

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 6-130

Figure 6-21 shows the ladder logic implementation of the parallel path which represents the SFC
in Figure 6-20. The cycle will continue at step 5 when motion has stopped in branch “A”
indicated by step 3A and that motion has stopped in branch “B” indicated by step 4B. Transition
5 can be eliminated if we are only to wait for motion to stop on both branches and then proceed.

COMMON
TRANSITION

MERGE
BRANCH A

AND
BRANCH B

STEP_1 TRANSITION_2 END_CYCLE STEP_2A

STEP_2A

STEP_2A TRANSITION_3A END_CYCLE STEP_3A

STEP_3A

STEP_1 TRANSITION_2 END_CYCLE STEP_2B

STEP_2B

STEP_2B TRANSITION_3B END_CYCLE STEP_3B

STEP_3B

STEP_3B TRANSITION_4B END_CYCLE STEP_4B

STEP_4B

STEP_3A TRANSITION_5A END_CYCLE STEP_5

STEP_5

STEP_4B

Figure 6-21 Sequential Machine Control Parallel Branch Diverge Logic

Chapter 7 Determining Priority

First Logic for 2 stations
Let us assume that we have two tanks. We want to discharge each tank when it is full. If both
tanks are full, they should alternate based upon which tank became full first. This type of
problem is common. The same problem exists if you want to alternate the use of pumps for
example. An additional use is when two or more stations merge into one on a package conveyor.

In Figure 7-1, when a station is ready, it becomes first if the other station is not already first.
Only one station can be first. The station that is first will remain first until it is no longer ready.
At that time the other station will become first if it is ready. I call this priority logic “First
Logic”.

Figure 7-1 First Logic for 2 Stations

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 7-132

Figure 7-2 shows three vessels. UNIT_1 and UNIT_2 can discharge into UNIT_3. Unit 1 and 2
are filled until the high level switch is made.

Figure 7-2 First Logic Example Process

Chapter 7 Determining Priority

 7-133

Figure 7-3 shows the logic necessary to discharge unit 1 and 2 after they are filled. The first two
rungs keep track of the priority in which the units are discharged. In this case the first unit that
reaches the high level switch will discharge first.

Figure 7-3 First Logic Example

First Logic for 3 or more stations
Figure 7-4 shows 3 work cells on a conveyor system. Parts arrive to the work cell on a carrier
and are stopped at a physical stop. When the work is complete at the cell, the stop is lowered and
one part is released from the cell.

Figure 7-4 Three Station First Logic Example

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 7-134

With three stations we have to keep track of the first and second priority. By default the last
station ready, is third. Figure 7-5 shows the logic to keep track of the station that is second. This
logic only allows one station to be second. Also, when a station becomes first, then the second
bit is turned off. This allows the next station to become second.

Figure 7-5 Three Station First Logic Second Priority

Figure 7-6 sets the first bit for each station. Only on station can be first. It must have been second
before it can become first. When a station becomes first the second bit is reset. So, we have to
latch up the first bit. The station remains first until it is no longer ready. This would occur, for
example, when a part leaves the station.

Figure 7-6 Three Station First Logic First Priority

One advantage of this method is that a stop can be taken out of either the first or the second
position and the remaining stations will move into the vacated position.

Chapter 7 Determining Priority

 7-135

When using this approach, we need to have one bit for each priority that we want to keep track
of. If there are 3 stations, then we must keep track of the first and second priorities. If we have
four stations then, we must keep track of first, second, and third. We don’t need a rung to keep
track of the last place because the last station in the que will default to last place when it is ready.
The number of rungs is then determined by the number of stations that can enter the que. Figure
7-7 shows the equation for the number of rungs required to program the priorites.

Figure 7-7 First Logic Number of Rungs Calculation

As you can see, if we have ten stations, then the number of rungs required is ninety. For a small
number of stations, perhaps five or less, then this method is valid. However, for a large number
of stations, we need to consider a different method.

Priority Stack
Let’s assume that we have ten stations. Each station is assigned a number. Station 1 is assigned 1
Station 2 is assigned a 2 etc. We can create a priority stack which is an array of double integers.
The station numbers are loaded into the array when the station is ready. Each position in the
array determines what priority the station will have. Array element 1 will have the highest
priority and array element 10 will have the lowest. We will write some logic that will allow us to
load a station number into the top of the array at position 10 and then the station number will be
shifted down in the array until it becomes the highest priority at position 1. As other stations
become ready they will stack up behind the first. We will also allow any station to be pulled
from the stack no matter what priority position it occupies. This may occur for example if a
station is disabled after it has been loaded into the stack. Otherwise, we could use a simple FIFO
to determine the priority. An additional benefit of this method is, we can display the priority
array on an HMI allowing the operator to see the order that the stations occupy in the priority
stack.

In Table 7-1, we define the user defined variable PRIORITY.

UDT Member Description Type
READY Station is ready Boolean
FIRST Station is first priority Boolean
LOADED Station is loaded into the stack Boolean
Table 7-1 User Defined Data Type PRIORITY

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 7-136

In Table 7-2 the variables are defined for the priority stack.

Tag Description Type
STATION Station array PRIORITY[11]
PRIORITY_STACK Holds the station number DINT[11]
A For Next loop index from 1 to 10 DINT
B Index from 10 to 1 DINT
FSC_CTRL File search control variable CONTROL
Table 7-2 Priority Stack Variable Definition

In Figure 7-8 we execute the STACK FOR/NEXT routine. The routine executes one time for
each station. So, in this example we are determining the priority for 10 stations.

Figure 7-8 Priority Stack Call to the Stack Routine

Figure 7-9 shows the first rung of the STACK routine. When a station becomes ready, the station
number is moved into the highest stack position. The LOADED bit is checked to make sure that
the number is only loaded one time into the stack. If two stations become ready in the same
program scan we have to prevent them from both writing into position 10 before the previous
station has moved down in the stack. So, we verify that position 10 is equal to zero before the
move is made.

Figure 7-9 Priority Stack Routine STACK Move the Station Number into the Stack

In Figure 7-10 the station number is shifted down to the next available position in the stack. As
stations become ready they will stack up behind the previous stations. When a position in the
stack is vacated, then the stations behind that position are shifted down. We use the variable B to
sequence from position 10 to position 1 of the array. This will allow the station number to be
moved from the position 10 to 1 in one program scan.

Chapter 7 Determining Priority

 7-137

Figure 7-10 Priority Stack Routine STACK Shift the Station Number to Priority One

In Figure 7-11 we check the stack to see if any stations that are loaded are no longer ready. When
a station is found then the station number is cleared. This will allow any stations behind this
vacated position to shift down in the stack.

Figure 7-11 Priority Stack Routine STACK Clear the Station Number from the Stack

In Figure 7-12 the first position of the stack is checked. If a station is ready and the bottom of the
stack is equal to that station number then the FIRST bit is set for that station. All other FIRST
bits are reset so that only one station FIRST bit is set.

Figure 7-12 Priority Stack Routine STACK Determine the First Priority

When the FIRST bit is set, the part at the station can be released. Once, the part has cleared the
station the READY bit would be reset. Our routine will then clear the station number from the
array allowing any stations still in the array to move to a higher priority.

Chapter 8 Sortation

Tracking with an encoder
Figure 8-1 shows an example box sort conveyor. Boxes are introduced to the sorter at the
scanner. The barcode is read which determines the destination. The barcode is sent to the PLC
through a serial interface when the front edge of the box leaves the scanner area. This is
accomplished through a photo-eye which is connected directly to the scanner. An incremental
encoder is used to determine the distance that each box has moved down the conveyor. A high
speed counter card interprets the encoder pulses and provides an integer value that changes
proportionally with the distance traveled. The integer value will change from 0 to 32767 and will
then wrap back around to 0. A photo-eye at the entrance of each sort lane is used to verify that a
box is in position to divert and to accurately time the diverter. Each diverter consists of pop-up
rollers powered by a single air operated solenoid.

Figure 8-1 Sortation Conveyor Layout

Chapter 8 Sortation

 8-139

In Figure 8-2 a 2 character barcode is read and put into the destination string BARCODE. The
one shot ARL_CTRL_DN_OS is turned on for each read of the scanner.

Figure 8-2 Reading the Barcode thru the Serial Port

After the barcode is read we perform a simple validation check on the barcode and turn on
VALID_READ. The barcode string is converted into an integer variable SORT_LANE. Figure
8-3 shows the logic.

Figure 8-3 Checking for a Valid Barcode Read

In Figure 8-4 we take the current value of the encoder and store it into the lane FIFO. The length
of each FIFO is determined by the maximum number of boxes that can be in transit to the sort
lane. A FIFO is created for each lane.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 8-140

Figure 8-4 Loading the Sort Lane FIFOs

In Figure 8-5 the FIFO is unloaded into START_1. This is the starting encoder value for the next
in line box to be diverted. We set the wait for setpoint bit, WAIT_FOR_SP to allow us to wait
for the box to reach the diverter. After the box reaches the diverter, then this bit is reset and the
FFU instruction will unload the starting position for the next box to be diverted to this lane.

Figure 8-5 Unloading the Sort Lane FIFOs

Chapter 8 Sortation

 8-141

In Figure 8-5 we consider the use of an incremental encoder whose current value is in the
variable ENCODER. The variable START_1 is the saved value of the encoder when the box was
inducted into the sorter at the barcode reader. The calculated value OFFSET_1 is the number of
pulses the box has traveled from the time it left the scanner. The setpoint, SETPOINT_1, is the
number of pulses from the induction to the sort lane. The offset value is then compared to the
setpoint to determine when to divert the box. Because the encoder counts to a maximum value
and then resets to zero, we have to consider two cases to calculate the offset. The first case is
when the setpoint is reached before the encoder wraps around. The second is when the encoder
resets to zero before the setpoint is reached.

Figure 8-6 The Wrap Around Encoder Diagram

In Figure 8-7 we do the math and wait for the box to reach the transfer. When the encoder has
reached the setpoint, the bit LN1_ENABLE_XFR is turned on. The wait for setpoint bit is then
reset allowing the FFU instruction to retrieve the start value for the next box. This means that
LN1_ENABLE_XFR is on for one program scan.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 8-142

Figure 8-7 Enabling the Transfer with the Encoder Window

After the encoder has reached the setpoint, we check to see if there is a box at the diverter. This
is done by starting a timer when the divert photo eye prior the diverter is made. This timer then
provides us with a window of time in which the diverter is enabled. If the encoder reaches the
setpoint during this time, then it is assumed that the box in front of the diverter is the one that is
supposed to be diverted. The divert photo eye also allows us to compensate for any slippage that
may have occurred while the box has been traveling down the conveyor. If the encoder reaches
setpoint and the diverter has not been enabled, then no transfer occurs for that setpoint. We
would then assume that the box may have been taken off the line prior to the diverter, or the box
failed to reach the diverter when it was supposed to for some other reason. If the box had been
slowed because it was an odd size for example, then it would miss the diverter. In Figure 8-8 a
divert timer is started when the photo eye at the transfer is made.

When the sorter is first commissioned, all of the setpoints for each sort lane have to be set. I like
to turn on a horn or light when the setpoint has been reached. I will do one lane at a time and
enable the horn or light logic for that lane only. I put one box through the scanner and wait for
the box to arrive at the diverter. I would then adjust the setpoint when I hear the horn. On a roller
conveyor some slippage will occur between the box and the conveyor. This may cause different
box sizes and weights to travel down the conveyor at different rates. Running several box sizes
through the sorter will allow you to adjust for this. After you determine which boxes run faster,
then adjust the setpoint so that the horn sounds when the box is at the far end of the divert timer
window. This will allow the slower boxes to be enabled on the front side of the timer window.

Chapter 8 Sortation

 8-143

Figure 8-8 Checking if the Sort Lane Photo Eye is in the Encoder Window

When the divert timer is done and the diverter has been enabled the divert solenoid is energized
and the box is sent into the sort lane. Because the timer is started when the photo eye is first
made, all of the boxes will be diverted with their front edge aligned to far rail of the sort lane.
Short and long boxes will all be aligned at this edge. If you need to align the boxes on the near
edge of the sort lane, then the negative transition of the photo eye would be used to start the
timer. Starting the timer on the negative edge of the photo eye would however provide a much
smaller window that we could catch the setpoint with. To compensate for this we would enable
the setpoint when the photo eye is made or the divert timer is timing. Figure 8-9 shows the logic
necessary to divert the box into the sort lane.

Figure 8-9 The Sort Lane Solenoid Logic

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 8-144

Tracking with timers
In the previous example we used an encoder to track the boxes to the sort lane. We can also use
timers to track the box to the sort lane. A timer is started for each box that goes by the scanner.
The preset for that timer is set based on the destination of the box. The timer address is moved
into the lane FIFO. When we unload the FIFO we wait for the timer to get done and then the box
is diverted.

In Figure 8-10 a timer pointer is incremented when a valid read occurs on the barcode scanner.
We turn on the enable bit for the timer pointed to by TM_PTR. There is a preset amount of time
that it takes for a box to reach each lane. These presets are stored in the array TM_PRE[]. The
preset for the destination SORT_LANE is moved into the preset of the timer pointed to by
TM_PTR.

Figure 8-10 Enabling the Tracking Timer

Chapter 8 Sortation

 8-145

In Figure 8-11 each timer is started if it is enabled. The done bit of the timer is seen by the
program for 1 scan and then the timer is reset on the next scan. The timer logic is repeated for
each timer. The number of timers in the timer array is determined by the maximum number of
boxes that can be in transit on the conveyor.

Figure 8-11 The Tracking Timer Logic

In Figure 8-11 the same logic is repeated for each timer. This logic can be reduced if we use the
FOR instruction to perform a for-next loop on the timer logic. This instruction is not available in
all PLC’s. The FOR instruction shown in Figure 8-12 executes the routine TM_LOOP thirty
times. The Index variable “A” is incremented for each iteration.

Figure 8-12 Executing the Tracking Timer Loop

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 8-146

In Figure 8-13 the routine uses the index variable “A” to execute the logic for each timer.

Routine TM_LOOP

TM_ENABLE[A]

RES
SORT_TM[A]

TM_ENABLE[A] CONV_AUX

RTO
SORT_TM[A]
9999s

SORT_TM[A].DN TM_ENABLE[A]

U

Figure 8-13 Tracking Timer Routine TM_LOOP

In Figure 8-14 the timer address is loaded into the lane FIFO.

Figure 8-14 Loading the Timer Pointer into the Sort Lane FIFO

Chapter 8 Sortation

 8-147

In Figure 8-15 the FIFO is unloaded into the lane timer pointer LINE1_TM_PTR.

Figure 8-15 Unloading Timer Pointer from the Sort Lane FIFO

In Figure 8-16 the lane transfer is enabled when the timer is done. Refer back to Figure 8-9 in the
encoder logic to finish out the divert logic for the timers. It is the same.

Figure 8-16 Enabling the Sort Lane with the Tracking Timer

Chapter 9 Zone Control
Zone control is a method of controlling the number of items that can enter a zone on a conveyor
or machine. The number of parts that can be in the zone at any one time will determine if a bit is
used to track the part or a counter is used to track multiple parts.

Power and Free, Stop to Stop, no accumulation
Let’s consider a Power and free conveyor2 with 2 stops. A power and free conveyor consists of 2
parts as the name implies. The powered part is a chain riding around an I beam or in between 2
pieces of channel. Carriers ride freely on a lower set of channels. The carriers are disengaged
from the chain when they enter a stop or when they accumulate behind another carrier. Carriers
will also disengage from the chain when they are being transferred from one chain onto another.
In these cases the carrier will be pushed on to the second chain with an air operated pusher, or
the back of the carrier will catch the next chain dog that will push the carrier onto the second
chain.

Figure 9-1 Power and Free Stop to Stop no Accumulation

2 There are several Power and free conveyor manufacturers. Visit their websites to get a detailed understanding of
their fundamentals. Southern System, http://www.ssiconveyors.com

Chapter 9 Zone Control

 9-149

Figure 9-2 shows how a power and free program can be organized. The AA_UPDATE_IO
routine is used to synchronize the inputs with the program scan. We discussed the reasoning for
this in Chapter 1. I prefixed the routine with AA so that it would sort alphabetically to the top of
the routines. The MainRoutine calls each of the other routines with a jump to subroutine
instruction.

Figure 9-2 Power and Free Program Organization

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 9-150

Figure 9-3 shows how stop 1 is programmed. A carrier is present when proximity switch
ST1_PX1 is made. ST1_PX1 is not maintained when the carrier enters the stop so, internal bit
ST1_PRES is latched on indicating that a carrier is in the stop. The carrier remains present until
ST1_PX2 is made. The stop is opened (ST1_SV is energized) when the carrier is present and
stop 2 is not full (normally closed ST2_FULL). The carrier will then catch the next chain dog
and move out of stop 1. Stop 1 is closed when the carrier passes ST1_PX2. Stop 2 becomes full
when ST1_PX2 is made. Stop 2 is clear when stop 2 is open and ST2_PX2 is made. We make
sure that stop 2 is open and then closed before we clear zone 2. Stop 2 is then programmed the
same as stop 1 if the downstream zones are the same.

Figure 9-3 Power and Free Stop to Stop no Accumulation Logic

Note how ST2_FULL is being unlatched only during one program scan since ST2_PX2 will
clear the zone and then unlatch ST2_SV in the same way that ST1_SV is unlatched by
ST1_PX2. In order for this to be true however, the logic for stop 2 must be after the unlatch for
ST2_FULL in the program scan.

Chapter 9 Zone Control

 9-151

Power and Free, Choke Zone
Figure 9-4 shows a typical choke zone on a power and free conveyor. Only one carrier is allowed
in the choke zone. This has two effects on the way the system operates. The first is that it does
not matter how many carriers have accumulated in front of the choke zone. The second is that the
spacing between carriers can be no closer than the length of the choke zone when they are not
accumulated behind stop 2. There are several reasons why a choke zone would be used. I will list
a few here.

• To limit the number of carriers on a vertical rise or fall
• To keep carriers from accumulating around a curve.
• To provide spacing between carriers.

Usually only 1 carrier would be allowed in the choke zone. However a count zone might be used
within the choke zone. For example, on a vertical rise, the number of carriers being lifted may be
limited to 2 carriers due to the carrying capacity of the conveyor itself, even though more carriers
would physically fit.

Figure 9-4 Power and Free Choke Zone

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 9-152

Figure 9-5 shows the logic for a choke zone that allows only one carrier in the zone.

Figure 9-5 Power and Free Choke Zone Logic

In order to clear the choke zone ST1_PX3 must be made and then ST1_PX4. The idea is to
prevent the choke zone from being inadvertently cleared by a single sensor. Let’s assume that as
the carrier makes ST1_PX4, it is then accumulated behind another carrier. In this situation if
ST1_PX4 were the only device that cleared the choke zone then a new carrier entering the choke
zone would be cleared by the carrier ahead of it. Carriers will also have a tendency to rock
backward when they are accumulated. This would prevent us from solving the problem by using
a one shot instruction and clearing the choke zone solely on the one shot of a single sensor. A
mechanical anti-backup device between ST1_PX3 and ST1_PX4 prevents the carrier from
rolling back to ST1_PX3 after having made ST1_PX4. In Figure 9-6 ST1_CHOKE_RESET is
made for one program scan. It should be noted that we don’t care how many times a sensor is
made in order to make a zone full. If the sensor is being made then the zone must be full.

Figure 9-6 Power and Free Choke Zone Reset Logic

Chapter 9 Zone Control

 9-153

Power and Free, Count Zone
In Figure 9-7 Stop 2 is designed to hold 3 carriers. A counter is used in the program to keep track
of the number of carriers in the stop.

Figure 9-7 Power and Free Count Zone

In Figure 9-8 the count zone is incremented when stop 1 is opened and decremented when the
carrier leaves stop 2. Again, the rung order is important. We could not have put ST1_PX2 in the
count up rung unless we moved this rung above the unlatch for ST1_SV. Also, we use ST1_SV
to increment the count zone in order to make use of the sequence of hitting ST1_PX1 and then
ST1_PX2. Unlike the choke zone, if we receive multiple signals from a single device at the entry
of the zone, the counter will increment for each transition of the input causing an error in the
count. We could also have used ST2_SV to decrement the zone. However, if the stop failed to
open when the solenoid was energized, then an extra carrier would be let into the zone. This may
cause a conveyor jam or some other mechanical problem if the zone was not designed for this
extra carrier.

Figure 9-8 Power and Free Count Zone Logic

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 9-154

Power and Free, Merge into a count zone
Figure 9-9 shows a merge from 2 tracks into 1. We will assume that both tracks are powered by
the same chain. The chain is shown with the dashed line. At the merge, one chain must peel out.
As you can see it is important that you don’t release more than one carrier into the merge. If you
do, you may be asked to hone your skills with a very heavy crow bar. MRG1_PX2 is positioned
so that it is tripped by the trailing trolley of the carrier. The rear trolley actuator is on the
opposite side of the track from the front trolley actuator. Because we are using only one device to
clear the merge, it must be certain that the accumulation of carriers can not cause MRG1_PX2 to
be maintained. We will assume that the carriers are ready to release as soon as they enter the
stop. We will alternate the release of the stops 1 and 2 in a first come first serve fashion. There
are 2 zones defined. The first zone is the merge. The merge is defined between each stop and
MRG1_PX2. The second zone is the count zone behind stop 3. The merge and the count zone
overlap. The designation of PX2 is assigned to the merge prox because this is commonly used as
the zone clear, not because it is the second device in the merge.

Figure 9-9 Power and Free Merge into a Count Zone

Chapter 9 Zone Control

 9-155

Figure 9-10 shows the logic for stop 1. I have shown the “First” logic for stop 1 and 2 here.
However, it does not matter where you put it. Refer to Chapter 7 Determining Priority, for a
discussion on first logic.

Figure 9-10 Power and Free Merge Stop 1 Logic

Figure 9-11 shows the logic for stop 2. We don’t have to program the “First” logic since we
included it in the logic for stop 1.

Figure 9-11 Power and Free Merge Stop 2 Logic

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 9-156

The logic for the merge full is shown in Figure 9-12. The merge is treated like a choke zone. The
merge zone is cleared with MRG1_RESET which is similar to the choke zone reset. You can
also see that either stop will be closed for some amount of time before the merge clears. This will
allow the rung with the CTU instruction to transition from false to true which is required for the
CTU instruction to work properly.

Figure 9-12 Power and Free Merge Full and Down Stream Count Zone

In Figure 9-13 the merge reset is programmed in a similar way as a choke reset.

Figure 9-13 Power and Free Merge Full Reset

Chapter 9 Zone Control

 9-157

It would be a good idea to check that MRG1_PX2 is not made when the either stop 1 or stop 2
clears. Figure 9-14 shows the logic for a merge fault. This kind of fault would stop the chain.

Figure 9-14 Power and Free Merge Fault

Power and Free, Track Switch
Figure 9-15 shows a power and free track switch into 2 choke zones. The switch is powered by a
double solenoid with 2 outputs SW1_SVR, and SW1_SVL. The left and right position of the
track switch can be verified with limit switches SW1_LSL, and SW1_LSR. SW1_PX1 is used
to ready the switch clear proxes in the same way we readied the choke zone clear with a PX3.
The operator will determine which direction the carrier will go by pushing the send carrier to the
left pushbutton ST1_PBL or to the right with the ST1_PBR push button. The carrier at stop 1
will remain there until one of these buttons is pressed. There are 3 down stream zones, the switch
full zone, the choke left full, and the choke right full.

Figure 9-15 Power and Free Track Switch

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 9-158

Figure 9-16 shows the ladder logic for the carrier present and the push button latches. The push
button latches determine the destination of the carrier. The operator can press one button and
then change his mind and press the other button. The final destination is set once the track switch
is set and the stop is opened.

Figure 9-16 Power and Free Track Switch Push Button Left and Right Latches

Figure 9-17 shows the ladder logic for stop 1 solenoid. The track switch position is verified
before the stop is opened. If sending one carrier right and then the next carrier to the left, the
second carrier can leave the stop as soon as the first carrier clears the track switch and the track
is switched to the second position. If two consecutive carriers are going to the same destination
then the first carrier musts clear the choke zone before the second carrier is released.

Figure 9-17 Power and Free Track Switch Stop Logic

Chapter 9 Zone Control

 9-159

Figure 9-18 shows the logic for the switch full zone. The switch clear could be programmed
several ways. Separate right and left clear bits could have been used. I could have included the
switch position limits SW1_LSL and SW1_LSR in the clear logic. I can not come up with a good
reason why I would or would not use them. I think the code that I have written hear is sufficient
to get the job done.

Figure 9-18 Power and Free Track Switch Full and Clear

Figure 9-19 shows the logic for the track switch solenoids. Some programmers may have latched
the outputs until the carrier clears the track. I don’t think this is necessary.

Figure 9-19 Power and Free Track Switch Left and Right Solenoid Valves

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 9-160

Figure 9-20 shows the logic for the left choke zone. The right choke zone is programmed the
same way.

Figure 9-20 Power and Free Track Switch Down Stream Choke Left and Right Full

Chapter 10 Tips and Tricks

Toggle Push Button
In Figure 10-1 the START latch changes state with each push of the start/stop push button. This
is a simple circuit that will allow you to use one push button to start and stop a motor.

Figure 10-1 Toggle Push Button

Cascading Start Stop
Figure 10-2 shows how a continuous stream of conveyors can be started and stopped in a cascade
fashion. Conveyor 1 is the first conveyor in the stream. It feeds conveyor 2. Conveyor 2 feeds
conveyor 3 and so on until conveyor (N) is reached. Conveyor 1 is the most upstream conveyor
and would be considered the feed conveyor. Conveyor (N) is the most downstream conveyor.
When CONVEYOR_START is turned on each TOF is enabled until conveyor (N) starts. When
conveyor (N) is started, the CONV(N)_TON is enabled and begins timing. When the timer is
done, the next upstream conveyor is started. This continues until conveyor 1 is started. Each
conveyor starts one after the other in a cascading fashion starting with the most downstream
conveyor to the most upstream. This will prevent a surge in the power required to start the
system.

Now, if CONVEYOR_START is turned off, conveyor 1 is immediately turned off and stops the
feed. CONV1_TOF begins timing and when the timer completes Conveyor 2 is turned off. The
conveyors will continue to turn off in the reverse order that they were started until the most
downstream conveyor is stopped. This will allow the conveyor to be cleaned out. The TOF
presets should be set to the time it takes to clean the conveyors out. If an AUX fault occurs on a
conveyor in the middle of the stream, the faulted motor and all of the upstream conveyors are
immediately turned off. Since the AUX fault is in the TOF circuit, the downstream conveyors

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 10-162

will begin to shut down. If we had not wanted the downstream conveyors to cascade off after the
fault, we would put the fault in the TON circuit.

CONVEYOR_START CONV1_AUX_FLT

TOF
CONV1_TOF
3s

CONV1_TOF.EN CONV2_TON.DN CONV1_AUTO_START

CONV1_TOF.DN CONV2_AUX_FLT

TOF
CONV2_TOF
3s

CONV2_TOF.EN CONV3_TON.DN CONV2_AUTO_START

TON
CONV2_TON
3s

CONV2_AUX

CONV2_TOF.DN CONV3_AUX_FLT

TOF
CONV3_TOF
3s

CONV3_TOF.EN CONV4_TON.DN CONV3_AUTO_START

TON
CONV3_TON
3s

CONV3_AUX

CONV(N-1)_TOF.EN CONV(N)_AUX_FLT CONV(N)_AUTO_START

TON
CONV(N)_TON
3s

CONV(N)_AUX

Figure 10-2 Cascading Start and Stop Logic

Chapter 10 Tips and Tricks

 10-163

In Figure 10-3 the loss of INTERLOCK_1 will shut off conveyor 3 immediately. The upstream
conveyors will then shut off. The down stream conveyors will cascade off with the TOF timers.
When INTERLOCK_2 is off only conveyor 3 and the upstream conveyors are shut off.

Figure 10-3 Cascading Start Stop Interlocks

Figure 10-4 shows how the downstream shut down time can be modified depending on the status
of an interlock. This will still allow the conveyors to cascade off but the next downstream
conveyor will shut off faster.

Figure 10-4 Cascading Start Stop Fast Shutdown

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 10-164

A simple message display
In this example we will program a message display that uses 16 discrete outputs connected to the
PLC. An additional strobe output will cause the message to be displayed. The message display
stores messages such as alarms. Each message is numbered. The stored message is displayed by
setting the message display inputs to the message number, and then turning on the strobe input. If
multiple alarms are active, then each alarm is displayed for 5 seconds.

In Figure 10-5 we increment a message pointer, MSG_PTR, if we are not currently displaying a
message. MSG_NUM will be equal to 0 if no message is displayed. The pointer will increment
by one each program scan. When the pointer exceeds the last valid message number then the
pointer is reset back to 0.

Figure 10-5 Message Display Increment the Message Pointer

Each alarm is assigned a number. When the message pointer is equal to that number and the
alarm is on, then the pointer is moved to the message number. In Figure 10-6 this is repeated for
each alarm.

Figure 10-6 Message Display Check the Alarm and Set the Message Number

Chapter 10 Tips and Tricks

 10-165

In Figure 10-7 when MSG_NUM is not equal to zero, then we display the message. We set the
message display outputs to MSG_NUM. Then when timer MSG_TM1 is done we turn on the
strobe output. This will cause the message to be displayed on the message display. The strobe
remains on until timer MSG_TM2 is done. Then, we turn off the strobe and set the outputs to
zero. We all allow the message outputs to remain at off until timer MSG_TM3 is done. Then we
clear the MSG_NUM which will allow the next message to be displayed.

Figure 10-7 Display the Messasge

Buffering Transactions
There are two common ways in which data is collected from a PLC and then saved to a database,
time based and Event based. In the time based method, data points are sampled on specified time
intervals. Most HMI applications include some form of data logging functions that are time
based. The second method is event based. In this method we want data transferred from the PLC
when a specific event occurs. This event could be, when a batch is complete for example. Data is
collected uninterrupted until some maintenance function needs to occur on the computer that is
collecting the data. When this occurs data is not collected during the time that the computer is
offline. To prevent this scenario we need to buffer the data in the PLC. The example that we will
consider will buffer event based data in the PLC.

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 10-166

Let’s assume that we have two blending hoppers. Coffee is feed into a blend hopper until the
desired amount is reached. After the scale settles, the actual coffee amount, along with other
supporting information, needs to be sent to a database. Each blend hopper functions
independently from the other and the same type of data will be collected from each.

In Table 10-1 we describe the user defined data type for the blend data.

UDT Member Description Type
BLEND_NAME Blend name BLEND_STR
ROASTER Roaster number Dint
ROAST_NUMBER Roast number Dint
SILO Source silo Dint
WEIGHT Weight from the silo Real
TIME Time and date stamp DATE_TIME
LAST_FEED Flag indicating that this is the last feed for this blend Boolean
Table 10-1 User Defined Data Type BLENDING_XACT

In Table 10-2 we define the variables used to buffer and upload the data to the database.

Tag Description Type
BLEND_1_COMPLETE Silo feed is complete for blend

scale 1
Boolean

BLEND_1_COMPLETE_ONS ONS Boolean
BLEND_1_DATA Transaction data for blend scale 1 BLENDING_XACT
BLEND_2_COMPLETE Silo feed is complete for blend

scale 2
Boolean

BLEND_2_COMPLETE_ONS ONS Boolean
BLEND_2_DATA Transaction data for blend scale 2 BLENDING_XACT
BLEND_UPLOAD_READY Transaction data is ready for

database
Boolean

BLENDING_BUFFER Transaction data for blend scale 2 BLENDING_XACT[100]
BLENDING_FIFO Pointer FIFO DINT[100]
BLENDING_FIFO_CTRL FIFO control variable CONTROL
BLEND_FIFO_LOAD Input parameter to subroutine BLENDING_XACT
BLEND_FIFO_UNLOAD FIFO unload and transaction for

upload
BLENDING_XACT

BLENDING_FIFO Pointer FIFO DINT[100]
BLENDING_XACT_PTR Pointer into

BLENDING_BUFFER
DINT

DUMMY Dummy output for subroutine
instruction

Boolean

Table 10-2 Buffering Transaction Tag Definition

Chapter 10 Tips and Tricks

 10-167

In Figure 10-8 we determine the size of the transaction buffer. The size will then be used in the
program. This will allow us to change the dimension of the BLENDING_BUFFER[] array
without having to change the ladder logic. We can set the buffer size to utilize most of the
unused memory in the PLC. To free up memory in the future, we only have to change the size of
the BLENDING_BUFFER[] array and the BLENDING_FIFO array.

Figure 10-8 Buffering Transactions Set the FIFO Size

In Figure 10-9, when a blend is complete the current data for that blend is held in
BLEND_1_DATA. The data is used as the input parameter to the BLEND_UPLOAD
subroutine.

Figure 10-9 Buffering Transactions Call the BLEND_UPLOAD Routine

In Figure 10-10 we start the first rung of the BLEND_UPLOAD subroutine. This routine will
load the transaction into the BLENDING_BUFFFER[] array and then load array pointer into the
BLENDING_FIFO[] array.

Figure 10-10 BLEND_UPLOAD Routine Receive the Input Paramters

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider 10-168

Figure 10-11 increments the transaction pointer

Figure 10-11 BLEND_UPLOAD Routine Increment the Transaction Pointer

In Figure 10-12 the blending data which is now in the variable BLENDING_FIFO_LOAD, is
copied into the BLENDING_BUFFER[]. The pointer to this transaction is then loaded into the
FIFO. This is the last rung in the routine.

Figure 10-12 End BLEND_UPLOAD Load the Transaction Table and FIFO the Pointer

Chapter 10 Tips and Tricks

 10-169

The pointer is unloaded from the FIFO in the main routine. In Figure 10-13 we unload the FIFO
and set the BLEND_UPLOAD_READY bit. This indicates to the HMI or database program that
data is ready to be uploaded from the PLC into the database. The HMI will reset this bit when the
data has been stored in the database. Then the next pointer can be unloaded from the FIFO.

Figure 10-13 Buffering Transactions Unload the Stack Pass the Transaction

Binary Numbers

Appendix A Binary Numbers

One problem with writing a technical book like this, is trying to determine what the expertise of
the reader is. Should I write a book on programming techniques without providing the
background information that is required to understand the more advanced concepts? A colleague
of mine passed on a great quote that he had heard. “There are ten kinds of people that understand
binary, those that do and those that don’t. For those that do understand, there are only two
kinds.” Now its time for you to join those of us that do understand.

A light bulb can have two states on or off. These states can be represented by a single digit with
a value of 1 or 0.If we group these binary digits together we can represent a number besides one
or zero by assigning each combination of the two digits to a number. In Table A-1we can see that
there are 4 combinations of numbers that can be represented by two binary digits.

Binary Decimal
0 0 0
0 1 1
1 0 2
1 1 3
Table A-1

These combinations can be represented by their number equivalent.

In Table A-2 we can expand the combinations to 8 when we include an additional bit.

Binary Decimal
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7
Table A-2

As we increase the number of bits, the number of combinations also increase. A group of 16 bits
is called a word. Each bit in a 16 bit binary word represents a power of two. Two to the third
power (ie. 2^3) is 2x2x2=8. In Table A-3 the value of each bit in the binary 16 bit word is
shown. Bit 15 is the sign bit. It determines if the value is positive or negative. If the value is
negative then the bits 0 to 14 are expressed in the two’s compliment form. The two’s compliment
is determined by reversing the value of each bit and then adding 1 to the entire word.

 Sign 2^14 2^13 2^12 2^11 2^10 2^9 2^8 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0
Dec +,- 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Table A-3

Ladder logic Programming Techniques By Duane Snider

 A-172

The decimal equivalent for the binary number 0110 0001 0100 0001 is the sum

Dec +,- 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Binary 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1
Table A-4

(16384 + 8192 + 256 + 64 + 1) = 24897

Useful Calculations

Appendix B Useful Calculations

This is not a complete manual on all engineering calculations. However, I have ran across a few
that I perform more often than others. So, I will list them here.

Unit Conversions
Stoichiometry is one of the most useful things I learned in my freshman chemistry class. It is the
math used in chemistry. It includes methods for unit conversions. If two values are equal to each
other such as 1 gallon is equal to 2 quarts then the result of dividing one value by the other is
one. We can then multiply this ratio with anything without affecting the true value of what we
started with. Let me give you an example.

Figure B-1

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider

B-174

Figure B-2 shows how we can calculate the distance a part moves during 1 program scan.

Figure B-2

You have to multiply the inches/scan by the number of program scans that it would take to
decide what to do after reading a sensor. You can then determine the reaction distance from the
time that you sense a part until you can react to it. Also there are mechanical reaction times for
any solenoid or motor that would have to be added.

In this example we calculated the reaction time. But what we are really interested in is
repeatability. If we assume that the mechanical reaction times are consistent then we can delete
them from the equation. We can compensate for them by adjusting the location of the sensor. We
can not however, cancel out the scan time even though it may be very consistent. The reason is,
the sensor can be activated any time during the program scan and the inputs are introduced to the
logic at the beginning of the program scan. We can cancel out additional program scans from the
repeatability as long as it takes the same number of scans to react to the input, and the scan time
is reasonably consistent. So, we can then say that the repeatability is equal to one program scan.
For our example, this means we can consistently react to our sensor within ½ inch repeatability.

Scaling
Often you will have to scale a number from raw units to engineering units. Figure B-3 shows the
equation for scaling a raw input value to a scaled value. You should use floating point variables
for your calculation in a PLC. If you use integers the result may be rounded when the
calculations are performed.

Figure B-3

Instruction Set

Appendix C Instruction Set

Bit Instructions
 Function Description

Examine On or
Normally open

The XIC instruction tests the data bit to see if it is set

Examine Off or
Normally closed

The XIO instruction tests the data bit to see if it is cleared.

Output When the OTE instruction is enabled, the controller sets the
data bit. When the OTE instruction is disabled, the controller
clears the data bit.

Latch When enabled, the OTL instruction sets the data bit. The data
bit remains set until it is cleared, typically by an OTU
instruction. When disabled, the OTL instruction does not
change the status of the data bit.

Unlatch When enabled, the OTU instruction clears the data bit. When
disabled, the OTU instruction does not change the status of the
data bit.

One shot The ONS instruction enables the remainder of the rung for one
program scan. When the ONS instruction is disabled the
remainder of the rung is disabled.

One shot rising The OSR instruction works the same as the ONS instruction
except that an output bit is included.

One shot falling Similar to the OSR instruction except it works on the falling
edge.

Table C-1

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider

C-176

Timers and Counters
 Function Description

Timer on The TON instruction is a non-retentive timer that accumulates
time when the instruction is enabled (rung-condition-in is true).
The DN bit is set when the preset is equal to the accumulated.
The timer is reset when it is disabled.

Retentive
timer on

The RTO instruction is a retentive timer that accumulates time
when the instruction is enabled. The DN bit is set when the preset
is equal to the accumulated. An RES instruction is typically used
to reset the timer.

Timer off The TOF instruction is a non-retentive timer that accumulates
time when the instruction is enabled (rung-condition-in is false).
The DN bit is set when the preset is equal to the accumulated.
The timer is reset when it is enabled.

Count up When enabled and the .CU bit is cleared, the CTU instruction
increments the counter by one. When enabled and the .CU bit is
set, or when disabled, the CTU instruction retains its .ACC value.
The DN bit is set when the preset is equal or greater than the
accumulated.

Count
down

The CTD instruction is typically used with a CTU instruction that
references the same counter structure. When enabled and the .CD
bit is cleared, the CTD instruction decrements the counter by one.
When enabled and the .CD bit is set, or when disabled, the CTD
instruction retains its .ACC value.

Reset The RES instruction resets a TIMER, COUNTER, or CONTROL
structure.

Table C-2

Instruction Set

 C-177

Compare instructions
 Function Description

Equal The EQU instruction tests whether Source A is equal to Source B.
Valid data types are SINT, INT, DINT, REAL, String type.

Not equal The NEQ instruction tests whether Source A is not equal to Source
B. Valid data types are SINT, INT, DINT, REAL, String type.

Greater
than

The GRT instruction tests whether Source A is greater than Source
B. Valid data types are SINT, INT, DINT, REAL, String type.

Greater
than
or
Equal to

The GEQ instruction tests whether Source A is greater than or
equal to Source B. Valid data types are SINT, INT, DINT, REAL,
String type.

Less than The LES instruction tests whether Source A is not less than Source
B. Valid data types are SINT, INT, DINT, REAL, String type.

Less than
or
Equal to

The LEQ instruction tests whether Source A is less than or equal
to Source B. Valid data types are SINT, INT, DINT, REAL, String
type.

Limit
Test

The LIM instruction tests whether the Test value is within the
range of Low Limit to the High Limit. Valid data types are SINT,
INT, DINT, REAL.

Compare The CMP instruction performs a comparison on the arithmetic
operations you specify in the expression. Valid data types are
SINT, INT, DINT, REAL.

Table C-3

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider

C-178

Compute/Math Instructions
 Function Description

Add The ADD instruction adds Source A to Source B and places the
result in the Destination. Valid data types are SINT, INT, DINT,
REAL.

Subtract The SUB instruction subtracts Source B from Source A and
places the result in the Destination. Valid data types are SINT,
INT, DINT, REAL.

Multiply The MUL instruction multiplies Source A with Source B and
places the result in the Destination. Valid data types are SINT,
INT, DINT, REAL.

Divide The DIV instruction divides Source A by Source B and places the
result in the Destination.

Modulo The MOD instruction divides Source A by Source B and places
the remainder in the Destination.

Square
root

The SQR instruction computes the square root of the Source and
places the result in the Destination.

Negate The NEG instruction changes the sign of the Source and places
the result in the Destination

Absolute
value

The ABS instruction takes the absolute value of the Source and
places the result in the Destination.

Compute The CPT instruction performs the arithmetic operations you
define in the expression.

Table C-4

Instruction Set

 C-179

Move/Logical Instructions
 Function Description

Move The MOV instruction copies the Source to the Destination. The
Source remains unchanged. Valid data types are SINT, INT,
DINT, REAL.

Masked
move

The MVM instruction copies the Source to a Destination and
allows portions of the data to be masked. Valid data types are
SINT, INT, DINT.

Bitwise and The AND instruction performs a bitwise AND operation using
the bits in Source A and Source B and places the result in the
Destination. Valid data types are SINT, INT, DINT.

Bitwise
inclusive or

The OR instruction performs a bitwise OR operation using the
bits in Source A and Source B and places the result in the
Destination. Valid data types are SINT, INT, DINT.

Bitwise
exclusive or

The XOR instruction performs a bitwise XOR operation using
the bits in Source A and Source B and places the result in the
Destination. Valid data types are SINT, INT, DINT.

Swap byte The SWPB instruction rearranges the bytes of a value.

Bitwise not The NOT instruction performs a bitwise NOT operation using
the bits in the Source and places the result in the Destination.
Valid data types are SINT, INT, DINT.

Clear The CLR instruction clears all the bits of the Destination. Valid
data types are SINT, INT, DINT, REAL.

Bit field
distribute

The BTD instruction copies the specified bits from the Source,
shifts the bits to the appropriate position, and writes the bits into
the Destination. Valid data types are SINT, INT, DINT.

Table C-5

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider

C-180

File Misc. Instructions
 Function Description

File arithmetic
and logic

The FAL instruction performs copy, arithmetic, logic, and
function operations on data stored in an array.

File search
and compare

The FSC instruction compares values in an array, element by
element.

File copy The COP and CPS instructions copy the value(s) in the Source
to the values in the Destination. The Source remains unchanged.

File fill The FLL instruction fills elements of an array with the Source
value. The Source remains unchanged. Valid data types are
SINT, INT, DINT, REAL, structure.

Average The AVE instruction calculates the average of a set of values.
Valid data types are SINT, INT, DINT, REAL.

Sort The SRT instruction sorts a set of values in one dimension (Dim
to vary) of the array into ascending order. Valid data types are
SINT, INT, DINT, REAL.

Standard
Deviation

The STD instruction calculates the standard deviation of a set of
values in one dimension of the Array and stores the result in the
Destination. Valid data types are SINT, INT, DINT, REAL.

Size in
elements

The SIZE instruction finds the size of a dimension of an array.

File
synchronous
copy

The COP and CPS instructions copy the value(s) in the Source
to the values in the Destination. The Source remains unchanged.

Instruction Set

 C-181

Table C-6

File/Shift Instructions
 Function Description

Bit shift
left

The BSL instruction shifts the specified bits within the Array one
position left. Valid data type is DINT.

Bit shift
right

The BSR instruction shifts the specified bits within the Array one
position right. Valid data type is DINT.

FIFO
load

The FFL instruction copies the Source value to the FIFO array. Use
the FFL instruction with the FFU instruction to store and retrieve
data in a first-in/first-out order. When used in pairs, the FFL and
FFU instructions establish an asynchronous shift register. Valid
data types for the source and the FIFO array are SINT, INT, DINT,
REAL, String, structure.

FIFO
unload

The FFU instruction unloads the value from position 0 (first
position) of the FIFO and stores that value in the Destination. The
remaining data in the FIFO shifts down one position. Use the FFU
instruction with the FFL instruction to store and retrieve data in a
first-in/first-out order.

LIFO
load

The LFL instruction copies the Source value to the LIFO. Use the
LFL instruction with the LFU instruction to store and retrieve data
in a last-in/first-out order. When used in pairs, the LFL and LFU
instructions establish an asynchronous shift register. Valid data
types for the source and the LIFO array are SINT, INT, DINT,
REAL, String, structure.

LIFO
unload

The LFU instruction unloads the value at .POS of the LIFO and
stores 0 in that location. Use the LFU instruction with the LFL
instruction to store and retrieve data in a last-in/first-out order.

Table C-7

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider

C-182

Sequencer Instructions
 Function Description

Sequencer
input

The SQI instruction detects when a step is complete in a
sequence pair of SQO/SQI instructions.

Sequencer
output

The SQO instruction sets output conditions for the next step of
a sequence pair of SQO/SQI instructions.

Sequencer
load

The SQL instruction loads reference conditions into a
sequencer array.

Table C-8

Instruction Set

 C-183

Program Control Instructions
 Function Description

Jump to label When enabled, the JMP instruction skips to the referenced
LBL instruction and the controller continues executing from
there. When disabled, the JMP instruction does not affect
ladder execution.

Label The JMP and LBL instructions skip portions of ladder logic.

Jump to
subroutine

The JSR instruction jumps execution to a different routine.
The SBR instruction passes data to and executes a routine.
The RET instruction returns the results.

Return from
subroutine

See the JSR instruction.

Subroutine
label

See the JSR instruction.

Temporary
end

The TND instruction acts as a boundary.

Master
control reset

The MCR instruction, used in pairs, creates a program zone
that can disable all rungs within the MCR instructions.

User Interrupt
disable

The UID instruction and the UIE instruction work together to
prevent a small number of critical rungs from being
interrupted by other tasks.

User Interrupt
enable

See the UID instruction.

Always false The AFI instruction sets its rung-condition-out to false.

No operation The NOP instruction functions as a placeholder.

Table C-9

For/Break Instructions
 Function Description

For The FOR instruction executes a routine repeatedly.

Break The BRK instruction interrupts the execution of a routine that was

called by a FOR instruction.
Table C-10

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider

C-184

Special Instructions
 Function Description

File bit
compare

When enabled, the FBC instruction compares the bits in the
Source array with the bits in the Reference array and records the
bit number of each mismatch in the Result array.

Diagnostic
Detect

When enabled, the DDT instruction compares the bits in the
Source array with the bits in the Reference array, records the bit
number of each mismatch in the Result array, and changes the
value of the Reference bit to match the value of the
corresponding Source bit.

Data
transition

The DTR instruction passes the Source value through a Mask and
compares the result with the Reference value. The DTR
instruction also writes the masked Source value into the
Reference value for the next comparison. The Source remains
unchanged.

PID The PID instruction controls a process variable such as flow,
pressure, temperature, or level.

Table C-11

Instruction Set

 C-185

Trig Functions
 Function Description

Sine The SIN instruction takes the sine of the Source value (in radians)
and stores the result in the Destination.

Cosine The COS instruction takes the cosine of the Source value (in
radians) and stores the result in the Destination.

Tangent The TAN instruction takes the tangent of the Source value (in
radians) and stores the result in the Destination.

Arc sine The ASN instruction takes the arc sine of the Source value and
stores the result in the Destination (in radians).

Arc
cosine

The ACS instruction takes the arc cosine of the Source value and
stores the result in the Destination (in radians).

Arc
tangent

The ATN instruction takes the arc tangent of the Source value and
stores the result in the Destination (in radians).

Table C-12

Advance Math Instructions
 Function Description

Natural Log The LN instruction takes the natural log of the Source and
stores the result in the Destination.

Log base 10 The LOG instruction takes the log base 10 of the Source and
stores the result in the Destination.

X to the
power of Y

The XPY instruction takes Source A (X) to the power of
Source B (Y) and stores the result in the Destination.

Table C-13

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider

C-186

Math Conversions
 Function Description

Radians to
degrees

The DEG instruction converts the Source (in radians) to degrees
and stores the result in the Destination.

Degrees to
radians

The RAD instruction converts the Source (in degrees) to radians
and stores the result in the Destination.

To BCD The TOD instruction converts a decimal value (0 <= Source <=
99,999,999) to a BCD value and stores the result in the
Destination.

From BCD The FRD instruction converts a BCD value (Source) to a
decimal value and stores the result in the Destination.

Truncate The TRN instruction removes (truncates) the fractional part of
the Source and stores the result in the Destination.

Table C-14

Instruction Set

 C-187

ASCII Serial Port
 Function Description

ASCII Write The AWT instruction sends characters of the Source array to
a serial device.

ASCII write
append

The AWA instruction sends characters of the Source array to
a serial device and appends either one or two predefined
characters.

ASCII read The ARD instruction removes characters from the buffer
and stores them in the Destination.

ASCII read line The ARL instruction removes characters from the buffer and
stores them in the Destination.

ASCII test for
buffer line

The ABL instruction counts the characters in the buffer up
to and including the first termination character.

ASCII
characters in
buffer

The ACB instruction counts the characters in the buffer.

ASCII clear
buffer

The ACL instruction immediately clears the buffer and
ASCII queue.

Table C-15

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider

C-188

ASCII String Instructions
 Function Description

Find a string The FIND instruction locates the starting position of a
specified string within another string.

Insert string into
string

The INSERT instruction adds ASCII characters to a
specified location within a string.

String concatenate The CONCAT instruction adds ASCII characters to the
end of a string.

Extract part of a
string

The MID instruction copies a specified number of ASCII
characters from a string and stores them in another string.

Delete characters
from a string

The DELETE instruction removes ASCII characters
from a string.

Table C-16

Instruction Set

 C-189

ASCII Conversion
 Function Description

DINT to
string

The DTOS instruction produces the ASCII representation of a
value.

String to
DINT

The STOD instruction converts the ASCII representation of an
integer to an integer or REAL value.

Real to
string

The RTOS instruction produces the ASCII representation of a
REAL value.

String to
real

The STOR instruction converts the ASCII representation of a
floating-point value to a REAL value.

Upper case The UPPER instruction converts the alphabetical characters in a
string to upper case characters.

Lower case The LOWER instruction converts the alphabetical characters in a
string to lower case characters.

Table C-17

Table of Figures

Appendix D Table of Figures

Figure 1-1 Normally Open Logic .. 1-9
Figure 1-2 Normally Closed Logic .. 1-10
Figure 1-3 And Logic... 1-10
Figure 1-4 Or Logic ... 1-10
Figure 1-5 Latch Logic .. 1-11
Figure 1-6 Scan Order .. 1-11
Figure 1-7 I/O Synchronization to Program Scan.. 1-12
Figure 1-8 Direct Array Access ... 1-14
Figure 1-9 Using the Program Scan to Loop thru an Array ... 1-14
Figure 1-10 Using the FOR Instruction to Loop thru an Array ... 1-14
Figure 1-11 Routine WT_LOOP ... 1-15
Figure 1-12 FAL instruction Loop ... 1-15
Figure 1-13 Control Logix Program Structure ... 1-16
Figure 3-1 HMI Mixer process .. 3-25
Figure 3-2 Controller Program Organization ... 3-27
Figure 3-3 Discrete Motor Controller Faceplate .. 3-28
Figure 3-4 Discrete Motor Controller Interlocks ... 3-30
Figure 3-5 Discrete Motor Controller Interlock summation .. 3-31
Figure 3-6 Discrete Motor Controller Contactor Circuit ... 3-31
Figure 3-7 Discrete Motor Controller Alarm Logic .. 3-32
Figure 3-8 Variable Frequency Drive Controller Faceplate .. 3-33
Figure 3-9 Variable Frequency Drive Controller Using the Remote Setpoint 3-34
Figure 3-10 Variable Frequency Drive Controller Scaling the Output 3-35
Figure 3-11 Single Solenoid Valve Controller Faceplate .. 3-36
Figure 3-12 Single Solenoid Controller Interlocks .. 3-38
Figure 3-13 Single Solenoid Valve Controller Interlock Summation 3-38
Figure 3-14 Single Solenoid Valve Controller Output Logic .. 3-38
Figure 3-15 Single Solenoid Valve Controller Alarm Logic ... 3-39
Figure 3-16 Double Solenoid Valve Controller Open Output Logic ... 3-40
Figure 3-17 Double Solenoid Valve Controller Close Output Logic .. 3-40
Figure 3-18 Double Solenoid Valve Controller Open Alarm Logic .. 3-41
Figure 3-19 Analog Indicator Faceplate .. 3-42
Figure 3-20 Analog Alarm Faceplate .. 3-43
Figure 3-21 Analog Alarm Subroutine ANALOG_ALARM .. 3-45
Figure 3-22 Subroutine ANALOG_ALARM High Alarm Logic ... 3-45
Figure 3-23 Subroutine ANALOG_ALARM Low Alarm Logic .. 3-46
Figure 3-24 Subroutine ANALOG_ALARM summation one shot ... 3-47
Figure 3-25 Subroutine ANALOG_ALARM Process Variable Return 3-47
Figure 3-26 Analog Indicator Alarm Enable ... 3-48
Figure 3-27 Analog Indicator Jump to Subroutine .. 3-48
Figure 3-28 Analog Alarm Horn Silence Reset ... 3-48
Figure 3-29 PID Controller Faceplate .. 3-49
Figure 3-30 PID Controller Process Variable Alarm Faceplate .. 3-50
Figure 3-31 PID Controller Trending Faceplate .. 3-51

Table of Figures

 D-191

Figure 3-32 PID Controller Process Variable Alarm Enable ... 3-52
Figure 3-33 PID Controller Deviation Alarm Enable .. 3-53
Figure 3-34 PID Controller Setting the UDT Process Variable .. 3-53
Figure 3-35 PID Controller Calling the ANALOG_ALARM Routine 3-54
Figure 3-36 PID Controller Horn Silence Reset .. 3-54
Figure 3-37 PID Controller Using the Remote Setpoint .. 3-54
Figure 3-38 Getting the System Variable WALLCLOCKTIME to calculate SCAN_TIME 3-55
Figure 3-39 PID Controller Process Calculating the Ramped Setpoint 3-55
Figure 3-40 PID Controller Instruction and Manual Mode ... 3-56
Figure 3-41 PID Controller Setting the Control Variable to the VFD Remote Setpoint 3-56
Figure 3-42 Ratio Controller Faceplate ... 3-57
Figure 3-43 Ratio Controller Calculating the Ratio and Setting the FIC Remote Setpoint 3-58
Figure 3-44 Ratio Controller Call to the ANALOG_ALARM Subroutine 3-59
Figure 4-1 State Logic First Form Example Step .. 4-61
Figure 4-2 State Logic First Form End Of Cycle .. 4-62
Figure 4-3 State Logic First Form Output Logic ... 4-62
Figure 4-4 State Logic Second Form Example Step .. 4-63
Figure 4-5 State Logic Second Form Output Logic ... 4-64
Figure 4-6 Gain in Weight Feeder Process Diagram ... 4-65
Figure 4-7 Gain in Weight Feeder SFC ... 4-66
Figure 4-8 Gain in Weight Feeder Initialize .. 4-67
Figure 4-9 Gain in Weight Feeder Calculate the Cut-Off .. 4-68
Figure 4-10 Gain in Weight Feeder Opening the Feed Valve ... 4-68
Figure 4-11 Determining the Bump Count, the Low Point and the High Point 4-69
Figure 4-12 Closing the Feed Valve and Checking the Bump, Low Point and High Point 4-70
Figure 4-13 Gain in Weight Feeder Bumping the Feed Valve to Achieve Tolerance 4-71
Figure 4-14 Gain in Weight Feeder Bump Alarm ... 4-71
Figure 4-15 Gain in Weight Feeder High Weight Alarm .. 4-72
Figure 4-16 Gain in Weight Feeder Adjusting the In-flight .. 4-72
Figure 4-17 Gain in Weight Feeder Complete ... 4-73
Figure 4-18 State Logic Third Form Example Step ... 4-75
Figure 4-19 State Logic Third Form, Valve Output Logic .. 4-76
Figure 4-20 Confirm Routine, Reset the Timers ... 4-76
Figure 4-21 Confirm Routine Valve Position Confirm. .. 4-77
Figure 4-22 Confirm Routine Setpoint Comparison Confirm ... 4-77
Figure 4-23 Confirm Routine, DELAY_CONFIRM ... 4-78
Figure 4-24 The end of the Confirm Routine Confirm Summation .. 4-78
Figure 5-1 The batching process and instrumentation diagram P&ID 5-79
Figure 5-2 Batching program organization .. 5-81
Figure 5-3 Recipe Parameter Data Flow .. 5-84
Figure 5-4 Recipe Storage Options .. 5-86
Figure 5-5 Batch Control Reset ... 5-88
Figure 5-6 Batch Control Initiate the Batch Controller ... 5-88
Figure 5-7 Batch Control Identify Transition Phases .. 5-89
Figure 5-8 Batch Control Reset the Phase and Prepare to Update Parameters 5-90
Figure 5-9 Batch Control Update the Phase Parameters and Set the Report Pointer 5-90

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider

D-192

Figure 5-10 Batch Control Wait for Transition Phases to Complete ... 5-91
Figure 5-11 Batch Control Increment the Batch Controller Sequence Step 5-91
Figure 5-12 Common Phase Logic Set the Start Time and Run .. 5-93
Figure 5-13 Common Phase Logic Record the Phase Parameters and Set the End Time 5-93
Figure 5-14 Common Phase Logic Phase Running Complete... 5-94
Figure 5-15 Start Phase Logic .. 5-95
Figure 5-16 End Phase Logic ... 5-96
Figure 5-17 Feed Material 1 Phase Open the Feed Valve ... 5-97
Figure 5-18 Feed Material 1 Phase Open the Feed Valve ... 5-98
Figure 5-19 Feed Material 1 Phase Check for Tolerance .. 5-99
Figure 5-20 Tare Scale Phase Logic .. 5-100
Figure 5-21 Start Heat Phase Logic ... 5-101
Figure 5-22 End Heat Phase Logic .. 5-101
Figure 5-23 Start Cooling Phase Logic .. 5-102
Figure 5-24 End Cooling Phase Logic ... 5-102
Figure 5-25 Start Agitator Phase Logic ... 5-103
Figure 5-26 Stop Agitator Phase Logic ... 5-103
Figure 5-27 If PV Phase Set Process Variable for Comparison .. 5-105
Figure 5-28 If PV Phase Wait for True Compare .. 5-105
Figure 5-29 Delay Phase Reset the Delay Timer ... 5-106
Figure 5-30 Delay Phase Wait for Delay Timer .. 5-106
Figure 5-31 If OK Phase Display the OK Message to the Operator .. 5-107
Figure 5-32 If OK Phase Wait for the Ok Button From the Operator 5-108
Figure 5-33 If Yes Phase Display the Message to the Operator .. 5-108
Figure 5-34 If Yes Phase Wait for the Operator Response .. 5-109
Figure 5-35 If Yes Phase When No is Selected Set the Else Step for the Batch 5-109
Figure 5-36 If Yes Phase Set the Batch Controller to the Else Step .. 5-110
Figure 5-37 If Done Phase Increment the Phase Done Pointer ... 5-111
Figure 5-38 If Done Phase Check if the Phase is Complete .. 5-111
Figure 5-39 Go to Step Phase Increment the Go To Pointer ... 5-112
Figure 5-40 Go to Step Phase When the Phase is Found Set the Sequence Step 5-112
Figure 6-1 The Sequence Diagram .. 6-114
Figure 6-2 Sequential Machine Control Step Logic .. 6-115
Figure 6-3 Sequential Machine Control Manual Mode ... 6-117
Figure 6-4 Sequential Machine Control End of Cycle ... 6-118
Figure 6-5 Sequential Machine Control Timed Step ... 6-118
Figure 6-6 Sequential Machine Control Latched Step ... 6-119
Figure 6-7 Sequential Machine Control Bumpless Transfer Output Logic 6-120
Figure 6-8 Sequential Machine Control Output Logic .. 6-121
Figure 6-9 Sequential Machine Control Motor Fault .. 6-121
Figure 6-10 Sequential Machine Control Single Solenoid Valve Fault 6-122
Figure 6-11 Sequential Machine Control Double Solenoid Valve Fault 6-122
Figure 6-12 Sequential Machine Control Step Excess Time Fault .. 6-123
Figure 6-13 Sequential Machine Control Sequence Fault ... 6-123
Figure 6-14 Sequential Machine Control Cycle Hold ... 6-124
Figure 6-15 Sequential Machine Control Holding a Step with Cycle Hold 6-124

Table of Figures

 D-193

Figure 6-16 Sequential Machine Control mid Cycle Start SFC .. 6-125
Figure 6-17 Sequential Machine Control mid Cycle Start Logic .. 6-126
Figure 6-18 Sequential Machine Control Selection Branch Diverge SFC 6-127
Figure 6-19 Sequential Machine Control Selection Branch Diverge Logic 6-128
Figure 6-20 Sequential Machine Control Parallel Branch Diverge SFC 6-129
Figure 6-21 Sequential Machine Control Parallel Branch Diverge Logic 6-130
Figure 7-1 First Logic for 2 Stations.. 7-131
Figure 7-2 First Logic Example Process .. 7-132
Figure 7-3 First Logic Example ... 7-133
Figure 7-4 Three Station First Logic Example .. 7-133
Figure 7-5 Three Station First Logic Second Priority ... 7-134
Figure 7-6 Three Station First Logic First Priority .. 7-134
Figure 7-7 First Logic Number of Rungs Calculation ... 7-135
Figure 7-8 Priority Stack Call to the Stack Routine .. 7-136
Figure 7-9 Priority Stack Routine STACK Move the Station Number into the Stack 7-136
Figure 7-10 Priority Stack Routine STACK Shift the Station Number to Priority One 7-137
Figure 7-11 Priority Stack Routine STACK Clear the Station Number from the Stack 7-137
Figure 7-12 Priority Stack Routine STACK Determine the First Priority 7-137
Figure 8-1 Sortation Conveyor Layout .. 8-138
Figure 8-2 Reading the Barcode thru the Serial Port ... 8-139
Figure 8-3 Checking for a Valid Barcode Read ... 8-139
Figure 8-4 Loading the Sort Lane FIFOs ... 8-140
Figure 8-5 Unloading the Sort Lane FIFOs ... 8-140
Figure 8-6 The Wrap Around Encoder Diagram ... 8-141
Figure 8-7 Enabling the Transfer with the Encoder Window .. 8-142
Figure 8-8 Checking if the Sort Lane Photo Eye is in the Encoder Window 8-143
Figure 8-9 The Sort Lane Solenoid Logic ... 8-143
Figure 8-10 Enabling the Tracking Timer ... 8-144
Figure 8-11 The Tracking Timer Logic ... 8-145
Figure 8-12 Executing the Tracking Timer Loop .. 8-145
Figure 8-13 Tracking Timer Routine TM_LOOP ... 8-146
Figure 8-14 Loading the Timer Pointer into the Sort Lane FIFO .. 8-146
Figure 8-15 Unloading Timer Pointer from the Sort Lane FIFO ... 8-147
Figure 8-16 Enabling the Sort Lane with the Tracking Timer ... 8-147
Figure 9-1 Power and Free Stop to Stop no Accumulation ... 9-148
Figure 9-2 Power and Free Program Organization .. 9-149
Figure 9-3 Power and Free Stop to Stop no Accumulation Logic ... 9-150
Figure 9-4 Power and Free Choke Zone .. 9-151
Figure 9-5 Power and Free Choke Zone Logic .. 9-152
Figure 9-6 Power and Free Choke Zone Reset Logic .. 9-152
Figure 9-7 Power and Free Count Zone ... 9-153
Figure 9-8 Power and Free Count Zone Logic .. 9-153
Figure 9-9 Power and Free Merge into a Count Zone ... 9-154
Figure 9-10 Power and Free Merge Stop 1 Logic .. 9-155
Figure 9-11 Power and Free Merge Stop 2 Logic .. 9-155
Figure 9-12 Power and Free Merge Full and Down Stream Count Zone 9-156

Ladder logic Programming Techniques By Duane Snider

COPYRIGHT © 2005 by Duane Snider

D-194

Figure 9-13 Power and Free Merge Full Reset .. 9-156
Figure 9-14 Power and Free Merge Fault .. 9-157
Figure 9-15 Power and Free Track Switch .. 9-157
Figure 9-16 Power and Free Track Switch Push Button Left and Right Latches 9-158
Figure 9-17 Power and Free Track Switch Stop Logic .. 9-158
Figure 9-18 Power and Free Track Switch Full and Clear .. 9-159
Figure 9-19 Power and Free Track Switch Left and Right Solenoid Valves 9-159
Figure 9-20 Power and Free Track Switch Down Stream Choke Left and Right Full 9-160
Figure 10-1 Toggle Push Button .. 10-161
Figure 10-2 Cascading Start and Stop Logic ... 10-162
Figure 10-3 Cascading Start Stop Interlocks ... 10-163
Figure 10-4 Cascading Start Stop Fast Shutdown ... 10-163
Figure 10-5 Message Display Increment the Message Pointer .. 10-164
Figure 10-6 Message Display Check the Alarm and Set the Message Number 10-164
Figure 10-7 Display the Messasge ... 10-165
Figure 10-8 Buffering Transactions Set the FIFO Size ... 10-167
Figure 10-9 Buffering Transactions Call the BLEND_UPLOAD Routine 10-167
Figure 10-10 BLEND_UPLOAD Routine Receive the Input Paramters 10-167
Figure 10-11 BLEND_UPLOAD Routine Increment the Transaction Pointer 10-168
Figure 10-12 End BLEND_UPLOAD Load the Transaction Table and FIFO the Pointer ... 10-168
Figure 10-13 Buffering Transactions Unload the Stack Pass the Transaction 10-169

