

Unique Full Service Provider Focused on Early Stage Clinical Research

Statistical Challenges – Human Abuse Liability Trials

Bijan Chakraborty Principal Biostatistician

Advancement in Abuse Potential Assessments – Building on the FDA Draft Guidance for Industry, 16-17 April 2015

Bethesda North Marriott Hotel & Conference Center

FDA/NIDA/CCALC

Outline

- Overview of Human Abuse Liability (HAL) Trials
- Pharmacodynamics (PD) in HAL Trials
- Overall Statistical Responsibilities
- Sample Size Calculation
- Statistical Analysis
- Outliers in PD Endpoints
- PK-PD Relationship
- A Statistical Puzzle
- Concluding Remarks

Abuse Liability Studies

Human Abuse Liability Trial Overview

 Design 	 Double Blind, Multi Period Crossover with washout between periods
 Treatments 	 Placebo, 2-3 doses of Test and 2-3 doses of control
Phases	 Screening, Dose Selection, Qualification, Treatment and Follow-up
Evaluation	 Safety, Pharmacokinetic and Pharmacodynamic
 Drugs 	 CNS Drugs, Drugs that are similar to other drug with known AL, Drugs that produce psychoactive effects e.g. sedation, euphoria
 Subjects 	 Healthy Volunteers with history of Recreational Drug Use, Age 18 – 55 Years Approximately 30-40 subjects are randomized in treatment phase
 Duration 	 Average: Screening (4 weeks), Qualification (1-2 weeks), Treatment (8-10 weeks), 1 week Follow-up - Total 3-4 months

Human Abuse Liability Trials

Pharmacodynamic (PD) Assessments

 Scales 	 Subjective/physiologic measures; positive/negative/other; unipolar/bipolar; ordinal / continuous;
 Assessments 	 Visual Analog Scale (>20), Bowdle VAS (13), Bond-Lader VAS (16), Drug Similarity VAS, ARCI (5), Subjective Drug Value, Choice Reaction Time (3), Divided Attention (6), Digit Symbol Substitution (2), Digital Vigilance (4), Pupillometry (1) On Average 20-30 scales for a HAL Trial
 Time points 	 Pre-dose, 0.5, 1,2,3,4,6,8,10,12,24, sometimes up to 48,72 hours in each period
 Endpoints 	 Peak (Emax), Trough (Emin), Time (TEmax or TEmin), AUE, AUE(0- 2h), Max Change from Baseline (CFBmax)

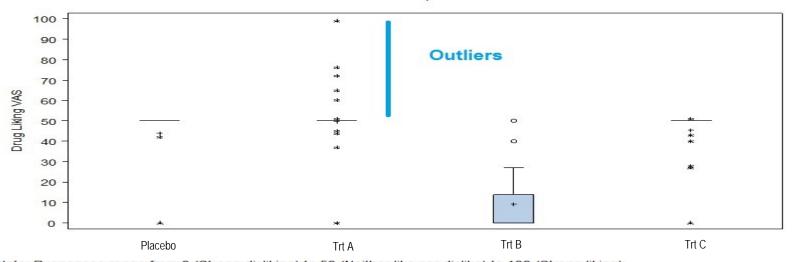
Overall Statistical Responsibilities

1	Need Sufficient Knowledge of PK and PD Evaluation
2	Quality SAP for Safety/PK/PD for Qualification/Treatment Phases
3	Derive accurate Endpoints for all Safety, PK and PD Measures
4	Produce large number of Tables for PK and PD (often > 250)
5	Produce large number of PK, PD Figures (often > 100)
6	Line Charts, Bar Charts, Box-Plot, Dose-Response, Regression, PK-PD

To accomplish all these for a complex and large HAL trial is a Challenge

5 *Statistical Challenges - Human Abuse Liability Trials.*

Sample Size Calculation


Mixed Model Analysis (ANCOVA)	Non-Parametric	
 No Software Tool for Multi-Period Crossover adjusting for Period, Sequence and Carryover Effects 	 Analysis do not adjust for Period, Sequence and Carryover Effects. Low Power means Larger Sample Size 	
 Using SAS Proc Power to Perform Model- based Power Analysis for Clinical Pharmacology Studies, Peng Sun, Merck & Co., Inc., PharmaSUG2010 - Paper SP05. <u>http://www.pharmasug.org/cd/papers/SP/SP0</u> <u>5.pdf</u> Adjustment for only # of Periods. 	N/A	
 > 1 primary endpoints: Low correlations between endpoints implies higher inflation in Sample Size. For 2 endpoints and 0.5 correlations, inflation is 25%. With 0.8 correlation, inflation is 17% Issue: Recruitment, Cost, Length of Study Source: Christy Chuang-Stein, "Challenge of multiple co-primary endpoints: A new approach", the 2007 ICSA Applied Statistics Symposium. 	Sample size will be much higher than ANCOVA analysis	

Statistical Analysis

 70 to 80% endpoints fail Normality/HOV test Non-parametric inferential analysis 	 Possible risk of false negative results Do Generalized Linear Mixed Model (GLIMMIX) Analysis for Primary Endpoints? 		
 When Period, Sequence or Carryover is significant 	Investigate and explain the reasonsAdditional analysis if necessary		
 4X4 or 6x6 HAL Trial in Williams Square 	 Not sufficient DF for Treatment by Carryover interaction if required 		
 Large variability on Subjective Measures 	 Is it due to scale property or reliability of data from few subjects? Risk of False Negative Results 		
 Missing value imputation 	 No issue, if Endpoints are estimable Not performed due to large # of Endpoints What is appropriate method for HAL data? 		

Outliers in PD Endpoints

Figure 14.2.3.1.3.1: Boxplots of Drug Liking VAS Emin Per Protocol Population

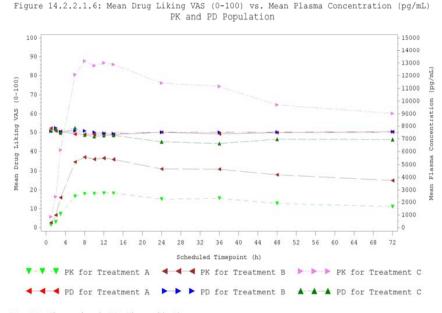
Note: Responses range from 0 (Strong disliking) to 50 (Neither like nor dislike) to 100 (Strong liking) Data Source: Table 14.2.3.1.2.1

Not uncommon to see many outliers for some endpoints

Influence of outliers on study results - further investigation/action plan

8 Statistical Challenges - Human Abuse Liability Trials.

Page 1 of 1


PK-PD Relationships

PD Scores versus PK Conc.


Page 1 of 1

PD Endpoint versus PK Endpoint

Figure 14.2.2.1.9: Emin of Drug Liking VAS vs. Cmax (ng/mL)

Note: PD = Pharmacodynamic PK = Pharmacokinetic VAS Drug Liking Responses range from 0 (Strong disliking) to 50 (Neither like nor dislike) to 100 (Strong liking)

EMIN = 8.859999 + 0.037505*CMAX Standard Error = 20.5456 R-Square = 0.0637 P-value (Slope) = 0.0479

Note: Responses range from 0 (Strong disliking) to 50 (Neither like nor dislike) to 100 (Strong liking)

Determine appropriate PK-PD relationship for HAL trials

9 Statistical Challenges - Human Abuse Liability Trials.

Page 1 of 1

A Statistical Puzzle

Significant p-value when Median of Difference is 0 Wilcoxon Sign Rank Test

	etric Analysis mic Analysis Set		
	Median of Intra-Subject Difference	Inter-Quartile Range for Difference	P-value
Effects			
Overall Treatment Effect			<.0001
Pair wise Comparisons			
Control Low Dose- Placebo (lactose tablets)	6.5	3.0, 11.5	<.0001
Control High Dose- Placebo (lactose tablets)	6.0	3.0, 11.0	<.00.01
Test Low Dose- Control Low Dose	-4.0	-11.0, -1.0	<.0001
Test High Dose- Control Low Dose	-4.0	-1.0.0, -1.0	<.0001
Test Low Dose- Control High Dose	-6.0	-10.0, -1.0	<.0001
Test High Dose-Control High Dose	-4.0	-10.0, -1.0	<.0001
Test Low Dose-Placebo Test High Dose 🛛 💼 💼	0.0	0.0. 1.0	0.03.27
Test High Dose-Placebo Test High Dose	0.0	0.0.1.0	0.1411
Test Low Dose- Placebo (lactose tablets)	0.0	0.0.1.0	0.0575
Test High Dose-Placebo (lactose tablets) 👝 🚃	0.0	0.0. 1.0	0.0215
Placebo Test High Dosie- Placebo (lactose- lets)	0.0	0.0, 0.0	0.4981

The results are accurate⁽²⁾ How can we explain this result?

Algorithme Pharma AN ALTASCIENCES COMPANY

10 Statistical Challenges - Human Abuse Liability Trials.

Concluding Remarks

- Planning, analysis and producing a large number of tables and figures in a short time for a large complex multi-period crossover trial with 4 to 7 treatments and PK/PD/Safety assessments is a challenge
- A software tool to calculate the Sample Size for multi-period crossover trial will be helpful
- Need a non-parametric analysis method that can adjust the period, sequence and carryover effects
- Action on PD outliers for individual PD Scales need to be determined
- Need guidance on appropriate PK-PD relationship

Acknowledgment

Kerri Schoedel Naama Levy-Cooperman Beatrice Setnik Marta Sokolowska

