Conditioned Place Preference: Relation to Self-Administration and Predictor of Abuse Potential

Christopher L. Cunningham

Dept. of Behavioral Neuroscience

& Portland Alcohol Research Center

Oregon Health & Science University

Portland, OR USA

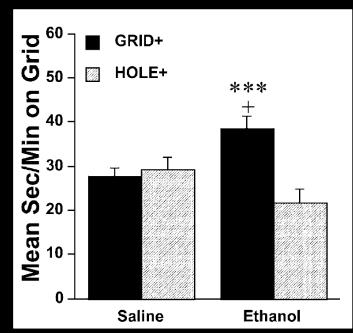
Acknowledgements
NIH/NIAAA

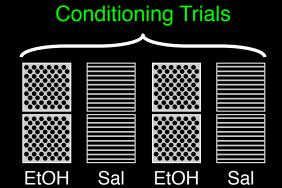
CCLAC-2015

CPP: Background

Associative learning procedure [Pavlovian]

Research tool used to study:


- Learning/memory/motivational processes
- Rewarding/aversive drug effects
- Conditioned approach/reward/reinforcement
- Drug seeking behavior, relapse
- Brain mechanisms, genetic influences, etc.
- Putative relapse-reduction medications


Shown across many species:


Planarians, drosophila, zebrafish, goldfish, crayfish, chickens,
 Japanese quail, musk shrews, hamsters, <u>rats</u>, <u>mice</u>, non-human primates, humans

Place Conditioning: Mouse

Test

Cunningham et al. (Psychopharmacology, 2003)

Self-Administration vs. CPP

Self-administration tests assess the rewarding properties of a drug. If animals actively work at a behavioral task to receive a dose of the drug, it is likely that the drug will be rewarding in humans.

Conditioned place preference is a method related to self-administration in which animals choose to spend time in one of two distinct environments, that is, the site where they previously received a drug or where they previously received placebo. Conditioned place preference is not as rigorous a behavioral test as self-administration in determining the rewarding properties of a drug.

HHS, FDA, CDER. "Guidance for Industry: Assessment of Abuse Potential of Drugs" (*DRAFT GUIDANCE*, *January 2010*)

Self-Administration vs. CPP

reinforcing

Self-administration tests assess the rewarding properties of a drug. If animals actively work at a behavioral task to receive a dose of the drug, it is likely that the drug will be rewarding in humans.

Conditioned place preference is a method related to self-administration in which animals choose to spend time in one of two distinct environments, that is, the site where they previously received a drug or where they previously received placebo. Conditioned place preference is not as rigorous a behavioral test as self-administration in determining the rewarding properties of a drug.

HHS, FDA, CDER. "Guidance for Industry: Assessment of Abuse Potential of Drugs" (DRAFT GUIDANCE, January, 2010)

These tests are only as rigorous as the scientists using them!

Self-Administration vs. CPP

Task	Training Conditions	Behavior
SA	Response → Drug	↑ Pr (Response)
СРР	Context → Drug	↑ Pr (approach & contact w/context)

Reinforcement: experimental contingency that increases the probability of a class of behaviors (Mackintosh, 1975)

Reward: appetitive reinforcer that has a "positive" effect on physiological or motivational processes or states

- Substantial overlap in drugs that produce SA and CPP
- Some discrepancies
- Some overlap in mechanisms
- Some discrepancies in mechanisms

Overlap in drugs that produce SA and CPP

Drug	CPPa	Self- administration ^a	Example references
Stimulants			
Amphetamine	+	+	Yokel and Wise 1976; Spyraki et al. 1982b
Methamphetamine	+	+	Pickens et al. 1967; Trazon et al. 1992
Cocaine	+	+	Nomikos and Spyraki 1988; Caine and Koob 1994
Nicotine	+	+	Corrigall and Coen 1989; Shoaib et al. 1994
Caffeine	+	+	Atkinson and Enslen 1976; Bedingfield et al. 1998
Methylphenidate	+	+	Martin-Iversen et al. 1985; Weeks and Collins 1987
Apomorphine	+	+	Baxter et al. 1974; Parker 1992
SKF 82958	+	+	Self et al. 1996; Abrahams et al. 1998
Bromocriptine	+	+	Hoffman et al. 1988; Wise et al. 1990
7-OH-DPAT	+	+	Mallet and Beninger 1994; Caine et al. 1999
Bupropion	+	+	Ortmann 1985;Tella et al. 1997
			•
Opiates			
Morphine	+	+	Bardo et al. 1984; Glick et al. 1992
Heroin	+	+	Ettenberg et al. 1982; Hand et al. 1989
Fentanyl	+	+	Shearman et al. 1977; Mucha and Herz 1985
Methadone	+	+	Collins and Weeks 1965; Steinpreis et al. 1996
Other drugs			
Ethanol			Reid et al. 1985; Le et al. 2000
Diazepam	+	+	File 1986; Naruse and Asami 1990
Midazolam	+	+	Szostak et al. 1987; Pain et al. 1997
Δ^9 -THC	+	+	Takahashi and Singer 1979; Lepore et al. 1995
Clonidine	+	+	Shearman et al. 1977; Tierney et al. 1988
Scopolamine	0	0	Glick and Cox 1975; Lynch 1991
Haloperidol	0	0	Weeks and Collins 1987; Di Scala and Sandler 1989
Fenfluramine	_	0	Baxter et al. 1973; Davies and Parker 1993
Imipramine	_	0	Weeks and Collins 1987; Papp 1989
Naloxone	_	0	Weeks and Collins 1987;
Talonollo		•	Shippenberg and Bals-Kubik 1995
ol indicates a			

^a The "+" symbol indicates a positive effect, the "0" symbol indicates no effect and the "-" symbol indicates an aversion

Bardo & Bevins (*Psychopharmacology*, 2000)

- Substantial convergence in drugs that produce SA and CPP
- Some discrepancies
- Some overlap in mechanisms
- Some discrepancies in mechanisms

Drugs with different effects on SA & CPP

Drug	CPP ^a	Self- administration ^a	Example references
Pentobarbital Phencyclidine LSD Buspirone Pentylenetetrazole	0 0 + + +	+ + 0 0 0	Collins et al. 1984; Lew and Parker 1998 Marquis et al. 1989; Aquas et al. 1990 Meehan and Schechter 1998 Balster 1990; Neisewander et al. 1990 Gauvin et al. 1991

Bardo & Bevins (*Psychopharmacology*, 2000)

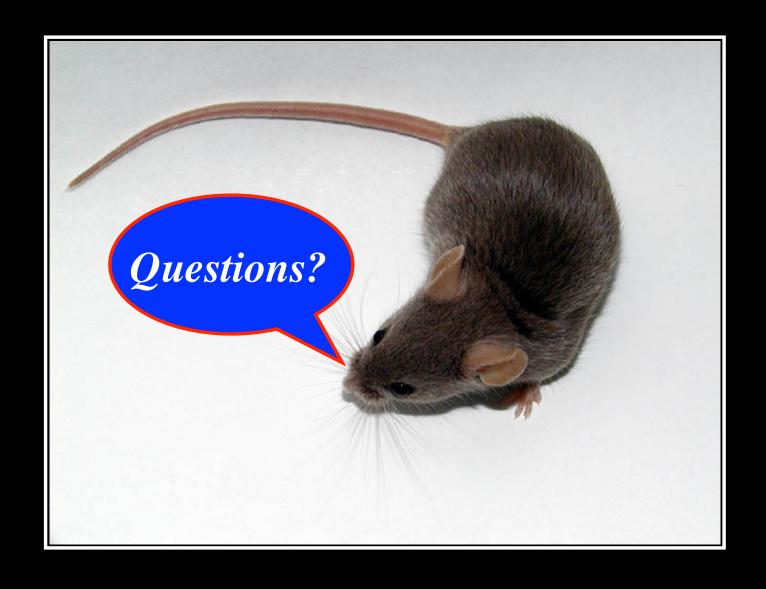
```
Pentobarbital +/- Bossert & Franklin, 2001
Phencyclidine +/- Kim et al., 2003; Shin et al., 2005
```

- Substantial overlap in drugs that produce SA and CPP
- Some discrepancies
- Some overlap in mechanisms
- Some discrepancies in mechanisms

- Different forms of associative learning
 - generally involve different types of behavior
- Both can be used to test the ability of novel drugs to strengthen behaviors that reflect rewarding effects
- Both have value as tools for assessing abuse liability using animals

CPP: tool for assessing abuse potential

- Disadvantages:
 - Limitations on within-subject testing
 - Dose-effect testing is cumbersome
 - Might require larger n's
 - Optimal parameters can vary with drug
 - Drug is experimenter administered
 - Less face validity


CPP: tool for assessing abuse potential

Advantages:

- No surgery required
- Multiple routes of administration
- Drug is experimenter administered
 - Precise control over dose, timing
- Detects either rewarding or aversive effects
- Effects measured without drug present
- Rapid acquisition (high throughput)
- Concurrently determine locomotor effects
- Reference Dose/Drug procedure

When might CPP be especially useful?

- Early assessment of abuse potential before investing resources in required GLP-compliant testing (SA, DD, PD)
- IV formulation is not yet available or possible
- Sensorimotor drug effects interfere with operant self-administration

