Oxygen Demands for Distance and Mid-Distance Runners

(Type of Fuel Used)

RACE DISTANCE	AEROBIC (WITH OXYGEN)	ANAEROBIC (WITHOUT OXYGEN)	YEAR DATA DISCOVERED
400 METERS	43%	57%	09
	19%	81%	01
800METERS	66%	44%	09
	45%	55%	01
1,500 METERS	76%	24%	09
3,000 METERS	65%	35%	01
5,000 METERS	75%	25%	09
	84%	16%	09
10,000 METERS	80%	20%	01
	90%	10%	09
MARATHON	90%	10%	01

What does this mean?

The more developed your oxygen delivery system (heart, lungs, and capillaries) is, the better your performance will be at these distances.
The shorter the distance, the less training becomes involved.
The longer the distance, the more training becomes involved.
No matter the distance, Oxygen is involved!

Our goals:

a. To never let talent dictate the outcome of races.
b. To out-train opponents so that we will either win or make them run harder than they want to.
c. To develop the oxygen delivery system to maximize our abilities at our individual training level.
d. To go further faster.

