Plasma Kinetics

RESPONSIBLE, RENEWABLE, ENERGY STORAGE

Energy Transport

Problem

Existing energy storage is complex and costly

Battery Storage

- Expensive
- Not recycled & toxic waste
- Heavy and potentially flammable

Traditional Hydrogen Storage

- 3,000 -10,000 psi
- -423 °F
- Expensive
- Potentially flammable

Chemical Hydrogen Storage • Ammonia

- Stored at 160 psi
- Synthesis/cracking costs
- Methanol
 - Synthesis/cracking costs
 - Potentially flammable

Solution

4

Hydrogen stored in light activated thin film

Patented technology No pressure or cooling needed No risk of fire or explosion No transportation restrictions Lower cost than batteries Low cost to store hydrogen Low cost to ship hydrogen Safe storage of hydrogen

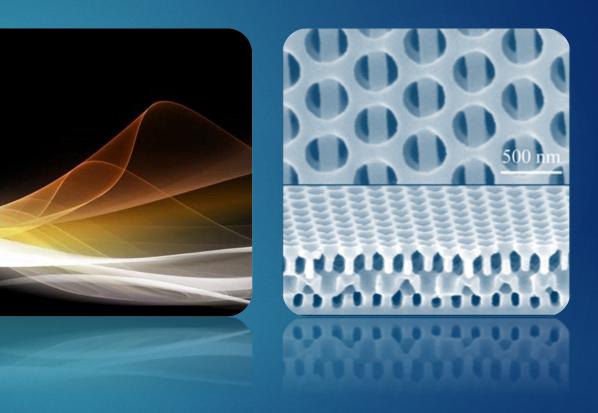
- SMR/Incineration/Flue Gases
- Gas Temperatures from 70 °F to 500 °F
- Gas Pressures from 15 psi to 580 psi
- CO₂ concentration up to 30% Molar Mass

Electro-Reformer Prototype Syngas Post H ₂ O Condensation Constituents					
Gas	%Mol	%Mass	Sms3/h	Kg/h	
CH_4	0.07	0.08	0.04	0.03	
CO_2	28.97	80.43	15.8	29.23	
CO	6.03	10.66	3.29	3.87	
H ₂	64.35	8.17	35.09	2.97	
H ₂ O	0.58	0.66	0.32	0.24	
Total	100	100	54.54	36.34	

5

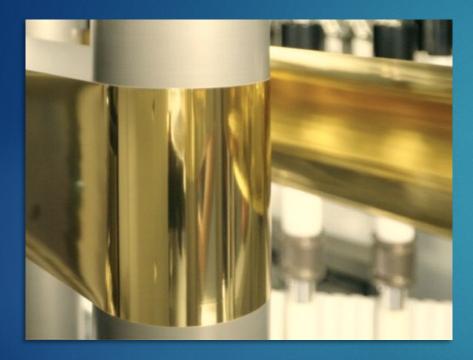
Results

- Non-flammable hydrogen storage.
- 1,000 kg of hydrogen in 20ft intermodal container.
- Safe distribution by inland waterway, truck or rail.
- Specialized ship and certification exempt.
- Infrastructure and safety measures minimized.
- Shipments of any size, to any port, with reduced logistics and increased revenue.



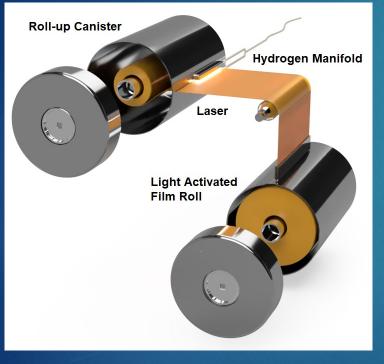
120GWh aboard a single container ship12,000 homes powered for a year9,320,000 miles of truck travel

Technical


0.028 mm *non-flammable* thin film with a nano-structure which captures hydrogen *without pressure* and interacts with light to release hydrogen at desired pressure.

- 7 constituents (no rare-earths)
- NGF and Polyimide substrate
- Nano-lithography structures
- PVD layering of materials
- High Temperature Shape Memory Alloy
- Low CO₂ fabrication process

Thin Film Overview


Light activated hydrogen storage film

- UL 94 V-0 non-flammable
- Tensile strength 35kg/cm
- Dielectric strength 8,000 volts
- Resistant to crepitation
- Heat resistant
- Rechargeable without pressure
- H₂ absorption in minutes
- Rechargeable over a hundred cycles
- Recyclable
- No rare-earth elements
- Non-toxic
- Resistant to contamination

Thin film rolls between canisters while a light shines on it (like a movie reel in a projector) to release hydrogen.

Patents confirmed by National Laboratories

Photons provide plasmonic 'on-demand' hydrogen release - 2019 NREL

50-fold increase in hydrogen storage with nanosheets

- 2023 Lawrence Livermore and Sandia National Laboratories

Storage and Release

 $\begin{array}{rl} & 17 \text{Kg H}_2 \text{ Canister} \\ \text{Volume} & \text{Weig} \\ \bullet & 0.04 \text{ m}^3/\text{kg H}_2 & \bullet & 40 \end{array}$

- 0.00124 m³/kWh
- 806 kWh/m³
- Weight • 400 kg system wt.
 - 33.4 kg/kg H₂
 - 1.0 kg/kWh

H₂ Charging Hood

- No pressure
- Multiple canisters
- No fire risk

H₂ Charged in 20ft Container

- 70 canisters (1000 Kg) charged
- Charging time 30 60 minutes

Benefits and Value

- No pressure
- Non-flammable
- Long shelf-life
- Quick recharging
- Multiple fuel sources
- Minimal Infrastructure

Safe

- Economical
- Transportable
- Quiet
- Zero Carbon
- Distributable

11

Technology Comparison

12

Thin Film Energy Density \approx 5,000 psi compressed H₂ without pressure

Energy Density <u>Li-ion Battery</u> Gravimetric: 130 Wh/kg Volumetric: 474 Wh/l

Light Activated Solid-State Hydrogen 1000 Wh/kg 806 Wh/l

≈ 5,000 psi Compressed Hydrogen

10,000 psi <u>Compressed Hydrogen</u> 1872 Wh/kg 1300 Wh/l

Synthetic Fuel <u>Methanol</u> 5520 Wh/kg 4380 Wh/l

160 psi or -27°F <u>Ammonia</u> 5160 Wh/kg 4270 Wh/l

Truck Comparison

Light Activated Thin Film hydrogen truck

- Vehicle cost \$880,000
- Not Compressed
- Fuel cost \$0.24/kWh (save \$20,000/year)
- CO₂ 24k kg/year (save 40,000 kg/year)
- Refueling Infrastructure \$2M/station (save \$3M/station)
- Non-flammable
- Same canisters for regional/local delivery
- Same canisters for use in trucks

Compressed gas hydrogen truck

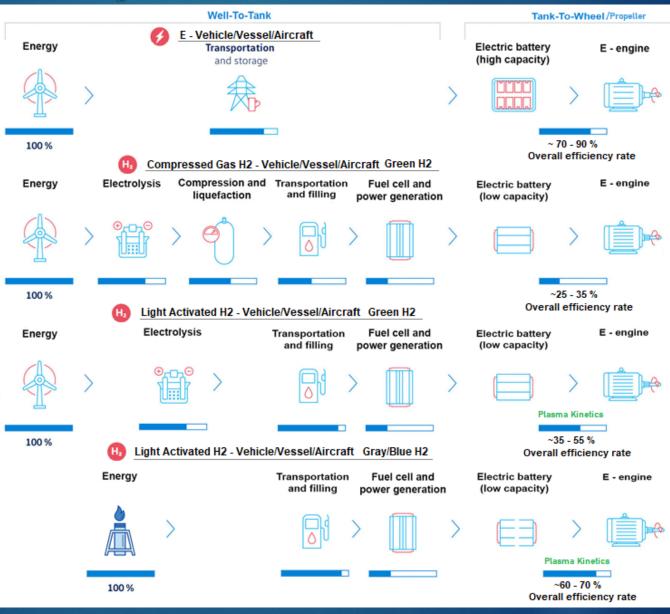
- Vehicle cost \$880,000
- Compressed to 5,000 psi
- Fuel cost \$0.45/kWh
- CO₂ 68k kg/year
- Refueling infrastructure \$5M/station
- Flammable
- Pipeline or custom truck for local delivery
- Carbon fiber tanks required for use in trucks

Bus Comparison

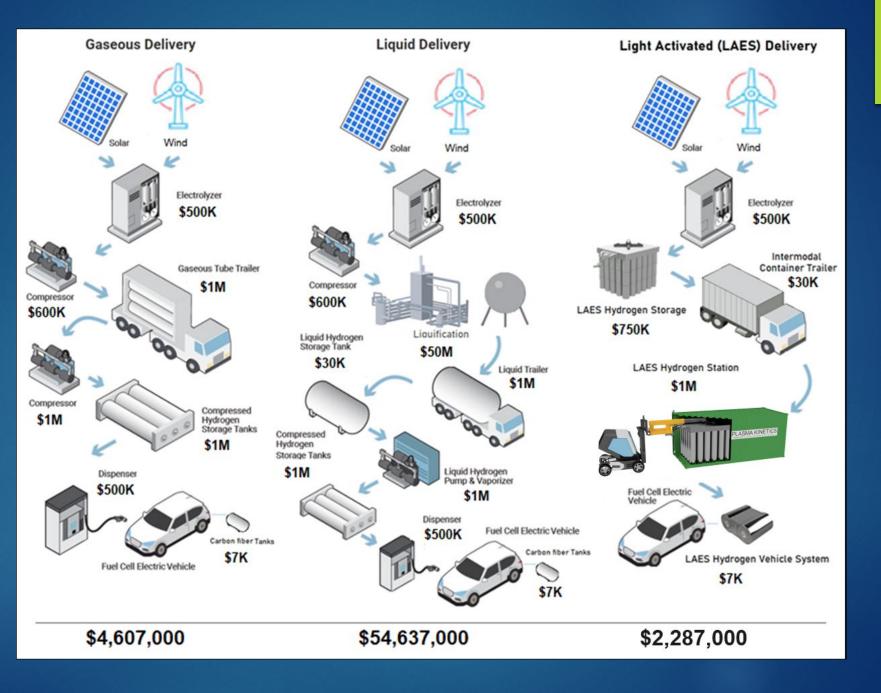
Light Activated Thin Film hydrogen bus

- Vehicle cost \$990,000
- Not Compressed
- Fuel cost \$0.24/kWh (save \$20,000/year)
- CO₂ 24k kg/year (save 40,000 kg/year)
- Refueling Infrastructure \$2M/station (save \$3M/station)
- Non-flammable
- Same canisters for regional/local delivery
- Same canisters for use in buses and trucks

Compressed gas hydrogen bus


- Vehicle cost \$990,000
- Compressed to 5,000 psi
- Fuel cost \$0.45/kWh
- CO₂ 68k kg/year
- Refueling infrastructure \$5M/station
- Flammable
- Pipeline or custom truck for local delivery
- Carbon fiber tanks required for use in buses

Bus Comparison

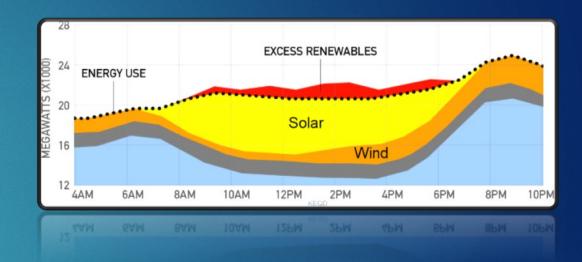

Metric	Diesel City Bus	Electric City Bus	Fuel Cell City Bus	PK Fuel Cell City Bus
Vehicle Cost	\$550,000	\$850,000	\$1,200,000	\$1,000,000
Station Cost	\$2,500,000	\$20,000,000	\$5,000,000	\$2,000,000
Weight	12,000 kg	16,330 kg	7,900 kg	8,500 kg
kWh/km	6.2 kWh/km	1.4 kWh/km	2.5 kWh/km	2.7 kWh/km
Range	480 km	270 km	425 km	420 km
Power/Weight	17.5 kW/t	19 kW/t	39 kW/t	36.5 kW/t
Fuel	Diesel	Electricity	Hydrogen 350bar gas	Hydrogen solid
Capacity	150 liters (1,500 kWh)	380 kWh	32 kg (1,065 kWh)	34 kg (1,132 kWh)
Consumption	30 I/100km	140 kWh/100km	7.6 kg/100km	8.1 kg/100km
Fuel Cost	\$1.2/I (\$0.12/kWh)	\$0.19/kWh	\$15/kg (\$0.45/kWh)	\$8/kg (\$0.24/kWh)
Motor	210 kW	310 kW	310 kW	310 kW
Battery	None	380 kWh	69 kWh	69 kWh
Cost per 100km	\$36	\$27	\$114	\$65
CO ₂ /100km	80 kg	32 kg	70 kg	16 kg
CO ₂ from	Diesel ICE	Mixed Electric	Mixed Hydrogen	Green Hydrogen

Energy Efficiency

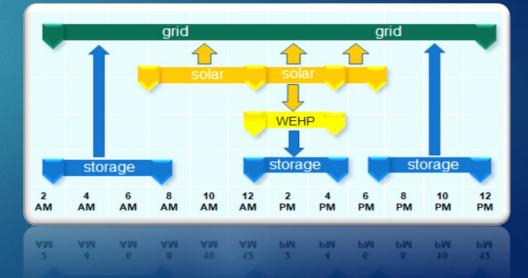
Plasma Kinetics Light Activated H₂ storage approximates battery efficiency

Cost

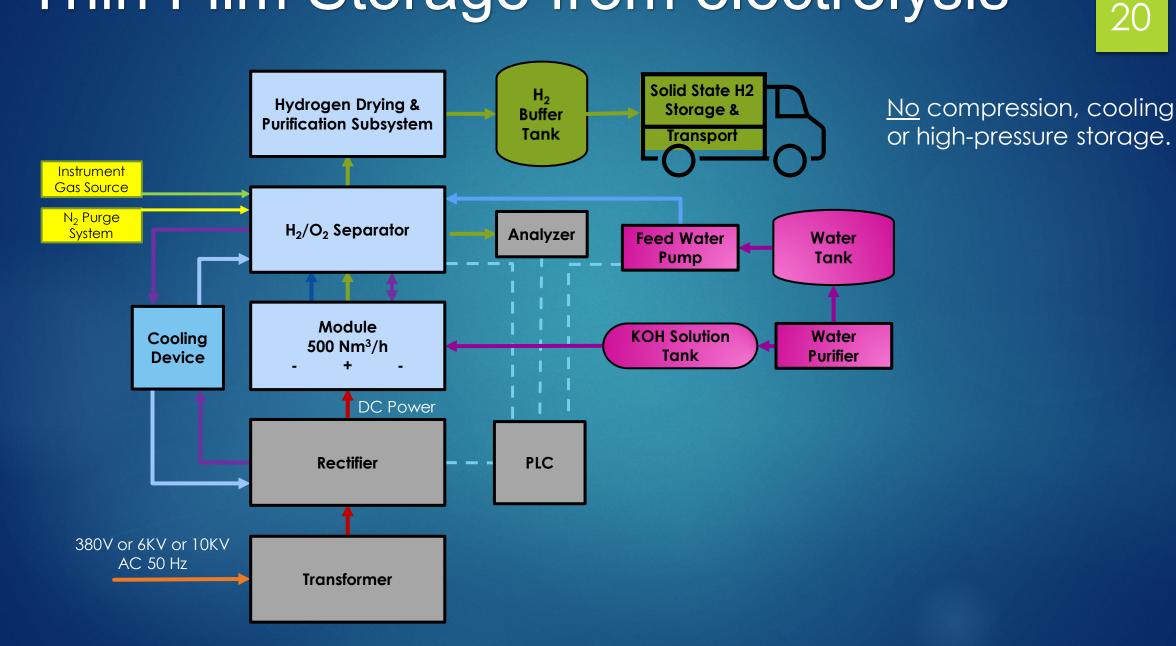
17


Wind/Solar Overproduction Producers need a way to provide energy 24/7.

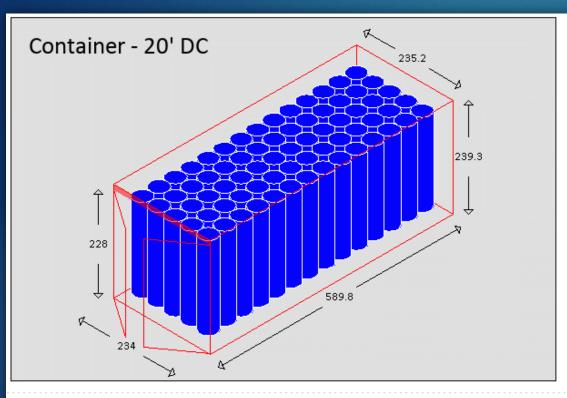
502 federally funded and 416 Utility-Scale Solar Projects in the U.S.


404 GWh of Solar/Wind Energy produced in 2020 with a 20% oversupply during daylight hours. - US Energy Information Administration (EIA)

PacifiCorp reports \$2 Billion annually would be saved with over generation management.



18



Compressed storage from electrolysis 19 Industrial Cooling Water 🔶 Chilled Chilled Water Water Η₂ Hydrogen Drying & Machine Machine H_2 H_{2} High **Purification Subsystem** 20MPa Buffer Pressure Storage **Two Stage One Stage** Tank Storage Instrument Tank Hydrogen Compressor Hydrogen Compressor Tank Gas Source N₂ Purge High Pressure or H_2/O_2 Separator System Analyzer Feed Water Water Transport Vehicle Tank Pump Cryo-Cooling Module **KOH** Solution Water Coolina **Hvdroaenation** 500 Nm³/h **Purifier** Tank Device Sequence **Control Panel** DC Power Rectifier PLC **Hydrogenation Hydrogenation** Machine Machine 380V or 6KV or 10KV Precooling of AC 50 Hz Chilled hydrogen pipeline Transformer Water Machine

Thin Film Storage from electrolysis

Canisters/Container

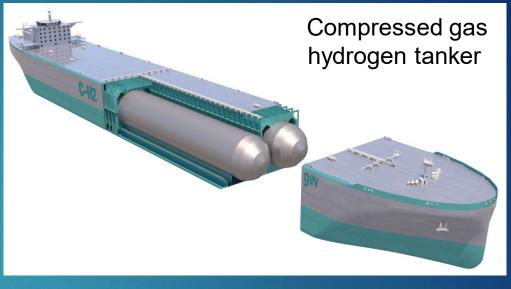
Full loading list

Equipment : Container - 20' DC

Cargo name	Pieces loading	Pieces total	
H2 Canisters	70	70	

21

	Used	Free	Maximum
Weight (payload) in KG	28000	200	28200
Cubic Meter	22.4	10.796	33.196
Floor lenght centimeter	560	29.8	589.8
Floor sqaure meter	11.2	2.672	13.872
Pieces	70		


(1215 kg stored, minimum 850 kg usable)

			(7005 containers per ship)					
Group	Equipment name	Name	PCS	Weight total	Lenght	Width	Height	
1	Container - 20' DC	H2 Canisters	70	28000	40	40	200	

- 10,000 Tons of Hydrogen
- Not Compressed
- Partial deliveries possible at multiple ports
- Existing infrastructure to load/unload
- No port storage tanks required
- Non-flammable
- Same container for regional/local delivery
- 3,5k Kg CO₂ per ton of H_2 (50% SMR without compression)
- Investment according H₂ production

- 2,000 Tons of Hydrogen
- Compressed* to 250 Bar
- No partial shipments
- Single destination
- Custom Infrastructure Compress/decompress to load/unload
- Port storage tanks required
- Flammable
- Pipeline or custom truck for local delivery
- 6,1k Kg CO₂ per ton of H₂ (50% smr & compression)
- 250M € Investment

- 10,000 Tons of Hydrogen
- Not Compressed
- Partial deliveries possible at multiple ports
- · Existing infrastructure to load/unload
- No port storage tanks required
- Non-flammable
- Same container for regional/local delivery
- 3,5k Kg CO₂ per ton of H₂ (50% SMR without compression)
- Investment according H₂ production

- 90 Tons of Hydrogen in 1250 Cm of volume
- Liquefied* to -253° C/1bar
- No partial shipments
- Single destination
- Custom Infrastructure cooling/heating to load/unload
- Port Liquified Hydrogen Receiving Terminal
- Flammable
- Pipeline or custom truck for local delivery
- 6,1k Kg CO₂ per ton of $H_{2(50\% \text{ smr }\& \text{ compression})}$
- Costly Investment for infrastructures

- 10,000 Tons of Hydrogen
- Not Compressed
- Partial deliveries possible at multiple ports
- Existing infrastructure to load/unload
- No port storage tanks required
- Non-flammable
- Same container for regional/local delivery
- 3,5k Kg CO₂ per ton of H_2 (50% SMR without compression)
- Investment according H₂ production

- 580 Tons of Hydrogen in 3500 Tons. of Methanol
- Not Compressed
- Yes partial shipments
- Partial deliveries at multiple ports
- Existing infrastructure to load/unload
- Port storage tanks required
- Highly Flammable Toxic
- Pipeline or custom truck for local delivery
- 6,0k Kg CO₂ per ton of H₂ (50% smr)
- Costly Investment for infrastructures

- 10,000 Tons of Hydrogen
- Not Compressed
- Partial deliveries possible at multiple ports
- Existing infrastructure to load/unload
- No port storage tanks required
- Non-flammable
- Same container for regional/local delivery
- 3,5k Kg CO₂ per ton of H_2 (50% SMR without compression)
- Investment according H₂ production

Compressed ammonia tanker

- 9,360 Tons of Hydrogen for 60.000 Tons of Ammonia
- Compressed to 11 bar or cooling -33 °C
- Single destination with no partial shipments
- Custom Infrastructure Compress/decompress to load/unload
- Port storage tanks required
- Flammable -Toxic
- Pipeline or custom truck for local delivery
- 5,1k Kg CO₂ per ton of H₂ (50% smr & compression)
- Costly Investment for infrastructures
- Thermal catalytic decomposition or electro-oxidation required.

Hydrogen Storage Comparison

26

Light Activated has the lowest "up-front" energy requirement. Light Activated is always at room temperature and pressure.

Storage/Feature	Plasma Kinetics	Compressed	Liquid	Metal Hydride	
Temperature K _d	25°C +	25°C +	–252.87°C	175+°C	
Pressure K _d	1 bar +	350-700 bar	1 bar +	20 bar	
Energy K _d	0.05 kWh/kg +	1.8-6.5 kWh/kg	11.5 kWh/kg	10.4 kWh/kg	
Temp/Press stored	25°C/1 bar +	25°C/350-700 bar	–252.87°C/1bar	25°C/1 bar 🛛 +	
Temperature α	25°C +	25°C +	-252.87°C	287+°C	
Energy α	8.6 kWh/kg	0 kWh/kg +	0 kWh/kg +	24.4 kWh/kg	
Energy Total	8.7 kWh/kg	1.8-6.5 kWh/kg +	11.5 kWh/kg	34.8 kWh/kg	
Storage Rate	1 kg/min +	1 kg/min +	1 kg/min +	0.1 kg/min	
Flammability	Non-Flammable+	Flammable	Flammable	Flammable	
Explosive in air	Non-Explosive +	Explosive	Explosive	Non-Explosive +	
Stored Molecule	MgHX Hybrid +	H ₂ Covalent	H ₂ Covalent	MgH_2 Covalent	

27

Quick canister exchange & delivery of 1kg to 15kg of H₂ per hour

Class 8 truck (N3/04) canisters 50kg H2 500 mile range 1.1-ton system weight 5 minute refuel

Quick canister exchange & delivery of 1kg to 15kg of H2 per hour

28

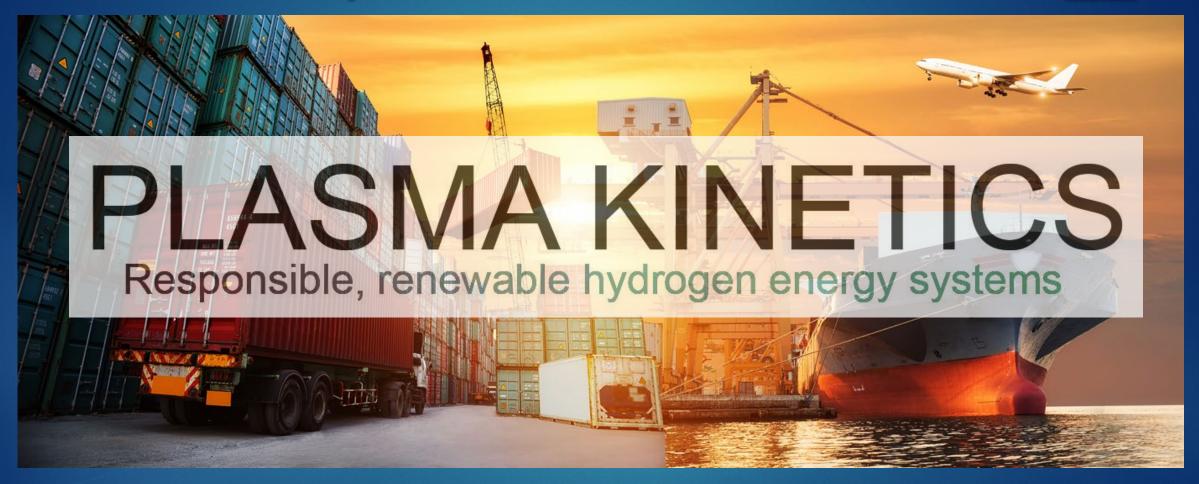
Passenger vehicle canister 3.5kg H₂ 280 mile range 200 lbs. system weight 3 minute refuel

Quick canister exchange & delivery of 15kg to 45kg of H₂ per hour

Large mining truck 150kg H₂ replaces 275 gal of diesel fuel 20 minute refuel

29

Gantry canister exchange 5 minute refuel



30

City bus (12 Meters) 34kg H₂ 260 mile range 5 minute refuel Class 8 trucks 50kg H₂ 500 mile range 5 minute refuel

Thank you!

18291 N. Pima Rd Ste 110-132Scottsdale, AZ 85255+1 480-258-1100info@plasmakinetics.com