DARPA Phase II SBIR "Highly Integrated Silicon (Si)-based RF Electronics" for Emerging MIMO Radar

Contract: W91CRB-10-C-0078

Small Business Prime Contractor

Advanced Tech Engineering, Inc. Frank A. Lucchesi, Principal Investigator Phone: 952-465-6009 Fax: 952-435-5805 E-mail: AdvancedTechEgrg@comcast.net

The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

(Approved for Public Release, Distribution Unlimited)

Advanced Tech Engineering Where Technical Performance & Integrity Matters

"Highly Integrated Silicon Based RF Electronics for Emerging MIMO Radar" SBIR

Objective

The overarching technical objective of the Phase II effort performed by Advanced Tech Engineering, Inc. (ATEI) is to develop disruptive and transformative MIMO techniques and silicon based technologies that results in new or advanced capabilities, enhanced performance, and at least an order of magnitude reduction in cost, size, weight, and power (CSWaP) of RF electronic over contemporary type III-V MMIC technologies for emerging MIMO radar, Wideband AESA radars and other new or emerging RF sensors and applications.

- Radar front-ends use numerous Type III-V MMICs as discrete components.
- Trends → higher power PAs , temperature, SW&P and Cost
- Employs traditional Radar techniques

- Replace all III-V MMICs with single Si-based RF front-end chip
- SWaP & Cost > 10X Reduction
- New Techniques developed which increases capability/performance at reduced power levels

Approach

- Design a scalable, T/R module-on-a-chip for future generation MIMO radar, wideband AESA radar, all digital radar, RF sensors and current generation high performance LPD/LPI communications.
- Inherently resistant to jamming (multi-mode, multifrequency - through and including 30 GHz)
- Delivers greater capability and performance over current systems at a fraction of the cost, size, weight and power.
- Ideal for missile applications, UAV/UAS, & SWaP constrained systems

Key Milestones – Year 2

ы	Task Name	Start	Finish	Duration	Q2 11 Q3 11 Q4 11 Q1 12 Q2 12				
					Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun				
1	Phase II Year 2 Contract	4/27/2011	6/26/2012	61w					
2	System Design/Study Update	4/27/2011	6/26/2012	61w	▼▼				
3	MIMO Radar Analysis Update	4/27/2011	6/26/2012	61w					
4	System Arch Update	6/13/2011	8/10/2011	8.6w	—				
5	Receive RF Chain	6/13/2011	7/12/2011	4.4w					
6	Transmit RF Chain	6/15/2011	8/9/2011	8w					
7	Review/update SystemVue Arch Model	6/13/2011	7/8/2011	4w					
8	Update ckt block and specifications	7/12/2011	8/10/2011	4.4w					
9	RFIC Circuit Design Update	7/19/2011	1/17/2012	26w	V				
10	SSR /Circuit Design Update Kickoff	7/19/2011	7/19/2011	0w	\diamond				
11	Rx Ckt Design Update & Layout	7/19/2011	9/30/2011	10.8w					
12	TX Ckt Design Update & layout (IRaD)	7/19/2011	9/30/2011	10.8w					
13	PDR	10/3/2011	10/3/2011	0w	\diamond				
14	CDR/ TestChip Kick-Off	12/16/2011	12/16/2011	0w	♦				
15	TestChip FDR	1/17/2012	1/17/2012	0w	♦				
16	RFIC Fabrication	1/18/2012	6/6/2012	20.2w	V				
17	TestChip Tapeout	1/18/2012	1/18/2012	0w	\$				
18	TestChip Fabrication Duration	1/18/2012	5/1/2012	15w					
19	TestChip Testing	5/2/2012	5/29/2012	4w					
20	TestChip Bench Validation Review & Report	5/30/2012	6/6/2012	1.2w	↓ 0				

ATEI's advancements are leading to a realizable low-cost AESA Radar

Advanced Tech Engineering Where Technical Performance & Integrity Matters

Phase II Operational View Scenario 3a: Short Range RF Seeker/Fuse or UAS Payload/Sensor

Advanced Tech Engineering

Where Technical Performance

& Integrity Matters

Phase II SBIR Focus → Scenario 3a

					Frequency	<u>Range</u>	
	<u>Scenario</u>	<u>Application</u>	<u>Config</u>	Band	<u>(GHz)</u>	<u>(nmi)</u>	<u>Target</u>
			mono-static or				
	1	Airborne RADAR	bi-static	Lower X-band	8	100	Aircraft
,			Mono-static				
	2	Airborne RADAR	or bi-static	Ku-band	15	100	Aircraft
		Airborne Missile Seeker &		Lower Ka-			
Phase II Focus	3a/b	UAV Sense and Avoid	mono-static	Band	28-30	10/100	Aircraft / Missiles
	4	Airborne Missile Seeker	Bi-static	Upper X-band	10	125	Aircraft / Missiles

Advanced Tech Engineering Where Technical Performance & Integrity Matters

Phase II Operational View Scenario 3 b: Medium to Long Range RF Radar/Seeker or UAS Payload/Sensor

Advanced Tech Engineering Beyond Phase II SBIR Focus \rightarrow Scenario 3b

Scenario 3b – Operational View (OV) Long Range RF Seeker/UAS Payload

Where Technical Performance & Integrity Matters

