Specifications

Desert Hawk III Specifications

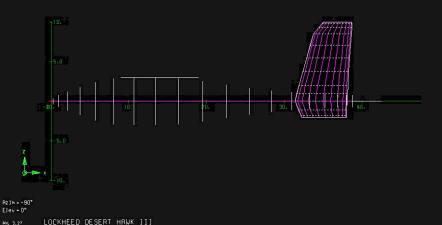
Dimensions & Areas

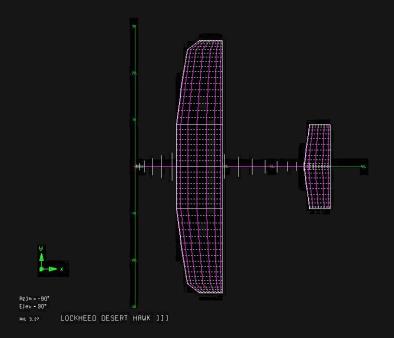
Wing Span	ft	4.50
Wing Area	ft2	3.28
Wing Aspect Ratio		6.2
Tailplane Span	ft	1.5
Length Overall	ft	3.6
Height Overall	ft	1.2
Wetted Area	ft2	12.8
Elevator	ft2	0.7
Ailerons (total)	ft2	-
Rudders (total)	ft2	-
Horizontal Area (total)	ft2	-
Propeller Diameter	ft	1.1
Width Fuselage	ft	0.5
Payload Bay Length	ft	0.8
Payload Bay Width	ft	0.5
Payload Bay Height	ft	0.4
Payload Volume	ft3	0.2

Performance (nom)

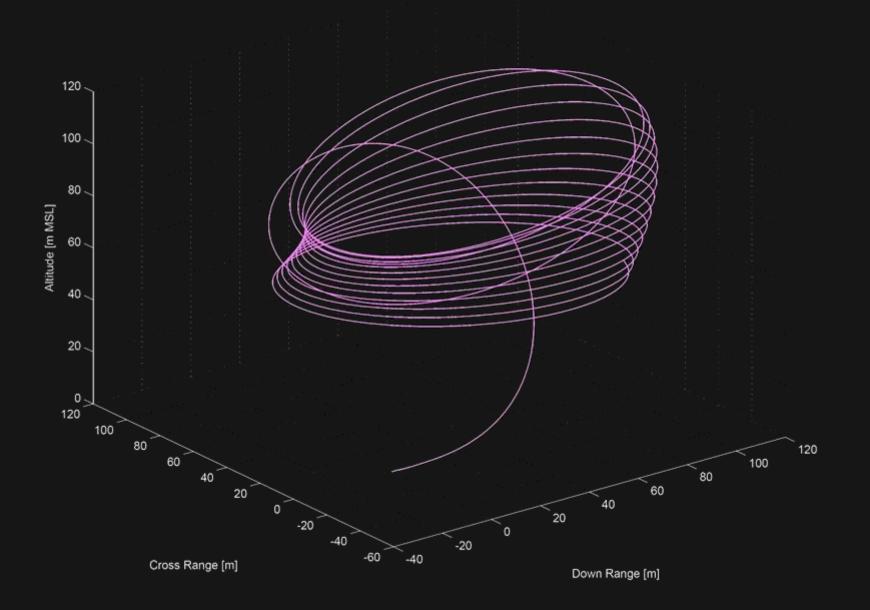
· · · ·		
Loiter Altitude (nom AGL)	ft	300
Radius of Action	nm	8.1
Stall Speed (at SL)	ktas	21.7
Loiter Speed (nom)	ktas	26.1
Max Speed	ktas	50.0
Max Endurance	hr	1.5
Max Climb Rate (Max SL)	ft/mi	2400
Max Altitude (ceiling)	ft	7,000
Max Sustained Turn Rate	deg/s	-
Max Instant Turn Rate	deg/s	-
Max Load Factor		2.5
Takeoff Run over 50 ft	ft	-
Landing Run over 50 ft	ft	-
Takeoff Run	ft	-
Landing Run	ft	-

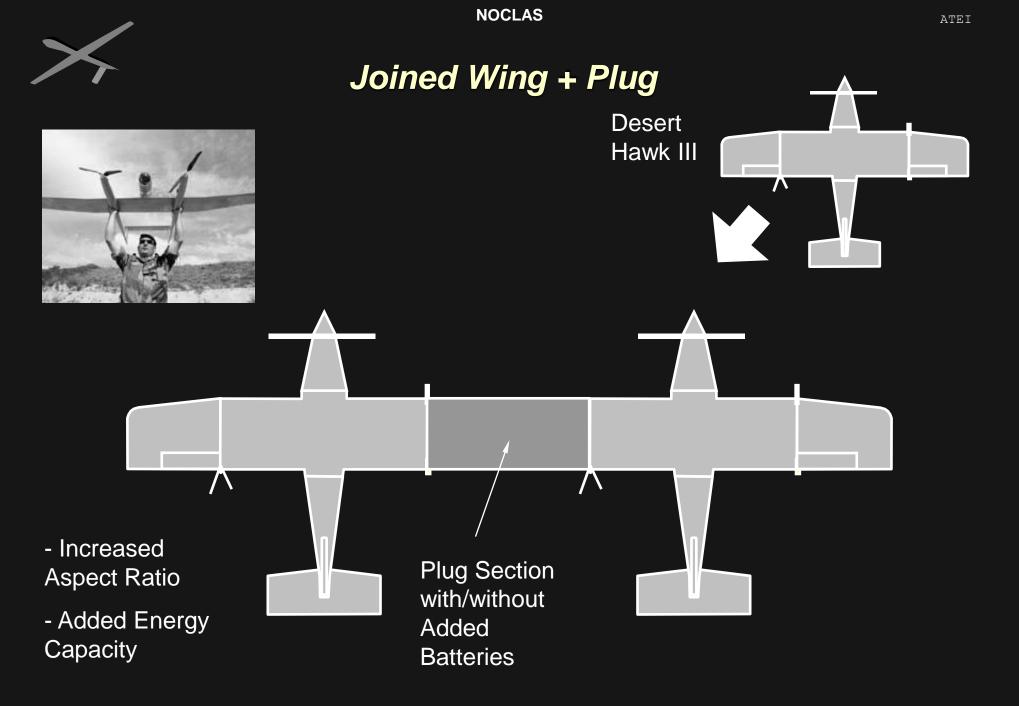
Weights & Loadings		
Empty Weight	lb	5.0
Pay Weight (typ)	lb	1.9
Fuel Weight (typ)	lb	2.0
Useful Load (max)	lb	3.9
Gross Weight (max)	lb	8.9
Wing Loading (TO)	lb/ft2	2.7
Thrust Loading (TO)	lb/hp	-
Power Draw (cont)	W	90
Limits	Units	Avg
 Limits Bank Angle	Units deg	Avg -
		-
 Bank Angle	deg	-
 Bank Angle Climb Rate	deg ft/min	- 2,400 -
 Bank Angle Climb Rate Descent Rate	deg ft/min ft/min	- 2,400 -
 Bank Angle Climb Rate Descent Rate Altitude	deg ft/min ft/min ft (ASL	2,400 - 7,000
 Bank Angle Climb Rate Descent Rate Altitude Speed	deg ft/min ft/min ft (ASL kt	2,400 - 7,000

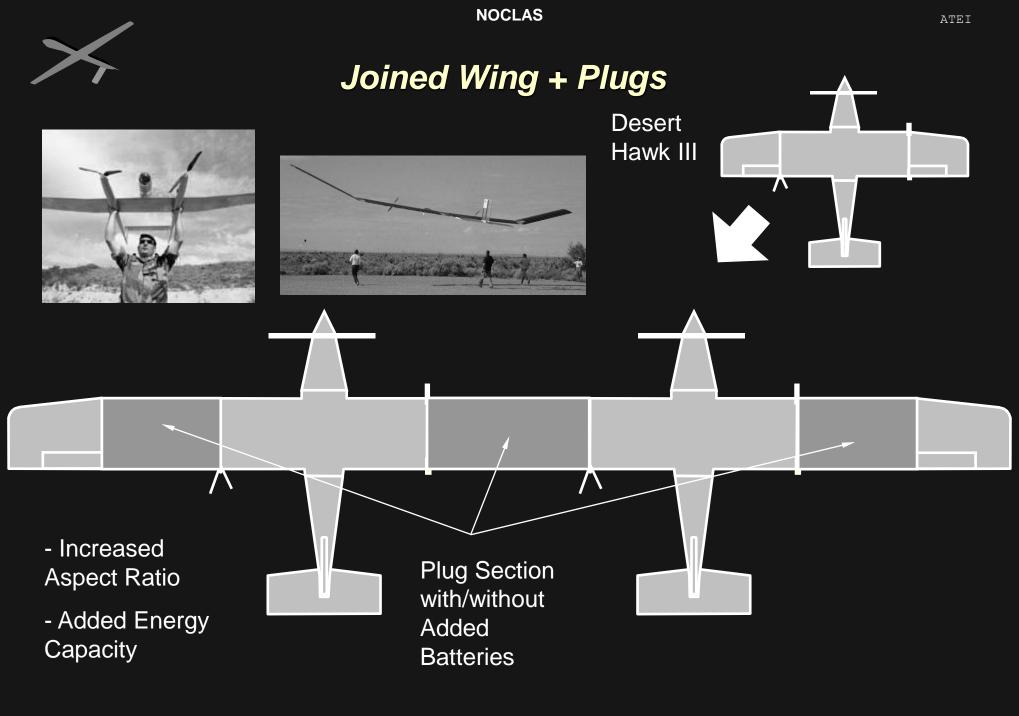

ATEI


NOCLAS

Aerodynamics: Vortex Lattice Code Model







6-DoF Flight Simulation

NOCLAS

Time Aloft Comparison

			_		A		10∠ 	↓ ″	
	n						n		
		No Batt	ery		Added B	attery			
						Batt			Both
	3.18	Joined	Plugs	Both	Joined	Bay	Plugs	Both	Batt Bav
	DH III	DH IV	DH IV	DH IV	DH IV	DH IV	DH IV	DH IV	DH IV
Weight [1b]	7.0	14.8	7.8	15.5	15.9	15.9	8.3	17.0	17.0
CLloiter	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
e	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
AR	6.0	10.0	10.0	11.6	10.0	10.0	10.0	11.6	11.6
Sref [ft2]	3.38	5.63	5.63	6.52	5.63	5.63	5.63	6.52	6.52
W/S [lb/ft2]	2.07	2.62	1.38	2.38	2.82	2.82	1.48	2.61	2.61
V [ktas]	26.1	29.3	21.3	27.9	30.4	30.4	22.0	29.2	29.2
q [1b/ft2]	2.3	2.9	1.5	2.6	3.1	3.1	1.6	2.9	2.9
Cdi	0.0537	0.0322	0.0322	0.0278	0.0322	0.0322	0.0322	0.0278	0.0278
Cd0	0.0300	0.0335	0.0229	0.0306	0.0335	0.0335	0.0229	0.0306	0.0306
Cd	0.0837	0.0657	0.0551	0.0584	0.0657	0.0657	0.0551	0.0584	0.0584
Drag [1b]	0.65	1.08	0.47	1.01	1.16	1.16	0.51	1.10	1.10
L/D	10.8	13.7	16.3	15.4	13.7	13.7	16.3	15.4	15.4
Stall Speed [ktas]	21.7	24.4	17.7	23.2	25.3	25.3	18.3	24.3	24.3
Preq [W]	38.9	72.3	23.1	64.2	80.7	80.7	25.7	73.8	73.8
Systems [W]	52.0	52.0	52.0	52.0	52.0	52.0	52.0	52.0	52.0
Draw [W]	90.9	124.3	75.1	116.2	132.7	132.7	77.7	125.8	125.8
Climb Rate [ft/min]	1,195	1,307	1,170	1,267	1,191	1,191	1,077	1,130	1,130
Energy Density Increase	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Energy Avail [W-hr]	112.5	225.0	112.5	225.0	288.3	400.8	175.8	351.6	464.1
Loiter Time [hr]	1.24	1.81	1.50	1.94	2.17	3.02	2.26	2.80	3.69
Increase [min]	0	34	16	42	56	107	62	93	147
Ratio	1.00	1.46	1.21	1.56	1.75	2.44	1.83	2.26	2.98
Ratio @ CL = 0.6	1.00	1.31	1.22	1.41	1.57	2.18	1.83	2.02	2.66
Loiter Time/Mass [hr/lb]	0.18	0.12	0.19	0.12	0.14	0.19	0.27	0.16	0.22

101

Plug Wing with Batteries

- Advantages
 - Same Packout, but with New Plug Sections
 - Time Aloft Increased 80% (configuration dependent)
 - More Roll Stable and Gust Resistant
 - Increased Rolling and Directional Moments of Inertia
 - CG Maintained at Same Fuselage Station
 - Inertia Relief Small Structural Changes
 - Decreased Stall Speed Lower Energy Launch
 - Same Manufactured Parts No Retooling and Redesign
- Challenges
 - Guidance and Stability Algorithm Tuning (if any used)
 - Adverse Yaw Dihedral through Plugs and Rudder and Aileron Scheduling
 - Center Spar Tube Area Thickness and Material Changes
 - Robust Airfoil Selection for Plugs
 - Wiring Harnesses Developed

Joined Wing and Plugs

- Advantages
 - Same Packout, but with New Plug Sections
 - Payload SWAP Capacity Doubled
 - Hunter-Killer In One Platform
 - Time Aloft Increased 50% (configuration dependent)
 - More Roll Stable and Gust Resistant
 - Increased Rolling and Directional Moments of Inertia
 - Increased Wing Loading
 - CG Maintained at Same Fuselage Station
 - Inertia Relief Small Structural Changes
 - Same Manufactured Parts No Retooling and Redesign
- Challenges
 - Guidance and Stability Algorithm Tuning (if any used)
 - Adverse Yaw Dihedral through Plugs and Rudder, Aileron and Variable Throttle Scheduling
 - Flaperon Control Surface Schedule for Post-Payload Deployment
 - Increased Stall Speed Pitch Trim and Higher Energy Launch Method Changes
 - Center Spar Tube Area Thickness and Material Changes
 - Robust Airfoil Selection for Plugs
 - Wiring Harnesses Developed