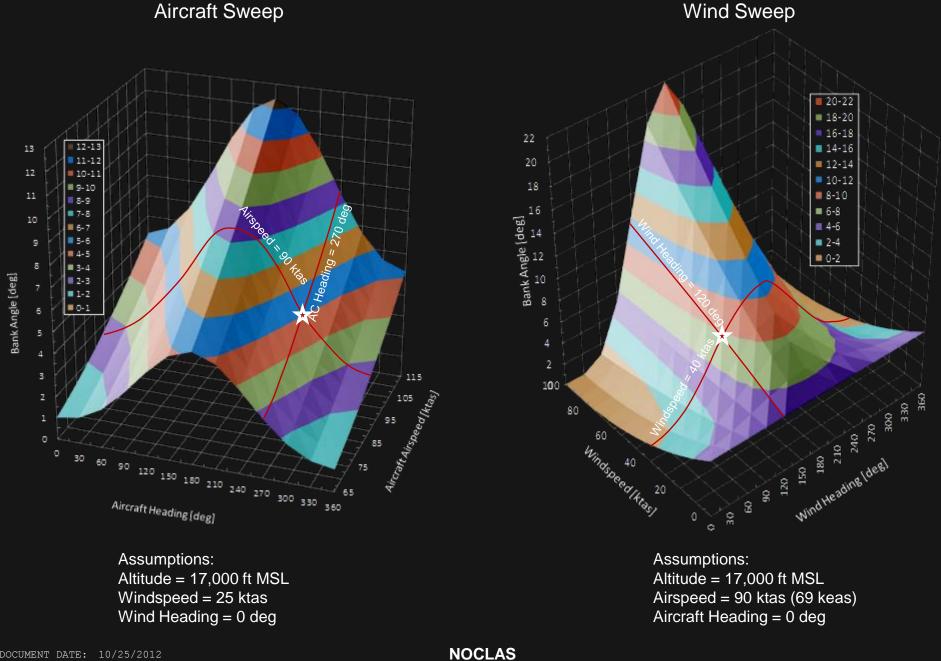
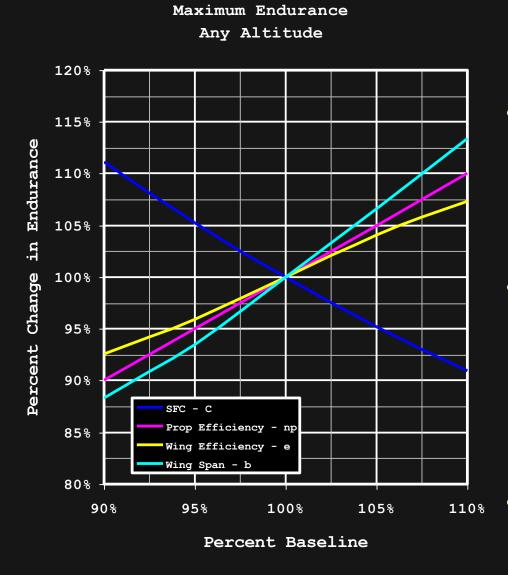


Compare to Recovery Temp P1 = 510 deg F => 510/584 = 12.6% loss (reasonable)



Compare to Recovery Temp P1 = 510 deg F => 440/535.5 = 17.8% loss (reasonable)



NOCLAS Bank Angle Study: First Order

NOCLAS Sensitivity Study: Endurance

- Answer
 - Larger Span and Smaller SFC, Prop and Wing Efficiencies are Better
 - Altitude Independent
- Assumptions
 - Parasitic Drag Buildup with Form Factor Method
 - Used Average Dynamic Pressure for Entire Segment
 - Loiter for Prop at 87% Max L/D
- Sensitivities
 - Drivers in Order of Impact:
 - Wing Span
 - SFC
 - Prop Efficiency
 - Wing Efficiency
 - Drivers are Close in Overall Impact
- Alternatives
 - Cross Check with Incremental Calculations

NOCLAS Trade Study: Launch Qualitative

	Description	Pros	Cons
CTOL – Static Gear	Fixed tricycle gear. Use COTS wheels/axels (RC industry). Requires grass or dirt strip runway (~500 ft).	 Design already exists Lowest technical risk 	 Requires prepared runway (est. 500 ft.) Obscures sensor view Performance Reduction - Parasitic Drag Hit Increase in RF Signature
CTOL – Retractable Gear	Fixed tricycle gear. Use COTS wheels/axels (RC industry). Requires grass or dirt strip runway (~500 ft).	- Vehicle designed with retracts in mind	 Requires some NRE (design already started) Landing gear mechanism (complexity = cost) Runway needs to be good quality
CTOL – Dolly or Cart	Drop away tricycle gear. Use COTS wheels/axels (RC industry). Requires grass or dirt strip runway (500 ft).	- Lowers aircraft weight	 Extra Loose components Additional step in launch process & logistics
Pneumatic Launch Rail	Large wheeled launch rail (possibly on trailer).	 Repeatable launch No Pilot training required No prepared runway required 	 Large logistical footprint Requires significant NRE (unless we can buy one somewhere) Mechanical reliability?
Linh/Duch Start on	Low friction Guide Rail laid on ground (in sections). Rides on rail until lift off. No active components. Aircraft relies on own engine to accelerate (helped out by a "high start" and/or push).	 Simple design compared to Pneumatic Launch Rail Does not require prepared runway Guide rail could float on water if need be 	 Still Requires significant length (shorted than conventional Take Off though) Requires some NRE
Sling Launch	Aircraft is spun on a tether until it reaches climb-out velocity and then it is released.	 Does not require prepared runway Potentially lowers aircraft weight Can choose release speed and direction quick deployment 	 New, unproven concept Requires Significant NRE

NOCLAS Trade Study: Recovery Qualitative

	Description	Pros	Cons
	COTS wheels/axels (RC industry) Requires	- Lowest technical risk	 Requires prepared runway (est. 500 ft.) Obscures sensor view Performance Reduction - Parasitic Drag Hit Increase in RF Signature
CTOL – Retractable	Retractable Tricycle gear configuration. Use COTS wheels/axels (RC industry). Requires grass or dirt strip runway (est. 500 ft long).		 Requires some NRE (design already started) Landing gear mechanism (complexity = cost)
		- Possibly easier to implement Auto-Land	 Requires some NRE Possible greater potential for damage on landing Performance Reduction - Parasitic Drag Hit
	Retractable TBD skid configuration. Requires grass or dirt strip runway (~ 100 ft).	- Possibly easier to implement Auto-Land	 Requires some NRE Possible greater potential for damage on landing Alighting gear mechanism (complexity =
Elvinto o "Not"	Hanging Net of TBD design will catch the UAV as it flies into it. The engine will probably have to be turned off before impact.		 High risk of damage to the UAV during recovery Larger logistical footprint compared to conventional Landing
	Similar to the Boeing Scan Eagle design with appropriate tweaks to work with vehicle.	- Quick recovery (saved time)	 Difficult to modify vehicle to this configuration (may require significant NRE and changes) Larger logistical footprint compared to
Deep Stall	vertical landing. May require shock	UAV or bigger	 Requires significant NRE on the flight controller Requires some NRE for shock absorbers
	over landing zone.	- Chute delpoys over landing zone	- Tangled in chute - Space for pyro deployment device - Heavy

Trade Study: Launch & Recovery Quantitative

		Logistics For	Win Trainings.	^L ow Cost	Mininun Ng2	Mech Reliability.	Rebeateble	Min Weighr	Min Index to L	Sensor Obsci.	Minimun Cation	4 _{Ver} age, ^{nent} aris Un _{weide} ,	4 _{Ver} age Un _{weige}	Areigge Wei	4 Les Office
	Weighting	~ 1	e 1	~ 3	e 2	4 1	* 1	4 1	4' 1	S	4 9 1	A 2	40	v	×
	CTOL – Static Gear	5	1	5	5	5	5	4	3	1	1	3.5	92 %	52	91%
	CTOL – Retractable Gear	5	1	4	4	3	5	3	1	5	1	3.2	84%	54	95%
Launch	CTOL – Dolly or Cart	4	1	4	4	4	4	5	3	5	1	3.5	92 %	57	100%
Lau	Pneumatic Launch Rail	1	3	1	1	2	5	5	4	5	5	3.2	84%	45	79%
	High/Push Start on Rail	3	3	3	3	4	4	5	4	5	4	3.8	100%	57	100%
	Sling Launch	3	2	3	1	2	3	4	3	5	5	3.1	82%	48	84%
	CTOL – Static Gear	5	1	5	5	4	5	4	3	1	1	3.4	97%	51	94%
	CTOL – Retractable Gear	5	1	4	4	3	5	3	1	5	1	3.2	91 %	54	100%
ery	CTOL – Static Skids	5	1	5	3	5	4	4	4	1	2	3.4	97 %	49	91%
Recovery	CTOL – Retractable Skids	5	1	4	3	4	4	3	2	5	2	3.3	94 %	54	100%
Re	Net	2	4	3	2	3	3	4	4	5	5	3.5	100%	53	98%
	Sky Hook	2	4	3	1	3	3	3	4	5	5	3.3	94 %	50	93%
	Deep Stall	5	5	3	1	2	2	3	4	5	5	3.5	100%	52	96%
	Ballistic Chute	3	5	3	1	5	5	2	1	5	5	3.5	100%	52	96%