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App-based COVID-19 syndromic surveillance and
prediction of hospital admissions in COVID
Symptom Study Sweden
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The app-based COVID Symptom Study was launched in Sweden in April 2020 to contribute
to real-time COVID-19 surveillance. We enrolled 143,531 study participants (=18 years) who
contributed 10.6 million daily symptom reports between April 29, 2020 and February 10,
2021. Here, we include data from 19,161 self-reported PCR tests to create a symptom-based
maoadel to estimate the individual probability of symptomatic COVID-19, with an AUC of 0.78
(95% Cl 0.74-0.83) in an external dataset. These individual probabilities are employed to
estimate daily regional COVID-19 prevalence, which are in turn used together with current
hospital data to predict next week COVID-19 hospital admissions. We show that this hospital
prediction model demonstrates a lower median absolute percentage error (MdAPE: 25.9%)
across the five most populated regions in Sweden during the first pandemic wave than a
model based on case notifications (MdAPE: 30.3%). During the second wave, the error rates
are similar. When we apply the same model to an English dataset, not including local COVID-
19 test data, we observe MdAPEs of 22.3% and 19.0% during the first and second pandemic
waves, respectively, highlighting the transferability of the prediction model.

A full list of author affiliations appears at the end of the paper.

NATURE COMMUNMICATIONS | (202213:2110 | https./# dol.org 101038/ 54146 7-022-29608- T | www.nature.com, naturecommunications 1



ARTICLE

MATURE COMMURNICATIONS | https://doi.org/10.1038/s41467-022-29608-7

eal-time and accurate COVID-19 disease surveillance data

is critical for adequate public health decision making and

evaluation, as well as for healthcare system preparedness.
The WHO guidelines for COVID-19 surveillance highlight the
importance of combining data from multiple surveillance sys-
tems, and how participatory syndromic surveillance, where par-
ticipants self-report symptoms of possible infection, ma
constitute a useful tool in early detection of disease outbreaks'.
The European Centre for Disease Prevention and Control further
notes that the utility of COVID-19 participatory syndromic sur-
veillance may be enhanced if symptom data can be combined
with information on testing”. Expanding knowledge on the fea-
sibility of large-scale syndromic surveillance may thus enable
tailored population-based participatory surveillance initiatives in
future pandemics and epidemics.

Several novel eHealth solutions aimed at real-time monitoring
and prediction of the dynamics of COVID-19 transmission were
introduced early in the pandemic™®, with app-based technologies
quickly recognized as a potentially powerful surveillance tool.
One of these technologies was the ZOE COVID Symptom Study
app, designed to collect baseline health data as well as daily
reports on symptoms and test results from study participants.
The app was launched in the United Kingdom and in the United
States in late March 20207-9,

Community transmission of SARS-CoV-2 was confirmed in
Sweden in early March 2020. However, during the first pandemic
wave in the spring of 2020, PCR testing was only available for
hospital inpatients and healthcare workers!? in Sweden and
assessments of national COVID-19 prevalence were based on two
PCR surveys performed by the Public Health Agency of Sweden
in April (n=2571) and May (n=2957)!!. Nationwide PCR
tesu'.nE for symptomatic adults was later introduced in June
2020", but suffered from various issues such as long analysis
times during periods of high demand'2. In response to the limited
surveillance during the first pandemic wave, the COVID Symp-
tom Study was launched in Sweden in April 2020.

The aims of this study were to develop and evaluate a syn-
dromic surveillance-based framework to estimate the regional
prevalence of COVID-19 and to evaluate if these could be used to
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accurately predict subsequent trends in COVID-19 hospital
admissions. We showed that a model trained on symptoms and
test data could provide informative prevalence estimates, and
contribute to predictions of hospital burden the following week.
Without using any additional test data, the hospital prediction
model further performed well outside Sweden in a second
country, England.

Results
In this nationwide study on COVID-19 during the first year of
the pandemic, we included data from 143,531 COVID Symptom
Study Sweden (CS58) participants =18 years from April 29, 2020
to February 10, 2021, who had contributed with at least one daily
report in the app (Supplementary Table 1). The median duration
of study participation was 151 days (inter-quartile range [IQR]
52=252), with a median of 43 days with submitted reports (IQR
13=119). Of all participants, 30% reported at least one COVID-19
PCR test, and 6% of women and 4% of men reported at least one
positive test result. The cohort included a larger proportion of
women, fewer people =65 years, and fewer smokers than the
general population, while the prevalence of obesity was similar.
Participants further resided in postal code areas with less depri-
vation, similar proportions of inhabitants with foreign back-
ground, and higher population densities, as compared to the
general population. The frequency of participants across regions
is depicted in Supplementary Fig. 1. C555 was led by researchers
at Lund University and Uppsala University, and the highest C555
participation rates were observed in the regions of Skine and
Uppsala where these universities are located, as well in the most
populated region in Sweden, Stockholm (Supplementary Table 2).
The most common symptoms reported in participants with
PCR-confirmed COVID-19 were loss of smell andfor taste,
headache, fever, and sore throat (Fig. la). The prevalence of loss
of smell and/or taste peaked at 4 days after the test date. Among
participants who tested negative, headache and sore throat were
most common, whereas loss of smell andfor taste was rarely
reported (Fig. 1b). The non-adjusted prevalence of different
symptoms was considerably higher in the symptom data collected
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Fig. 1 Symptom trajectories. The prevalence of symptoms reported by participants in COVID Symptom Study Sweden with (a) a positive PCR test for
COVID-12 {n=5178), and (b) a negative PCR test for COVID-19 {n= 32,089), across the study period April 29, 2020-February 10, 2021.
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Fig. 2 Analysis strategy. Analysis strategy and data sources.

by the Swedish company NOVUS than in CSS5, with the
exception of loss of smell and/or taste, but temporal trends were
similar (Supplementary Fig. 2). This discrepancy was likely due to
the different approach in CSS5S, where participants were asked
questions about symptoms only if they responded negative to the
first gate-keeper question, namely whether they felt healthy as
normal.

Step 1. Training of model for estimation of individual prob-
ability of COVID-19

Our analysis strategy consisted of five steps, as illustrated in
Fig. 2. In the first step, we developed a model to estimate indi-
vidual probability of symptomatic COVID-19, utilizing infor-
mation from 19,161 CS5S participants who reported at least one
PCR test (of whom 2586 were COVID-19 infection positive)
between April 29 and December 31, 2020; these individuals also
reported at least one candidate symptom within 7 days before or
on the test date. The final model selected by LASSO included
17 symptoms and sex, as well as two-way interactions between
loss of smell andfor taste and 14 symptoms, and a two-way
interaction between loss of smell and/or taste and sex. The ROC
area under the curve (AUC) for this main model was 0.76 (95%
CI 0.75-0.78; PR(AUC) with 95% CI: 0.38, 95% CI 0.35-0.40)
during the training period (April 29-December 31, 2020;
n=19,161) and 0.72 (95% CI 0.69=0.75; PR{AUC) 0.40, 95% CI
0.35-0.45) during the evaluation period (January 1-February 10,
2021; n = 1753). The AUC for the training period was produced
by nested tenfold cross-validation. In an external dataset of
943 symptomatic individuals from the CRUSH Covid survey (144
positive; test positivity 15.3%; October 18, 2020-February 10,
2021), the AUC was 0.78 (95% CI 0.74-0.83; PR(AUC): 0.48, 95%
CI 0.40-0.56). Calibration graphs are available in Supplementary
Fig. 3.

g.Str|3|:|n 2. Estimation of daily individual probability of COVID-19
in C555

We applied the model from Step 1 to estimate the daily indi-
vidual probability of symptomatic COVID-19 in all CSSS study
participants, including non-tested individuals, across the entire
study period from May 10, 2020, through February 10, 2021.
Non-symptomatic individuals were assigned a probability of 0 for
that day.

Step 3. Daily regional COVID-19 prevalence estimates in the
general population

The individual probabilities from Step 2 were then used to
estimate the daily regional COVID-19 prevalence in the general
population in Sweden, accounting for differences in age and sex
distributions of the participants as compared to the general
population in each region. We calibrated the intercept of the
model generated in step 1 so that the estimated prevalence of May
27, 2020 matched the estimated prevalence from a national
COVID-19 prevalence survey (n=2957). The resulting CS55
prevalence estimates of symptomatic COVID-19 showed similar
waves as the first and second waves of COVID-19 hospitalization
(Fig. 3a, Supplementary Fig. 4a). In contrast, data from SmiNet,
the national Swedish register on laboratory-confirmed cases of
COVID-19, did not capture the first wave (Fig. 3b, Supplemen-
tary Fig. 4b).

During the autumn of 2020, we observed a peak in C555-based
COVID-19 prevalence estimates in September 2020 with no
corresponding peak in other COVID-19 national case notification
rates or hospital admission data. We therefore constructed a
retrospective time-dependent model for individual probability of
symptomatic COVID-19, based on the main model in Step 1 and
validated correspondingly (additional information and calibration
graphs available in the Supplementary Material). Retrospective
national COVID-19 prevalence estimates based on the time-
dependent model showed higher concordance with national
COVID-19 case notification and hospital admission trends than
the main model (Fig. 3c, d).

We further observed a higher estimated prevalence of symp-
tomatic COVID-19 in women than in men across the entire study
period, which was most apparent in those =64 years (Supple-
mentary Fig. 5a). Post-hoc analyses revealed that this difference
was mainly generated by participants who were healthcare pro-
fessionals, where women were over-represented (Supplementary
Fig. 5b).

EStf!pn 4. Prediction of regional COVID-19 hospital admissions
the following week

We developed an iterative time-updated prediction model to
assess if the regional prevalence estimates from Step 3 could be
used together with current hospital data for prediction of regional
COVID-19 hospital admissions 7 days ahead. The parameters
were estimated on available data through June 1, 2020 with larger
weights applied to more recent observations, to predict admis-
sions on June 8, 2020. This procedure was repeated to calibrate
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Fig. 3 Prevalence estimates of symptomatic COVID-12 in Sweden. Mational prevalence estimate, with 95% confidence interval, of symgptomatic COVID-12
in COVID Symptom Study Sweden (main model utilized for real-time prediction estimates, and retrospective time-dependent model), combined in {a and ¢}
with retrospective data on daily number of new hospital admissions registered in the Mational Patient Register per 100,000 inhabitants =18 years, and in
(b and d) with daily number of new COVID-19 cases registered in SmiMNet, per 100,000 inhabitants >18 years. *Time-point for recalibration of C555 national
COVID-19 prevalence estimate using national point prevalence survey findings from the Public Health Agency of Sweden.

the coefficients throughout the study period. Weights and model
specifications were based on exploratory analyses using data from
May 11 to November 29, 2020. Overall, 16,752 individuals (=18
years) were admitted to hospital with a diagnosis of COVID-19
from May 11 through November 29, 2020, and the number of
daily new COVID-19 hospital admissions ranged from 0 to 104
across the 21 Swedish healthcare regions.

Across the five most populated regions in Sweden, the CSSS
hospital prediction model demonstrated a median absolute per-
centage error (MdAPE) of 25.9% between daily predicted and
observed number of hospital admissions for the first pandemic
wave (June 8-July 3, 2020; Fig. 4 and Table 1), while the MdAPE
for the second wave (October 19=November 29, 2020) was 26.8%,
which was lower than, or similar to, the predictions from a similar
prediction model combining daily case notifications from SmiNet
with hospital admissions yielded MAAPEs of 30.3% and 25.9% for
the five most populated regions (first and second wave, respec-
tively; Supplementary Table 3).

The MdAPEs were lowest in the most populated region in
Sweden (Stockholm, population 218 years n = 1.85 million) with
12.2% and 16.6% (SmiMNet-based MAAPEs 13.5% and 24.0%) for
the first and second waves, respectively. When we pooled data
from all 21 Swedish regions, MdAPEs for the first and second
waves were higher for both the C555 hospital prediction model
(37.0% and 42.4%, respectively; Supplementary Fig. 6) and the
SmiNet-based model (38.7% and 38.5%, respectively). Overall, we
noted that the accuracy of the hospital prediction model as
measured on the relative scale was lower when regional daily
number of hospital admissions was low (Supplementary Fig. 7a).

Step 5. Validation of the hospitalization prediction model in
England

We sought to validate the CS55-based hospitalization predic-
tion model in England by repeating Steps 2 and 3 and parts of
Step 4. The English dataset encompassed daily reports from
2,638,536 ZOE COVID Study English study participants from
March 30, 2020 to January 31, 2021 (study population

characteristics and regional participation rates are available in
Supplementary Tables 4 and 5). We extracted information on all
COVID-19 hospital admissions (n = 318,232) in individuals =18
years across the seven English healthcare regions from April 6,
2020 to February 7, 2021 from National Health Service England
data. The number of new daily COVID-19 hospital admissions
ranged from 0 to 958 across the English regions during this
period.

We applied the exact same model that was developed in Step 1
in CSSS to estimate daily individual probability of COVID-19 in
the English dataset, and then estimated the daily age- and sex-
weighted COVID-19 prevalence across the English regions. We
further applied the same iterative time-updated prediction model
as in the Swedish dataset to predict hospital admissions the fol-
lowing week in the seven English regions. We used available
outcome data up to April 27, 2020 to tune the parameters and to
predict admissions a week later on May 4, 2020 and then repeated
this daily throughout the study period (until February 7, 2021).

Across the seven English regions, we observed an MdAPE of
22.3% for the part of the first English pandemic wave captured in
the data (May 4=June 19, 2020) and an MdAPE of 19.0% for the
second English wave (September 20, 2020-February 7, 2021;
Fig. 5, Supplementary Table 6). As in Sweden, we observe lower
error in the most populated English healthcare region (West and
East Midlands; population =18 years n= 108 million) with
MAAPE of 16.1% and 14.0%, respectively. Overall, the predicted
number of hospital admissions were overestimated when daily
regional hospital admissions were low (Supplementary Fig. 7b).

Discussion

Adequate and continuous regional COVID-19 surveillance is
challenging and requires multiple sources of data. Here, we
developed an app-based framework that allowed for syndromic
surveillance of COVID-19 at national and regional level in Swe-
den across the first two pandemic waves. We found that CS55
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Fig. 4 Predicted number of daily hospital admissions in Sweden. Predicted number of daily hospital admissions 7 days ahead across the five most
populated regions in Sweden ordered by population size. The median absolute percentage errors (MdJAPEs) of the predictions are denoted for the first
pandemic wave (June 8=July 3, 2020), the summer period (July 4-Cctober 18, 2020), and the second pandemic wave (October 19-Movember 29, 2020).

prevalence estimates could be used to monitor COVID-19 disease
trends, and that they were particularly informative in times of
limited PCR testing capacity. The accuracy of the prevalence
estimates was, however, lower in September 2020 when other
respiratory infections peaked. We further showed that combining
app-based regional prevalence estimates with previously recorded
hospital data could, with moderate accuracy, predict regional
levels of COVID-19 hospital admissions the following week both
in Sweden and in England.

A previous study from ZOE COVID Study demonstrated how
app data from the first pandemic wave from March through
September 2020 could be utilized to successfully identify emer-
ging COVID-19 hotpots in England, with findings validated in
UK Government test data!®. The present study confirmed the
utility of app-based COVID-19 syndromic surveillance, encom-
passing the full second pandemic wave in the Swedish population
and expanding the scope to include predictions of subsequent
hospital admissions. The validation of the CS55-based hospital
prediction model in English data highlights the potential trans-
ferability of our approach, without using any PCR test data in the

English data. Syndromic surveillance of COVID-19 may thus
provide early warnings of surges in hospital admissions, thereby
helping guide the allocation of precious healthcare resources in
times of crisis.

A strength of the CS55 was that the syndromic surveillance
using daily reports from study participants, which enables rapid
data analysis and quick dissemination of results. The prevalence
estimates were continuously disseminated to the study partici-
pants and the general public via the C55S dashboard'®. In con-
trast, the official COVID-19 disease surveillance in Sweden has
suffered delays even after PCR testing was made available to the
general public in June 2020. The time interval from booking a
PCR test to confirmation of test result exceeded 6 days across
several regions during our study period'?, with additional time
delays in the reporting of COVID-19 notification rates on
regional and municipality levels by the Public Health Agency of
Sweden!5.

The accuracy of the CS555-based hospital prediction model
during the first and second wave was higher for more populated
regions in Sweden. Moreover, when the Swedish model was
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Table 1 Median absolute percentage errors (MdAPEs) for
prediction of new daily hospitalizations, across the first
pandemic wave (June 8=July 3, 2020), the summer period
(July 4-October 18, 2020), and the second pandemic wave
(October 19-November 29, 2020).
Median absolute percentage errors (%)
First wave Summer period Second wave
June 8-July July 4-October October
3, 2020 18, 2020 19-November
29, 2020
All 21 regions 370 482 424
combined
Top 5 most 259 386 268
populated
regions®
Blekinge 414 676 558
Dalarna 585 49.4 47.7
Gotland 483 835 492
Gévleborg 254 541 44.0
Halland 354 498 734
lamtland 3 745 516
lanképing 324 455 285
Kalmar 525 537 447
Kronoberg 534 694 525
Morrbotten 403 503 BB.6
Skine 243 46.8 189
Stockholm 12.2 386 6.6
Sadermanland 542 376 448
Uppsala 405 601 311
Warmland 410 551 437
asterbotten 60.9 482 342
Vasternorrland 363 541 429
Wastmanland 353 491 302
Wiastra Gétaland 204 353 224
Girebro 270 461 6719
Ostergiitland 55.2 40.2 439
The iterative prediction model used current regianal COVID Symotom Study Sweden prevalence
estimates and hospital data to predict hospital admissions 7 days shead.
*Stackholm, Vistra Gitaland, Skine, OstergBtland, Uppsala.

applied in England across healthcare regions, MdAPEs were
lower than those derived in the Swedish setting. Although we
cannot discern the separate influences of larger total population
size, higher absolute number of study participants, and higher
study participation rates, it is likely that all these factors enhance
the accuracy of the hospital prediction model.

When we compared the C555-based hospital prediction model
with the SmilNet-based (PCR test-based) hospital prediction
model, we observed that the accuracy of the C555-based model
was higher during the first wave, while the SmiNet-based model
was similar in the second wave. The higher accuracy of CSSS
during the first pandemic wave is likely due to the limited
availability of PCR testing in Sweden at that time, when tests
where only available to hospital inpatients and healthcare
workers.!! We conclude that in addition to the expansion of the
national PCR testing programme introduced in June 2020 and
subsequent delays in PCR testing, local factors may also influence
how well the C555 app and PCR testing efforts reflect regional
and/or local outbreaks. However, the successful application of the
non-test dependent hospital prediction model in England shows
great promise for future efforts in syndromic surveillance, where
models can be trained in one country with dense test data and
adjusted to local trends of hospitalizations in a second country
without the need for additional test data.

& MATURE COMMUNICAT

More than 166,000 participants (2.4% of the adult population
in Sweden) joined CS55 in the first 5 weeks after launch, sup-
porting the feasibility of large-scale app-based syndromic sur-
veillance and the power of citizen science, which can be rapidly
scaled-up without needing additional staff or large financial
resources. However, although the use of a smart device app was
intended to minimize barriers to enrolment'®, a lesser proportion
of CSSS participants were male, =65 years, smokers, or obese, as
compared to the general population, indicating an over-
representation of healthy individuals. Further, owing to limited
resources the CS55 app was in Sweden only available in Swedish,
which precluded participation of non-Swedish speakers, a group
that may be at higher risk of COVID-19 infection'”-'%. We also
observed that the CSSS participants resided in postal code areas
with on average less deprivation than the general public. Toge-
ther, these factors may have limited the ability of the CS5S to
detect local outbreaks in vulnerable neighborhoods, areas where
lower community testing rates were also observed during the
pandemic!?. In future epidemic surveillance efforts, combining
syndromic surveillance with non-participatory data sources, such
as number of calls regarding specific complaints to nurse tele-
phone consultation services!”, measurements of virus occurrence
in wastewater’’?!, monitoring of mobility patters in the
population’?, and aggregate data on vaccination rates across
neighborhoods, may constitute a cost-efficient way to characterize
community infection trends and predict increased demands on
healthcare resources.

Additional potential limitations to the data collection also apply.
Firstly, participants may have been more likely to join the study and
report daily if they experienced symptoms perceived to be linked with
COVID-19 than if they had been healthy, potentially inflating
COVID-19 prevalence estimates. We sought to reduce this risk by
excluding the first 7 days of data collected for each participant, but we
cannot exclude the risk of residual participation bias. Secondly, all
data collected in the COVID Symptom Study app are self-reported.
We had no means of linking the self-reported data to national
population or health registers, so we could not validate information
on COVID-19 tests or baseline health survey questions. We were able
to partly overcome this limitation by validating the model predicting
COVID-19 PCR test positivity in the independent CRUSH Covid
dataset. Lastly, some questions in the COVID Symptom Study app
were updated during the study period, potentially influencing data
collection and analyses. The baseline health survey questions that
were modified and/or updated during this time were, however, not
included in our analyses and did not affect the prevalence estimates
or the accuracy of the hospitalization prediction model The symp-
tom questions were updated on November 4, 2020. This update was
implemented at the same time as incidence was increasing sharply,
but the national prevalence estimate curve and the regional pre-
valence estimate curves remained smooth, indicating that these
updates did not materially influence our findings.

We observed a peak in app-based COVID-19 prevalence esti-
mates in mid-September 2020 with no corresponding peak in any
disease-specific COVID-19 national register data. The prevalence
of loss of smell andfor taste, sore throat, and headache were
similarly elevated in NOVUS. The Public Health Agency of
Sweden also noted high occurrence of symptoms of acute
respiratory infections at this time?. Laboratory analyses of
respiratory viruses later indicated a high incidence of common
colds caused by rhinoviruses in September 202024 Hence, the
specificity of the CSS5S data was compromised when prevalence of
other pathogens with similar symptomatology to COVID-19 was
elevated. We therefore added time as a variable in the model
developed in Step 1, allowing estimated probabilities to vary
depending on the PCR test positivity rate during a given period.
This second model yielded results more consistent with the
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national COVID-19 incidence data but is strongly influenced by
the proportion of positive COVID-19 tests. The model is thus
rather insensitive to a sudden increase or decrease in the
reporting of symptoms, and change in prevalence will not be fully
captured until this trend is also reflected in the test results
reported in the app. The more static main model will, conversely,
react more quickly to an increase of reported symptoms, raising
the sensitivity of the model but also the risk of false positive
healthcare alerts. Because of the delay inherent in this type of
analysis, the time-dependent model is not suitable for real-time
COVID-19 surveillance; it is also ineffective when test positivity
varies greatly across regions, unless regions are modelled sepa-
rately. An intermediate solution would be to retrain the model at
known events that affect the relationship between symptoms and
positive PCR tests, such as when vaccinations are introduced, new
variants or other concurrent epidemics emerge. Very few cases of
seasonal influenza were confirmed in Sweden in the winter season
of 2020/2021 compared with previous years’", which rendered
the lower specificity during this period less problematic.

As the study period ended in February 2021, this study
encompassed pandemic waves characterized in Sweden mainly by
the early SARS-CoV -2 strains, with the variant of concern Alpha
being detected in late December 2020°°. Moreover, <150,000
inhabitants (<2% of the total population) had been inoculated
with two doses of vaccine by early February 2021%7. Further
studies on prediction of COVID-19 hospital admissions, includ-
ing subsequent variants of concern as well as higher vaccination
rates in the general population, are therefore warranted.

In conclusion, app-based syndromic surveillance and citizen

science may represent a powerful and rapid asset when assessing

the early spread of a pandemic virus. The findings from C555 and
validation in the English setting suggest that app-based technol-
ogies could contribute to national and regional disease surveil-
lance and early warnings to healthcare systems.

Methods

Ethical approvals. The Swedish Ethical Review Authority has approved CS55
(DNR 2020-01803 with addendums 2020-04006, 2020-04145, 2020-04451, 2020-
07080, and 2021-02316) and CRUSH Covid (DNR 2020-07080, and DNR 2020-
04210 with addendum 2020-06315). In the United Kingdom, the ZDE COVID
Study has been approved by King's College London (KCL) ethics committes
REMAS I 18210, review reference LRS-19/20-18210. All participants in the CS58
and in ZOE COVID Study in the UK have provided informed consent. Participants
have not been compensated for their participation.

COVID symptom study sweden. COVID Symptom Study Sweden (C555) was
launched in Sweden on April 29, 2020 to provide COVID-19 syndromic surveil-
lance data and to build a large-scale repeated measures database for COVID-19
research. More than 166,000 participants (2.4% of the adult population) joined
C558 in the first 5 weeks after launch. The non-commercial mobile application
used in the study was initially developed by health data science company Z0E
Limited in partnership with KCL and Massachusetts General Hospital™¥, and
adapted for use in Sweden by ZOE Limited in collaboration with Lund University
and Uppsala University. The app has been used to study the contemporary disease
burden and to predict consequences of COVID-19%132%

All individuals =18 years living in Sweden with access to a smart device were
eligible to participate in the C555 after downloading the app and providing
informed consent. Participants are asked to report year of birth, sex, height, weight,
postal code, whether they work in the healthcare sector, and to complete a health
survey including pre-existing health conditions. Subsequently, participants were
asked daily (with voluntary resr:n.ﬁz fr v} if they felt “healthy as normal” or
not, and to report the date and result of any COVID-19 PCR or serology test. If
they did not feel healthy, they were asked about an array of symptoms potentially
associated with COVID-19. The symptoms that participants could report included,
but were not limited to, loss of smell andfor taste, fever, persistent cough, fatigue,
abdominal pain, chest pain, hoarse voice, shortness of breath, headache, muscle
pains, skin rashes, nausea, chills, eye soreness, diarrhoea, and confusion.
Unspecified symptoms could be added as free text.

The symptom questions were updated on November 4, 3020. The original
question related to loss of smell andfor taste was then branched into (a) loss of
smell andfor taste, and (b) altered smell andfor taste. This update was made to
improve the specificity with which symptom severity was assessed. Several other
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Fig. 6 Study participation. Number of daily reports from study participants
stratified by sex and age (<50 and =50 years), and cumulative number of
study participants (n total = 143,531, purple line), in COVID Symptom
Study Sweden during the study period April 29, 2020 to February 10,
2021, *“Temporary halt in data collection due to technical issue in the
COVID Symptom Study app.

new symptom questions were also introduced at this time, including for example
unusual hair loss and earache. Questions pertaining to COVID-19 vaccinations
were added on March 27, 2021, and are not included in the corrent analysis.
Information on all questionnaire variables both from the baseline health s and
the daily report, including information on whether the questions were avu;\ﬂ:ﬁleat
launch, or the date when the questions were added andfor removed, are presented
in Supplementary Table 7.

Study population and data management. In this study, we included data from
April 29, 2020 to February 10, 202 1. Participants were in this study excluded from
the analyses if they: (1) never submitted a daily report (n = 5931), (2) had missing
age or reported an age <18 years or >99 years (n = 801), or (3) stated their sex as
other or intersex (1 = 236) as this sample size was insufficient for a further analysis
Supplementary Table 8). Participants whose last r was within 7 days of
;ﬂlﬂg the :an-.lq.d}' (rn=45483) n:lpi?d not provide m postal code {1:[131 7310)
were excluded from the prevalence estimation, but included in model training if
they reported a PCR test and submitted at least one symptomatic daily report
within 7 days preceding or on the test date (n =967). The final study population
consisted of 143,531 individuals (Fig. 6). We labelled self-reported height, weight,
and body mass index (BMI) as “missing” if <130 or >210 cm, <35 or »300 kg, and
<15 or >70 kgfm?, respectively. “Obesity”™ was defined as BMI 230kg/m®. Addi-
tional detailed information on data cleaning and pre-processing is available in the
Supplementary Material.

Symptom trajectories in study participants with negative and positive
COVID-19 PCR tests. We described symptom prevalence and trajectories in all
555 participants from the perspective of their positive (n = 5178) or negative
{n=32,089) PCR test. We included all symptoms reported in the 15 days pre-
ceding or following the test date. If a participant reported multiple PCR tests
during the study period, only one randomly selected test was included.

Representativeness of the study population. We assessed the representativeness
of the C555 study population as a sample of the Swedish general ion. We
obtained data from the Living Condition Surveys in Sweden from 2018 to 2019 on
prevalence of current smoking and BMI in the general adult population®™. We
further extracted aggregate adult population sociodemographic information for all
postal code areas in Sweden from Statistics Sweden, which included proportion of
women, proportion of inhabitants =65 . highest achieved education level,
proportion engaged in work or studies m population 20-64 vears, median
yearly net income for the population =20 years, and proportion of population 218
years with foreign background. Foreign background is here in defined as birth in a
country other than Sweden, andfor birth in Sweden but with both parents bom in a
country other than Sweden. We then calculated a neighborhood deprivation index
(WD, lowest corresponds to most disadvantaged) for each postal code area based
on the proportion of adult inhabitants employed or studying, the proportion with a
university education, and the median yearly net income™. We also caloulated
population density for all postal code areas in Sweden as the total number of
inhabitants per square kilometers. The surface area of each postal code was esti-
mated using shapefiles originating from an external company, Postnummerservice
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Morden AR, that contained detailed information on five-digit postal code area
boundaries.

NOVUS. We com overall dail m prevalence in CS55 during the stu
period with syrmpgrl:ddata 1:1:»I]|aw:t|an1llir h‘grqupg\"US, a private company Ih“ft 1::).|:|d1||:d1:.!Ir
opinion polls and other surveys using panels recruited by random sampling of the
Swedish population®!. Since March 2020, NOVUS has carried out repeated surveys
on COVID-19-related symptoms and healthcare contacts, not including PCR test
results, with a response rate of ~70%*2. While in the CS58 participants report
symptoms on the same day they experience them, NOVUS participants report any
symptoms experienced over the past 14 days even if these reflect their baseline
health status (for details, see Supplementary Material).

Statistical analyses strategy. Our analysis strategy consisted of five steps, as
illustrated in Fig. 2. Each step is detailed below.

Step 1. Training of model for estimation of individual probability of COVID-19

We trained a model to estimate the individual probability of a symptomatic
COVID-19, defined as having symptoms and a positive PCR test result. The model
training set consisted of data from 19,161 participants who reported at least one
PCR test result (of which 2588 were positive) between April 29 and December 31,
2020, and who reported at least one reported candidate symptom within 7 days
before or on the test date. As we observed that a higher proportion of study
participants reported symptoms within the first week of joining the study than
thereafter (Supplementary Fig. 8). we excluded all reports submitted during the
first week to reduce participation bias from increased motivation among
symptomatic individuals in the general population. For participants who had not
submitted reports every day, we assumed the last reported observation to be valid
for no more than seven subsequent days. If a participant submitted more than one
report on a given day, all reports were combined into a sin e:hilrrgon:a
symptom was treated as reported if it was mentioned in at least one of these
reports.

F:'ire used an L1-penalized logistic regression model (LASS0) to select variables
predicting symptomatic COVID-19. The starting set of predictors included all
symptoms introduced through May 7, 2020 (excluding hay fever and chills or
shivers), as well as their interaction with loss of smell andfor taste, as the latter
constituted the strongest predictor of COVID-19°. Predictors in the final model
were: fever, persistent cough, diarrhoea, delirium, skipped meals, abdominal pain,
chest pain, hoarse voice, loss of smell andfor taste, headache, eye soreness, nansea,
dizzy or lightheaded, red welts on face or lips, blisters on feet, sore throat, unusual
muscle pains, fatigne (mild or severe), and shortness of breath (significant or
severe), interaction terms between 14 of those and loss of smell and/or taste, as well
as age and sex (see Supplementary Table 9 for model coefficients). After the loss of
smell andfor taste symptom question was branched (November 4, 2020) into loss
of smell and/for taste and altered smell andfor taste, we combined these two new
questions into a single variable, which we subsequently used interchangeably with
the original loss of smell andfor taste variable.

As the primary aim was to provide individual probabilities of symptomatic
COVID-19, rather than creating a classification rule, we followed the TRIFOD
explanation and elaboration document (https:/fwww.equator-networl.org/
reporti idelines/tripod-statement/) guidelines to report discrimination and
e 'hratign-g;:r the mndelp?dﬂisﬂiminati?m and cali:rali:.gﬂwm internally evaluated
by applying nested tenfold cross-validation within the dataset from April 29 to
Diecember 31, 2020. We further assessed calibration and discrimination in CS55
data (1753 participants, of which 339 tested positive) from January 1 to Febroary
10, 2021, the period not included in model training. The nested tenfold cross-
validation is described in detail in the Supplementary Material. Discrimination was
quantified using the ROC area under the sensitivity-specificity curve (AUC) and
the area under the precision-recall curve PRIAUC). The confidence interval for
AUC was calculated using the Delong method®® and the confidence interval for
(FRIAUC by using bootstrap. Model calibration was assessed by plots with
estimated probabilities divided into deciles.

To externally validate the model, we used data from the CRUSH Covid study,
which invited all individuals (18 years) to complete a symptom survey when they
did a COVID-19 PCR test in Region Uppsala, the fifth largest healthcare region in
Sweden. Using data from October 18, 2020 to February 10, 2021, the classification
ability of the model for individual probability of symptomatic COVID-19 was
assessed using ROC analysis among individuals who had completed the survey on
the day of the test, reported at least one symptom, and had a conclusive test result
(1 =943; see Supplementary Material and Supplementary Table 10).

Step 2. Estimation of daily individual probability of COVID-19 in CS55

We used the model from Step 1 to estimate the daily individual probability of
symptomatic COVID-19 in the full CS55 study population, including individoals
not reporting any PCR test, across the entire study period, from May 10, 2020, to
February 10, 2021. Participants not reporting any of the symptoms included in the
prediction model were assigned a probability of zero. Participants with long-lasting
COVID-19 symptoms were excluded after their 30th day of reporting loss of smell
and/or taste to ensure that the estimates were not inflated due to post-acute
sequelse of COVID-19. As in Step 1, we (a) excluded symptoms reported during
the first 7 days after a participant had joined the study, (b) assumed the last report

to be current for no more than 7 days, and (c) combined all reports on a given day
into a single report.

Step 3. Daily regional age- and sex-weighted COVID-19 prevalence estimates

We estimated the daily regional prevalence of symptomatic COVID-19
infection in real-time using a weighted mean of individual predicted probabilities
for each of the 21 administrative healthcare regions in Sweden re-weighted by age
(=50 and =50 years) and sex (women and men) in the total adult population using
direct standardization. Demographic data from 2021 was available from Statistics
Sweden. The 95% confidence intervals (95% CI) for predictions were generated
using the function ageadjust.direct from the epitools package in R (version 3.6.1)%,
using the method of Fay and Feuer®®. This function accommodates the sum of the
model-generated probabilities, number of participants for each of the four age- and
sex strata on a given day, and the total population of Sweden. The method assumes
that the sum of the model-generated probabilities is Poisson-distributed using an
approximation based on the gamma distribution.

The odds ratios for all variables in the prediction model were assumed to be
generalizable to the background population. Because the model was trained in a
dataset with higher prevalence of COVID-19 compared to the general population,
the intercept was inflated. We therefore recalibrated the intercept of the model
generated in Step 1 until the nationwide app-hased predictions for May 27, 2020,
matched the estimated nationwide prevalence of 0.3% (95% CI 0L1-0.5%) from a
survey performed by the Public Health Agency of Sweden between May 25-28,
2020"". In that survey, self-sampling nasal and throat swabs with saliva samples
were delivered to a random sample of 2957 individuals (details provided in the
Supplementary Material). We assumed both the sensitivity and the proportion of
symptomatic COVID-19 in the Public Health:gmqr of Sweden survey to be
70%37_ Although the method of Fay and Feuer®® used to calculate the confidence
intervals may be regarded as conservative, we assumed the Public Health Agency of
Sweden point estimate for May 25-28, 2020, PCR sensitivity, and proportion of
asymptomatic individuals to be known quantities.

To compare C555 prevalence estimates with reported confirmed cases in
Sweden, we extracted a psendonymised dataset of all COVID-19 cases 218 in
individuals Elaf-us from SmiNet. SmiNet is an electronic notification system of
communicable diseases maintained by the Public Health Agency of Sweden, to
which all PCR-confirmed cases of COVID-19 are by law reported (details
provided in the Supplementary Material). We also acquired data on all COVID-19
hospital admissions in Sweden from the National Patient Register from January 1,
2020 to January 4, 2021, which included all individuals 218 years hospitalized with
a first diagnosis of COVID-19: International Statistical Classification of Diseases
and Related Health Problems Tenth Revision [ICD-10] codes UD7.1 and U072
(for details see Supplementary Material). The delay in registering COVID-19
hospital admissions in the National Patient Register was up to one month. We
therefore utilized data from the register until December 4, 2020. We evaluated the
agreement of (a) C555-estimated prevalence (main model) (b) CS55-estimated
prevalence (time-dependent model) with official case notification rates from
Smilet and daily new hospital admissions per 100,000 inhabitants 218 years
{seven-day moving average) on national and regional levels by inspecting
trend plots.

We ohserved a peak in app-based COVID-19 prevalence estimates in mid-
September 2020 with no corresponding peak in any disease-specific COVID-19
national register data. However, this peak coincided with regional reports of
rhinovirus surges. To better estimate the time course of symptomatic COVID-19
retrospectively from the app data, we constructed a time-dependent model for
individual ility of tomatic COVID-19, based on the variables utilized in
Step 1 and with data from the same time period (from April 29 to December 31,
2020) with the addition of restricted cubic splines for calendar time with six knots
placed according to Harrell's recommendations™ (coefficients in Supplementary
Table 11). Discrimination and calibration were assessed in C555 data from January
1 to February 10, 2021, which is a period that was not included in model training.
Consistent with the main model, we also performed nested tenfold cross-validation,
described in detail in the Supplementary Material, and independently validated the
maodel in the CRUSH Covid dataset.

Step 4. Predictions of regional COVID-19 hospital admissions the
following week

We assessed the ability of the CS55 prevalence estinsates to predict the following
week's COVID-19 hospitalizations during the first and second pandemic waves in
Sweden. We defined the end of the first pandemic wave as when the rate of daily
new hospital admissions in Sweden dropped below 0.5 individuals per 100,000
inhabitants =18 years (July 3, 2020), and the beginning of the second wave as when
the hospital admission rate again rose above that threshold {October 19, 2020).

We utilized data from the entire study period in Swedish data to assess which
variables to include in the model predicting hospital admission 7 days ahead. The
candidate variables were: daily regional CS55 prevalence estimate on day 0 or —1;
current regional rate of COVID-19 hospitalizations per 100,000 inhabitants =18
years on day 0 or —1; weekday of hospitalization () h Sunday); mean
age in region; and mean regional Neighbourhood Deprivation Index (NDI). The
final model was a weighted linear regression model, including daily regional CS55
prevalence estimate on day 0 and daily regional rate of COVID-19 hospitalizations
per 100,000 inhabitants =18 years on day 0, assuming both variables to have a
linear relationship with the outcome. Mean age and mean NDI did not notably
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influence the predictions and were therefore not included. To create weights for the
linear regression we multiplied the number of inhabitants =18 years in each region
with a density assigned to each day. The density was created using a Gaussian
kernel function, with the highest density for the most recent observation. The
standard deviation for the kernel function was set to be 2 days by trial-and-error.
Weights for days more recent than 7 days prior to the observation being forecasted
was set to zero.

The model can be portrayed with the following equation, where fi, represents
the intercept, “prevalence™ the C555 prevalence and “hospital” the admissions!
100,000 inhabitants 218 years. The subscript to represents day 0 and the subscript
ty Eh.}" 7.

Egquation I.

hospital_ty = P 4 Ppeovatonce * prevalence_ty + Praspita * hospital_t,

We developed an iterative time-updated prediction model process by first
training the model in available uutmm.e data up m the first day 0 (June 1, 2020) 1o
derive the coefficients [0, i for Eq. 1. We inserted the CS55
prevalence estimate and mﬂ rate of COVID-19 hospitalizations per
100,000 inhabitants =18 years on June 1, 2020 into the equation, applying the
derived coefficients to predict hospitalization rates on June 8, 2020. We then
repeated the model fit and prediction from June 2 to November 29, 2030, with past
data influencing the daily new intercept as well as the daily new two betas.

To evaluate the prediction model performance, we transformed both observed
and predicted rates to number of hospitalizations per day and refmu We then
calculated the MdAPE between predicted and observed number of hospitalizations
across the first wave (June 8-July 3, 2020), the summer period (July 4-October 13,
2020), and the second wave (October 19-November 29, 2020), for each of the 21
healthcare regions as well as for the five most populated regions combined
(Stockholm, Vistra Gotaland, Skine, Ostergitland and Uppsala). If a region had
zero new hospitalizations on any day, that data point was excluded when
calculating the absolute percentage error.

For comparison, we further created a second regression model, where we
instead of the regional CS55 prevalence estimates inserted the daily regional case
notification rates as registered in SmiMet (on day 0) in the equation. We evaluated
both date of PCR test and date of registration in SmiMet in the model. When using
date of PCR test, we only counted tests that were registered before or on day 0 in
each time-updated iteration. Using the date of registration provided better
predictions. We found the same density and weights suitable for the SmiNet model
as for the C555-based model. Model fit was repeated daily across the same period.
We further plotted the relative error in % per day and region in hospital admission
predictions over the range of observed admissions.

Step 5. Validation of hospital prediction model using external data from
England by repeating Steps 2—4

We repeated 2 in English data the Swedish model for
estimation of mdn[ig o prohabilities ﬂ;hgaa;tspm;‘sapp]pug the same symptom
coefficients as in Sweden, and thereh]r assessed the daily individual probability of
symptomatic COVID-19 in ZOE COVID Study (CSS UK) English participants =18
years from March 30, 2020 to January 31, 2021. We included participants residing
in all postal code areas (n=2261) within any of the seven English healthcare
regions (South East, London, North West, East of England, South West, West and
East Midlands, Yorkshire and the Humber and North East; total population =18
vears n =432 million). If postal code areas overlapped two or more regions the
postal code area was randomly assigned to one of them in our analyses.

We further repeated Step 3 and assessed daily age- and sex-weighted averages of
the individual E::]babmtm to estimate daily COVID-19 prevalence across the
seven English healthcare regions. Demographic data was extracted from the UK
Office for Mational Statistics™.

We concluded by seeking replication of Step 4 by applying Eg. | in the English
dataset using the equivalent variables used in the analysis of CS55 data. We trained
the model in available outcome data uwp to the first day O (April 27, 2020) to derive
the coefficients Py, Pproalomee 20d We inserted the ZOE COVID Study
prevalence estimate and daily regional rate of COVID-19 hospitalizations per
100,000 inhabitants =18 years on April 27, 2020 into the equation, applying the
derived coefficients to predict hospitalization rates on May 4, 2020. We then
repeated the model fit and prediction from May 5, 2020 to February 11, 2021, with
past data influencing the daily new intercept as well as the daily new two betas.

Information on COVID-19 hospital admissions from April 6, 2020 to Febroary
7. 2021, was obtained from the UK government COVID-19 dashboard®?. We
defined the end of the first wave (June 19, 2020), and the start of the second
(September 20, 2020), using the same threshold as in Swedish data. We calculated
the MAAPEs between predicted and observed number of hospitalizations for each
of the seven English healthcare regions during the first wave (May 4-June 19,
2020), the summer period (June 30-September 19, 2020), and the second wave
{September 20, 2020-February 7, 2021).

Reporting summary. Further information on research design is available in the Nature
Reszarch Reporting Summary linked to this article.

Data availability
Primary data in this study were collected by ZOE Limited and provided to CS55 under a
data-sharing agreement. Additicnal anonymized data originated from the National
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Board of Health and Welfare, the Public Health Agency of Sweden, Statistics Sweden,
and NOVUS. Restrictions apply to the availabality of these data, which were used under
license and ethical approval and are not publicly available. Preudonymized individual-
level data are, however, available from the authors with wrilten permission from the
Swedish Ethical Review Authority (comprehensive information and dagital application
portal available at hitps/fetikprovningsmyndigheten se/f). Overall, these data may only be
used for research, and are not available for commercial use. All applications to the
Swedish Ethical Review Authority that involve research on sensitive personal health data
must detail scientific purpose, objectives, methods, timetable, data mamsgement, ethical
considerations, Anancial matters and competing interests, and also include a project plan
and information about the entity responsible for the research as well as the principal
investigator. Data requests will be processed within 1 month if a written ethical approval
is submitted to the corresponding auther. Data delivery is further subject 1o legal
contracts regarding General Data Protection Regulation (GDPR) and Personal Diata
Processing Agreements between Lund Unaversity andfor Uppsala University and the
receving entity.

Group-level prevalence estimates caloulated from individual-level data, hospatalization
data, and cases of COVID positivity are available as the Source Data (Figures zip), which
were used 1o generate Figs. 2-5. We provide mock CS58 individual level datasets, that can
be wsed together with the code. These data do not represent real observations. The Source
Drata that support the Andings of this study and meck datasets are available on GitHub at
hiips:/fgithub.com/ul ha881/A pp-based-COVID- 19-gyndromic-surveillance-and-
prediction-of-hospital-admissions- The-COVID-Symptom-5, or, in archived form, at?!.

Code availability
All code necessary for the replication of our results, incheding reproducibility
instructions, i available on GitHub at hitps//github.com/fulfha881/App-based-COVID-
19-syndromic-survelance-and-prediction-of-hospital-admissions-The-COVID-
Symptom-5, or, in archived form, at*!. R and Stata codes are provided that will allow
readers to generate Figs. 2-5 from Source Data (Figures zip). Codes 1o caleulate
estimates and the prediction maodels are provided, but without unmodified
individual level datasets, they cant be executed in full.
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