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ABSTRACT
The COVID-19 pandemic is shifting the digital 
transformation era into high gear. Artificial 
intelligence (AI) and, in particular, machine 
learning (ML) and deep learning (DL) are being 
applied on multiple fronts to overcome the 
pandemic. However, many obstacles prevent 
greater implementation of these innovative 
technologies in the clinical arena. The goal 
of this narrative review is to provide clinicians 
and other readers with an introduction to 
some of the concepts of AI and to describe 
how ML and DL algorithms are being used to 
respond to the COVID-19 pandemic. First, we 
describe the concept of AI and some of the 
requisites of ML and DL, including performance 
metrics of commonly used ML models. Next, 
we review some of the literature relevant to 
outbreak detection, contact tracing, forecasting 
an outbreak, detecting COVID-19 disease on 
medical imaging, prognostication and drug and 
vaccine development. Finally, we discuss major 
limitations and challenges pertaining to the 
implementation of AI to solve the real-world 
problem of the COVID-19 pandemic. Equipped 
with a greater understanding of this technology 
and AI’s limitations, clinicians may overcome 
challenges preventing more widespread 
applications in the clinical management of 
COVID-19 and future pandemics.

INTRODUCTION
The COVID-19 pandemic affects health-
care professionals and society at large with 
unprecedented scale and speed that have 
not been seen in modern history. Initially, 
some experts thought the pandemic was 
a black swan event, rare but with massive 
impact potential and only retrospective 
predictability.1 Others, however, said it 
was clearly predictable, a white swan2 
event signalled by sentinel respiratory 
virus epidemics such as SARS (2003), 
H1N1 (2009) and MERS (2012).3

Artificial intelligence (AI) and, in 
particular, machine learning (ML) and 
deep learning (DL) are used on multiple 
fronts to help medical scientists combat 
the effects of COVID-19. With the 
appropriate input and innovative algo-
rithmic design, AI can recognise patterns, 
predict outcomes, assist with medical 
decision-making and help uncover rele-
vant information from data.4 By seam-
lessly analysing millions of data points, 
AI is a potential game changer in the 
battle against the pandemic. Whereas 
most conventional statistical methods are 
unable to handle ‘big data’ in its various 

Summary box

What is already known?
►► Some AI-based algorithms are helpful in 
the fight against COVID-19, but wider 
implementation requires prospective 
validation studies of performance 
and accuracy as well as collaborative 
strategies to address ethical and legal 
issues.

►► Epidemiological models are more reliable 
than ML-based models to forecast spread 
of COVID-19 because historical data 
are insufficient in the early phase of an 
outbreak.

What are the new findings?
►► AI algorithms using natural language 
processing helps detect information about 
possible outbreaks using social media 
platforms.

►► Machine learning (ML) algorithms 
are being used to help predict clinical 
outcomes such as mortality, risk for 
intubation and risk for requiring intensive 
care in patients with COVID-19.

►► Artificial intelligence facilitates 
development and repurposing of drugs 
and vaccines that may prove helpful to 
combat the effects of SRS-CoV-2 infection.  on D
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forms (eg, texts and images), for example, ML and DL 
help analyse highly complex non-linear interactions 
in massive datasets5 6 in order to isolate relationships 
between predictors and outcomes. Not surprisingly, 
there has been an explosion of capital investment 
in AI-based medical imaging, and the AI healthcare 
market is expected to reach $6.6 billion by 2021.7

RESEARCH DESIGN
For this narrative review, several requisites of ML and 
DL in COVID-19 are described based on results from 
almost 2000 articles published since the beginning of 
the pandemic in 2019. Articles were identified using 
a PubMed literature search performed on 27 March 
2021 using the search terms ‘artificial intelligence OR 
machine learning OR deep learning AND COVID-19’.

Given the narrative nature of our work, articles were 
carefully selected to complement other reviews and to 
provide readers with a general understanding of various 
roles for ML and DL algorithms in the COVID-19 19 
pandemic, particularly (1) outbreak detection and 
contact tracing; (2) disease forecasting; (3) detection 
on medical imaging; (4) prognostication and (5) drug 
and vaccine development. We also describe existing 
challenges, solutions and future directions affecting 
further implementation of AI-based algorithms in 
response to the COVID-19 pandemic.

OVERVIEW OF AI-BASED ML AND DL
AI refers to the ability of computer systems to perform 
tasks and mimic human intelligence. ML is considered 
as a subset of AI. ML algorithms are broadly categorised 
into supervised learning and unsupervised learning. 
Supervised ML aims to create predictive models using 
regression analysis or classification systems. Datasets 
must be labelled to predict known outcomes. Once 
algorithms are successfully trained, they are capable of 
outcome predictions when applied to a new dataset. 
The process requires a large amount of data and label-
ling input can be time consuming and labor inten-
sive. Commonly used supervised ML techniques are 
tree-based models (random forest, gradient boosted 
trees), support vector machine models and K-nearest 
neighbour algorithm. In terms of performance metrics, 
some parameters are commonly used to determine a 
performance for classification problem. The receiver 
operator characteristic (ROC) curve is a probability 
curve that plots the true positive rate (y-axis) against 
false positive rate (x-axis) at various threshold values. 
The area under the curve (AUC) is the measure of the 
ability of a classifier to distinguish between classes and 
is used as a summary of the ROC curve. The higher the 
AUC, the better the performance of the model at clas-
sifying between the positive and negative groups. F1 
Score is a common parameter to determine a perfor-
mance of classification model. It is a harmonic mean of 
precision and recall. The formula of F1 Score is shown 
as follows: 2×precision×recall/(precision+recall). 

Precision is a number of items correctly identified as 
positive out of total items identified as positive (true 
positive/(true positive+false positive)). Recall (or 
sensitivity) is a number of items correctly identified as 
positive out of total true positives (true positive/(true 
positive+false negative)). A higher F1 Score means the 
model has lower false positive and false negative.

Unsupervised ML identifies clusters in unlabeled 
data and detects previously unknown patterns. This 
identifies functions that map input datasets into 
clusters so data points within each cluster are more 
similar than data points in other clusters.8 An example 
of unsupervised ML is the data mining of electronic 
medical records,9 where goals are to reveal patterns for 
patients who share clinical, genetic or molecular char-
acteristics that might theoretically respond to targeted 
therapies.

DL is a subset of ML inspired by the funda-
mental structure of neurons and synapses in human 
neocortex. DL consists of a multilayered structure of 
algorithms called neural networks. Each layer consists 
of nodes (or neurons). The individual layers of neural 
networks function as filters which extract features 
from input. A large number of connections between 
each layer can be weighted differently based on the 
output if these neurons arrive at the correct answer. 
The connection between neurons mimics the synapses 
in human neocortex. A neuron will send the output 
signal if weighted summation of its input signals reach 
activation threshold which is non-linear. In brief, a 
training process of neural network can be summarised 
as follows (figure 1): (1) feeding forward of the data 
points through the network get the outputs, (2) use 
backpropagation algorithm to calculate the gradient 
of the loss function with respect to each weight and 
bias, (3) use gradient descent to update the weights 
and biases at each layer and (4) iterate above steps to 
minimise output error. DL systems use labelled data-
sets to classify samples into different categories. DL is 
used for internet data searches, language translation 
and speech recognition on smart phones.

In the following paragraphs, we provide examples 
of how medical scientists and clinicians currently use 
innovative ML and DL algorithms to combat COVID-
19, the disease caused by the SARS-Cov-2 virus.

OUTBREAK DETECTION AND CONTACT TRACING
Outbreak detection focuses on developing effective 
surveillance, prevention and operational capabilities 
for detecting biological hazards in the community.10 
Natural language processing (NLP) is a subfield of AI 
focused on programming machines to read, under-
stand and extract meaning of human languages. In 
other words, NLP represents the automatic handling 
of unstructured data such as speech or text. NLP 
can consistently analyse language-based data without 
fatigue or bias, which is essential for considering the 
staggering amount of unstructured data generated 
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daily in social media, search queries and electronic 
health records. NLP, therefore, is an important tool to 
fully analyse text data efficiently.

For example, the popularity of online social networks 
such as Twitter has created massive social interaction 
among users with a consequent proliferation of big 
data. Supervised and semisupervised algorithms were 
used to investigate the use of Twitter data to deliver 
signals for syndromic surveillance (asthma/difficulty 
breathing).11 The advantage of semisupervised over 
classic supervised algorithms enables authors to mini-
mise labelling efforts required to build a classifier with 
comparable performance (table 1).

Another example is how big data is used to develop 
an almost real-time pandemic surveillance system 
through Google Flu Trends (GFT).12 GFT is a search 
log-based detection method which is a form of crowd-
sourced epidemiology and provides estimate influenza-
like illness (ILI) in the general population. Although 
GFT is not an AI approach itself, it processed billions 
of individual searches from Google web search logs.13 
The frequency of certain queries is highly correlated 
with the percentage of physician visits for influenza-
like symptoms. The model can be used for real-time 
tracking of influenza activity in similar geographic 
areas.14 Although an initial report stated that GFT 
predictions were 97% accurate compared with Centers 
for Disease Control and Prevention (CDC) data,13 
subsequent reports demonstrated GFT consistently 
overestimated ILI incidence. One of the most common 
explanation for GFT’s error was a media-related panic 
in the 2012–2013 influenza season. Other possible 
culprits were changes in Google’s search algorithm 
itself.15 The event led to a GFT shut down in 2013.16

In terms of outbreak detection for COVID-19, 
rather than entrusting traditional surveys and clinical 
reports, in which data collection processes are labour 
intensive and costly, social networks and governmental 
data allow exploratory analyses of geographical and 

temporal information.17 For example, a rapid recogni-
tion of the SARS-CoV-2 outbreak was, in part, related 
to an AI epidemiology algorithm called ‘BlueDot’. Big 
data played an important role in the BlueDot algo-
rithm. It used NLP to extract data from hundreds of 
thousands of sources in foreign-language news reports 
and official announcements to provide news of poten-
tial epidemics.18 BlueDot’s data scientists manually 
classified the data and developed relevant keywords for 
NLP to scan the data source. As a result, the algorithm 
identified suspected cases for human data experts to 
further analyse. The BlueDot algorithm predicted the 
early spread of COVID-19 outside of Wuhan based 
on travel data generated from the International Air 
Transport Association.18 BlueDot algorithms also 
successfully predicted the international spread of the 
Zika virus in South Florida in 2016.19 Another NLP 
technique that can be used to monitor public opinion 
in regard to infectious disease outbreaks and govern-
mental policies is called ‘sentiment analysis’. Data 
analysts use this method to extract online information 
from social media platforms in order to understand 
the public’s reactions toward disease outbreaks.20 The 
data in text format are separated into basic compo-
nents (eg, sentences, phases, etc) that are labelled by 
human experts to assign and weight sentiment scoring. 
This also provides government agencies with valuable 
insights for directing efforts towards public education 
(table 1).21 22

Digital contact tracing helps prevent the wider spread 
of a disease. It is an effective damage control method 
for minimising the development of an outbreak after 
initial exposures.23 Generally, the process identifies an 
infected individual with a follow-up period of 14 days 
after the reported exposure. Several countries have 
mobile applications for contact tracing. Bluetooth and 
global positioning system are the main technologies for 
proximity tracing.24 China is one of the first country 
that deployed centralised consolidation of personal and 

Figure 1  Graphical description of training artificial neural network. (1) Feeding forward of the data points through the network get 
the outputs. (2) Use backpropagation algorithm to calculate the gradient of the loss function with respect to each weight and bias. 
(3) Use gradient descent to update the weights and biases at each layer. (4) Iterate above steps to minimise output error.
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Table 1  Summary of AI approaches against COVID-19 pandemic

Authors
Clinical problem/
study goal

Nature of input 
data AI approach used

Model performance/
results

Effect on outcomes/
discussions

Outbreak detection and digital contact tracing
 � Edo-Osagie et al11 Using Twitter data 

to deliver signals for 
syndromic surveillance.

Twitter data in 
different seasonality 
(2015–2017).

Supervised algorithms 
(Naive Bayes, decision 
trees, logistic regression, 
support vector 
machines and multilayer 
perceptron (MLP) 
neural networks) versus 
semisupervised learning 
used to combine 
information from 
labelled and unlabelled 
data.

Semisupervised learning 
achieved an accuracy of 
95.5% with F1 Score of 
0.910. For supervised 
algorithms, MLP provided 
the best performance, an 
accuracy of 95.5% with 
F1 Score of 0.93.

Semisupervised classification 
techniques enable 
authors to use more of 
the Twitter data collected 
while only doing very 
minimal labelling. This 
approach allowed authors 
to use 8000 previously 
unlabeled tweets before 
demonstrating deterioration 
in performance. Thus, the 
model can analyse data 
more efficiently.

 � Bogoch II et al18 In early 2020, outbreak 
of pneumonia of 
unknown aetiology in 
Wuhan, China.

Travel data generated 
from IATA to quantify 
passenger volumes 
originating from the 
international airport 
in Wuhan, China.

Natural language 
processing; proprietary.

Report of Infectious 
Disease Vulnerability 
Index (IDVI) scores for 
countries receiving 
significant numbers of 
travellers from Wuhan.

Countries with largest 
number of passengers from 
Wuhan, China, appear to 
have high IDVI scores. The 
signal alarmed public health 
of possible outbreak.

 � Choi et al21 Large outbreak of 
MERS in Korea caused 
public fear, affecting 
economy and civil life.

Public news media 
and commentaries in 
Korea from May to 
July 2015.

Natural language 
processing with 
generative probabilistic 
model for text mining. 
Translated and 
expanded emotion 
lexicon used to reflect 
public emotions (sorrow, 
anger, fear and hate).

Report of lethal MERS 
cases strongly affected 
public fears.

An ML-based computational 
method for monitoring 
the public’s emotional 
response to an outbreak 
of MERS. Analysis may 
help governments alleviate 
unnecessary fears of public 
in case of future outbreaks.

Forecasting on outbreaks
 � Ribeiro et al32 Forecasting 3 and 6 

days ahead COVID-19 
cumulative patients in 
Brazil.

Daily information 
about cases from 
Brazilian State Health 
Officers from initial 
outbreak to April 
2020.

Comparing predictive 
capacity of machine 
learning (ML) regression 
and statistical models. 
Include a cubist 
regression, random 
forest (RF), ridge 
regression, support 
vector regression (SVR) 
and stacking-ensemble 
learning.

SVR and stacking 
ensemble reach better 
performance. Models 
achieved errors in a 
range of 1.02%–5.63% 
and 0.95%–6.90% in 3 
and 6 days ahead.

ML models may help predict 
COVID-19 cumulative 
patients in Brazil. Model 
may not be generalisable to 
other countries.

Detection of COVID-19 on medical imaging
 � Minaee et al46 Transfer learning can 

help investigators 
overcome the limited 
sized dataset.

Dataset of 5000 
CXR from publicly 
available datasets. 
Positive COVID-19 
(84 cases in training 
and 100 cases in 
testing sets).

Application of transfer 
learning on a subset 
of CXR used to train 
four pretrained CNNs 
(ResNet18, ResNet50, 
SqueezeNet and 
DenseNet-121).

In validated dataset, 
most of networks 
achieved a sensitivity 
rate of 98% (±3%), 
while having a specificity 
rate of around 90%.

In an early phase of 
pandemic, there was 
limited availability of 
COVID-19 images to train 
deep learning model. 
Transfer learning is useful 
for pretrained CNNs and 
achieved high sensitivity and 
specificity in diagnosis of 
COVID-19 from CXR.

 � Webhe et al47 Using AI algorithm for 
detecting
COVID-19 on chest 
radiographs.

5853 patients in 
a dataset from 
Northwestern 
Memorial Healthcare 
System.
Training data with 
RT-PCR confirmed 
cases (COVID-19 
positive–1142 cases 
in training set and 
324 cases in testing 
set).

DeepCOVID-XR is a 
weighted ensemble of 
deep neural networks. 
Preprocessed images 
are then fed into six 
previously validated 
CNN architectures. The 
final binary prediction 
(positive or negative) 
was a weighted average 
of predictions of these 
individual CNNs.

In validated dataset, 
model accuracy was 
82% (AUC, 0.88), 
as compared with 
consensus opinion of five 
radiologists (accuracy, 
81%; AUC, 0.85).

The model can be used as 
an automated tool to rapidly 
flag patients with suspicious 
chest imaging findings for 
isolation and further testing 
and to mitigate unnecessary 
exposure.

Continued

 on D
ecem

ber 31, 2022 by guest. P
rotected by copyright.

http://innovations.bm
j.com

/
B

M
J Innov: first published as 10.1136/bm

jinnov-2020-000648 on 19 A
pril 2021. D

ow
nloaded from

 

http://innovations.bmj.com/


391Khemasuwan D, Colt HG. BMJ Innov 2021;7:387–398. doi:10.1136/bmjinnov-2020-000648

Review

mobile phone tracking data.25 The proprietary AI-gen-
erated health code (green, amber and red) produces 
individualised risk score for Chinese citizen.26 The 
algorithm behind the system is not entirely clear and 

made inaccessible to public.27 A citizen with a red code 
is instructed to limit their mobility in certain geographic 
locations. The violation can be marked down in the 
China’s social credit system which leads to devastating 

Authors
Clinical problem/
study goal

Nature of input 
data AI approach used

Model performance/
results

Effect on outcomes/
discussions

Prognostication
 � Yan et al50 ML-based model 

devised to identify the 
most discriminative 
biomarkers of patient 
mortality.

Blood samples and 
medical records of 
485 patients from 
the region of Wuhan, 
China, from January 
to February 2020.

Supervised XGBoost 
classifier.

Serum LDH, 
lymphocyte and hs-CRP 
demonstrated an AUC 
score for training sets 
of 97.84%±0.37% 
and validation sets of 
95.06%±2.21%.

Simple triage tool may 
be used to identify high-
risk patients and allocate 
healthcare resources. 
Limitations are retrospective 
cohort and short observation 
period.

 � Singh et al51 The proprietary 
predictive model 
identified subgroups of 
patients with COVID-19 
at high and low risk for 
adverse outcomes.

369 patients with 
COVID-19 from 
the University of 
Michigan
(Ann Arbor) between 
March and May 
2020 from the ED, 
outpatient clinics 
and outside hospital 
transfers.

The Epic Deterioration 
Index (EDI). The score 
ranges from 0 to 100, 
where higher numbers 
indicate a higher risk of 
developing a composite 
adverse outcome; 
proprietary.

The model showed a 
fair discrimination value 
(AUC of 0.76 (95% 
CI 0.68 to 0.84) to 
predict the probability 
of hospitalised patients 
requiring intensive care.

The EDI can be used to 
identify high-risk patients 
who may benefit from 
higher-level care and 
another limited subset of 
low-risk patients who may 
be cared for safely in lower-
acuity settings. Limitations 
are retrospective cohort and 
single institution dataset.

 � Arvind et al53 The model provided 
a quick and accurate 
method of triaging 
patients at risk for 
respiratory failure or 
ventilator support.

4087 patients with 
COVID-19 admitted 
to hospitals in New 
York City from 
February to April 
2020.

A supervised ML 
prediction classification 
to predict intubation 
72 hours from the 
end of the 24 hours 
sampling window; RF 
classifier.

The ML algorithm 
outperformed the ROX 
Index, demonstrating 
an AUC of 0.84 for the 
model and 0.64 for the 
ROX Index.

The RF model was 
performed with a similar 
AUC across all ages except 
for patients<40 years due 
to rarity of patients below 
40 years of age in training 
set. The major limitation of 
this model is requiring a 
24 hours sampling window 
to generate a prediction.

Drug and vaccine development
 � Hu et al58 SARS-CoV-2 appears to 

have eight viral proteins 
which can be used as 
potential targets for 
drug repurposing.

Amino acid 
sequences were 
extracted from NCBI. 
The virus-specific 
dataset from the 
GHDDI.

Multitask deep learning 
model. The model 
predicts possible binding 
between commercially 
drugs and protein 
target.

Abacavir and darunavir 
showed high binding 
affinity with multiple 
proteins of SARS-CoV-2.

Only darunavir has an 
ongoing clinical trial of 
against COVID-19 infection 
in China. This article is in 
preprint format and has 
not passed a peer-reviewed 
process.

 � Stebbing et al62 ARDS from COVID-19 
is characterised by 
an overexpression of 
inflammatory response. 
AP2-associated protein 
kinase 1 (AAK-1) 
inhibitor expressed 
both antiviral and anti-
inflammatory.

There are 378 AAK-1 
inhibitors. 47 have 
been approved for 
medical use and 6 
inhibited AAK-1 with 
high affinity.

Monte Carlo tree search 
to discover knowledge 
graphs and identify 
AAK-1 inhibitors.

Baricitinib is an AAK-
1-binding drug which 
is also a janus kinase 
inhibitor, another 
regulator of endocytosis.

A randomised control trial, 
a combination of baricitinib 
and remdesivir was shown 
to accelerate clinical 
improvement in patients 
with COVID-19 non-invasive 
ventilation and high-flow 
oxygen.

 � Ong et al69 AI helps scientists 
better understand 
protein involved in 
SARS-CoV-2 and search 
for potential targets for 
vaccine development.

The SARS-CoV-2 
sequence was 
obtained from NCBI. 
All proteins of six 
known human 
coronavirus strains 
were extracted from 
Uniprot proteomes 
consortium.

Vaxign-ML is a 
supervised ML (eXtreme 
Gradient Boosting) 
designed to predict the 
protegenicity score of 
all SARS-CoV-2 isolate 
Wuhan-Hu-1.

This model identified six 
proteins, including spike 
(S) protein and five non-
structural proteins. These 
protein candidates were 
predicted to be adhesins 
crucial to viral adherence 
and host invasion.

Vaxign-ML predicted 
that S protein had a high 
protective antigenicity score. 
For non-structural protein, 
multidomain nsp3 protein 
has the second-highest 
protective antigenicity. 
Authors proposed a 
development of a cocktail 
vaccine strategy.

AI, Artificial Intelligence; ARDS, acute respiratory distress syndrome; AUC, area under the curve; CNN, convolutional neural network; CXR, chest X-ray; 
GHDDI, Global Health Drug Discovery Institute; hs-CRP, high-sensitivity C reactive protein; IATA, International Air Transport Association; LDH, Lactate 
Dehydrogenase; MERS, Middle East respiratory syndrome; NCBI, National Center for Biotechnology Information; RT-PCR, real-time polymerase chain 
reaction.

Table 1  Continued
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personal penalties from public authorities. In contrast, 
Singapore has taken a more privacy-aware approach, 
including an opt-in decision support application that 
helps health authorities track and communicate with 
at-risk contacts of infected users.28 This app uses a 
protocol for logging bluetooth encounters between 
two participating devices that exchange temporary 
identifiers. If users are infected, they are asked to share 
their encounter history with public health officials.28

In the USA (California), the Google/Apple Exposure 
Notification was recently deployed on smartphones.29 
This technology uses bluetooth to notify users of poten-
tial exposure to other users with a diagnosis of COVID-
19, regardless of whether the users know each other.29 
The digital contact tracing process performs virtually in 
real time and is faster when compared with techniques 
used in non-digital platforms. However, privacy control 
and data security breaches can lead to public outcries, 
particularly in case of data privacy violations. For this 
reason, the implementation of contact tracing apps 
remains controversial in many countries.30

FORECASTING AN OUTBREAK
Various mathematical and statistical population models 
have been used to forecast the extent and spread of 
outbreaks.31 In Brazil, an ML approach was used to 
forecast COVID-19 cumulative cases at 3 and 6 days 
in the future. Support vector regression and stacking 
ensemble reach a better performance among the other 
three ML-based models32 (table 1). Short-term predic-
tion ML models may assist Brazilian governments and 
public health agencies in decision-making and deter-
mination of public policy. However, proposed models 
are specifically trained with datasets from the Brazilian 
health system. Therefore, it would be technically chal-
lenged to apply this model in other countries.

Unfortunately, ML-based prediction models have not 
been very reliable, partly because historical data are insuf-
ficient and because in the early phase of the pandemic, 
investigators used results from potentially biased 
studies.33 In addition to historical data, ML needs large 
amounts of training data to generate accurate prediction 
algorithms.34 Coordinating data collection, however, 
is challenging even for smaller geographical areas. In 
Singapore, a health national consortium was required to 
assemble detailed data from health systems, hospitals and 
clinics.35 Even though financial and logistical resources 
are plentiful, large scales of data may not be available 
during the early stage of an outbreak, which ironically 
is when predictions are most needed. Therefore, many 
models used to track and forecast COVID-19 used 
epidemiological models such as Susceptible-Infected-
Recovered (SIR) model36 37 or Susceptible, Infected, 
Diagnosed, Ailing, Recognized, Threatened, Healed and 
Extinct (SIDARTHE) model to justify control measures 
such as social distancing, widespread testing and contact 
tracing.38 These mechanistic models mimic the dynamic 
pattern of COVID-19 spread and are used to simulate 

future transmission scenarios under various assumptions 
and sensitivity analyses.39

DETECTION OF COVID-19 ON MEDICAL IMAGING
The clinical features of SAR-CoV-2 are sometimes indis-
tinguishable from other viral infections. The chest X-rays 
(CXRs) of patients with COVID-19 typically reveal non-
specific bilateral infiltrates. Meanwhile, CT scan may 
show non-specific ground-glass opacities and subseg-
mental consolidation. There is growing effort, however, 
to train DL to diagnose COVID-19 using chest imaging. 
Convolutional neural network (CNN) is a form of DL 
which is designed to process input images. The structural 
architecture of CNN is following a hierarchical model 
that creates a funnel-like framework to provide a fully 
connected layer. The last layer is a fully connected output 
layer which provides final probabilities for each label as a 
final classification (figure 2).6 CNN has achieved remark-
able performance and accuracy in various imaging appli-
cations through training on existing datasets. However, 
most of the published studies used relatively small data-
sets (<1000 CXR images of COVID-19 cases).40–44 
Transfer learning is an ML approach that can help inves-
tigators overcome limited data sizes. A CNN is pretrained 
with results of a previous training round from a different 
domain. This pretrained CNN is used as a basis for 
initialising data which are then fine-tuned using limited 
available medical datasets with results. This approach 
appears to outperform fully trained networks under 
certain circumstances.45 Minaee et al applied transfer 
learning approach to train publicly available CNNs 
(ResNet18, ResNet50, SqueezeNet and DenseNet-121) 
to identify COVID-19 disease in analysed CXR images. 
These CNNs achieved a sensitivity rate of 98% (±3%), 
while having a specificity rate of around 90%.46

During several months after the onset of the 
pandemic, the CXR dataset of COVID-19 became 
more publicly available in tertiary medical centres. 
Webhe et al trained and validated the DL algorithm 
named DeepCOVID-XR on 14 788 images and exter-
nally tested the algorithm on 2214 images. Positive 
cases CXRs were confirmed with real-time polymerase 
chain reaction results for SARS-CoV-2. This model 
was built on one of the largest datasets reported to 
date. The performance of DeepCOVID-XR is compa-
rable to that of expert thoracic radiologists (AUC 0.88 
for DeepCOVID-XR and 0.85 for expert radiologist 
(p=0.13).47 The matching performance of expert 
radiologists can be clinically useful as the model can 
be used as an automated tool to rapidly triage patients 
with suspicious CXR for isolation which can mitigate 
unnecessary exposure, especially in the emergency 
room or urgent care setting. However, the algorithm 
requires prospective validation in a different environ-
ment, especially where COVID-19 is not a predomi-
nant cause of viral pneumonia.47

The number of studies using ML and DL to diagnose 
COVID-19 using chest CT scan is growing rapidly. 
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Most algorithms demonstrate high performance and 
accuracy.48 However, these studies have a high hetero-
geneity in terms of available datasets, geography and 
specification of imaging which may affect the consis-
tency and uniformity of results. While imaging alone 
cannot be used solely to diagnose COVID-19, roles for 
AI are promising and provide clinical support systems 
for clinicians, particularly to help flag suspicious 
cases.48 Further studies are needed to determine how 
image-based AI diagnostics systems will comply with 
regulatory and quality control requirements.49 Regard-
less of which models are used, performance should be 
validated on a diverse dataset and demonstrate effec-
tiveness in the clinical setting.

PROGNOSTICATION
The limited capacity of intensive care units makes the 
availability of predictive models that forecast disease 
severity crucial to healthcare professionals involved 
in care-giving, triage as well as public policy. Yan et 
al50 developed a decision tree-based model (supervised 
XGBoost classifier) using supervised ML to predict 
mortality based on three serum biomarkers (serum 
lactate dehydrogenase, percentage of lymphocytes 
and high-sensitive C reactive protein). This model 
demonstrated an AUC score for validation sets of 
95.06%±2.21%, suggesting a simple triage tool may 
be used to identify high-risk patients and allocate 
healthcare resources accordingly. In a different study, 
Singh et al51 used an automated risk-score system inte-
grated into electronic health records to construct a 
proprietary early-warning prediction model (the Epic 
Deterioration Index) with a fair discrimination value 
(AUC of 0.76 (95% CI 0.68 to 0.84) to predict the 
probability of hospitalised patients requiring intensive 
care.

In patients with hypoxemic respiratory failure from 
severe pneumonia, the ROX Index (SpO

2
, FiO

2
 and 

respiratory rate) has been used to predict a failure 
of high-flow nasal cannula support and need further 
ventilatory support with intubation.52 A supervised ML 
model was also developed to predict intubation among 
hospitalised patients with COVID-19.53 The model 
was based on the first 24 hours of index admission. 
Elixhauser comorbidity measures and time-series data 
were used to fit a random forest classifier to predict 
the intubation risk. The algorithm outperformed the 
ROX Index, demonstrating an area under the receiver 
characteristic curve (AUC) of 0.84 for the ML model 
and 0.64 for the ROX Index.52 53

DRUG AND VACCINE DEVELOPMENT
Computational methods for screening poten-
tial compounds to target protein have been shown 
to improve success rates and shorten time of drug 
discovery.54 DL-based models have impressive perfor-
mance for protein–ligand binding prediction and drug 
development,55 similar to how ML-based approaches 
were used to repurpose drugs for in vitro testing against 
Ebola virus.56 57 Thus, existing drugs might be repur-
posed to treat COVID-19. For SARS-CoV-2, there 
appear to be eight viral proteins which can be used as 
potential targets, including RNA-dependent RNA poly-
merase, 3-chymotrypsin-like (3CL) protease, papain-like 
protease, helicase, spike (S) glycoprotein, exonuclease, 
endoRNAse, 2′-O-ribose methyltransferase and enve-
lope protein.58 Hu et al used multitask neural networks 
to identify potential therapeutic agents. The amino acid 
sequences of these proteins were extracted from the 
National Center for Biotechnology Information. The 
virus-specific dataset is achieved from the Global Health 
Drug Discovery Institute. The output of this model is the 

Figure 2  A basic component of convolutional neural network (CNN). A sequence of layers. Each layer transforms one volume of 
activations to another through a differentiable function. Three main types of layers build CNN architectures: convolutional layer, 
pooling layer and fully connected layer. The convolution layers merge two sets of information with the use of a filter to produce 
a feature map as an output. The pooling layers reduce the number of parameters and computation in the network. The fully 
connected output layer provides the final probabilities for each label as a final classification.
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score to estimate binding affinity (pKa) between drug 
and target against SARS-CoV-2. The author suggested 
10 promising drugs as potential SARS-CoV-2 inhib-
itors.58 Abacavir and darunavir showed a high binding 
affinity with multiple proteins of SARS-CoV-2. There is 
an ongoing clinical trial of darunavir against COVID-19 
(ChiCTR2000029541). Beck et al used unsupervised ML 
to predict an inhibitory potency of atazanavir and remde-
sivir against the SARS-CoV-2 3CL proteinase.59 Remde-
sivir has been widely used in management of COVID-19 
infection,60 although its effects on disease course and 
survival are less remarkable than originally thought.61

SARS-CoV-2 uses cellular receptors to enter cells via 
endocytosis. One known regulator of endocytosis is 
AP-2-associated protein kinase 1 (AAK-1). Stebbing et 
al used Monte Carlo tree search to discover knowledge 
graphs and identify AAK-1 inhibitors. Monte Carlo 
tree search is a common iterative search algorithm 
which is usually used to predict a desired solution. 
One of several AAK-1 inhibitors provide both antiviral 
and anti-inflammatory effects, ultimately identifying 
the antirheumatoid arthritis drug, baricitinib, an orally 
administered, selective inhibitor of janus kinase 1 and 
2, as a potential treatment warranting clinical inves-
tigation.62–64 In a double-blind, randomised control 
trial, a combination of baricitinib and remdesivir was 
shown to reduce recovery time and accelerate clinical 
improvement in patients with COVID-19 non-invasive 
ventilation and high-flow oxygen.65

The use of hydroxychloroquine was deeply scru-
tinised after a publication by Mehra et al66 in the 
Lancet. The authors claimed to obtain deidentified 
data by automated data extraction from a multina-
tional registry. The paper was retracted 2 weeks after 
its online publication,66 however, because it was not 
clear whether ML was properly used to extract data 
and because of possible inconsistencies in the data 
used, including from an unrealistically high number of 
electronic health records in Africa, as well uncertain-
ties regarding the timing of data collection in the UK.

In addition to revolutionising the biopharmaceutical 
industry, AI is positively impacting the field of vaccine 
development. In regard to biochemistry applications, 
AI helps scientists better understand the protein 
involved in SARS-CoV-2 and search for potential 
targets.67 ML allows for rapid scanning of the entire 
viral proteome, allowing faster and potentially less 
expensive scientific inquiry than older techniques used 
for vaccine development.67 An ML-based reverse vacci-
nology was used to predict potential protein targets for 
development of COVID-19.68 Vaxign-ML is a super-
vised ML (eXtreme Gradient Boosting) is designed 
to predict the protegenicity score of all SARS-CoV-2 
isolate Wuhan-Hu-1 (GenBank ID: MN908947.3) 
proteins.69 70 A protein with higher protegenicity 
score is considered a stronger vaccine candidate with 
higher utility toward protection. This model iden-
tified six proteins, including the S protein and five 

non-structural proteins. These protein candidates were 
predicted to be adhesins, which are crucial to viral 
adherence and host invasion.71 In 2018, Google Deep-
Mind used a DL algorithm, AlphaFold,72 to predict the 
distance and the distribution of angles between amino 
acid residues.73 This model is trained on structures 
extracted from a protein databank. This dataset gener-
ated 31 247 protein domains. This technology has 
progressed to its next generation with AlphaFold 2. 
This algorithm achieved the highest score from critical 
assessment of protein structure prediction, surpassing 
the initial 2018 version of AlphaFold74 and providing 
critical information to predict the structural proteins 
related to SARS-CoV-2 for vaccine development.73

DISCUSSION
Limitations and possible solutions to using AI in the 
COVID-19 pandemic
Artificial intelligence provides opportunities to 
improve quality of care and accelerate the evolution 
of precision medicine. Its limitations, however, are 
increasingly described in the growing field of AI ethics, 
which helps study AI’s impact on technology, indi-
vidual lives, economics and social transformation.75

One of the hurdles facing further implementation of 
AI in healthcare relates to a lack of prospective valida-
tion studies and difficulty improving an algorithm’s 
performance. Many investigations are validated in silico 
by dividing a single pre-existing dataset into a training 
and testing dataset. External validation using an indepen-
dent dataset, however, is critical prior to implementation 
in a real-world environment, and inherently opaque 
black-box type models should be avoided as much as 
possible because of their lack of interpretability and 
explainability. In fact, the term ‘black box’ defines one of 
the most important intrinsic drawbacks of using ML and 
DL type algorithms. Several prediction models also have 
black-box problems which can lead to difficulty in deter-
mining which features are being used to define output.76 
Clinicians may not feel confident using ML-based predic-
tive models to evaluate clinical scenarios or apply DL to 
automate several routine tasks (such as interpretation of 
CXR and CT scan of the chest) and may have difficulties 
troubleshooting incorrect ML-based assessments.77 One 
method that can alleviate interpretability issues uses the 
surrogate model. The concept is similar to other fields 
with difficult to measure and expensive outcomes and 
in which surrogate outcomes may be less costly and 
easier to use. In ML, the surrogate model is an interpre-
table model trained to approximate the predictions of a 
black-box model. Surrogate models can be built on the 
same dataset of any black-box models by choosing an 
interpretable model type (eg, a linear model or a deci-
sion tree). The surrogate model is then trained on the 
same dataset. After training, investigators are able to eval-
uate the performance of the surrogate model against the 
‘black-box’ version on the dataset.78
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As for any technology that involves individual health 
records, the right to privacy is another important ethical 
obligation that must be adhered to by AI-based appli-
cations.79 AI may require both access to and sharing 
of personal information in order to generate trends, 
make predictions and conduct assessments.79 One 
example of a mitigating strategy to preserve protect 
privacy uses a novel process called ‘federated learning’. 
This technique enables transferring data collabora-
tively without moving patient data beyond the firewall 
of the patient’s institution. Therefore, aggregate local 
ML models can analyse confidential, decentralised 
data without transferring sensitive information to a 
central server.79 Multiple organisations can thus share 
data without compromising individual privacy. Feder-
ated learning techniques may also prompt research 
to improve physician work flow and patient care.80 
Prospective studies and randomised controlled trials 
(RCTs) are needed for these techniques to be more 
widely implemented.

Challenges for clinicians using AI during the COVID-19 
pandemic
There is great interest in examining the potential benefit 
of using AI to support responses to the COVID-19 
pandemic across a wide range of clinical practices.81 
As of this writing, however, AI-based applications 
appear to have only a small impact on clinical manage-
ment, and several challenges prevent more widespread 
implementation.82

First of all, AI-based models of disease detection and 
surveillance rely heavily on data digitisation such as 
picture archiving and communication system, mobile 
phones and internet access. These resources are not 
widely available in less developed countries.83 Efforts 
are needed to provide and increase infrastructure for 
the digitisation of healthcare data and provide low-
cost AI technologies potentially with applications 
using readily accessible imaging alternatives such as 
CXR and even electronic health records.

Second, legal barriers present a major hurdle. 
Determining legal liabilities associated with adverse 
outcomes when physicians use AI algorithms in patient 
care is controversial.84 Currently, AI has been used as 
a clinical decision support tool, rather than to replace 
clinical judgement, implying that accountability for 
mistakes remains with the clinician. However, distin-
guishing liability between AI-derived protocols and 
clinical care providers is not easy. AI-based decision 
support tools (such as those using DL) may be limited 
by their lack of generalisability, privacy concerns and 
explainability. In addition, AI might mistakenly classify 
healthy individual as COVID-19 positive (type I error-
false positive) or classify infected patient as COVID-19 
negative (type II error-false negative) due to the risk 
of incomplete datasets for training.85 Furthermore, 
our present legal system has not yet adapted to accom-
modate all possible legal challenges,86 making this 

uncharted territory, especially for patients suffering 
from COVID-19. Consequently, healthcare profes-
sionals may hesitate to adopt AI-based applications in 
clinical practice.

Third, it is a generally accepted that peer-reviewed, 
RCTs are the gold standard of evidence-based medicine. 
Similar to the field of physics, in the AI community of 
data scientists, many studies are published as preprints 
and subjected to critical analysis prior to submission 
and sometimes instead of publication in peer-reviewed 
journals. Furthermore, as of this writing, there are very 
few RCTs of AI systems in clinical medicine87 88 and to 
our knowledge, there are no RCTs studying the use of 
AI systems in the clinical management of patients with 
COVID-19. In medicine, there are only 10 randomised 
trial registrations of DL algorithms.89 The lack of such 
studies might be a significant obstacle to adopting 
AI algorithms in clinical practice. Studies of ML and 
DL should follow best practice recommendations. 
Prospective RCTs of AI algorithms are warranted to 
ensure that models are safe and efficient prior to wide-
spread deployment in a real-world clinical practice.

Finally, comparing algorithms objectively across 
published studies is challenging because of the variable 
methodologies being used in different populations 
with different sample distributions and characteristics. 
Sample sizes are often small, there is frequent hetero-
geneity between samples and performance matrices 
may be different. Therefore, it is difficult for clinicians 
to determine which algorithm is likely to perform best 
for their particular patients. While one strategy to 
overcome these obstacles is to use independent local 
test sets in to reasonably compare the performance 
of various algorithms in a representative sample of 
a population,90 guidelines from medical societies 
regarding AI-related research might also prove to be 
helpful.

CONCLUSIONS
Artificial intelligence driven by big data is fueling the 
fourth industrial revolution.91 Similar to prior revolu-
tionary technologies such as the internet, AI is funda-
mentally changing human society and our approach 
to public health. Nonetheless, we cannot elaborate, 
study and execute effective AI-based strategies without 
the dedicated input and ethical deliberations from 
collaborating, trustworthy, experienced clinicians and 
forward-thinking medical data scientists. While some 
may argue it is premature to unquestionably proclaim 
the added value of using AI in our response to COVID-
19, the global effort to organise massive datasets and 
elaborate new strategies is clear. This collaborative 
effort across knowledge domains will help us prevail 
over this crisis, and, like other pandemics in human 
history, COVID-19 will most surely pass, but future 
pandemics are inevitable. Whether the next one is a 
‘white swan’ event for which we are well prepared may 
depend on whether innovative AI-based algorithms 
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can accurately provide early warnings and help experts 
design and implement effective strategies for disease 
diagnosis, control and prevention.
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