
1January 2010

Everything Old is New Again

Text notes for ClockChain Paper

Accessing Sawblade
DAFCA*

from Software

* Design Automation for Flexible Chip Architecture

2021

TM

2January 2010

Foreward
This presentation was originally prepared by David Whelihan, PhD, Director
of Cybersecurity Research and Development for DAFCA interests.

The paper has been revised by Keith Guidry, Chief Technology Officer for
Sawblade Ventures, LLC.

The material is intended as a means of educating those unfamiliar with
DAFCA's extensible and interoperative theory, practice and potential.

The principles displayed demonstrate the essence of granular security and
defense, a concept not available in modular security or trust methods
commonly used in semiconductor operations. Of particular interest is
DAFCA's ability to extend internal circuit operations to external software
systems for data, information, command and control.

This unique ability to offer reprogrammable, reconfigurable and rerouteable
circuit structure is a hallmark of the patented methods underpinning the
DAFCA facilities and remains a powerful tool for problems and threats that
loom over the horizon yet are near us today since 2010.

3

Objective and Scope

• Inform software engineers how DAFCA
enables offensive and defensive security
functions in your system

• Detail the software API, which provides
access to the deep, system-wide
information provided by the DAFCA
distributed security sub-system

4

What is DAFCA?

• A hardware-based monitoring and control
fabric
– Inserted directly into your system

– Programmable via a kernel-level software module

– Capable of operating in two modes
• Autonomous - invisible to the running system

• Interactive - driven by system-level software

– Distributed with small hardware devices located at
each system interface of interest

5

What is a System Interface?

• A communication path between physical
components in your system

• Access profiles (e.g. rules) for communication
and secure resources can be formulated

• Specific system resources or components can be
isolated and closely monitored

6

What Can DAFCA Do?

• Monitor access patterns on a system
interface
– Programmable “on-the-fly” via software to

look for different patterns

• React to patterns with countermeasures
independent from the main processes
– Block resource accesses
– Inject resource accesses

7

Securing a Building

The following analogy illustrates where
DAFCA is in your system:

 A Chip is Like a Building

8

Securing a Building

Control
Room

Secure
Storage

#1

Secure
Storage

#2

High Speed
Com

Temporary
Storage

Access
Control

Utility Utility Utility

This is the floorplan of a
building that we wish to
secure. In most cases,
security reduces to controlling
access.

Control
Room

Access
ControlSecure

Storage
#2

Secure
Storage

#1

Temporary
Storage Comm

Utility Utility Utility

9

Securing a Building

To control access:

Identify key access points

Temporary
Storage

Secure
Storage

#1

Control
Room

Secure
Storage

#2

High Speed
Com

Access
Control

Utility Utility Utility

Control
Room

Access
ControlSecure

Storag
e #2

Secure
Storag
e #1

Temporary
Storage

Comm

Utility Utility Utility

10

Temporary
Storage

Secure
Storage

#1

Control
Room

Secure
Storage

#2

High Speed
Com

Access
Control

Utility Utility Utility

Securing a Building

To control access:

Identify key access points

Place security monitoring
stations (one-way mirrors) at
the critical points

Control
Room

Access
ControlSecure

Storag
e #2

Secure
Storag
e #1

Temporary
Storage

Comm

Utility Utility Utility

11

Temporary
Storage

Secure
Storage

#1

Control
Room

Secure
Storage

#2

High Speed
Com

Access
Control

Utility Utility Utility

Securing a Building

To control access:

Identify key access points

Place security monitoring
stations (one-way mirrors) at
the critical points

Interconnect the stations: This
access structure is completely
separate!

Control
Room

Access
ControlSecure

Storag
e #2

Secure
Storag
e #1

Temporary
Storage

Comm

Utility Utility Utility

12

Temporary
Storage

Secure
Storage

#1

Control
Room

Secure
Storage

#2

High Speed
Com

Access
Control

Utility Utility Utility

Securing a Building
Gate is controlled from
the security area

To control access:

Identify key access points

Place security monitoring
stations (one-way mirrors) at
the critical points

Interconnect the stations: This
access structure is completely
separate!

One can only get to the control
room if there is someone
watching!

Control
Room

Access
ControlSecure

Storag
e #2

Secure
Storag
e #1

Temporary
Storage

Comm

Utility Utility Utility

13

Temporary
Storage

Secure
Storage

#1

Control
Room

Secure
Storage

#2

High Speed
Com

Access
Control

Utility Utility Utility

Securing a Building

Communication:

Add a secure channel to
present security status
information to the control
room

Control
Room

Access
ControlSecure

Storag
e #2

Secure
Storag
e #1

Temporary
Storage

Comm

Utility Utility Utility

14

The Micro-world vs The Macro-world

Control
Room

Secure
Storage

#1

Secure
Storage

#2

High Speed
Com

Temporary
Storage

Access
Control

Utility Utility Utility

A computer system is not
much different than that
building.

Control
Room

Access
ControlSecure

Storage
#2

Secure
Storage

#1

Temporary
Storage Comm

Utility Utility Utility

15

The Micro-world vs The Macro-world

Control
Room

Secure
Storage

#1

Secure
Storage

#2

High Speed
Com

Temporary
Storage

Access
Control

Utility Utility Utility

Micro –
Processor

SRAM DRAM
Bridge

Flash
Bridge

Peripheral
Bridge

Ethernet

DRAM FLASH

UART Timer SPI

Reset and
Clock System

OSIn this analogy, the control
room is the microprocessor,
and the other rooms are
memories and peripherals.

16

A DAFCA-Enabled System

PAM

Micro –
Processor

SRAM DRAM
Bridge

Flash
Bridge

Peripheral
Bridge

Ethernet

DRAM FLASH

UART Timer SPI

Reset and
Clock System

OS

PAM

PAM

PAM

The “Monitoring Stations” are
pieces of interconnected
hardware IP that can record
and control accesses to sub-
systems.

PAM

17

A DAFCA-Enabled System

PAM

Micro –
Processor

SRAM DRAM
Bridge

Flash
Bridge

Peripheral
Bridge

Ethernet

DRAM FLASH

UART Timer SPI

Reset and
Clock System

OS

PAM

PAM

PAM

The “Monitoring Stations” are
pieces of interconnected
hardware IP that can record
and control accesses to sub-
systems.

PAM

18

A DAFCA-Enabled System

PAM

Micro –
Processor

SRAM DRAM
Bridge

Flash
Bridge

Peripheral
Bridge

Ethernet

DRAM FLASH

UART Timer SPI

Reset and
Clock System

OS

PAM

PAM

PAM

PAM

DAFCA can also manipulate
the system state. In the
building analogy, the “gate”
represents DAFCA’s control
over the microprocessor
reset.
More on this a little later…

Blocks or modifies
signal values

19

A DAFCA-Enabled System

PAM

Micro –
Processor

SRAM DRAM
Bridge

Flash
Bridge

Peripheral
Bridge

Ethernet

DRAM FLASH

UART Timer SPI

Reset and
Clock System

OS

PAM

PAM

PAM

The information that DAFCA
provides can be centrally
aggregated to create system-
wide security policies and
profiles.

PAM

DAFCA
CONTROL

20

A DAFCA-Enabled System

PAM

Micro –
Processor

SRAM DRAM
Bridge

Flash
Bridge

Peripheral
Bridge

Ethernet

DRAM FLASH

UART Timer SPI

Reset and
Clock System

OS

PAM

PAM

PAM

Software access is facilitated
by a memory-mapped
hardware access device.

PAM

ACCESS
DEVICE

TL
Control

DAFCA
CONTROL

21

A DAFCA-Enabled System

PAM

Micro –
Processor

SRAM DRAM
Bridge

Flash
Bridge

Peripheral
Bridge

Ethernet

DRAM FLASH

UART Timer SPI

Reset and
Clock System

OS

PAM

PAM

PAM

Software access is facilitated
by a memory-mapped
hardware access device

PAM

ACCESS
DEVICE

DAFCA
CONTROL

22

The Software API

• With an understanding of what DAFCA is
we can now look at how it can be used
by system software

• We will describe how you can:
– Access basic system information that is

always provided by the DAFCA sub-system
– Customize the data delivered by the DAFCA

system “on-the-fly”

23

The Software API: The Module

• A kernel-level module called the Security
Supervisor communicates with the
Access Device

• The two are paired, and only the module
is allowed to communicate with the
Access Device

Micro –
Processor

OS Access
Device

software hardware

24

The Software API(cont)

• Higher-level software can attach to a
device managed by the module and
obtain information from the entire system
(not just the microprocessor)

Micro –
Processor

OS

software hardware

Access
Device

25

The Software API: Basic

• Under Linux, system state information
can be read by opening a virtual file:

26

The Software API: Basic

• Basic information provided includes:
– Number of system resets since power-on

– Raw accesses to pre-defined memory ranges

27

The Software API: Session-based

• An alternate interface is session-based
– A device is opened by a calling program
– Information is obtained piecemeal by reading

and writing to the device
– Example (pseudo-code):

int value = 0;

handle = open(“/dev/secure”, “r+w”);

write(handle, “get ddr0_throughput”)

read(handle, &value)

printf(“DDR0 throughput:%d\n”, value)

28

The Software API: Access Tracking

• The module can restrict access such
that:
One session is allowed per power-on (works

even through system RESET)

Because the underlying DAFCA Control hardware records all
accesses, it can also record, and limit the number of times a

higher-level program opens the device.

29

The Software API: Access Tracking

• The module can restrict access such
that:
One session is allowed per power-on (works

even through system RESET)

Or

Many sessions can be opened, but only one
session is allowed at a time

Each session must be individually authenticated.

30

The Software API: Modifying DAFCA
Behavior
• A limited amount of control of the underlying

system can be granted to the software

• The underlying system is inherently flexible and
can change focus or mission rapidly

• The hardware system is programmed with a
base security policy, that is loaded from an
encrypted ROM at power-on

31

A DAFCA-Enabled System

PAM

Micro –
Processor

SRAM DRAM
Bridge

Flash
Bridge

Peripheral
Bridge

Ethernet

DRAM FLASH

UART Timer SPI

Reset and
Clock System

OS

PAM

PAM

PAM

The base security policy
defines how the hardware
system behaves “out-of-the-
box”, as well as the level of
control software can
exercise.

PAM

DAFCA
Control

Secure
ROM

Loader

Base security policy

ACCESS
DEVICE

32

A DAFCA-Enabled System

PAM

Micro –
Processor

SRAM DRAM
Bridge

Flash
Bridge

Peripheral
Bridge

Ethernet

DRAM FLASH

UART Timer SPI

Reset and
Clock System

OS

PAM

PAM

PAM

The base security policy
cannot be changed by
software, and makes up the
invariant secure “bedrock” of
the system.

PAM

DAFCA
Control

Secure
ROM

Loader

Base security policy

ACCESS
DEVICE

33

A DAFCA-Enabled System

PAM

Micro –
Processor

SRAM DRAM
Bridge

Flash
Bridge

Peripheral
Bridge

Ethernet

DRAM FLASH

UART Timer SPI

Reset and
Clock System

OS

PAM

PAM

PAM

PAM

DAFCA
Control

Secure
ROM

Loader

The security policy must be
loaded in order for the OS to
boot on the micro-processor.
This is ensured by controlling
the critical reset signal on the
microprocessor. This is the
“gate” from the building analogy.
 Other gates can be added.

ACCESS
DEVICE

34

A DAFCA-Enabled System

PAM

Micro –
Processor

SRAM DRAM
Bridge

Flash
Bridge

Peripheral
Bridge

Ethernet

DRAM FLASH

UART Timer SPI

Reset and
Clock System

OS

PAM

PAM

PAM

PAM

DAFCA
Control

Secure
ROM

Loader

Thus, The DAFCA sub-
system is ALWAYS
watching!

Base security policy

ACCESS
DEVICE

35

The Software API: Function Libraries

• On-the-fly modification of DAFCA
functionality is done with opaque library
objects
– Encrypted sets of DAFCA commands that

are created at a secure facility
– Tightly bound to the hardware, thus VERY

hard to spoof, even if the encryption is
compromised
– Functions can be stored inside of DAFCA for

added security

36

The Software API: Function Libraries

• Using the session-based API to load a
precompiled security function
(pseudocode):

int value = 0;

handle = open(“/dev/secure”, “r+w”);

write(handle, “load f45792”)

The invoked functionality is concealed. This function could be
specified by a local file, or it could be inside of DAFCA (loaded

along with the base security policy).

37

The Software API: Library Example

• Using the API and Libraries, one could set a
Resource Trap on an address range:
(0x80:0x880):
– Count accesses to the specified address range

– Notify (interrupt) on access to the specified address
range (this works if the DAFCA system can drive an
irq)

– Hash address and data values from accesses to the
specified range to verify consistent configuration

38

The Software API: Providing Code

• DAFCA can also supply code to the running system

• Using memory shadowing technology, any region of
code in the system can be temporarily or permanently
“overlaid” with code or data specified in the base
security policy set

• This is useful for :
– On-the-fly modification of authentication code

– Storage of the DAFCA module code

– Secure software update

39

DAFCA: Value

• DAFCA is a distributed hardware-based monitoring and
control fabric that is “baked into” your system and is
optionally accessible to software via a kernel-level
software module

• DAFCA can monitor access patterns and take
numerous real-time actions such as blocking access to
critical/protected system resources or wiping sensitive
data

• DAFCA is flexible and its functionality can be securely
modified via software at run-time, making DAFCA-
enabled systems resilient to emerging threats

40January 2010

Everything Old is New Again

END

Accessing Sawblade
DAFCA

from Software

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

