## Complete Conics:

Notes, Examples, and Graphs

**Includes 4 Practice Tests (\& Solutions)

## Table of Contents

## I. Circles

Definition, center, radius, general form, standard form
Examples, graphing, completing the square, tangent line
Practice Quiz (\& Solutions)

## II. Ellipses

Definition, center, foci, vertices, standard form, general form
Examples, eccentricity, systems
Practice Quiz (\& Solutions)

## III. Hyperbolas

Definition, illustration, foci, vertices
Examples, asymptotes, the "box", vertical/horizontal
Practice Quiz (\& Solutions)
IV. Parabolas

Definition, focus, directrix, completing the square
Examples, vertical/horizontal, sketching
Practice Quiz (\& Solutions)

## PREVIEW

Thanks for checking out this math packet. Inside are conics notes, formulas, graphs, and more. The examples and practice tests are designed to help you learn/review this important Algebra II topic.

If you have any feedback, questions, or suggestions, let us know! Lance...


## Circle

What is it? A set of (coplaner) points equidistant from a given point (the center).

$\mathrm{r}=$ radius
d $=$ diameter
$\mathrm{d}=2 \mathrm{r}$
Area $=\pi r^{2}$
Circumference $=2 \pi \mathrm{r}$ or $\pi \mathrm{d}$

General Form: $\quad A x^{2}+B x y+C y^{2}+D x+E y+F=0$
where $\mathrm{A}=\mathrm{C}$
Standard Form: $(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}$

## where $(\mathrm{h}, \mathrm{k})$ r is the center

Example 1: $x^{2}+y^{2}=49$

$$
(\mathrm{h}, \mathrm{k})=(0,0)
$$

The center is the origin!
$\mathrm{r}^{2}=49$
The radius is 7

Comments:
Standard form: $\quad x^{2}+y^{2}-49=0$


The coefficients of $\mathrm{x}^{2}$ and $\mathrm{y}^{2}$ are equal (both are 1)
Any point on the circle will satisfy the equation. $\quad(0)^{2}+(7)^{2}=49 \quad(-7)^{2}+(0)^{2}=49$
The distance from any point to the center $=7$

Example 2:

$$
\begin{aligned}
& (\mathrm{x}+2)^{2}+(\mathrm{y}-3)^{2}=25 \\
& \mathrm{~h}=-2 \\
& \mathrm{k}=3
\end{aligned}
$$

The center is $(-2,3)$
The radius is 5

## Comments:

Because the standard form is $(x-h)^{2}+(y-k)^{2}=r^{2}$

the center is $(-2,3)$, NOT $(2,-3)$
Since the center is $(-2,3)$ and the radius is 5 , we know the following points are on the circle:
$(-7,3) \quad 5$ units left
$(3,3) \quad 5$ units right
$(-2,8) 5$ units up
$(-2,-2) 5$ units down
To check the graph, plug a few points into the equation:

$$
\begin{aligned}
(3,3) \quad((3)+2)^{2}+((3)-3)^{2} & =25 \\
5^{2}+0^{2} & =25 \\
(-2,8) \quad((-2)+2)^{2}+((8)-3)^{2} & =25 \\
0^{2}+5^{2} & =25
\end{aligned}
$$

## Circles, Completing the Square \& Inequalities

Example 3: $x^{2}+y^{2}-4 x=21$
The coefficients of $x^{2}$ and $y^{2}$ are the same (1), so we know it's a circle.

To find the center, we complete the square. Then, express the equation in standard form.

$$
\begin{aligned}
x^{2}+y^{2}-4 x & =21 \\
x^{2}-4 x+y^{2} & =21 \\
x^{2}-4 x+4+y^{2} & =21+4 \\
(x-2)(x-2)+y^{2} & =25 \\
(x-2)^{2}+(y-0)^{2} & =25
\end{aligned}
$$

$$
\mathrm{h}=2
$$

$$
\mathrm{k}=0
$$

The center is $(2,0)$
The radius is 5


To check your solutions, plug points into original equation:

$$
\begin{gathered}
(2,5):(2)^{2}+(5)^{2}-4(2)=21 \\
4+25-8=21 \\
(-3,0):(-3)^{2}+(0)^{2}-4(-3)=21 \\
9+0+12=21
\end{gathered}
$$

Example 4: $x^{2}+y^{2}+6 x-16 y+48 \leq 0$

At first, we'll ignore the $<$ sign and rewrite the equation in standard form.

Step 2: Graph and verify circle

$$
x^{2}+y^{2}+6 x-16 y+48=0
$$

$(2,8):(2)^{2}+(8)^{2}+6(2)-16(8)+48=0$

$$
4+64+12-128+48=0
$$

محـما 0=0
$(-3,13):(-3)^{2}+(13)^{2}+6(-3)-16(13)+48=0$
$9+169-18-208+48=0$ $0=0$ /

Step 1: Complete the square:

$$
\begin{gathered}
x^{2}+6 x+y^{2}-16 y=-48 \\
x^{2}+6 x+9+y^{2}-16 y+64=-48+9+64 \\
(x+3)(x+3)+(y-8)(y-8)=25 \\
(x+3)^{2}+(y-8)^{2}=25
\end{gathered}
$$ and radius 5



Step 3: Test points in original equation to determine the shaded area.

$x^{2}+y^{2}+6 x-16 y+48 \leq 0$
$(0,0)$ is outside the circle
$(-3,8)$ is inside the circle
Test $(0,0):(0)^{2}+(0)^{2}+6(0)-16(0)+48 \leq 0$

$$
0+0+0-0+48 \leq 0 \mathrm{NO}
$$

Test $(-3,8):(-3)^{2}+(8)^{2}+6(-3)-16(8)+48 \leq 0$

$$
9+64-18-128+48 \leq 0 \quad \text { YES! }
$$

Find the equation of a line tangent to $x^{2}+y^{2}-10 x-8 y=-16$ at the point $(2,8)$

Step 1: Identify the Conic
Complete the square to put into Standard Form.

$$
\begin{gathered}
x^{2}+y^{2}-10 x-8 y=-16 \\
x^{2}-10 x+25+y^{2}-8 y+16=-16+25+16 \\
(x-5)^{2}+(y-4)^{2}=25 \\
(x-5)^{2}+(y-4)^{2}=25 \\
\text { Circle with center }(5,4) \text { and radius } 5
\end{gathered}
$$

Step 2: Sketch a graph and verify.
The center is $(5,4) \ldots$ And, the radius is $5 .$.
So, $(5,9)$ up
$(10,4)$ right
$(5,-1)$ down
$(0,4)$ left are all 5 units from the center
and, using the distance formula:

$$
\sqrt{(5-2)^{2}+(4-8)^{2}}=5
$$

we can verify that $(2,8)$ is 5 units from the center.

Step 3: Identify the tangent line
To find the equation of a line, you need a point and the slope.

Point: $(2,8)$
What is the slope? Since a line tangent to a circle is perpendicular to the adjoining radius, we need to find the slope of that radius!
slope of segment connecting $(2,8)$ and $(5,4)$
$m=\frac{8-4}{2-5}=-\frac{4}{3}$
Therefore, the slope of a perpendicular line is $\frac{3}{4}$
So, the equation of a line tangent to the circle at $(2,8)$ is

$$
(y-8)=\frac{3}{4}(x-2)
$$

Note: To check your work, substitute a few points into the equation.

$$
\begin{aligned}
& (0,4): \quad(0)^{2}+(4)^{2}-10(0)-8(4)=-16 \\
& 0+16-0-32=-16 \\
& (10,4):(10)^{2}+(4)^{2}-10(10)-8(4)=-16 \\
& 100+16-100-32=-16 \\
& (2,8):(2)^{2}+(8)^{2}-10(2)-8(8)=-16 \\
& 4+64-20-64=-16
\end{aligned}
$$

All these points fit into the original equation; Therefore, they are all points on the circle!


## Circles Practice Quiz

## I. Parts of a circle

Identify the radius, center, and 3 points on each circle:
A) $x^{2}+y^{2}=9$
B) $x^{2}+(y-3)^{2}=4$
C) $(x-2)^{2}+(y+1)^{2}=3$
center: $\qquad$ center: $\qquad$
radius: $\qquad$
radius: $\qquad$
$\qquad$
radius: $\qquad$
3 points: $\qquad$ 3 points: $\qquad$
center:

3 points: $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
D) $x^{2}+10 x+y^{2}=-24$
center: $\qquad$
radius: $\qquad$

3 points: $\qquad$
$\qquad$
$\qquad$
E) $3 x^{2}+3 y^{2}+6 x+12 y+9=0$
center: $\qquad$
radius: $\qquad$
3 points: $\qquad$
$\qquad$
$\qquad$

## II. Equation of a Circle

Determine the equation of each circle from the given information. (Express your answer in both standard form and general form)
A) radius: 4 center: origin
B) radius: 5 center: $(2,4)$
C) radius: 7 center: $(-4,0)$
D)

E)


Circles Practice Quiz

## III. Graphing circles

Graph the following circles; label the center, radius, and 2 points
A) $x^{2}+(y-4)^{2}=16$


## IV. Applications

A) The diameter of a circle has endpoints $(2,4)$ and $(8,4)$. What is the equation of the circle?
B) Given: circle $x^{2}+y^{2}=25$
line $\quad x+y=3$
What are the points of intersection? Solve algebraically and verify graphically.
C) What is the equation of the line tangent to the circle $(x-3)^{2}+(y-4)^{2}=10$
through the point $(4,1)$ ?
What is the equation of the normal through $(4,1)$ ?
B) $x^{2}+6 x+y^{2}+2 y-15=0$


## I. Parts of a circle

Identify the radius, center, and 3 points on each circle:
A) $x^{2}+y^{2}=9$
B) $x^{2}+(y-3)^{2}=4$

$$
\begin{aligned}
& \text { center: } \frac{(0,0)}{} \\
& \text { radius: } 3 \\
& \hline
\end{aligned}
$$

center: $\quad(0,3)$
radius: 2 $\qquad$

Standard form of circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$ where $(\mathrm{h}, \mathrm{k})$ is the vertex $r$ is the radius
C) $(x-2)^{2}+(y+1)^{2}=3$
center: $\quad(2,-1)$
radius: $\sqrt{3}$

$$
3 \text { points: } \frac{(\sqrt{3}+2,-1)}{\frac{(-\sqrt{3}+2,-1)}{(2, \sqrt{3}-1)}}
$$

D)
$x^{2}+10 x+y^{2}=-24$
complete the square to put into standard form:

$$
\begin{array}{ll}
\text { center: } \begin{array}{ll}
\frac{(-5,0)}{} & x^{2}+10 x+ \\
\text { radius: } & \frac{1}{2}=-24 \\
3 \text { points: } & x^{2}+10 x+25+y^{2}=-24+25 \\
\frac{(-5,1)}{\frac{(-5,-1)}{(-4,0)}} & (x+5)(x+5)+y^{2}=1 \\
& (x+5)^{2}+y^{2}=1
\end{array} \\
\hline
\end{array}
$$

E) $3 x^{2}+3 y^{2}+6 x+12 y+9=0$

$$
\begin{array}{ll}
\text { center: } & \frac{(-1,-2)}{\sqrt{2}} \\
\text { radius: } & \frac{(0,-1)}{\frac{(-2,-1)}{(0,-3)}} \\
3 \text { points: }
\end{array}
$$

## II. Equation of a Circle

Determine the equation of each circle from the given information. (Express your answer in both standard form and general form)
A) radius: 4 center: origin
Standard Form: $\quad(x-0)^{2}+(y-0)^{2}=16$

B) radius: 5
center: $(2,4)$
Standard Form: $(x-2)^{2}+(y-4)^{2}=25$
(expand terms and simplify)
General Form: $x^{2}-4 x+4+y^{2}-8 y+16=25$

$$
x^{2}+y^{2}-4 x-8 y-5=0
$$

C) radius: 7
center: $(-4,0)$
Standard Form: $(x+4)^{2}+y^{2}=49$

General Form: $x^{2}+8 x+16+y^{2}-49=0$

$$
\begin{array}{r}
x^{2}+8 x+y^{2}-33=0 \\
x^{2}+y^{2}+8 x-33=0
\end{array}
$$

D)

E)

III. Graphing circles

Graph the following circles; label the center, radius, and 2 points
A) $x^{2}+(y-4)^{2}=16$

B) $x^{2}+6 x+y^{2}+2 y-15=0$


Change to Standard form (to show center and radius):

$$
x^{2}+6 x+y^{2}+2 y-15=0
$$

$$
x^{2}+6 x+9+y^{2}+2 y+1=15+9+1
$$

$$
(x+3)^{2}+(y+1)^{2}=25
$$

Center: $(-3,-1)$
Radius: 5

## IV. Applications

A) The diameter of a circle has endpoints $(2,4)$ and $(8,4)$. What is the equation of the circle?

Since the endpoints of the diameter are given, we

$$
(x-5)^{2}+(y-4)^{2}=9
$$

can use the midpoint to find the center of the circle:
center: $(5,4)$
Since the distance between endpoints is 6 , the radius is 3
B) Given: circle $x^{2}+y^{2}=25$

$$
\text { line } \quad x+y=3
$$

What are the points of intersection? Solve algebraically and verify graphically.
Algebraically, we'll use substitution: $\quad x=3-y$

$$
\begin{array}{cc}
\begin{array}{c}
(3-y)^{2}+y^{2}=25 \\
9-6 y+y^{2}+y^{2}=25 \\
2 y^{2}-6 y-16
\end{array} \\
\begin{array}{cc}
y^{2}-3 y-8=0
\end{array} & \begin{array}{lc}
(-1.7,4.7) & (4.7,-1.7) \\
\text { approximate pts. of intersection }
\end{array} \\
y=\frac{3^{ \pm} \sqrt{9-4(1)(-8)}}{2(1)}=\frac{3+1 / 4}{2} \text { and } \frac{3-1 / 41}{2}
\end{array}
$$

(substitute each y

C) What is the equation of the line tangent to the circle $(x-3)^{2}+(y-4)^{2}=10$
through the point $(4,1)$ ?
What is the equation of the normal through $(4,1)$ ?
(To find the equation of a line, we need a point and slope)
Point: $(4,1)$
Slope? $\left({ }^{* *}\right.$ A tangent line is perpendicular to the normal; and, the normal goes through the center!)
slope of line through $(3,4)$ and $(4,1)$ is -3

| Equation of normal: | $(y-1)=-3(x-4)$ |
| :--- | :--- |
| Equation of tangent: | $(y-1)=\frac{1}{3}(x-4)$ |

(slope of perpendicular line: opposite reciprocal -- $1 / 3$ )


## (THIS IS A PREVIEW)

To review ellipses, hyperbolas, and parabolas, purchase the complete conics notes, examples and graphs... (Available from the Mathplane Stores at TES.com and TeachersPayTeachers.com)

Or, visit mathplane.com

Thanks for your support!



