Factoring Quadratics

Introduction with notes, examples, and practice tests

 (with solutions)

Topics include linear binomials, greatest common factor (GCF), "when lead coefficient is > 1", quadratic formula and more.

Factoring Quadratics
Definitions:
Quadratic: A polynomial of degree 2

$$
\mathrm{AX}^{2}+\mathrm{BX}+\mathrm{C}
$$

Steps:

1) Find Greatest Common Factor
2) If Binomial, consider Difference of Squares
3) Search for 2 Linear Binomials

EX: $(X+3)(X-5)$
4) Use Quadratric Formula
5) Check your Results!

Binomial: A polynomial with 2 terms
(that are not 'like terms')

$$
\mathrm{X}+4 \quad-4 \mathrm{X}+3 \mathrm{Y}^{3} \quad 3 \mathrm{X}-(-5 \mathrm{X}) \quad \mathrm{X}^{2}-3 \mathrm{X}
$$

Linear Binomial: A binomial of degree 1

$$
(X-6) \quad(-Y+7) \quad\left(X^{2}<2\right)
$$

Examples:
Greatest Common Factor

$$
5 \mathrm{X}^{2}+20 \mathrm{X} \longrightarrow \mathrm{GCF} \text { is } 5 \mathrm{X} \longrightarrow 5 \mathrm{X}(\mathrm{X}+4)
$$

Difference of Squares

$$
\begin{array}{lll}
\mathrm{X}^{2}-16 & \begin{array}{l}
\mathrm{X}^{2} \text { and } 16 \text { are } \\
\text { perfect squares }
\end{array} & \sqrt{\mathrm{X}^{2}}=\mathrm{X} \\
& \sqrt{16}=4
\end{array}
$$

$$
(X+4)(X-4)
$$

(Square root of first term PLUS square root of second term) x (Square root of first term MINUS square root of second term)

2 Linear Binomials

$$
\begin{array}{lll}
\mathrm{X}^{2}+10 \mathrm{X}+21 & \mathrm{~A}=1 & \\
& \mathrm{~B}=10 & 3 \times 7=21 \\
& \mathrm{C}=21 & 3+7=10
\end{array}
$$

Quadratic Formula

$$
\begin{array}{llc}
\mathrm{X}^{2}+6 \mathrm{X}-10 & \begin{array}{ll}
\mathrm{A}=1 \\
\mathrm{~B}=6 \\
\mathrm{C}=-10
\end{array} & \frac{-6 \pm \sqrt{36-(-40)}}{2} \\
& & -3+\sqrt{19},-3-\sqrt{19} \\
& & (\mathrm{X}+3-\sqrt{19})(\mathrm{X}+3+\sqrt{19}) \quad
\end{array} \quad \mathrm{X}=\frac{-\mathrm{B} \pm \sqrt{\mathrm{B}^{2}-4 \mathrm{AC}}}{2 \mathrm{~A}}
$$

$$
(\mathrm{X}+3)(\mathrm{X}+7)
$$

(If coefficient of first term is 1 ,) find 2 numbers whose product is the constant and whose sum is the coefficient of the middle term

Methods of factoring quadratics: Examples

1)

$$
\begin{aligned}
& x^{2}+7 X-60 \\
& (X-5)(X+12)
\end{aligned}
$$

$$
\text { Find } 2 \text { numbers whose SUM is } 7
$$

$$
12 \text { and }-5
$$

2)

$6 \mathrm{X}^{2}+13 \mathrm{X}+5$	Since the polynomial is ++ , the terms will be ++ And, since the constant is 5 , we hope the terms will be 1 and 5
$(?+1)(?+5)$	Then, trial and error, we insert numbers whose product is $6 \ldots$

3) $3 \mathrm{X}^{2}+12 \mathrm{X}-15 \quad$ Greatest common factor is 3 .. this will simplify the
$3\left(X^{2}+4 X-5\right) \quad$ Now, find 2 numbers whose product is -5 and whose sum is 4

$$
3(X+5)(X-1) \quad \text { We get } 5 \text { and }-1
$$

4) $x^{2}+7 x=0$
Greatest Common Factor -- X

$$
\mathrm{X}(\mathrm{X}+7)=0
$$

$$
\mathrm{X}=0
$$

$$
X=-7
$$

5) $2 \mathrm{X}^{2}+13 \mathrm{X}+15=0$

$$
\begin{aligned}
& \text { Again, the polynomial is }++ \\
& \text { So, the terms should be }++ \\
& \text { Since the coefficient of the first term is } \\
& 2 \text {, we hope the factors will be } 1 \mathrm{X} \text { and } \\
& 2 \mathrm{X} \text {... } \\
& \text { then, we try numbers whose product is } \\
& 15 \ldots \\
& \text { Once we get the factors, we set each = } \\
& \text { to } 0 . . \text { Solve... } \\
& \text { Finally, check your answers... }
\end{aligned}
$$

$$
\begin{gathered}
2(25)+13(-5)+15=0 \\
2(9 / 4)+13(-3 / 2)+15= \\
18 / 4-39 / 2+15=0
\end{gathered}
$$

To earn a little extra coin, Bill Shakespeare works as a substitute math teacher.

Factoring Quadratics Practice Quiz 1

(w/ solutions)

Factoring Quadratics Quiz

Part I: Greatest Common Factor
Factor:

1) $x^{2}+3 x$
2) $12 X^{2}-6 X Y$
3) $14-7 Z^{3}$

Solve:
4) $2 \mathrm{Y}^{2}-6 \mathrm{Y}=0$
5) $\mathrm{X}^{2}+5 \mathrm{X}=0$
6) $4 x^{3}=8 x$

Part II: "Two Linear Binomials"
Factor: 1) $\mathrm{X}^{2}+3 \mathrm{X}+2$
2) $x^{2}-7 x+6$
3) $\mathrm{Y}^{2}+5 \mathrm{Y}-36$

Solve: 4) $x^{2}+11 x-26=0$
5) $\mathrm{Y}^{2}-5 \mathrm{Y}-14=0$
6) $Z^{2}+4 Z=5$

Factoring Quadratics Quiz (Continued)

Part III: Difference of Squares
Factor: 1) $\mathrm{X}^{2}-36$
2) $4 Y^{2}-9 Z^{2}$
3) $x^{2}+4$

Solve: 4) $\mathrm{X}^{2}-25=0$
5) $4 Z^{2}-25=0$
6) $3 \mathrm{x}^{2}+2=11-\mathrm{x}^{2}$

Part IV: Quadratic Formula
Factor (using the quadratic formula)

1) $x^{2}-13 x-30$
2) $4 \mathrm{Y}^{2}+17 \mathrm{Y}-15$
3) $3 Z^{2}-13$

Solve (using the quadratic formula)
4) $x^{2}+7 x-60=0$
5) $\mathrm{X}^{2}-4 \mathrm{X}-18=0$
6) $5 Z^{2}+6 Z=11$

Factoring Quadratics Quiz

Part I: Greatest Common Factor
Factor:

1) $x^{2}+3 x$
$\mathrm{X}(\mathrm{X}+3)$

Solve:

$$
\text { 4) } \begin{gathered}
2 \mathrm{Y}^{2}-6 \mathrm{Y}=0 \\
2 \mathrm{Y}(\mathrm{Y}-3)=0 \\
\mathrm{Y}=0,3
\end{gathered}
$$

Quick check: plug solutions into original equation!

$$
\begin{array}{r}
2(0)^{2}-6(0)=0 \quad 2(3)^{2}-6(3)=0 \\
18-18=0
\end{array}
$$

Part II: "Two Linear Binomials"
Factor: 1) $\mathrm{X}^{2}+3 \mathrm{X}+2$
Note the signs: $+\quad+$

$$
(\mathrm{X}+2)(\mathrm{X}+1)
$$

3) $14-7 Z^{3}$
$7\left(2-Z^{3}\right)$
4)

 must be - -

$$
(X-6)(X-1)
$$

3)

5) $X^{2}+5 X=0$
$X(X+5)=0$
$X=0,-5$

$$
\begin{aligned}
& 4 \mathrm{X}^{3}=8 \mathrm{X} \\
& 4 \mathrm{X}^{3}-8 \mathrm{X}=0 \\
& 4 \mathrm{X}\left(\mathrm{X}^{2}-2\right)=0 \\
& 4 \mathrm{X}=0 \quad \mathrm{X}=0 \\
& \mathrm{X}^{2}-2=0 \\
& \mathrm{X}=\sqrt{2} \\
& \hline
\end{aligned}
$$ and, the larger number is + $(Y+9)(Y-4)$

5) $\mathrm{Y}^{2} \square 5 \mathrm{Y}-14=0$ and, the larger number is -

$$
(Y-7)(Y+2)=0
$$

$$
\mathrm{Y}=7,-2
$$

$$
\text { 6) } \begin{aligned}
& Z^{2}+4 Z=5 \\
& Z^{2}+4 Z-5=0 \\
& (Z+5)(Z-1)=0 \\
& Z=-5,1
\end{aligned}
$$

Quick check: $(1)^{2}+4(1)=5$

$$
\begin{gathered}
1+4=5 \\
(-5)^{2}+4(-5)=5 \\
25-20=5
\end{gathered}
$$

Part III: Difference of Squares

Quadratic Formula: If $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$

$$
x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
$$

3) $x^{2}+4$

PRIME
Cannot be factored..
(Note: It is NOT a difference of squares)
6) $3 x^{2}+2=11-x^{2}$ (move terms to left side) $\quad 4 \mathrm{X}^{2}-9=0$ (factor) (solve) $(2 \mathrm{X}+3)(2 \mathrm{X}-3)=0$
$\mathrm{X}=-3 / 2 \quad \mathrm{X}=3 / 2$
(check solutions)

$$
\begin{aligned}
3(-3 / 2)^{2}+2 & =11-(-3 / 2)^{2} \\
3(9 / 4)+2 & =11-(9 / 4)
\end{aligned}
$$

$$
35 / 4=35 / 4
$$

$$
3(3 / 2)^{2}+2=11-(3 / 2)^{2}
$$

$$
35 / 4=35 / 4
$$

Factor (using the quadratic formula)

$$
\begin{aligned}
& \text { 4) } \mathrm{X}^{2}+7 \mathrm{X}-60=0 \\
& \mathrm{X}=\frac{-7 \pm \sqrt{(7)^{2}-4(1)(-60)}}{2(1)} \\
& =\frac{-7+17}{2} \quad \frac{-7-17}{2} \\
& \mathrm{X}=5,-12
\end{aligned}
$$

$$
\text { 5) } x^{2}-4 x-18=0
$$

6) $5 Z^{2}+6 Z=11$

$$
\mathrm{X}=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(-18)}}{2(1)}
$$

$$
5 Z^{2}+6 Z-11=0
$$

$$
=\frac{4 \pm \sqrt{88}}{2}=\frac{4 \pm 2 \sqrt{22}}{2}
$$

$$
\begin{aligned}
& a=5 \\
& b=6 \\
& c=-11
\end{aligned} \quad Z=\quad \frac{-6 \pm \sqrt{(6)^{2}-4(5)(-11)}}{2(5)}
$$

$$
=2+\sqrt{22}, 2-\sqrt{22}
$$

$$
=\frac{-6+16}{10} \quad \frac{-6-16}{10}
$$

$$
Z=1, \frac{-11}{5}
$$

$(5)^{2}+7(5)-60=$
$25+35-60=$
$(-12)^{2}+7(-12)-60=$ $144-84-60=0$

Factoring Quadratic Trinomials when $\mathrm{A} \neq 1$
General Form of Quadratic: $\quad \mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}$
Example 1: $\quad 2 x^{2}+11 x+5$
Method 1:

$$
\left(2 x^{2}+\right)+(+5)
$$

Factor pairs of AC $(2 \times 5=10)$

$$
\begin{array}{|ccc|}
\hline 1 & 10 & 11 \\
\hline-1 & -10 & -11 \\
2 & 5 & 7 \\
-2 & -5 & -7 \\
\left(2 x^{2}+1 x\right)+(10 x+5) \\
x(2 x+1)+5(2 x+1) \\
(2 x+1)(x+5) \\
\hline
\end{array}
$$

Method 2: Since A is 2 , its only factors are 1 and 2.

$$
(2 \mathrm{x} \quad)(1 \mathrm{x} \quad)
$$

The signs are $++\quad 2 x^{2}+11 \mathrm{x}+5$
$(2 \mathrm{x}+\quad)(\mathrm{x}+\quad)$
Since C is 5 , its only factors are 1 and 5 .

$$
\begin{aligned}
& (2 x+5)(x+1)=2 x^{2}+5 x \pm 2 x+5 \\
& (2 x+1)(x+5)=2 x^{2}+x+10 x+5
\end{aligned}
$$

Distribute and grouping method Steps:

1) Write $A x^{2}$ in first binomial

Write C in second binomial
2) List factor pairs of AC
3) Choose pair that adds up to B
4) Distribute the Bx term to the binomials
5) Factor and regroup

```
Logic method
Steps:
1) Consider the possible factors of A and C
2) Recognize the signs
3) Select values that add up to middle term
```

Example 2: $2 \mathrm{x}^{2}-11 \mathrm{x}+12$

Method 1: Distribute and regroup

$$
\left(2 x^{2}\right)+(\quad+12)
$$

Factor pairs of AC (24)

1	24	
-1	-24	
2	12	multiplies to 24
-2	-12	and adds
3	8	to -11
-3 -8 4 6 -4 -6		

$$
\begin{aligned}
& \left(2 x^{2}+(-8) x\right)+((-3 x)+12) \\
& 2 x(x-4)+(-3)(x-4) \\
& (2 x-3)(x-4)
\end{aligned}
$$

FOIL to check:

$$
\begin{array}{cccc}
\text { First } & \text { Outer } & \text { Inner } & \text { Last } \\
2 x^{2} & -8 x & -3 x & 12 \\
2 x^{2}-11 x &
\end{array}
$$

Method 2: Logic
Since $\mathrm{A}=2$ (a prime number), there are only 2 factors

```
    \((2 \mathrm{x} \quad)(\mathrm{x} \quad)\)
```

The signs are - + $2 x^{2}-11 x+12$
therefore, the factors will be negative!

$$
(2 x-\quad)(x-\quad)
$$

Finally, we consider factors of 12 that'll fit..

$$
(2 x-4)(x-3) \equiv 2 x^{2}-3 x-4 x+12 \text { close, but not correct... }
$$

$$
(2 x-3)(x-4)=2 x^{2}-3 x-8 x+12
$$

Factoring Quadratic Trinomials when $\mathrm{A} \neq 1$

Solve the following:

$$
21 x^{2}-20 x-9=0
$$

$$
20 x^{2}-19 x+3=0
$$

$$
6 x^{2}+11 x=10
$$

$21 \mathrm{x}^{2}-20 \mathrm{x}-9=0$
Distribute and regroup:
$\left(21 x^{2}+\quad\right)+(\quad-9)=0$
Factor pairs of -189 (21 x-9)

1 -189 -1 189 3 -63 -3 63		
7	-27	
multiply to -189 -7 27 9 -21 -9 21	-20	

$$
\left(21 x^{2}+7 x\right)+(-27 x-9)=0
$$

$$
\begin{aligned}
& 7 x(3 x+1)+(-9)(3 x+1)=0 \\
& (7 x-9)(3 x+1)=0 \\
& x=\frac{9}{7} \text { or } \frac{-1}{3}
\end{aligned}
$$

Check: (plug into original equation)

$$
\begin{array}{ll}
21\left(\frac{9}{7}\right)^{2}-20\left(\frac{9}{7}\right\}-9=0 & 2\left(\left\{\frac{-1 \mid, 2}{3}\right)-20\left(\frac{-1}{3}\right\}-9=0\right. \\
\frac{21(81)}{49}-\frac{180}{7}-9=0 & \frac{21}{9}+\frac{60}{9}-\frac{81}{9}=0 \\
\frac{243}{7}-\frac{180}{7}-\frac{63}{7}=0 &
\end{array}
$$

$20 x^{2}-19 x+3=0$

Logic Method: Since $\mathrm{C}=3$, a prime number, there are only 2 factors, 1 and 3..
$\left(\begin{array}{ll}1\end{array}\right)(3)$
The signs are $-+20 x^{2}-19 x+3$
Therefore, the factor signs will be - -

$$
\begin{aligned}
& \qquad\left(\begin{array}{cc}
(1)(& -3
\end{array}\right) \\
& \text { Considering factors } 1 / 20 \quad 2 / 10 \quad 4 / 5 \\
& \text { I'll try } 4 \text { and } 5 \ldots \\
& (4 x-1)(5 x-3)=20 x^{2}-12 x+3 \\
& (5 x-1)(4 x-3)=20 x^{2}-19 x+3
\end{aligned}
$$

$6 x^{2}+11 x=10$
(Put equation into general form)

$$
\begin{aligned}
& 6 x^{2}+11 x-10=0 \\
& \left(6 x^{2}\right)+(\quad-10)
\end{aligned}
$$

Factors of -60
$\begin{array}{ll}1 & -60\end{array}$
-1 60
$2 \quad-30$
-2 30
3 -20
-3 20

4	-15
-4	15

Finally, solve:

$$
\begin{aligned}
& (5 x-1)(4 x-3)=0 \\
& 5 x-1=0 \\
& 4 x-3=0
\end{aligned} \begin{aligned}
& x=1 / 5 \\
& x=3 / 4 \\
& \cline { 2 - 3 }
\end{aligned}
$$

Check: (Plug into original equation)

$$
\begin{aligned}
& 20(1 / 5)^{2}-19(1 / 5)+3= \\
& \frac{4}{5}-\frac{19}{5}+\frac{15}{5}=0 \\
& 20(3 / 4)^{2}-19(3 / 4)+3= \\
& \frac{45}{4}-\frac{57}{4}+\frac{12}{4}=0
\end{aligned}
$$

Quick check:

$$
\begin{gathered}
6(-5 / 2)^{2}+11(-5 / 2)=10 \\
6(25 / 4)-55 / 2=10 \\
20 / 2=10 \\
6(2 / 3)+11(2 / 3)=10 \\
6(4 / 9)+22 / 3=10 \\
24 / 9+66 / 9=10
\end{gathered}
$$

Another method of factoring: "Slide and Divide"
Example: Factor $10 \mathrm{x}^{2}-7 \mathrm{x}-120$
"Slide"

10

$$
x^{2}-7 x-120 \quad \text { Factor the quadratic... }
$$

Example: $5 \mathrm{x}^{2}+37 \mathrm{x}-72$

$$
5 \times-72=-360
$$

What multiplies to -360 and adds to 37

$$
\begin{array}{cc}
5 \mathrm{x}^{2}+37 \mathrm{x}-72 & +45 \text { and }-8 \\
\text { slide }
\end{array} \quad \begin{aligned}
& (\mathrm{x}+45)(\mathrm{x}-8)
\end{aligned}
$$

and
divide by 5

$$
\left(x+\frac{45}{5}\right)\left(x-\frac{8}{5}\right) \rightarrow(x+9)(5 x-8)
$$

Example: $7 \mathrm{x}^{2}+38 \mathrm{x}+40$

Multiply the A and C values (i.e. the lead coefficient and the constant)

$$
7 \times 40=280
$$

Find the factors (i.e. numbers that multiply to 280 and add to 38)

$$
28 \text { and } 10
$$

$$
(x+10)(x+28)
$$

Divide by the lead coefficient \qquad Simplify and rearrange...

$$
\left(x+\frac{10}{7}\right)\left(x+\frac{28}{7}\right.
$$

$$
=(x+10 / 7)(x+4)
$$

Factoring quadratics: 4 methods

Example: $3 \mathrm{x}^{2}-14 \mathrm{x}-5=0$

"Slide and Divide"

$$
\text { slide: } \underbrace{3 x^{2}-14 x-5}=0
$$

factor: $\quad(x-15)(x+1)=0$
divide:

$$
\left(x-\frac{15}{3}\right)\left(x+\frac{1}{3}\right)=0
$$

simplify/

$$
(x-5)(3 x+1)=0
$$

$$
x=5, \frac{-1}{3}
$$

"Split and Regroup"

Split: What multipies to -15 and adds to -14 ?

$$
\begin{gathered}
3 x^{2}-14 x-5=0 \\
3 x^{2}-15 x+1 x-5=0 \\
3 x(x-5)+1(x-5)=0
\end{gathered}
$$

Regroup: $\quad(3 x+1)(x-5)=0$

$$
x=5, \frac{-1}{3}
$$

"Quadratic Formula"

$$
\frac{-\mathrm{b}+\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \quad \begin{aligned}
& \mathrm{a}=3 \\
& \mathrm{~b}=-14 \\
& \mathrm{c}=-5
\end{aligned}
$$

$$
\begin{aligned}
& \frac{14 \pm \sqrt{196-(-60)}}{6} \\
& \frac{14 \pm 16}{6}=5 \text { or }-1 / 3
\end{aligned}
$$

"Logic Method"

$$
3 x^{2}-14 x-5=0
$$

Since the lead coefficient is 3 , the factors may be 1 and 3
$(\mathrm{x} \quad)(3 \mathrm{x} \quad)$
Since the constant is negative 5 , the sign will be different and the terms will be 1 and $5 \ldots$.
So, test $1,-5 \quad-5,1 \quad-1,5$ and $5,-1$
$(x-1)(3 x+5)$ the middle term is $2 x \ldots$ try another.
$(x+5)(3 x-1) \quad$ the middle term is $14 x \ldots$ closer..
$(x-5)(3 x+1) \quad$ the middle term is $-14 x$
$(x-5)(3 x+1)=0 \quad x=5, \frac{-1}{3}$

Did you know?
If the discriminant is a perfect square, then you can find 2 linear binomials...
Example: $\mathrm{x}^{2}+9 \mathrm{x}+20$

$$
\begin{gathered}
\mathrm{b}^{2}-4 \mathrm{ac} \quad(9)^{2}-4(1)(20) \\
81-80=1
\end{gathered}
$$

1 is a perfect square...
(both roots are rational) $\quad(x+4)(x+5)$

Example: $\mathrm{x}^{2}+11 \mathrm{x}+21$
$b^{2}-4 a c \quad(11)^{2}-4(1)(21)$

$$
121-84=37
$$

Since 37 is NOT a perfect square, you'll need to complete the square or use the quadratic formula to find factors/roots.

Example: $\quad 12 \mathrm{x}^{2}-7 \mathrm{x}-10$

$$
\begin{aligned}
& b^{2}-4 a c \quad(-7)^{2}-4(12)(-10) \\
& 49-(-480)=529
\end{aligned}
$$

529 is a perfect square.

$$
\sqrt{529}=23 \quad \begin{aligned}
& \text { Therefore, the factors } \\
& \text { are linear binomials. }
\end{aligned} \quad(3 x+2)(4 x-5)
$$

Factoring Quadratics Quiz 2
(w/ solutions)

1) $x^{2}+9 x+8$
2) $x^{2}-7 x+12$
3) $x^{2}+7 x-18$
4) $x^{2}+13 x+30=0$
5) $2 x^{2}-10 x+8=0$
6) $x^{2}+5 x=24$
7) $2 x^{2}+15 x+7$
8) $3 x^{2}-5 x+2$
9) $4 x^{2}+21 x+5$
10) $6 x^{2}+11 x+3=0$
11) $3 x^{2}+13 x-10=0$
12) $8 x^{2}+21 x=9$

Factor the following polynomials:

1) $2 x^{2}+11 x+5$
2) $x^{2}-25$
3) $x^{2}+13 x-48$
4) $2 x^{2}-46 x+44$
5) $x^{2}+25$
6) $6 x^{2}+23 x+20$
7) $x^{2}-22 x-75$
8) $3(x+1)^{2}+5(x+1)+2$
9) $x^{4}+4 x^{2}-5$
10) $49 x^{2}+14 x+1$
11) $x^{2}+4 x y+3 y^{2}$
12) $x^{2}+3 x-7$
13) For what values of b is $x^{2}+b x+10$ factorable?
14) For what values of c is $x^{2}-5 x+c$ factorable?
15) For these perfect square trinomials, what are the missing terms?
a) $x^{2}+\ldots+64$
b) $x^{2}-12 x+$ \qquad
c) $9 x^{2} \quad+16$
d) $4 x^{2} \quad-9$
16) Find (at least 3) values of c, where $2 x^{2}-5 x+c$ factorable?
17) $x^{2}+9 x+8$
$(\mathrm{x} \quad)(\mathrm{x} \quad)$ First terms must be x
$(\mathrm{x}+\quad)(\mathrm{x}+\quad$) signs are ++
$(x+8)(x+1) \quad$ multiplies to 8
18) $x^{2}-7 x+12$

$$
\begin{array}{lll}
(x &)(x &)
\end{array} \text { First terms are } x ~ 子 ~(x-)(x-\quad) \text { signs are - - }
$$

$$
\begin{array}{ll}
2 x^{2}-10 x+8=0 & \\
2\left(x^{2}-5 x+4\right)=0 & \begin{array}{l}
\text { Greatest Common } \\
\text { Factor is } 2 \ldots
\end{array} \\
2(x-)(x) & \text { Factor the trinomial } \\
2(x-)(x-\quad) & \begin{array}{l}
\text { signs are }++ \\
2(x-1)(x-4)=0
\end{array} \\
\begin{array}{ll}
\text { multiplies to } 4 \\
\text { and adds to } 5
\end{array} \\
x-1=0 & \text { zero product property }
\end{array}
$$

3) $x^{2}+7 x-18$
\($$
\begin{array}{lll}(\mathrm{x} &)(\mathrm{x} &)\end{array}
$$ \begin{aligned} \& First terms are \mathrm{x}

\& (\mathrm{x}+\quad)(\mathrm{x}-\quad)\end{aligned}\)| signs are opposite |
| :--- |
| $(\mathrm{x}+9)(\mathrm{x}-2)$ | \(\begin{aligned} \& multiplies to-18

\& and adds to 7

\& (notice: the B term is+ , so

\& the 9 is positive and 2 is negative)\end{aligned}\)
6) $x^{2}+5 x=24$
$x+5 x-24=0 \quad$ Set up the Quadratic
$(\mathrm{x}+\quad)(\mathrm{x}-\quad)=0 \quad$ signs are opposite What multiplies to -24 and adds to +5 ?

$$
\begin{gathered}
(x+8)(x-3)=0 \\
x=-8,3
\end{gathered}
$$

9) $4 x^{2}+21 x+5$
($\quad 1$)(5) Last terms must be 1 and 5
$(+1)(+5)$ signs must be ++
the first terms are either 2,2 or 4,1 or 1,4 which pair gets the desired result?

10) $8 x^{2}+21 x=9$
$8 x^{2}+21 x-9=0$
factors of A term are $1,2,4,8$
factors of C term are $1,3,9$
what combination will get the desired result?
$(8 x-3)(x+3)=0$

| First: 8x |
| :--- | :--- |
| Outer: 24x |
| Inner: -3 x |$\quad \mathrm{x}=-3 \mathrm{x}=3 / 8$

11) $3 x^{2}+13 x-10=0$
(3x \quad)($\mathrm{x} \quad$) First terms are $3 \mathrm{x}, \mathrm{x}$
signs are opposite; last terms can be
$1,-10 \quad-1,10 \quad-10,1 \quad 10,-1$
12) $3 x^{2}-5 x+2$
(3x \quad)($\mathrm{x} \quad$) First terms are 3 x and x
$(3 \mathrm{x}-\quad)(\mathrm{x}-\quad)$ signs are - -
the last terms are 2,1 or 1,2 which order will get the desired result?

$$
(3 x-2)(x-1)
$$

$$
\begin{aligned}
& 2,-5 \quad-2,5 \quad-5,2 \quad 5,-2 \\
& (3 x-2)(x+5)=0 \\
& \begin{array}{l}
3 x-2=0 \\
x+5
\end{array} \begin{array}{l}
x \doteq 2 / 3 \\
x=-5
\end{array} \\
& (2 \mathrm{x}+3)(3 \mathrm{x}+1)=0 \\
& \text { F } 6 x^{2} \\
& \begin{array}{l}
(2 \mathrm{x}+3)(3 \mathrm{x}+1)=0 \\
2 \mathrm{x}+3=0 \begin{array}{l}
\mathrm{x}=-3 / 2 \\
3 \mathrm{x}+1=0 \\
\mathrm{x}=-1 / 3
\end{array}
\end{array} \\
& \begin{array}{cc}
\mathrm{O} & 2 \mathrm{x} \\
\mathrm{I} & 9 \mathrm{x} \\
\mathrm{~L} & 3
\end{array} \\
& (3 x-2)(x+5)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10) } 6 \mathrm{x}^{2}+11 \mathrm{x}+3=0 \\
& \begin{array}{lll}
\text { (1) } & \text { 1) } & \text { Last terms are } 1,3 \\
(+3)(+1) & \text { signs are }++
\end{array}
\end{aligned}
$$

the first terms are $\mathrm{x}, 6 \mathrm{x}$ or $6 \mathrm{x}, \mathrm{x}$ or $2 \mathrm{x}, 3 \mathrm{x}$ or $3 \mathrm{x}, 2 \mathrm{x}$ which order gets the desired result?

Check with	First	$2 \mathrm{x}^{2}$	
FOIL	Outer	14 x	$2 \mathrm{x}^{2}+15 \mathrm{x}+7$
	Inner	1 x	
	Last	7	

1) | | $x^{2}+9 x+8$ |
| :--- | :--- |
| $A=1$ | multiplies to 8 |
| C $=8$ | and |
| $B=9$ | adds to $9: 1$ and 8 |
| | |
| | $x^{2}+8 x+x+8$ |
| | $x(x+8)+1(x+8)$ |
| | $(x+1)(x+8)$ |
2) $x^{2}+13 x+30=0$
$\begin{array}{ll}\mathrm{A}=1 & \text { multiplies to } \mathrm{AC} \text { and adds to } \mathrm{B} ? \\ \mathrm{C}=30 & \\ \mathrm{~B}=13 & 3 \text { and } 10-\text { - mult. to } 30 \text { and add to } 13\end{array}$
split the middle
$x^{2}+3 x+10 x+30=0$
factor by grouping
$x(x+3)+10(x+3)=0$
$(x+10)(x+3)=0$
$x=-3$ or -10
3) $2 x^{2}+15 x+7$

$$
\begin{array}{ll}
\mathrm{A}=2 & \mathrm{~B}=15 \\
\mathrm{C}=7 & \\
\mathrm{AC}=14 & \begin{array}{l}
\text { What multiplies to } 14 \text { and } \\
\text { adds to } 15 ? ~ 1 ~ a n d ~ \\
\hline
\end{array}
\end{array}
$$

split the 15 x :

$$
\begin{aligned}
& 2 x^{2}+1 x+14 x+7 \\
& x(2 x+1)+7(2 x+1)
\end{aligned}
$$

$$
(2 x+1)(x+7)
$$

10) $6 x^{2}+11 x+3=0$
$\mathrm{A}=6$
$\mathrm{~B}=11$
$\mathrm{C}=3$

Multiplies to 18 and adds to 11: 2 and 9 split the middle...

$$
6 x^{2}+2 x+9 x+3=0
$$

factor by grouping...

$$
\begin{gathered}
2 x(3 x+1)+3(3 x+1)=0 \\
(2 x+3)(3 x+1)=0 \\
x=-3 / 2 \text { or }-1 / 3
\end{gathered}
$$

2) $x^{2}-7 x+12$

$\mathrm{A}=1$	multiplies to AC and
$\mathrm{C}=12$	adds to $\mathrm{B} ?-3$ and -4
$\mathrm{~B}=-7$	x^{2}

factor by grouping:
$x(x-3)+-4(x-3)$
$(x-4)(x-3)$
5) $2 x^{2}-10 x+8=0$

GCF -- factor out 2
$2\left(x^{2}-5 x+4\right)=0$
$2\left(x^{2}-1 x-4 x+4\right)=0$
factor by grouping
$2(x(x-1)-4(x-1))=0$
$2(x-4)(x-1)=0$
$\mathrm{x}=1$ or 4
8) $3 x^{2}-5 x+2$
$\begin{array}{ll}\mathrm{A}=3 & B=-5 \\ \mathrm{C}=2 & \mathrm{~B}=-2\end{array}$
$\begin{array}{ll}\mathrm{AC}=6 & \text { What multiplies to } 6 \\ \text { and adds to }-5 ?-2 \text { and }-3\end{array}$
split the middle -5 x :
$3 x^{2}-2 x-3 x+2$
$x(3 x-2)-1(3 x-2)$

$$
(x-1)(3 x-2)
$$

11) $3 x^{2}+13 x-10=0$

Multiplies to -30 and adds to +13
+15 and -2
$3 x^{2}+15 x-2 x-10=0$
$3 x(x+5)-2(x+5)=0$

$$
(3 x-2)(x+5)=0
$$

$$
x=2 / 3 \text { or }-5
$$

3) $x^{2}+7 x-18$

What multiplies to (1)(-18) and adds to (7) ? -2 and 9

Split the 7x...
$x^{2}+9 x-2 x-18$
then, factor...

$$
\begin{gathered}
x(x+9)-2(x+9) \\
(x-2)(x+9)
\end{gathered}
$$

6) $x^{2}+5 x=24$
$x^{2}+5 x-24=0$
What multiplies to -24 and adds to 5 ?
-3 and +8

$$
\begin{gathered}
x^{2}-3 x+8 x-24=0 \\
x(x-3)+8(x-3)=0 \\
(x-3)(x+8)=0 \\
x=-8 \text { or } 3
\end{gathered}
$$

9) $4 x^{2}+21 x+5$

$$
\mathrm{AC}=(4)(5)=20
$$

$B=21$
Multiplies to 20 and adds to 21 ? 1 and 20

$$
\begin{aligned}
& 4 x^{2}+20 x+1 x+5 \\
& 4 x(x+5)+1(x+5) \\
& (4 x+1)(x+5)
\end{aligned}
$$

$$
\text { 12) } 8 x^{2}+21 x=9
$$

rewrite...
$8 x^{2}+21 x-9=0$
multiplies to -72 and adds to $21--\gg 24$ and -3

$$
\begin{gathered}
8 x^{2}+24 x-3 x+9=0 \\
8 x(x+3)-3(x+3)=0 \\
(8 x-3)(x+3)=0 \\
x=3 / 8 \text { or }-3
\end{gathered}
$$

Algebra Factoring Review

Factor the following polynomials:

1) $2 x^{2}+11 x+5$
"logic method"
first terms must be 2 and 1
$(2 \mathrm{x} \quad)(\mathrm{x} \quad)$
signs must be ++
$(2 \mathrm{x}+\quad)(\mathrm{x}+\quad)$
last terms must be 5 and 1
$(2 x+1)(x+5)$
2) $2 x^{2}-46 x+44$

Greatest Common Factor

$$
2\left(x^{2}-23 x+22\right)
$$

Find 2 linear binomials
what multiplies to 22 and adds to -23 ?
-1 and -22
$2(x-1)(x-22)$
7) $x^{2}-22 x-75$
find 2 linear binomials
what multiplies to -75 and adds to -22 ? 3 and -25
$(x-25)(x+3)$
10) $49 x^{2}+14 x+1$
use logic
last terms must be 1 and 1

$$
(\quad 1)(\quad 1)
$$

signs must be ++

$$
(+1)(+1)
$$

first terms must be $7 \mathrm{x}-7 \mathrm{x}$ or $49 \mathrm{x}-\mathrm{x}$

$$
(7 x+1)(7 x+1)=(7 x+1)^{2}
$$

perfect square polynomial
2) $x^{2}-25$
difference of squares
$(x+5)(x-5)$
5) $x^{2}+25$

PRIME
3) $x^{2}+13 x-48$
find 2 linear binomials
(x \quad)($\mathrm{x} \quad)$
what multiplies to -48 and adds to 13 ?
-3 and 16

$$
(x+16)(x-3)
$$

6) $6 x^{2}+23 x+20$

Use "split and regroup" or "divide and regroup"

$$
\begin{array}{ll}
6 \mathrm{x}^{2}+23 \mathrm{x} & \begin{array}{l}
\mathrm{AC}=6 \cdot 10=120 \\
\text { what multiplies to }
\end{array} \\
6 \mathrm{x}^{2}+8 \mathrm{x}+(15 \mathrm{x}+20 & \begin{array}{l}
120 \text { and adds to } \\
23 ? ~ 8 ~ a n d ~ \\
2 \mathrm{l}
\end{array} \\
2 \mathrm{x}(3 \mathrm{x}+4)
\end{array}
$$

$$
(2 x+5)(3 x+4)
$$

8) $3(x+1)^{2}+5(x+1)+2$ substitute and factor

$$
\begin{aligned}
& \text { let } a=(x+1) \\
& 3 a^{2}+5 a+2 \\
& (3 a+2)(a+1) \\
& (3(x+1)+2)((x+1)+1) \\
& (3 x+3+2)(x+2)=(3 x+5)(x+2)
\end{aligned}
$$

9) $x^{4}+4 x^{2}-5$ substitute and factor
let $b=x^{2} \quad b^{2}+4 b-5$

$$
(b+5)(b-1)
$$

$$
\left(x^{2}+5\right)\left(x^{2}-1\right)
$$

difference of squares

$$
\left(x^{2}+5\right)(x+1)(x-1)
$$

11) $x^{2}+4 x y+3 y^{2}$
first term must be x and x signs must be ++
12) $x^{2}+3 x-7$

PRIME
$(x+)(x+)$
last term must have 1 and 3 as well as y and $\mathrm{y} . .$.

$$
(x+y)(x+3 y)
$$

To check: FOIL the answer,

$$
\begin{aligned}
& x^{2}+x(3 y)+y x+3 y^{2} \\
& x^{2}+4 x y+3 y^{2}
\end{aligned}
$$

ANSWERS

1) For what values of b is $x^{2}+b x+10$ factorable?

To factor a quadratic trinomial, we seek numbers that multiply to ' c ' and add to ' b '....
In this case, what 2 numbers multiply to 10 and add to b ?
1 and 10
2 and 5
so, b could be 7 or $11 \ldots$
2) For what values of c is $x^{2}-5 x+c$ factorable?

Again, the coefficient of the first term ('a') is 1 , so again, to factor, we want numbers that multiply to 'c' and add up to 'b....

In this case, what numbers multiply to c and add to -5 ?

1 and -6	
3	and -8
0 and -5	
14 and -19	the number pairs are x and $-(x+5)$
etc...	
roduct of any of those (and more!)... -6 -24 0 -266	

3) For these perfect square trinomials, what are the missing terms?
a) $x^{2}+\ldots+64 \quad$ square root of 64 is $8 \ldots$ Must be $16 x$ OR $-16 x$
b) $x^{2}-12 x+\ldots \quad B=-12 \quad 1 / 2$ of (-12) squared is 36
c) $9 x^{2}+16 \quad$ Two answers! $(3 x+4)(3 x+4)$ or $(3 x-4)(3 x-4)$
d) $4 x^{2} \quad-9 \quad$ Zero.... Difference of two perfect squares, so there is no middle term.. Trick question! this is not a perfect square trinomial!
4) Find (at least 3) values of c, where $2 x^{2}-5 x+c$ factorable?
discriminant: $b^{2}-4 a c$ must be perfect square...

$$
\begin{gathered}
\text { If } c=2 \text {, then the discriminant equals } 9 \text {--->> perfect square! } \\
2 \mathrm{x}^{2}-4(2)(\mathrm{c})=25-8 \mathrm{c}+2=(2 \mathrm{x}-1)(\mathrm{x}-2) \\
\text { If } c=3 \text {, then the discriminant equals } 1--->\text { perfect square! } \\
2 \mathrm{x}^{2}-5 \mathrm{x}+3=(2 \mathrm{x}-3)(\mathrm{x}-1) \\
\text { also, } c=0,-3,-7 .) \\
2 \mathrm{x}^{2}-5 \mathrm{x}-7=(2 \mathrm{x}-7)(\mathrm{x}+1)
\end{gathered}
$$

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Mathplane.com or Mathplane.ORG for mobile and tablets
(Follow the weekly comic on Facebook, Pinterest, and Google+)

Check out mathplane teaching resources at TES and TeachersPayTeachers

