Introduction to Periodic Trig Functions:

Sine and Cosine Graphs

Notes/examples of trig values and the 4 components of trig graphs (amplitude, horizontal (phase) shift, vertical shift, and period).

Includes 2 practice tests (and solutions)

Contents

Sine Functions $(y=A \sin B(x-C)+D)$
Sketching the parent function
Vertical Shift
Amplitude
Reflection
Horizontal ("phase") Shift
Period and Cycles
Describing a Sine Graph
Practice Test and Solutions
Cosine Functions $(y=A \cos B(x-C)+D)$
Cosine Values and sketching the parent function
Vertical Shift
Amplitude and Reflection
Examples
Horizontal Shift
Period
Sine and Cosine Intersection
Practice Test and Solutions
TRIG Function Word Problems

Periodic Functions: Sinusoidal Graphs

Sketching the Parent Function:
 $$
\begin{array}{lr} \mathrm{y}=\sin (\mathrm{x}) & \mathrm{y}=\sin \ominus \\ \text { (radians) } & \text { (degrees) } \end{array}
$$

Sine $=\frac{\text { opposite }}{\text { hypotenuse }} \quad$ A few examples of common angles:

$\sin 30^{\circ}=\frac{1}{2}$

$\sin 120^{\circ}=\frac{\sqrt{3}}{2}$

$\sin 330^{\circ}=\frac{-1}{2}$

The following is a table of chosen values:
$y=\sin \theta$

0	30	60	90	120	180	210	270	330	360	
y	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	0	$\frac{-1}{2}$	-1	$\frac{-1}{2}$	0

Then, plot the points...

It's a periodic function -- it will repeat the pattern of y-values at a regular interval of 360°. (The period is 360°)

A cycle is a complete pattern repetition. This graph contains 2 cycles.
The period is 2π (Horizontal length of one cycle)

Sine functions: 4 components

$y=\sin (x)$ is the parent function.

Vertical Shift:

$$
y=A \sin B(x-C)+D
$$

A: Amplitude (magnitude)
B: Period
C: Horizontal Shift
D: Vertical Shift

$$
\begin{array}{ll}
\text { If } x=\frac{\pi \pi}{2} \\
y=\sin x & \sin \frac{\pi}{2}=1 \\
y=\sin x+4 & \sin \frac{\pi \pi}{2}+4=5 \\
y=\sin x-3 & \sin \frac{\pi}{2}-3=-2
\end{array}
$$

Amplitude:

x	$\sin x$	$4 \sin x$	$\frac{1}{2} \sin x$	$-2 \sin x$
0	0	0	0	0
$\frac{\pi r}{4}$	$\frac{\sqrt{2}}{2}$	$2 \sqrt{2}$	$\frac{\sqrt{2}}{4}$	$-\sqrt{2}$
$\frac{\pi}{2}$	1	4	$\frac{1}{2}$	-2
π	0	0	0	0
$\frac{3 \pi}{2}$	-1	-4	$-\frac{1}{2}$	2

I. Sketch one cycle of the function $f(x)=3 \sin x+2$

1) Sketch the parent function $y=\sin (x)$
2) Increase ("stretch") the amplitude $y=3 \sin (x)$ by a factor of 3
3) Shift the graph up 2 units
$y=3 \sin (x)+2$

Notice, $\quad \sin \frac{3 \cdot \pi}{2}=-1 \quad 3 \sin \frac{3 \cdot \pi}{2}+2=-1$

Also, $\sin (\mathrm{x})$ and $3 \sin (\mathrm{x})$ intersect at $0, \pi$, and 2π
II. Sketch $y=-2 \sin x+5$

1) Parent Function $y=\sin x$
2) "Stretch" and "Reflect" $y=-2 \sin x$
3) Vertical Shift
$y=-2 \sin x+5$

Sine functions: 4 components (continued)

Horizontal ("Phase") Shift:
Question: If $\sin 90^{\circ}=1$, then where does $\sin \left(\ominus+30^{\circ}\right)=1$?
Answer: $\ominus=60^{\circ}$, because $\sin \left(60^{\circ}+30^{\circ}\right)=1$
Implication: $90^{\circ} \Rightarrow 60^{\circ}$ (shift 30° to the left)

Example I: $\mathrm{y}=\sin \left(\ominus+30^{\circ}\right)$

Note: The horizontal shift is the opposite direction of the sign.

Note: The horizontal shift is the opposite direction of the sign.

$$
y=A \sin B(x-C)+D
$$

A: Amplitude (magnitude)
B: Period
C: Horizontal Shift
D: Vertical Shift

Compare the values of the parent function $\sin \ominus$ to the values of $\sin \left(\ominus+30^{\circ}\right)$ (horizontal shift of 30° to the left)

\ominus	$\sin \ominus$	$\sin \left(\ominus+30^{\circ}\right)$
-30	$\frac{-1}{2}$	0
0	0	$\frac{1}{2}$
30	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
60	$\frac{\sqrt{3}}{2}$	1
90	1	$\frac{\sqrt{3}}{2}$

Example II: $\mathrm{y}=\sin \left(\mathrm{x}-\frac{\pi}{3}\right)$

(horizontal shift of $\frac{\pi T}{3}$ to the right)
$\mathrm{y}=\sin \mathrm{x}$ crosses the x -axis at π^{\top}
and

$$
\begin{aligned}
& \sin \pi=0 \\
& \sin \left(\frac{4 \pi}{3}-\frac{\pi}{3}\right)=0
\end{aligned}
$$

$y=\sin \left(x-\frac{\pi}{3}\right)$ crosses at $\frac{4 \pi}{3}$

Sine Functions: Amplitude, Horizontal and Vertical Shifts Illustration

Sketch $\mathrm{y}=3 \sin \left(\ominus+60^{\circ}\right)-2$

$$
y=A \sin B(x-C)+D
$$

A: Amplitude (magnitude)
B: Period
C: Horizontal Shift
D: Vertical Shift

1) Parent function:
$y=\sin \theta$
2) Amplitude $(\mathrm{A}=3)$:
("Stretch by 3 x ")

$$
\mathrm{y}=3 \sin \ominus
$$

3) Horizontal Shift $\left(\mathrm{C}=-60^{\circ}\right)$:
("Shift 60 degrees to the left")

$$
y=3 \sin \left(\ominus+60^{\circ}\right)
$$

4) Vertical Shift $(\mathrm{D}=-2)$:
("Shift down 2 units")

$$
\mathrm{y}=3 \sin \left(\ominus+60^{\circ}\right)-2
$$

To check your sketch, plug a few points into the equation:

$$
\mathrm{y}=3 \sin \left(\ominus+60^{\circ}\right)-2
$$

$$
\ominus=-60^{\circ} \quad 3 \sin (-60+60)-2=
$$

$$
3 \sin (0)-2=-2
$$

$$
\theta=30^{\circ} \quad 3 \sin (30+60)-2=
$$

$$
3 \sin (90)-2=1
$$

$$
\ominus=210^{\circ}
$$

$3 \sin (210+60)-2=$
$3 \sin (270)-2=-5$

Period: Horizontal distance required for a periodic function to complete one cycle.

$$
y=\operatorname{sinBx} \longrightarrow \text { period }=\frac{2 \pi}{B}
$$

Example: $y=\sin 3 x \quad$ Period: $\frac{2 \pi}{3}$
3 cycles between 0 and 2π

For the parent function $\mathrm{y}=\sin \mathrm{x} \quad$ (where $\mathrm{B}=1$) the period is 2π

As B increases, the period decreases.
In other words, it takes less time to complete one cycle.
And, for $\mathrm{y}=\sin \mathrm{Bx}$, as B decreases, the period increases. In other words, it takes more time to complete one cycle.

Defining Periodic Sine Graphs

Write equations to describe the graphs below:

Example I:

Example II:

Example III:

Vertical Shift: None (center is $\mathrm{y}=0$)
Horizontal Shift: None (Cycle begins at (0,0))
Amplitude ("Stretch"): Magnitude of 3x

$\mathrm{A}=3$

Period: $\quad \frac{2 \pi}{\mathrm{~B}}=\begin{aligned} & \text { horizontal distance } \\ & \text { of one cycle }\end{aligned}$

$$
\begin{aligned}
& \frac{2-\pi^{\mu}}{\mathrm{B}}=8 \\
& \mathrm{~B}=\frac{\pi^{\mu}}{4} \\
& \mathrm{f}(\mathrm{x})=3 \sin \frac{\pi^{\mu}}{4} \mathrm{x}
\end{aligned}
$$

To check the equation, plug in a few points:
$(2,3): \mathrm{f}(2)=3 \sin \frac{-\pi}{4}(2)=3 \sin \frac{-\pi}{2}=3$
$(6,-3): \mathrm{f}(6)=3 \sin \frac{-\pi}{4}(6)=3 \sin \frac{3-\pi}{2}=-3$

Preferable to ordinary computer cookies...

Essential part of a well-rounded, academic diet.

Try with (t), or any beverage...

Also, look for Honey Graham Squares in the geometry section of your local store...

Sine Function Practice Test

(Next page)

Graph the following function: $\quad 4 \sin \left(x-\frac{\pi}{2}\right)+3$

Identify the following sine functions:
1)

2)

Graph the following Sine Functions. Then, use the given points to check your answers algebraically and graphically.
A) $y=-5 \sin x+3$

$$
\text { Check: } \begin{aligned}
\mathrm{x} & =\pi \\
\mathrm{x} & =\frac{3 \pi}{2}
\end{aligned}
$$

B) $y=\sin \left(2 x+\frac{\pi}{2}\right)$

Check: $\quad x=\frac{\pi}{4}$
$\mathrm{x}=\pi$
C) $y=3|\sin \ominus|$

Check: $\ominus=90^{\circ}$
$\ominus=270^{\circ}$

Characteristics of Sine Function
A) For the graph $y=\sin x$,

1) Domain:
2) Range:
3) x-intercepts:
4) y-intercept:
5) the graph of the function is positive on the intervals that correspond to which quadrants?
B) $f(\mathrm{x})=\operatorname{asinb}(x-\mathrm{c})+\mathrm{d}$

Write an equation where $\mathrm{a}<0$.

Write an equation where $\mathrm{a}>0$.

Practice Test SOLUTIONS
(Next page)

Graph the following function: $\quad 4 \sin \left(x-\frac{\pi}{2}\right)+3$

Identify the following sine functions:

1)

2)

$$
y=\sin 2\left(x-\frac{3 \pi}{4}\right)+4
$$

A) $y=-5 \sin x+3$
$y=A \sin B(x-C)+D$

B) $\mathrm{y}=\sin \left(2 \mathrm{x}+\frac{\pi}{2}\right) \longrightarrow$ change to "standard form"
amplitude $\mathrm{A}=1$

Check: $x=\frac{\pi}{4}$

$$
\mathrm{x}=\pi
$$

$$
y=\sin \left(2 x+\frac{\pi}{2}\right)
$$

$$
y=\sin \left(2 \cdot \frac{\pi}{4}+\frac{\pi}{2}\right)
$$

$$
=\sin (4 \pi / 4)=0
$$

$$
y=\sin \left(2 \cdot \pi+\frac{\pi}{2}\right)
$$

$$
=\sin (5 \pi / 2)=1
$$

C) $y=3|\sin \ominus|$
amplitude $\mathrm{A}=3$
period: 180 degrees vertical shift: none horizontal shift: none
(max: $3 \mathrm{~min}: 0$)

Check: $\ominus=90^{\circ}$
$\ominus=270^{\circ}$
$y=3|\sin \ominus|$
$y=3|\sin 90|$
$=3|1|=3$
$\mathrm{y}=3 \mid \sin 27 d$
$=3|-1|=3$
A) For the graph $\mathrm{y}=\sin x$,

1) Domain: all the x-values: all Real Numbers
2) Range: all the y-values: $[-1,1]$ or $-1 \leq y \leq 1$
3) x-intercepts: The points where the function crosses the x -axis: ($7 \mathrm{Tk}, 0$) where k
is any integer
The point where the function crosses the y-axis: $(0,0)$
4) the graph of the function is positive on the intervals that correspond to which quadrants?

Sine is positive in quadrants I and II

B) $f(\mathrm{x})=\operatorname{asing}(x-\mathrm{c})+\mathrm{d}$

Write an equation where $\mathrm{a}<0$.
If $\mathrm{a}<0$, then \sin function will go down first... Here is one possibility...

$$
f(x)=-1 \sin 2\left(x-\frac{\pi}{4}\right)+4
$$

Write an equation where $\mathrm{a}>0$.
If $\mathrm{a}>0$, then \sin function will go up first.
Here is one possibility...

$$
f(x)=1 \sin 2\left(x-\frac{3^{\prime} \pi}{4}\right)+4
$$

(To check equations, test points on the graph)
amplitude is $1----$ 'a' can be 1 or -1
vertical shift is up 4 --- 'd' will be +4
period is πT---- 'b' will be 2

[^0]maximum $(0,10)$ and minimum $(2 \pi, 0)$

maximum $(\Pi, 4)$ and minimum $(0,-2)$

maximum $\left(\frac{\pi}{4}, 8\right)$ and minimum $\left(\frac{\pi^{-}}{2}, 2\right)$

maximum $(2,22)$ and minimum $(8,14)$

\[

$$
\begin{aligned}
y=-20 \sin \left(\frac{\pi \tau}{6} t\right) & +16 \\
\text { where } t & =\text { seconds } \\
y & =\text { number of feet above water level }
\end{aligned}
$$
\]

a) What is the diameter of the wheel?
b) At the top of the wheel, how high is the rung above water level?
c) How many rotations per minute does the wheel make?
d) What percentage of time does a rung spend under water?

Step 1: Draw a sketch

Step 2: Identify the measurements
amplitude: 20 feet (distance from middle to peak)
vertical shift: up 16 feet (position of sine wave center)
horizontal shift: None
period: $\frac{2 \pi}{\mathrm{~B}}=\frac{2 \pi}{\pi / 6}=12$ seconds

Step 3: Answer the questions
a) Since the amplitude is 20 feet, the diameter of the wheel is 40 feet
b) Since the vertical shift is up 16 feet, the new 'wave center' is $\mathrm{y}=16$.

Therefore, the top of the waterwheel is $16+20=36$ feet above the water level.
(and, the bottom is -4 feet or, 4 feet under water.)
c) The period (one rotation) is 12 seconds. Therefore, the wheel rotates 5 times per minute
d) To determine when the rung is under water, let's sketch the graph:

To find when the rung is at water level, let $\mathrm{y}=0$

$$
\begin{aligned}
0 & =-20 \sin \left(\frac{\pi T}{6} \mathrm{t}\right)+16 \\
-16 & =-20 \sin \left(\frac{-\pi}{6} \mathrm{t}\right) \\
\frac{4}{5} & =\sin \left(\frac{-\pi}{6} \mathrm{t}\right) \\
\text { (radian } \sin ^{-1}(.80) & =\left(\frac{\pi}{6} \mathrm{t}\right) \\
\text { mode) } \quad .927 & \approx .523 \mathrm{t} \quad \mathrm{t} \approx 1.77
\end{aligned}
$$

mode)

Then, the rung is under water level from 1.77 seconds to 4.23 seconds.

Therefore, every 12 seconds, the rung is under water approximately 2.46 seconds.

$$
\frac{2.46}{12}=.205 \text { or } 20.5 \% \text { of the time }
$$

Thanks for checking out this preview.
To learn about Cosine Functions and see a few word problems, visit the trig section at mathplane.com. Or, purchase materials at the mathplane stores at TES.com and TeachersPayTeachers.com. All proceeds go to site maintenance and improvement. (Plus, treats for Oscar the dog!). We appreciate your support.

Are you looking for tangent and the reciprocal trig functions?
Check out "Introduction to Periodic Trig Functions 2"
At TeachersPayTeachers, TES, or the mathplane site

[^0]: *** the horizontal shift will correspond to where the graph starts

