Introduction to Periodic Trig Functions 2:

Tangent Graphs

and,
Reciprocal Sketches

Notes/examples of trig values and the components of trig graphs
Includes 2 practice tests (and solutions)

Tangent Functions

Topics include asymptotes, period, amplitude, horizontal and vertical shifts, reflection, and more.

$y=\tan (x)$	$y=\tan \ominus$
(radians)	(degrees)

Tangent $=\frac{\text { opposite }}{\text { adjacent }}$

A few examples of common angles:

$\tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$

$\tan 120^{\circ}=\frac{\sqrt{3}}{-1}=-\sqrt{3}$

$\tan 330^{\circ}=\frac{-1}{\sqrt{3}}=\frac{-\sqrt{3}}{3}$

The following is a table of chosen values:
\ominus

Then, plot the points...

It's a periodic function -- it will repeat the pattern of y - values at a regular interval of 180°. (The period is 180°)

A cycle is a complete pattern repetition. This sketch contains 4 cycles.
The period is π (Horizontal length of one cycle)

Tangent Functions: 4 components

The four parts of the tangent function can stretch, shift, reflect, and compress the parent function (graph).
$\mathrm{y}=\tan (\mathrm{x})$ is the parent function
Vertical Shift:

When the coefficient gets larger, the tangent curves stretch...

When the coefficient is negative, the output is reflected over the x -axis.

NOTE: The amplitude (A) and vertical shift (D) are numbers outside the function. So, they affect changes that are $u p$ and down.

$$
y=A \tan B(x+C)+D
$$

A: Amplitude (magnitude)
B: Period (cycles/T)
C: Horizontal Shift
D: Vertical Shift

$$
\begin{aligned}
& \text { If } x=\pi \\
& \begin{array}{l}
y=\tan (x) \cdots-\cdots \tan (\pi)=0 \\
y=\tan (x)+4 \cdots \tan (\pi)+4=4 \\
y=\tan (x)-2 \cdots-\cdots \quad \tan (\pi)-2=-2
\end{array}
\end{aligned}
$$

x	$\tan x$	$3 \tan x$	$\frac{1}{2} \tan x$	$-2 \tan x$
0	0	0	0	0
$\frac{\pi r}{4}$	1	3	$\frac{1}{2}$	-2
$\frac{\pi r}{2}$	undefined	undefined undefined		
$\frac{\pi T}{3 \pi r}$	0	0	0	0
-1	-3	$-\frac{1}{2}$	2	

Tangent Functions: Amplitude and Vertical Shift Illustrations
I. Sketch two cycles of the function $f(x)=\frac{1}{3} \tan x+2$

1) Sketch the parent function $y=\tan x$
2) Decrease ("shrink") the amplitude $y=\frac{1}{3} \tan x$
by a factor of 3
3) Shift the graph up 2 units $y=\frac{1}{3} \tan x+2$

Note: The asymptotes provide a good outline for your sketch...
II. Sketch $\mathrm{y}=-2 \tan x+1$

1) Parent Function $y=\tan x$
2) "Stretch" and "Reflect" $y=-2 \tan x$
3) Vertical Shift $y=-2 \tan x+1$

Notice, the "new middle" is at $y=1$ (instead of the x-axis)

And, because the (A) value is 'negative', the curve gets 'flipped'/'reflected' (i.e. goes from upper left to lower right)

Tangent Functions: 4 components

The four parts of the tangent function can stretch, shift, reflect, and compress the parent function (graph).
Since the A and D terms are outside the function, the changes affect the vertical components. (vertical "stretch", reflection, and shift)

$$
y=A \tan B(x+C)+D
$$

A: Amplitude (magnitude)
B: Period (cycles/T)
C: Horizontal Shift
D: Vertical Shift

Since the B and C terms are inside the function, they will affect the horizontal shape of the graph....

Horizontal ("Phase") Shift:
Question: If $\tan 180^{\circ}=0$, then where does $\tan \left(\ominus+60^{\circ}\right)=0$?

$$
\begin{aligned}
& \text { Answer: } \ominus=120^{\circ} \text {, because } \tan (120+60)=0 \\
& \text { Implication: } 180^{\circ} \Rightarrow 120^{\circ} \text { (shift } 60^{\circ} \text { to the left) }
\end{aligned}
$$

Example I: $\mathrm{y}=\tan \left(\ominus+60^{\circ}\right)$

The curves and the asymptotes
shift 60° to the left
\sim

Note: The horizontal shift is the opposite direction of the sign.

Period: Horizontal distance required for a periodic function to complete one cycle.

$$
y=\tan B x \longrightarrow \text { period }=\frac{\pi}{B}
$$

Example 2: $\mathrm{y}=\tan 3 \mathrm{x} \quad$ Period: $\frac{\pi}{3}$

3 cycles between 0 and π

As B increases, the period decreases.
In other words, it takes less time to complete one cycle.
And, for $\mathrm{y}=\tan \mathrm{Bx}$, as B decreases, the period increases. In other words, it takes more time to complete one cycle.

NOTE: $\sin x$ and cosx periods are 2π, but $\tan x$ is \uparrow
$\tan x$ has one cycle... (period is \uparrow)
$\tan 3 \mathrm{x}$ has three cycles ... (period is $\uparrow / 3)$
(so, 3 times as many asymptotes and intercepts)

The ' D ' value is 3 , so the vertical shift is up 3 units
The 'C' value is $\frac{\pi}{2}$, so the horizontal shift is $\frac{\pi}{2}$ to the right

$$
y=A \tan B(x+C)+D
$$

A: Amplitude (magnitude)
B: Period (cycles/TT)
C: Horizontal Shift
D: Vertical Shift

D. Vertical Shift

The 'B' value is $\frac{1}{4}$, so the period is $\frac{\pi}{\frac{1}{4}}=4 \pi$
The 'center point' is in the middle of the period... So, we can place vertical asymptotes $2 \uparrow$ to the left... and, $2 \uparrow$ to the right...

The 'A' Value is 2 , so the "quarter values" will be up 2 and down $2 \ldots$

Finally, use the 3 points and asymptotes to guide your sketch....'

Example: Identify the following tangent function:

$$
y=\operatorname{Atan} B(x+C)+D
$$

A: Amplitude (magnitude)
B: Period (cycles/ T)
C: Horizontal Shift
D: Vertical Shift

Since the midpoint (i.e. the curve's point of inflection) is at 3, the vertical shift is UP . 3 vertical shift (D): +3
One full cycle has a length of $2 \uparrow$. Since the period is $2-\uparrow, \quad B=\frac{-\uparrow}{2-\uparrow}=\frac{1}{2} \quad$ period (B): $\frac{1}{2}$
If the period ("B" value) is $1 / 2$, then the asymptotes would be at $\uparrow \quad 3 \uparrow=5 \prod^{-}$etc..
But, in the graph, the asyptotes are at $\frac{5 \uparrow}{} \quad 13 \uparrow \quad 21 \prod^{-} \longrightarrow \quad$ horizontal shift to the right (C):
In a $1 / 4$ cycle move, the value goes from 0 to $1 \ldots$ (i.e. $\tan (0)=0 \tan \left(\frac{\pi}{4}\right)=1$
In the above graph, $1 / 4$ of a cycle is $\frac{\Pi}{2} \ldots$ At $x=0$, the output is 3
("phase") $\frac{-T T}{4}$
amplitude (A): 2

$$
\mathrm{y}=2 \tan \frac{1}{2}\left(\mathrm{x}-\frac{\uparrow T}{4}\right)+3
$$

$$
\text { At } x=\frac{\uparrow}{2} \text {, the output is } 5
$$

This is an increase of 2 (instead of 1)

Test points to confirm your equation!

$$
\begin{aligned}
\text { If } x=\Pi^{-} \quad 2 \tan \frac{1}{2}\left(\pi-\frac{\pi}{4}\right)+3 & =2 \tan \frac{3 \pi}{8}+3 \\
& =2 \cdot 2.41+3 \approx 7.8
\end{aligned}
$$

$$
\text { If } \begin{aligned}
x=\frac{-\pi^{-}}{2} 2 \tan \frac{1}{2}\left(\frac{-\pi^{-}}{2}-\frac{\pi}{4}\right)+3 & =2 \tan \frac{-3 \pi}{8}+3 \\
& =2 \cdot-2.41+3 \approx-1.8
\end{aligned}
$$

Practice - \rightarrow
I. Graphing: Sketch each of the following equations. (Include at least 2 periods. And, label the asymptotes.)
A) $y=2 \tan x-3$

B) $y=2-\tan \left(x+\frac{\pi}{4}\right)$

C) $\mathrm{y}=\frac{\tan 2 \Theta}{3}$

II. Identifying: Determine the equations of the following.

B)

III. For the function $f(x)=\tan \left(x-\frac{\pi T}{2}\right)$, determine the
a) domain
b) range
c) maximum
d) minimum
e) x-intercepts (or, zeros)
f) y-intercept

Challenge Question: Solve algebraically. Then, graph to confirm your solution.

$$
\operatorname{Cos} x=\operatorname{Tan} x \quad\left(\text { in the interval } 0^{\circ}<\mathrm{x}<360^{\circ}\right)
$$

Answers- -

Thanks for checking out this preview.

You can find the solutions and other content posted at mathplane.com (in the trigonometry section).

Or, check out the mathplane stores at TES.com and TeachersPayTeachers.

Reciprocals Functions

Topics include sketching secant, cotangent, \& cosecant, solving systems, transformations, and more.

Periodic trig functions: "The reciprocals"

Review:

$y=\sin \ominus$	The following is a table of chosen values:	\ominus	0	30	60	90	120	180	210	270	330	360
		y	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	0	$\frac{-1}{2}$	-1	- $\frac{1}{2}$	0

Then, plot the points on a graph....

y
A cycle is a complete pattern repetition. This graph contains 2 cycles.
The period is 2π (Horizontal length of one cycle)

$$
y=\cos \theta
$$

The following is a table of chosen values:

0	30	60	90	120	180	210	270	330	360	
y	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	-1	$\frac{-\sqrt{3}}{2}$	0	$\frac{\sqrt{3}}{2}$	1

y
A cycle is a complete pattern repetition. This graph contains 2 cycles.
The period is 2π (Horizontal length of one cycle)

Example I:

D (vertical shift): The center that the sine wave is oscillating over is $\mathrm{y}=2$. Therefore, the vertical shift is up 2 units.
A (amplitude) : The maximum y-value is 4 , and the minimum y-value is $0--$ a total span of 4 units. The amplitude is $1 / 2$ of that amount: 2 units
C (horizontal shift) : Since $y=2$ at 0
radians, there is no horizontal shift.
B (period) : The horizontal distance of one cycle is 4π.

$$
\text { Since } \frac{2 \pi}{B}=4 \pi, B=\frac{1}{2}
$$

Example II:

$$
y=A \cos B(x-C)+D
$$

Check: $\mathrm{x}=\pi$

$$
\begin{aligned}
& \qquad x=\frac{3 \pi}{2} \\
& \text { At } \mathrm{x}=\pi \\
& \mathrm{y}=-5 \cos (\pi)+3 \\
& =-5(-1)+3=8 \\
& \text { At } \mathrm{x}=\frac{3 \pi}{2} \\
& \mathrm{y}=-5 \cos \left(\frac{3 \pi}{2}\right)+3 \\
& =-5(0)+3=3
\end{aligned}
$$

adjacent

$\ominus_{\text {degrees }}$	0	30	60	90	100	120	150	170	175	180
Sine	$\frac{0}{1}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	.985	.866	.5	.174	.087	0
Cosecant	undefined	$\frac{2}{1}$	$\frac{2}{\sqrt{3}}$	1	1.015	1.155	2	5.759	11.47	undefined

$$
\operatorname{Sin} \theta=\frac{1}{\operatorname{Csc} \ominus}
$$

$\bigoplus_{\text {degrees }}$	180	210	240	270	300	315	330	340	350	360
Sine	$\frac{0}{1}$	$\frac{-1}{2}$	$\frac{\overline{\sqrt{3}}}{2}$	-1	-.866	-.707	-.5	-.342	-.174	0
Cosecant	undefined	$\frac{-2}{1}$	$\frac{-2}{\sqrt{3}}$	-1	-1.155	-1.414	-2	-2.92	-5.759	undefined

NOTE: Where there is a zero for sinx, there is an asymptote for cscx

Observation: The intersections of $\sin x$ and $\csc x$ are at $y=1$ and $y=-1$

Example: Sketch $\mathrm{y}=\sec \mathrm{x}$ on the interval $[0,4 \Pi]$
Step 1: Sketch the 'original' function
The reciprocal of secx is cosx:

Sketch the 'original' trig function.
Place asymptotes where the zeros are.
Identify the maximums/minimums
Plot easy points and extend.

Step 3: Maximums and Minimums are the same

$$
\cos (0)=\sec (0)=1 \quad \cos (\uparrow)=\sec (\uparrow)=-1 \quad \cos (2 \uparrow)=\sec (2 \uparrow)=1 \quad \text { etc } \ldots
$$

Step 4: Plot easy points and extend
We know (from the unit circle) that $\cos (T / 3)=1 / 2$ And, so $\sec (T / 3)=\cdot 2 / 1$

$$
\begin{aligned}
& \cos (2 \Pi / 3)=-1 / 2 \quad \text { And, so } \sec (2 \Pi / 3)=-2 / 1 \\
& \cos (\Pi / 4)=.707 \text { (approx.) then, } \sec (\Pi / 4)=1.41 \text { (approx) }
\end{aligned}
$$

Graphing Calculator:

Using a sample of points, we can discover a pattern...

x radians	0	$\frac{-\pi}{6}$	$\frac{-\pi}{4}$	$\frac{-\pi}{2}$	$\frac{2-\pi}{3}$	$\frac{3-\pi}{4}$	$\frac{5 \pi}{6}$	$\frac{1 \Gamma \pi}{12}$	π
$\operatorname{Tan} x$	0	$\frac{1}{\sqrt{3}}$	1	undefined	-1.732	-1	-.577	-.268	0
$\operatorname{Cot} x$	undefined	$\frac{\sqrt{3}}{1}$	1	0	-.577	-1	-1.732	-3.732	undefined

Observation: If you take the graph of $\operatorname{Tan} x$, reflect it over the x-axis and shift $\frac{-\pi}{2}$ to the left (or right), it becomes $\operatorname{Cot} x$

$$
\operatorname{Cot} x=-\operatorname{Tan}\left(x+\frac{-\pi}{2}\right)
$$

Example: Sketch the function $f(x)=\cot \left(\frac{1}{4} x\right)+2$
Recognizing the general periodic equation:

$$
y=A \cot B(x-C)+D
$$

A: Amplitude is 1 (the shape of the function remains)
B: $\frac{1}{4}$ so, it takes $4 T$ to move one period
period $=\frac{\pi}{B}$
C: Horizontal shift is 0
D: Vertical shift is UP 2 units
$\operatorname{Cot}(0)=\frac{1}{0}$ and, since there is no horizontal shift, asymptotes are placed at the beginning (or end) of each period...
\sum_{3} asymptotes at $\ldots .4 \pi, 0,4 \pi \ldots$.

The 'center' of each period is the midpoint between the asymptotes and, because there is a vertical shift of +2

$$
\rightarrow \mathrm{y}=2 \text { at } \ldots,-2 \uparrow, 2 \uparrow, \ldots
$$

Then, since the amplitude is 1 ,
the 'quarter' points will be up 1 unit and down 1 unit....

$$
\left\{\begin{array}{l}
\mathrm{y}=3 \text { at } \ldots,-3 \uparrow,-\uparrow, \ldots \\
\mathrm{y}=1 \text { at } \ldots,-\uparrow, 3 \uparrow, \ldots
\end{array}\right.
$$

Sketching Cotangent and Tangent Functions

1) Identify the parts
2) Draw the vertical asymptotes
3) Plot the points of inflection (midpoints of each period)
4) Plot the 'quarter points'
5) Extend the curves

$$
\text { points will be up } 1 \text { unit and down } 1 \text { unit.... }
$$

Graphing a cosecant function with transformations
Example: Sketch $\mathrm{y}=3 \csc \frac{1}{2}\left(\mathrm{x}-60^{\circ}\right)+4$
Step 1: Lightly sketch the 'original' function (i.e. reciprocal of this reciprocal)

$$
y=3 \sin \frac{1}{2}\left(x-60^{\circ}\right)+4
$$

Amplitude: 3
Period: $\frac{2(180)}{\frac{1}{2}}=720$ degrees
Horizontal shift: 60 degrees to the right ("phase")

Vertical shift: UP 4 units

Step 2: Place asymptotes where the zeros are...
Since the equation is shifted up 4 units,

$$
\text { the "zeros" are at } y=4
$$

Step 3: Identify the maximums and minimums

Since the amplitude is 3 , the maximums are 3 above the 'wave center' and the minimums are 3 below the center.

$$
\begin{aligned}
& \text { maximums: where } \mathrm{y}=7 \\
& \text { minimums: } \text { where } \mathrm{y}=1
\end{aligned}
$$

Step 4: Plot a few points and extend

$$
y=3 \csc \frac{1}{2}\left(x-60^{\circ}\right)+4
$$

If $\mathrm{x}=360$ degrees

$$
=3 \csc \left(150^{\circ}\right)+4=3(2)+4=10
$$

$$
\text { If } x=540 \text { degrees }
$$

$$
=3 \csc \left(240^{\circ}\right)+4=3\left(\frac{2}{-\sqrt{3}}\right)+4=.536
$$

If $\mathrm{x}=180$ degrees
$=3 \csc \left(60^{\circ}\right)+4=3\left(\frac{2}{\sqrt{3}}\right)+4=7.464$

Sketch the 'original' trig function.
Place asymptotes where the zeros are.
Identify the maximums/minimums
Plot easy points and extend.

Note: the maximum and minimum points of sine are also points in cosecant.
$(240,7)$ and $(600,1)$

This is a preview file.

If you'd like to view the reciprocals practice test (with solutions), download the product file from our stores at TES.com and TeachersPayTeachers.com. (We appreciate the support!)
***Or, find the material at mathplane.com (in the Trigonometry section).

If you have questions, suggestions, or requests, let us know. Cheers

All proceeds go to site maintenance and improvement. (Plus, treats for Oscar the Dog!)

Also, at Facebook, Google+, and Pinterest

