Counting Methods

Formulas, examples, and Practice Questions (and, Solutions)

Topics include combinations, permutations, nested sums, balls and urns, objects and dividers, and more...

This is an 'arrangement' of 10 people, so order does matter. (permutation)

The usher can pick from 10 people for the aisle seat...
Then, he can pick from 9 people for the next seat..
$10 \times 9 \times 8 \times 7 \ldots \times 1=10!$
Then, 8 people for the 3rd seat... Until he finishes...

Jack and Jill are friends and want to sit next to each other..
If the usher grants their request, how many ways can he seat the 10 people (with Jack and Jill next to each other)?

To solve, we'll 'batch' Jack and Jill together... Now, we have an arrangement of 9 'people' (where Jack and Jill are 1 'person')

The number of arrangements is $9 \times 8 \times 7 \times \ldots \times 2 \times 1=9$!
***Then, we have to remember that Jack and Jill can be seated in 2 ways: Jack on the left; or Jill on the left..

$$
99!\times 2 \quad 725,760 \text { ways }
$$

Among the 10 people, Lucy and Ethel are angry at each other and do NOT want to be seated next to each other. How many ways can the usher seat the 10 people (and keeping Lucy and Ethel separated)?

The best approach is to use the above information...
The number of possible arrangements is $10!$...
and, the number of ways to seat 2 people next to each other is $9!\times 2 \ldots$
Therefore, the number of ways NOT to seat 2 people together is $10!-(9!\times 2)$

Larry, Moe, and Curly ask the usher to be seated together.
How many ways can the 10 people be seated, where Larry, Moe, and Curly sit together (and, everyone else is randomly placed)?

Again, we'll batch Larry, Moe, and Curly into one group...
We then have 8 ! ways to seat everyone (where L, M, and C are a 'person').

And, again, we have to remember that Larry, Moe, and Curly can be seated in different orders:
LMC LCM CLM CML MCL MLC 3! or 6 ways....
So, the total ways is $8!\times 3!241920$ ways

Example: At a restaurant, you order the salad bar for $\$ 10.99$. With an empty plate in hand, you

In this case, we'll reorient or thinking toward the individual items...
There are 2 choices for each: yes or no...
Lettuce: yes or no.
Tomatoes: yes or no. \quad Number of possible salads is 2^{12}
etc..
BUT, we assume we won't include an empty plate.
$2 \times 2 \times 2 \times \ldots \times 2$ (12 items with 2 choices each)

$$
\text { So, } \quad 2^{12}-1
$$

Example: Your friends order a large pizza. The pizzeria offers 4 toppings: pepperoni, sausage, mushroom, and spinach.
How many possible types of pizza can your friends order?

In this case, we will separate into number of toppings:

0 toppings (plain cheese)	1 possible way (selecting none)	$4^{\text {C }} 0$
1 topping only 4 possibl	ways (just P, just S, just M, or just Sp)	$4^{C}{ }_{1}$
2 toppings 6 ways (PS,	PM, PSp, SM, SSp, MSp)	$4_{4} \mathrm{C}_{2}$
3 toppings (or leaving off 1 topping)	$\begin{aligned} & 4 \text { ways } \\ & \text { (PSM, PSSp, PMSp, SMSp) } \end{aligned}$	$4_{4} \mathrm{C}_{3}$
4 toppings	1 way	4_{4}^{C}

Note: We could use the other approach. Each topping is either Yes or No...

$$
4 \text { toppings }--->2^{4}=16
$$

Note the relation to Pascal's Triangle:

$$
\begin{aligned}
& 4^{C_{0}} \\
& 4^{C^{1}} \\
& { }_{4} C_{2} \\
& 4_{4} C_{3} \\
& 4_{4} C_{4}
\end{aligned}
$$

Now, suppose your friends can't decide on one type of pizza. Instead, they order a large pizza, divided into 2 halves with different combinations. How many possible 2 -half pizzas could the friends have ordered?

We know the number of types of pizzas is $16 \ldots$ Assuming the 2 halves are different, the possibilities are

since it's a combination
(i.e. just cheese on 1st half and sausage/pepperoni on the other half
is the SAME as sausage/pepperoni on 1st half and just cheese on 2nd half

Example: A sub shop serves sandwiches with the following options:
4 types of bread
3 cheeses or without cheese
4 meats or no meat
any combo of veggies from the following choices: lettuce, tomato, peppers, onions, and/or avocado
How many different sandwiches are possible?

2560 possible ways to construct a sandwich!

First, we have to count how many ways we can arrange 8 letters: $8!$
then, we have to consider how many 'double counts' there are:

But, suppose we swap the two C's?

It's a different arrangement; however, it's the same word!
so, to eliminate the double counts, we divide by the extra possiblities....

Example: A camp counselor buys ice cream for his 15 kids.
He returns with 3 vanilla, 5 chocolate, 4 strawberry, and 3 mint chip cups.
How many ways can the counselor distribute the ice cream to the 15 campers?
This is an application of the above 'word spelling problem'...
There are 15 campers ---->> 15 -letter word...

$12,612,600$ different ways to distribute the flavors to the campers

Example: 20 people attend a meeting. If everyone shakes hands with each person at the meeting, how many handshakes?

Example: 20 people attend the holiday party. Each person brings a gift for everyone in attendance. How many gifts were exchanged?

> Each gift exchange is one direction and unique...

$$
20 \quad \mathrm{x} \quad 19=380 \text { gifts are given }
$$

Ways to arrange the 10 books: 10 !

Then, the ways you can arrange the books, where algebra and calculus are next to each other..

$9!\times 2$
because there are 9! ways to arrange these blocks..
Then, "x 2" because algebra/calculus and calculus/algebra are distinct

How many ways can you arrange those books where algebra and calculus are on each end of the shelf?

Example: A student moves into his dorm room and unpacks 15 books. There are 3 book shelves. How many ways can he place the 15 books, assuming he will place at least one book on each shelf?

There are 15 books to arrange: 15 !
Imagine lining the 15 books.. Now, he must determine how to split them up...

We'll use 'dividers' to separate the books...
Here is one example:

3 books on top shelf; 7 books on middle shelf; 5 books on bottom

So, how many ways can be set the dividers?
14 choices for 1 st divider... 13 choices for 2 nd divider...
Then, divide by 2 , because of 'double counts'

Alternate Approach:

First shelf: 15 arrange anywhere from 1 to 13 books
Second shelf: arrange anywhere from 1 to remaining books (minus 1 or more for Third shelf: arrange remaining books third shelf)

$$
\begin{aligned}
& =118998367488000
\end{aligned}
$$

Note: This is an application of 'balls and urns', where balls are distinguishable, urns are distinguishable,

Example: A company manufactures 4-digit yard address signs.

They include all 10 digits (0 thru 9), but would not set 0 in the first position.
Also, their signs can be rotated 180 degrees, allowing them to produce
fewer signs.
How many different signs do they produce?

First, we'll identify the amount of possible numbers...	$1000-9999$	9	10	10	10

Since 0 cannot be the first digit, there are 9000 possible.

Then, we'll determine which numbers have rotational symmetry...
first digit, 9 possible 2nd digit, 10 possible 3rd digit, 10 possible 4th digit, 10 possible
$0,1,6,8,9$
(2, 3, 4, 5, 7 do not have rotational symmetry...)

And, recognize that 6 and 9 'change' when they are turned 0,1 , and 8 remain as themselves..

How many change when flipped?

Number of ways to change 1st and 4th digits when flipped...

Number of ways to change 2nd and 3rd digits when flipped...

Number of ways to change all four digits when flipped...

Since there are 380 ways to change a number when flipped... We can eliminate half of them!

$$
9000-(380 / 2)=8810
$$

The company only needs to manufacture 8810 numbers...

Practice Questions- \rightarrow

1) How many "words" can you make by rearranging the letters in Mississippi?
2) Playing scrabble, you have the following letters: A, A, F, M, R, R, and S

How many different five-letter words could you make?
3) A restaurant's menu offers 5 soups, 6 appetizers, 20 main entrees, and 3 desserts.

Assuming every diner must order at least an entree, how many possible meals could be served?
4) A 6-letter code is made using all 26 letters...

If you alternate vowels ($\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}$) with consonants, how many possible codes are there?
(note: letters may be repeated)
5) 12 freshmen and 9 sophomores are picked for positions in a rowing team (1st, 2nd, 3rd and 4th seats)

If you must have 2 freshmen and 2 sophomores rowing, how many possible teams could you make?
6) 7 people arrive at a hotel.

There are 3 available rooms..
1 room has 1 bed, 1 room has 2 beds, and 1 room has 3 beds...
How many possible sleeping arrangements are there (assuming the 7th person will sleep in the car!)
7) "split teams" 10 boys are at a playground, ready to play basketball...

How many ways can they be divided into 5 -person teams?
8) For the equation $a+b+c=14$,
if a, b, and c are separate non-negative numbers, then how many possible values can be assigned?
9) For an octagon, how many triangles can be constructed by connecting any 3 vertices? (The edges of each triangle will consist of sides or diagonals of the octagon.)

1) How many "words" can you make by rearranging the letters in Mississippi?

SOLUTIONS

$$
\frac{11!}{4!4!2!}=\frac{11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1 \times 2 \times 1}=\frac{11 \times 10 \times 3 \times 7 \times 6 \times 5}{1 \times 2 \times 1}=34650 \text { words }
$$

2) Playing scrabble, you have the following letters: A, A, F, M, R, R, and S

How many different five-letter words could you make?
If the 7 letters were unique, the answer would be straightforward: $7 \times 6 \times 5 \times 4 \times 3$ (or, $7{ }^{\mathrm{P}} 5$)
7 choices for first, 6 choices for second, etc...
But, we have two A's and two R's...
Example: F A R M S could be spelled with either A or either R... So, we need to eliminate any double counts...

$$
\frac{7^{\mathrm{P}_{5}}}{2!2!}=630 \text { possible words }
$$

3) A restaurant's menu offers 5 soups, 6 appetizers, 20 main entrees, and 3 desserts.

Assuming every diner must order at least an entree, how many possible meals could be served?

4) A 6-letter code is made using all 26 letters...

If you alternate vowels ($\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}$) with consonants, how many possible codes are there?
(note: letters may be repeated)

5) 12 freshmen and 9 sophomores are picked for positions in a rowing team (1st, 2nd, 3rd and 4th seats)

If you must have 2 freshmen and 2 sophomores rowing, how many possible teams could you make?

6) 7 people arrive at a hotel.

There are 3 available rooms.
1 room has 1 bed, 1 room has 2 beds, and 1 room has 3 beds...
How many possible sleeping arrangements are there (assuming the 7th person will sleep in the car!)

$$
{ }_{7} \mathrm{C}_{1} \cdot{ }_{6} \mathrm{C}_{2} \cdot{ }_{4} \mathrm{C}_{3} \cdot{ }_{1} \mathrm{C}_{1}=7 \times 15 \times 4 \times 1=420
$$

7 choices for room 1.... then, 6 choices for room $2 /$ bed 1
5 choices for room $2 /$ bed 2 (divided by 2 because order of beds doesn't matter)
4 choices for room $3 /$ bed 1,3 choices for room $3 /$ bed 2 , and
2 choices for room 3/bed 3 (divided by 3! because order doesn't matter)
remaining choice goes to the car...
7) "split teams" 10 boys are at a playground, ready to play basketball...

How many ways can they be divided into 5 -person teams?

Since the 5-person teams are combinations, $10{ }^{\mathrm{C}} 5$ to pick the first team.

Then, after choosing 5 for one side, the remaining 5 (by default) are 252 ways to split the players
8) For the equation $\mathrm{a}+\mathrm{b}+\mathrm{c}=14$,
if a, b, and c are separate non-negative numbers, then how many possible values can be assigned?

$$
\begin{aligned}
& \text { In this case, each "urn" } a, b \text {, and } c \text {, must have at least } 1 \text { ball... } \\
& \text { since the balls are indistinguishable, we place } 1 \text { in each urn... } \\
& \text { then, solve for } a+b+c=14 \\
& \text { (or, separating identical books onto } 3 \text { bookshelves..) }
\end{aligned}
$$

'1st urn picks
0 to 14 balls'
:---
from remaining balls'
'the 3rd urn c ', takes
the remaining balls.
It only has 1 choice

> total possible ways for (b) indistinguishable balls into (n) distinguishable urns $=\binom{b+n-1}{b}$

Note: this differs slightly from the bookshelf question...
In the bookshelves, the order of books on each shelf mattered..
In this case, 'the order of the balls in each urn doesn't matter' --
the order of the items in a, b, c are not arranged..
9) For an octagon, how many triangles can be constructed by connecting any 3 vertices? (The edges of each triangle will consist of sides or diagonals of the octagon.)

Since any triangle consists of any 3 vertices, it follows that the number of possibilities is ${ }_{8} \mathrm{C}_{3}$ or $\binom{8}{3}$
Examples:

[^0]then, divided by 3 ! because vertices $1,2,7$ is same as $7,1,2$

Balls and Urns, Nested Sums, and more counting approaches...

Example: Suppose 10 friends go on vacation, and each makes a reservation at one of 3 hotels.
How many ways can the friends stay at the hotels?

Example: I bring home 8 unique toys for my 3 dogs. How many ways can I distribute the toys to my dogs, assuming every dog gets at least one toy?

Indistinguishable Balls into Distinguishable Urns
Example: My math class has 30 students. I want to bring in 30 cupcakes for them. The bakery has 5 types of cupcake. If I randomly pick out the cupcakes, how many possible cupcake batches can I purchase for the students?

Example: For the equation $\mathrm{a}+\mathrm{b}+\mathrm{c}=15$, where a, b, and c are non-negative integers, how many possible values are there for a, b, and c ?

Example: Suppose 20 friends go on vacation. How many ways can they be divided among 3 (identical) cabins.

Example: 3 distinguishable gentleman are visiting a town of 3 indistinguishable inns. How many ways can these 3 visitors stay in the town?

Indistinguishable Balls into Indistinguishable Urns
Example: A bakery packs 12 vanilla cupcakes into 3 identical brown boxes. Assuming each box will have at least 1 cupcake, how many ways can the baker divide the cupcakes?

Nine urns are lined up.
If 3 distinct balls are randomly placed in the urns, how many possible arrangements (assuming an urn cannot have more than 1 ball)?

Nine urns are lined up.
If 3 indistinguishable balls are randomly placed in the urns, how many possible arrangements (assuming an urn cannot have more than 1 ball)?

Determine and compare the four scenarios of balls and urns:

4 distinguishable balls placed in 3 distinguishable urns

4 distinguishable balls placed in 3 indistinguishable urns

4 indistinguishable balls placed in 3 distinguishable urns

4 indistinguishable balls placed in 3 indistinguishable urns

Example: Suppose 10 friends go on vacation, and each makes a reservation at one of 3 hotels. How many ways can the friends stay at the hotels?
Imagine Dave is the first friend..
He has 3 choices of hotels -- Hyatt, Quality Inn, or Candlewood Suites Then, Tom has 3 choices: H, QI, or C
Then, Jill has 3 choices: H, QI, or C
$3^{10}=59049$

Example: I bring home 8 unique toys for my 3 dogs: shepherd, lab, and husky. How many ways can I distribute the toys to my dogs, assuming each dog gets at least one toy?

Each toy has 3 choices: 3^{8}
However, this includes cases where dogs get no toys.
We have to subtract those...

And, there are 3 cases where one dog gets all toys.

$$
3.1^{8}
$$

(husky gets all + shepard gets all + lab gets all)

Using Nested sums: we count all the ways the 3 hotels can pick from the 10 friends
total possible ways for
(k) distinguishable balls into (n) distinguishable urns $=\mathrm{n}^{\mathrm{k}}$
or, balls (b) into urns (u) $=u^{b}$

Indistinguishable Balls into Distinguishable Urns

Example: My math class has 30 students. I want to bring in 30 cupcakes for them. The bakery has 5 types of cupcake. If I randomly pick out the cupcakes, how many possible cupcake batches can I purchase for the students?

Imagine the 30 students (cupcakes) are the balls.
Then, imagine the 5 types of cupcake are the 5 distinguishable urns.
We can line up the " 5 cupcake types" (urns)..
Then, distribute the 30 student/cupcakes among the 5 types

$$
\binom{30+5-1}{30}=46376 \text { cupcake order options }
$$

Example: For the equation $\mathrm{a}+\mathrm{b}+\mathrm{c}=15$, where a, b, and c are non-negative integers, how many possible values are there for a, b, and c ?

Method 1: Using nested sums...

Method 2: Applying combination formula

$$
\binom{\mathrm{b}+\mathrm{n}-1}{\mathrm{~b}}=\binom{15+3-1}{15}=136
$$

total possible ways for
(b) indistinguishable balls into (n) distinguishable urns $=\binom{b+n-1}{b}$

This is like lining up 3 urns ($\mathrm{a}, \mathrm{b}, \mathrm{c}$)..
Then, placing 15 balls in the urns...
Each ball has 3 choices, urn a, b, or $\mathrm{c} . .$.

$$
3^{15} \quad \text { FLAWED!!! }
$$

Why is this approach flawed?
This method double counts...
Example: 1st ball goes into urn a, 2nd ball goes into urn b, and, remaining 13 go into urn c..

$$
1+1+13=15
$$

Then, 1st ball goes into urn b, 2nd ball goes into urn a, and, remaining 13 go into urn c..
$1+1+13=15$
Same result counted twice!

This is an application of indistinguishable balls into distinguishable urns..
Here we ware placing 17 (identical) balls into 3 (unique) urns a, b, and $\mathrm{c} .$. .

Method 1: Formula
$\binom{\mathrm{b}+\mathrm{n}-1}{\mathrm{~b}}=\binom{17+3-1}{177}=171$

Method 2: Nested Sums

the rest of the balls

Method 3: Arranging balls and dividers

Imagine 17 balls in a line... Then, place 2 dividers to separate them. (Each of the 3 batches represents the 3 integers..

Example:

In this instance, $\mathrm{a}=3, \mathrm{~b}=9$, and $\mathrm{c}=5$

So, we just have to count the number of ways ot set the 2 dividers..
Since these are non-negative numbers, zero is an option...

Example:

In this instance, $\mathrm{a}=0, \mathrm{~b}=17$, and $\mathrm{c}=0$

| First divider can be placed in 18 places... Second divider can be placed in 18 places. | FLAWED!!!
 Since doubles aren't double-counted, they should
 not be included.
 example: dividers in position 6 and 8, then 8 and 6 |
| :--- | :--- | :--- |
| were counted twice.. But, dividers in | |

place 2 dividers among the 18 slots... $\quad 18{ }^{\mathrm{C}} 2=153$

Then, add 18 for the ways to place dividers next to each other.

$$
153+18=171
$$

Example: 3 distinguishable gentleman are visiting a town of 3 indistinguishable inns. How many ways can these 3 visitors stay in the town?

Here is the list of scenarios:
Inn $1 \quad 2 \quad 3$
gentleman $A \quad B \quad C$
1

1
6 multiples
of same
outcome
:---:
A
A
B
B
C
C

\(\left.\begin{array}{lcc}1 \& 2 \& 3

\mathrm{AB} \& \mathrm{C} \&

\mathrm{AB} \& \& \mathrm{C}

\mathrm{C} \& \mathrm{AB} \&

\mathrm{C} \& \mathrm{AB} \& \mathrm{C}

\mathrm{AB}

\& \mathrm{C} \& \mathrm{AB}\end{array}\right]\)| AB together |
| :--- |
| and C alone |
| $(6$ multiple |
| counts of same |
| outcome $)$ |

There are only 5 possible outcomes!
A B C alone
$A B$ together and C alone BC together and A alone $A C$ together and B alone
$A B C$ all together
$\left.\begin{array}{lll}\mathrm{AC} & \mathrm{B} & \\ \mathrm{AC} & & \mathrm{B} \\ \mathrm{B} & \mathrm{AC} & \\ & \mathrm{AC} & \mathrm{B} \\ \mathrm{B} & & \mathrm{AC} \\ & \mathrm{B} & \mathrm{AC}\end{array}\right]$
$\left.\begin{array}{lll}\mathrm{BC} & \mathrm{A} & \\ \mathrm{BC} & & \mathrm{A} \\ \mathrm{A} & \mathrm{BC} & \\ & \mathrm{BC} & \mathrm{A} \\ \mathrm{A} & & \mathrm{BC} \\ & \mathrm{A} & \mathrm{BC}\end{array}\right]$

How many ways can the 3 distinguishable gentlemen stay in a town of 6 indistinguishable inns?

The answer is still only 5 outcomes!
all alone, all together, AB together (and C alone) AC together (and B alone) $B C$ together (and A alone)

Indistinguishable Balls into Indistinguishable Urns
Example: A bakery packs 12 vanilla cupcakes into 3 identical brown boxes. Assuming each box will have at least 1 cupcake, how many ways can the baker divide the cupcakes?

In this case, we can use brute force method and list the possibilities....

10	1	1		7	4	1		5	5
9	2	1		7	3	2	5	4	3
8	3	1		6	5	1		4	4
8	2	2	6	4	2				
				3	3				
								possib	

12 possible ways

Example: Suppose 20 friends go on vacation. How many ways can they be divided among 3 (identical) cabins ?

In this case, we just want to know how the 20 friends are divided up. (In other words, who is staying with whom in the cabins.)
$\begin{array}{ll}\text { First Attempt: } & \begin{array}{l}\text { total possible ways for } \\ \text { (k) distinguishable balls into (n) distinguishable urns }=\end{array} \mathrm{k}\end{array} \quad$ Each person picks one of 3 cabins... 3^{20}
Then, we eliminate the double counts..
Example: If 2 pick the 1 st cabin, 2 pick the 2 nd cabin, 16 pick 3 rd, that's same as 2 pick 1 st , 16 pick 2 nd, 2 pick 3 rd
total possible ways for
(because cabins are same...)
$\frac{3^{20}}{3!} \quad$ It's not an integer!?!?!

FLAWED!!
Why is it flawed?

Second Attempt: Arranging with spots and dividers
Arrange the individual 20 friends and 2 dividers to separate them...

$$
\frac{22!}{2!} \quad \text { because the dividers are identical }
$$

Example:

Third attempt:

$$
\frac{3^{20}}{a!(20-a)!(20-a-b)!}
$$

each person picks a cabin
where a, b, and c represent the number of people in each cabin...

Then, divide by 3 ! because the cabins are identical..
at for every possible way?

$$
\begin{array}{ll}
\frac{22!}{2!3!} & \text { FLAWED!! } \\
\text { Why is it flawed? }
\end{array}
$$

In the above method, we're arranging the individuals in the cabin. That is unnecessary..
Example: If cabin 1 has person 2, 5, 7, 9 in one separation and 5, 7, 9, 2 in another arrangement, it's counted twice!

If 3 distinct balls are randomly placed in the urns, how many possible arrangements (assuming an urn cannot have more than 1 ball)?

Approach: "view from the balls"
ball 1: 9 choices of urns
ball 2: 8 remaining choices of urns
$9 \times 8 \times 7=504$

Nine urns are lined up.
If 3 indistinguishable balls are randomly placed in the urns, how many possible arrangements (assuming an urn cannot have more than 1 ball)?

Approach: "view from the urns"
there are 9 urns... Choose 3 of them...

$$
\frac{9!}{3!6!}=84 \text { possible ways }
$$

$$
9^{C} C_{3}
$$

Determine and compare the four scenarios of balls and urns:

4 distinguishable balls placed in 3 distinguishable urns

4 distinguishable balls placed in 3 distinguishable urns
4 different colored balls placed in urn $\mathrm{A}, \operatorname{urn} \mathrm{B}$, and urn C
red ball has 3 choices; blue ball has 3 choices; yellow ball has 3 choices; green ball has 3 choices...

$$
3^{4}=81
$$

4 distinguishable balls placed in 3 indistinguishable urns
$4 \quad 0 \quad 0 \quad 1 \quad \sim 1$ way all are in single urn
$3 \begin{array}{lll}3 & 1 & 0\end{array} \quad 4$ choices for separated distinguishable ball chosen
$220 \leadsto \mathrm{AB} / \mathrm{CD} \mathrm{AC} / \mathrm{BD} \quad \mathrm{AD} / \mathrm{BC}$ three ways to pair them
$\begin{array}{lll}2 & 1 & 1\end{array} \mathrm{AB} \mathrm{AC} \mathrm{AD} \mathrm{BC} \mathrm{BD} \mathrm{CD}$ are the pairs that are in one urn

4 indistinguishable balls placed in 3 distinguishable urns
$\square \circlearrowleft \square$
$\binom{b+u-1}{b}=\binom{4+3-1}{4}=15$
$\sum_{a=0}^{4} \sum_{b=0}^{4-a} \sum_{c=4-a-b}^{4-a-b}$
$(1)=15$
5 slots, choose 2 ----> 10
plus, 5 ways the dividers are next to each other
15 total
(same application as non-negative integers $\mathrm{a}+\mathrm{b}+\mathrm{c}=4$)

4 indistinguishable balls placed in 3 indistinguishable urns

Since the 4 balls are identical and the 3 urns are identical, there is a lot of overlap (double counts)... We can just list the possible splits...
$\begin{array}{lll}4 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 2 & 0 \\ 2 & 1 & 1\end{array}$

```
4 total
```

note: all combos are covered...

031
121
040
etc.. can be created by rearranging the identical urns
(We will assume each bookshelf can hold anywhere from 0 to all 20 books.)

Example: How many ways can you divide 20 identical books onto 3 distinct shelves?

$$
\sum_{i=0}^{20} \sum_{j=0}^{20-i} \sum_{k=20-i-j}^{20-i-j}(1)=231
$$

How many ways to divide books into 3 shelves
"How many books does each shelf get?"
\square

Number of ways to places 2 dividers: $21 \mathrm{C}_{2}+21=231$ ways dividers are next to each other
"How many, and which books does each shelf get?"

It is difficult (impossible?) to apply books and dividers because after groups are allocated to shelves,
each group must be divided by n ! to get rid of repeats.
(i.e. the allocations vary, so the n! number varies as well...)

Example: How many ways can you arrange 20 different books onto 3 distinct shelves?

$$
\sum_{i=0}^{20} \sum_{j=0}^{20-i} \sum_{k=20-i-j}^{20-i-j} \sum_{i} P_{i} \cdot{ }_{(20-i)} P_{j} \cdot{ }_{(20-i-j)}^{P}{ }_{k}
$$

$=562000363888803840000$

How many ways to display different books on shelves
"How many, which books, and how are they displayed?"

Number of ways to arrange books and dividers $\frac{(20+2)!}{2}$
because the dividers are not unique
$=562000363888803840000$

Example: How many ways can you divide 20 identical books into 3 identical boxes?

List the possiblities:	20	0	0	16	4	0	14	6	0	12	8	0	10	10	0	8	8	4
	19	1	0	16	3	1	14	5	1	12	7	1	10	9	1	8	7	5
				16	2	2	14	4	2	12	6	2	10	8	2	8	6	6
	18 18	1	1	15	5	0	14	3	3	12	5	3	10	7	3			
				15	4	1	13	7	0	12	4	4	10	5	5	7	7	6
	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	15	3	2	13	6	1	11	9	0						
							13	5	2	11	8	1	9	9	2			
							13	4	3	11	7	2	9	8	3			
										11	6	3	9	7	4		p	siblities
										11	5	4	9	6	5			

[^0]: 8 choices for first vertex,
 7 choices for second vertex,
 6 choices for third vertex...

