Factoring and Simplifying

 Rational Polynomials

 Rational Polynomials}

Notes, Examples, and Worksheets (with solutions)

Topics included quadratic formula, factor by grouping, difference of squares, and more.

What is a "rational polynomial"? A polynomial that has fractional coefficient(s). (i.e. rational coefficients)
Examples: $.5 \mathrm{x}^{2}-3 \mathrm{x}+10 \quad$ The lead coefficient is .5 or $1 / 2$

$$
\begin{aligned}
& \frac{x^{3}}{4}+8 x+1 \\
& x^{2}+\frac{3}{5} x+1 / 4 \\
& 3 x^{2}+2 x+11
\end{aligned}
$$

The lead coefficient is $1 / 4$

The coefficient of the linear term is $3 / 5$

The coefficients of this trinomial are 3,2 , and $11 \cdots$ all rational numbers!

If we want to "simplify" a rational polynomial, we must collect "like terms".
Examples:

$$
x^{2}+5+3 x+.5 x^{2}+4
$$

-

And, sort the terms in descending order.
Examples: $\quad 3-4 \mathrm{x}+2 \mathrm{x}^{2}$

(ignoring the coefficients), we sort from highest degree to lowest degree...

$x^{3}+3 y^{4} x^{2}+2 y x^{5}+7 b$

note: we rank according to the degree of the main variable x

Simplifying Rational Polynomials

Also, we may decide to remove any fractions.
If so, (similar to ordinary fractions), we identify the least common denominator (or, least common multiple)

Examples: simplify the following equations:

$$
\begin{array}{ll}
y=\frac{2}{5} x^{2}+\frac{1}{3} x+2 \quad & \begin{array}{l}
\text { The least common multiple of } 5,3, \text { and } 1 \text { is } 15 \ldots \\
\text { So, multiply the equation by } 15 \ldots .
\end{array}
\end{array}
$$

$$
15 y=6 x^{2}+5 x+30
$$

$$
\mathrm{y}=.6 \mathrm{x}^{3}+.3 \mathrm{x}^{2}+1.5 \quad \text { there are } 2 \text { ways to look at this equation: }
$$

a) decimals -- simply multiply by 10 to remove the decimals...

$$
10 y=6 x^{3}+3 x^{2}+15
$$

b) fractions -- convert to fraction and find least common multiple

$$
y=\frac{3}{5} x^{3}+\frac{3}{10} x^{2}+\frac{3}{2}
$$

least common multiple of 2,5 , and 10 is $10 \ldots$.
so, multiply both sides of equation by 10

$$
10 y=6 x^{3}+3 x^{2}+15
$$

$$
y=4+\frac{x}{7}-\frac{x^{2}}{3}+\frac{x^{3}}{2}
$$

The coefficients of the polynomial are $1,1 / 7,-1 / 3$, and $1 / 2$.. The least common multiply of $1,7,3$, and 2 is $42 \ldots$.
So, multiply the polynomial by $42 \ldots$
(and, write the terms in descending order)

$$
42 y=21 x^{3}-14 x^{2}+6 x+168
$$

Example: Simplify the following:

$$
\begin{array}{lll}
y=3 x^{2}+2 x y+4-\frac{x^{2}}{3}+3+.2 x^{3} & \text { Combine "like" terms: } & y=\frac{8 x^{2}}{3}+2 x y+7+.2 x^{3} \\
& \text { Order terms: } & y=.2 x^{3}+\frac{8 x^{2}}{3}+2 x y+7
\end{array}
$$

(Optional) Remove fractions:

$$
15 y=3 x^{3}+40 x^{2}+30 x y+105
$$

Factoring (4 term) Polynomials: Grouping

Example 1: $y^{3}+2 y^{2}-81 y-162$

Solution A:	$y^{3}+2 y^{2}-81 y-162$	Separate the polynomial
$y^{2}(y+2)-81(y+2)$	Factor each group (using GCF)	
$\left(y^{2}-81\right)(y+2)$	Merge and re-group	
$(y-9)(y+9)(y+2)$		

Factor by 'Grouping'

1) Separate polynomial into groups
2) Factor each group (using Greatest Common Factor)
3) Merge and re-group

Solution B: $y^{3}-81 y+2 y^{2}-162$

$$
\begin{aligned}
& y\left(y^{2}-81\right)+2\left(y^{2}-81\right) \\
& (y+2)\left(y^{2}-81\right) \\
& (y+2)(y+9)(y-9)
\end{aligned}
$$

Note: Although Solutions A and B approach the polynomial differently, the outcome is the same!

Example 2: $\mathrm{b}^{3}+\mathrm{b}^{2}=64 \mathrm{~b}+64$

$$
\begin{array}{ll}
b^{3}+b^{2}-64 b-64=0 & \text { Write equation (setting polynomial equal to zero) } \\
b^{2}(b+1)-64(b+1)=0 & \text { Separate into groups and find } G C F^{\prime} \text { 's } \\
\left(b^{2}-64\right)(b+1)=0 & \text { Merge and regroup } \\
(b+8)(b-8)(b+1)=0 & \text { Factor further } \\
b=-8,8,-1 & \text { Solve }
\end{array}
$$

Then, check your solutions:

$$
\begin{gathered}
\mathrm{b}=-8: \quad(-8)^{3}+(-8)^{2}=64(-8)+64 \\
-512+64=-512+64 \\
\mathrm{~b}=8: \quad(8)^{3}+(8)^{2}=64(8)+64 \\
512+64=512+64 \\
\mathrm{~b}=+1: \quad \begin{array}{l}
(-1)^{3}+(-1)^{2}=64(-1)+64 \\
-1+1=-64+64
\end{array}
\end{gathered}
$$

Factoring (4 term) polynomials: Grouping (continued)
Example 3: $-4 m^{4}-10 m^{3}+16 m^{2}+40 m=0$

$$
\begin{array}{ll}
-m\left(4 m^{3}+10 m^{2}-16 m-40\right)=0 & \text { Greatest common factor } \\
-m\left(4 m^{3}+10 m^{2}-16 m-40\right)=0 & \text { Factor (by grouping) } \\
-m\left(2 m^{2}(2 m+5)-8(2 m+5)\right)=0 & \\
-m\left(2 m^{2}-8\right)(2 m+5)=0 & \text { Simplify further... } \\
-2 m\left(m^{2}-4\right)(2 m+5)=0 & \\
-2 m(m+2)(m-2)(2 m+5)=0 &
\end{array}
$$

$$
\mathrm{m}=0,-2,2,-5 / 2
$$

Comments:

1) Instead of factoring out m, I factored out $-m$, because I prefer working with a leading coefficient that is positive.
2) Do not divide the equation by m, because you will "lose one of the solutions". Instead, factor out the variable.

Check solutions:

$$
\begin{gathered}
\mathrm{m}=0:-4(0)^{4}-10(0)^{3}+16(0)^{2}+40(0)=0 \\
0=0 \\
\mathrm{~m}=-2:-4(-2)^{4}-10(-2)^{3}+16(-2)^{2}+40(-2)=0 \\
-4(16)-10(-8)+16(4)-80=0 \\
-64+80+64-80=0 \\
\mathrm{~m}=2:-4(2)^{4}-10(2)^{3}+16(2)^{2}+40(2)=0 \\
-64-80+64+80=0 \\
\mathrm{~m}=-5 / 2: \quad-4(5 / 2)^{4}-10(-5 / 2)^{3}+16(-5 / 2)^{2}+40(-5 / 2)=0 \\
\\
-4\left(\frac{625}{16}\right)-10\left(\frac{-125}{8}\right)+16\left(\frac{25}{4}\right)-100=0 \\
\\
\quad-\frac{625}{4}-\frac{-625}{4}+100-100=0
\end{gathered}
$$

Example 4: The volume of the sketched box is 60 cubic feet. What are the measurements of the length, width, and height?

Volume $=($ length $)($ width $)($ height $)$

$$
\begin{aligned}
& 60=(x+6)(x-2)(x-1) \\
& 60=\left(x^{2}+4 x-12\right)(x-1) \\
& 60=x^{3}+4 x^{2}-12 x-x^{2}-4 x+12 \\
& 60=x^{3}+3 x^{2}-16 x+12
\end{aligned}
$$

Find x :

$$
\begin{gathered}
x^{3}+3 x^{2}-16 x-48=0 \\
x^{2}(x+3)-16(x+3)=0 \\
\left(x^{2}-16\right)(x+3)=0 \\
(x-4)(x+4)(x+3)=0 \\
x=4,-4,-3
\end{gathered}
$$

Answer question/check solutions:

Cannot have negative measurements!!

> If $x=4$, then length is 10 feet width is 2 feet height is 3 feet

Volume is 60 cubic feet...

Polynomial Factoring Test
I. Simplify
$\left(3 x^{2}+4 x-17\right)+\left(15+2 x^{2}\right)=$
$3(x+4)+2\left(x^{2}+3 x-1\right)=$
$2\left(y^{2}+5 y+8\right)-3\left(y^{2}-y+12\right)=$
II. Factor

$$
\begin{array}{lll}
s^{2}+6 s+9 & x^{2}-10 x+9 & 3 y^{2}+18 y+24 \\
4 x^{2}-49 & 4 n^{2}+12 n+9 & 5 x^{2}-13 x-6
\end{array}
$$

III. Find all solutions

$$
\begin{array}{lll}
x^{2}+11 x+28=0 & x^{2}-2 x-35=0 & x^{3}+7 x^{2}-18 x=0 \\
z^{2}-19 z+90=0 & 4 m^{2}-m-5=0 & 3 x^{2}+4 x+1=0
\end{array}
$$

IV: Simplify

$$
\frac{5}{(x-3)}+\frac{(x+7)}{\left(x^{2}-9\right)}=
$$

$$
\frac{3}{x^{2}}+\frac{4}{x}=
$$

$$
\frac{5 x}{x+3}-\frac{3}{x+8}=
$$

$\frac{\left(x^{2}-25\right)}{\left(x^{2}+6 x+5\right)} \cdot \frac{\left(2 x^{3}+2 x^{2}\right)}{(x-5)}=$

$$
\frac{x^{2}+8 x+7}{x^{2}-1} \cdot \frac{3 x-3}{x+7}=
$$

$$
\frac{x^{2}-10 x-11}{x-5} \div\left(x^{2}+6 x+5\right)=
$$

$$
\left(\frac{x^{2}+5 x+4}{x^{2}+2 x-8}\right) \div\left(\frac{3 x^{2}+x-2}{x^{2}-4}\right)=
$$

V: Find solutions using quadratic formula

$$
x^{2}+3 x-8=0
$$

$$
x^{2}-5 x-14=0
$$

$$
3 x^{2}+x-10=0
$$

$$
x^{2}+3 x+8=0
$$

$$
\frac{x^{2}}{2}+6 x+3=0
$$

Polynomial Factoring Test

I. Simplify
$\left(3 x^{2}+4 x-17\right)+\left(15+2 x^{2}\right)=$
(add "like" terms)
$5 x^{2}+4 x-2$
II. Factor

$$
s^{2}+6 s+9
$$

what multiplies to 9 and adds to 6 ? 3,3

$$
(s+3)(s+3)
$$

$$
4 x^{2}-49
$$

Difference of squares!
square root of 1st term: 2 x square root of 2nd term: 7

$$
(2 x+7)(2 x-7)
$$

III. Find all solutions

$$
\begin{gathered}
x^{2}+11 x+28=0 \\
(x+7)(x+4)=0 \\
x=-4,-7
\end{gathered}
$$

$3(x+4)+2\left(x^{2}+3 x-1\right)=$
(distribute)
$3 x+12+2 x^{2}+6 x-2$
(combine terms)

$$
2 x^{2}+9 x+10
$$

$$
x^{2}-10 x+9
$$

multiplies to 9 and adds to -10 ? -1 and -9

$$
(x-9)(x-1)
$$

$$
4 n^{2}+12 n+9
$$

$$
\mathrm{A}=4 \quad \mathrm{~B}=12 \quad \mathrm{C}=9
$$

Since $\sqrt{\mathrm{AC}}=2 \mathrm{~B}$,
it's a "squared binomial" (or, a "perfect square trinomial")

$$
\begin{aligned}
& \sqrt{4 \mathrm{n}^{2}}=2 \mathrm{n} \quad \sqrt{9}=3 \\
& (2 \mathrm{n}+3)(2 \mathrm{n}+3)=(2 \mathrm{n}+3)^{2}
\end{aligned}
$$

$$
\begin{gathered}
x^{2}-2 x-35=0 \\
(x-7)(x+5)=0 \\
x=-5,7
\end{gathered}
$$

$$
\begin{aligned}
& 2\left(y^{2}+5 y+8\right)-3\left(y^{2}-y+12\right)= \\
& 2 y^{2}+10 y+16-\left(3 y^{2}-3 y+36\right) \\
& -y^{2}+13 y-20
\end{aligned}
$$

$3 y^{2}+18 y+24$
(Take out Greatest Common Factor)

$$
3\left(y^{2}+6 y+8\right)
$$

Then, factor quadratic...

$$
3(y+2)(y+4)
$$

$5 x^{2}-13 x-6$
what multiplies to -30 and adds to -13 ?

$\left(5 x^{2}+-15 \mathrm{x}\right)+(2 \mathrm{x}-6)$| note: to check |
| :--- |
| answer, FOIL |

factor and re-group

First: $5 x^{2}$ Outer: -15 x Inner: 2x Last: -6 $5 x^{2}-13 x-6$
$x^{3}+7 x^{2}-18 x=0$
Factor out GCF: x

$$
\begin{gathered}
x\left(x^{2}+7 x-18\right)=0 \\
x(x+9)(x-2)=0 \\
x=0,-9,2
\end{gathered}
$$

$$
\begin{aligned}
& 3 x^{2}+4 x+1=0 \\
& (3 x+1)(x+1)=0 \\
& 3 x+1=0 \\
& x+1=0
\end{aligned} \begin{array}{r}
x=-1 / 3 \\
x=-1
\end{array}
$$

note: to check solutions, plug answers into original equation

$$
\begin{aligned}
& 9^{2}-19(9)+90=81-171+90=0 \\
& 10^{2}-19(10)+90=100-190+90=0
\end{aligned}
$$

IV: Simplify

$$
\begin{aligned}
& \frac{5}{(x-3)}+\frac{(x+7)}{\left(x^{2}-9\right)}= \\
& \frac{3}{x^{2}}+\frac{4}{x}= \\
& \frac{5 x}{x+3}-\frac{3}{x+8}= \\
& \left(\frac{(x+3)}{(x+3)}\right) \frac{5}{(x-3)}+\frac{(x+7)}{(x+3)(x-3)}= \\
& \frac{3}{x^{2}}+\frac{4 x}{x^{2}}= \\
& \frac{(x+8) 5 x}{(x+8)(x+3)}-\frac{3(x+3)}{(x+8)(x+3)}= \\
& \frac{5 x+15+(x+7)}{(x+3)(x-3)}=\frac{6 x+22}{(x+3)(x-3)} \\
& \frac{4 x+3}{x^{2}} \\
& \frac{5 x^{2}+40 x-(3 x+9)}{(x+8)(x+3)}=\frac{5 x^{2}+37 x-9}{(x+8)(x+3)} \\
& \frac{\left(x^{2}-25\right)}{\left(x^{2}+6 x+5\right)} \cdot \frac{\left(2 x^{3}+2 x^{2}\right)}{(x-5)}= \\
& \frac{x^{2}+8 x+7}{x^{2}-1} \cdot \frac{3 x-3}{x+7}= \\
& \frac{(x+7)(x+1)}{(x+1)(x-1)} \cdot \frac{3(x-1)}{(x+7)} \\
& \text { (factor) } \\
& \frac{(x+7)(x-1)}{(x+1)(x-1)} \cdot \frac{3(x-1)}{(x+7)} \quad \text { (cancel) } \\
& \text { (cancel) } \frac{(x+5)(x-5)}{(x+1)(x+5)} \cdot \frac{2 x^{2}(x+1)}{(x-5)} \\
& 2 \mathrm{x}^{2} \\
& 3 \\
& \frac{x^{2}-10 x-11}{x-5} \div\left(x^{2}+6 x+5\right)= \\
& \text { (invert and multiply) } \\
& \frac{x^{2}-10 x-11}{x-5} \cdot \frac{1}{\left(x^{2}+6 x+5\right)}= \\
& \text { (factor and cancel) } \\
& \frac{(x-11)(x+1)}{(x-5)} \cdot \frac{1}{(x+1)(x+5)}=\frac{x-11}{(x+5)(x-5)} \\
& \left(\frac{x^{2}+5 x+4}{x^{2}+2 x-8}\right) \div\left(\frac{3 x^{2}+x-2}{x^{2}-4}\right)= \\
& \frac{(x+1)(x+4)}{(x+4)(x-2)} \cdot \frac{(x+2)(x-2)}{(3 x-2)(x+1)}= \\
& \frac{(x+1)(x-4)}{(x-4)(x-2)} \cdot \frac{(x+2)(x-2)}{(3 x-2)(x+1)} \\
& \frac{(x+2)}{(3 x-2)}
\end{aligned}
$$

V: Find solutions using quadratic formula

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{x}^{2}+3 \mathrm{x}-8=0 \\
\mathrm{~A}=1 \\
\mathrm{~B}=3 \\
\mathrm{C}=-8
\end{array} \quad \frac{-3 \pm \sqrt{3^{2}-4(1)(-8)}}{2(1)} \\
& x=\frac{-3 \pm \sqrt{41}}{2} \\
& \text { approximately } 1.70 \text { and }-4.70 \\
& x^{2}-5 x-14=0 \quad 3 x^{2}+x-10=0 \\
& x^{2}-5 x-14=0 \quad 3 x^{2}+x-10=0 \\
& \frac{5 \pm \sqrt{25+56}}{2}=x \quad x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \\
& \frac{5 \pm \sqrt{25+56}}{2}=\mathrm{x} \quad \mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \\
& \begin{array}{l}
\frac{5+9}{2}=7 \\
\frac{5-9}{2}=-2
\end{array} \\
& \frac{-1 \pm \sqrt{(1)^{2}-4(3)(-10)}}{2(3)} \\
& \frac{-1 \pm \sqrt{121}}{6}=\frac{5}{3},-2 \\
& \text { The discriminant is } b^{2}-4 a c \\
& (3)^{2}-4(1)(8)<0 \\
& \text { There are no real solutions } \\
& x^{2}+3 x+8=0 \\
& \frac{x^{2}}{2}+6 x+3=0 \\
& \frac{-6 \pm \sqrt{(6)^{2}-4(1 / 2)(3)}}{2(1 / 2)} \\
& \frac{-6 \pm \sqrt{30}}{1} \\
& \text { approximately: }-11.4 \text { and }-0.52
\end{aligned}
$$

Thank you for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know. Cheers.

Also, at mathplane.ORG for mobile and tablets.
And, stores at TeachersPayTeachers and TES

