
Geometry 06 Final Exam Review

Practice questions (and detailed solutions)

Topics include circles, parallel lines, special quadrilaterals, similiarity, trigonometry, area, volume, and more.

Ten questions and answers \rightarrow

1) a) Two sides of a triangle measure 7 and 10. What lengths could the third side be?

b) Determine if the triangle is acute, obtuse, right, or does not exist:

(Triangles are not drawn to scale)

$$\angle A = 46^{\circ}$$

Write the side lengths in order of smallest to largest...

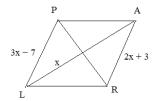
$$\angle B = 61^{\circ}$$

$$\angle C = 73^{\circ}$$

In \triangle DEF,

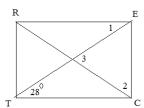
Write the angles in order of smallest to largest... $\overline{DE} = 3$

 $\overline{EF} = 4$


$$\overline{FD} = 5$$

d)
$$m \angle S = 4x + 50$$

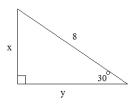
$$m \angle T = 80 + 3x$$


Find the measures of the 3 angles.

$$m \angle V = x - 2$$

In parallelogram PARL, what is the length of diagonal LA?

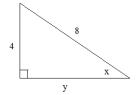
b)

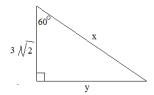


In rectangle RECT, what are the measures of angles 1, 2, and 3?

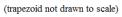
3) Find x and y

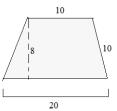
a)

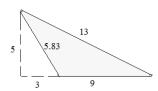




b)

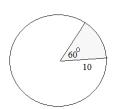




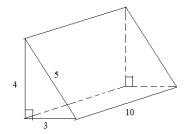


4) Find the shaded areas.

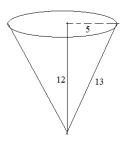
2 3



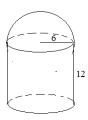



.

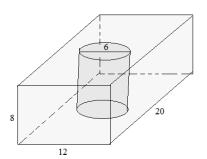
(Square)



5) Find the volume and surface area of the following figures.


volume:

surface area:

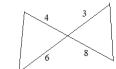

volume:

surface area:

volume:

surface area:

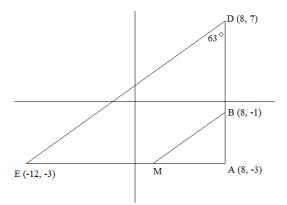
volume:


surface area:

6) Determine which pairs of triangles are similar. (Justify your answer.)

a)

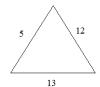
2.5



c)

- 7) a) What is the scale factor from pre-image \triangle MBA to image \triangle EDA?
 - b) What is point M?
 - c) What is the measure of angle E?

8) An isosceles triangle has a vertex angle of 36 degrees and a base length of 10 units. What is the perimeter and area of the triangle?


- 9) In the parallelogram, what is the value of y?
 - a) 55
 - b) 65
 - c) 70
 - d) 75
 - e) 110

- A y° B
- $(z+15)^{\circ}$ $2z^{\circ}$
- 10) A biker leaves home and rides 20 miles due north, turns and rides 25 miles east, turns right and heads 4 miles south, and finally turns and rides 5 miles east. How far from home is the biker?

3 < side < 17

b) Determine if the triangle is acute, obtuse, right, or does not exist:

(Triangles are not drawn to scale)

Pythagorean Theorem Right Triangle

$$7^2 + 8^2 > 9^2$$

Acute Triangle

Two sides don't connect Fails the triangle inequality theorem...

Does not exist

$$3^2 + 4^2 < 6^2$$

Obtuse Triangle

c) In $\triangle ABC$, $\angle A = 46^{\circ}$

 $\angle B = 61^{\circ}$ $/ C = 73^{\circ}$

Write the side lengths in order of smallest to largest...

smallest side opposite smallest angle largest side opposite largest angle

$$a < b < c$$

or $\overline{BC} < \overline{AC} < \overline{AB}$

b)

In \triangle DEF,

 $\overline{DE} = 3$ Write the angles in order of smallest to largest...

$$\overline{EF} = 4$$

 $\overline{FD} = 5$

/ F < <u>/</u> D < <u>/</u> E

d) $m \angle S = 4x + 50$

 $m \angle T = 80 + 3x$

Find the measures of the 3 angles.

 $m \angle V = x - 2$

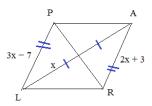
Sum of angles in Triangle = 180 degrees

$$(4x + 50) + (80 - 3x) + (x - 2) = 180$$

R

Т

$$2x + 128 = 180$$


$$x = 26$$

Angle
$$S = 154$$

Angle
$$T = 2$$

Angle
$$V = 24$$

2) a)

In parallelogram PARL, what is the length of diagonal LA?

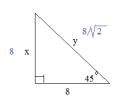
$$3x - 7 = 2x + 3$$
 (opposite sides are congruent)

$$x = 1$$

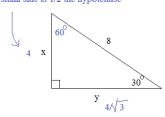
Since x = 10, the length of \overline{LA} is 20

28 1

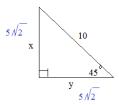
In rectangle RECT, what are the measures of angles 1, 2, and 3?

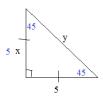

angle
$$1 = 28$$
 degrees (alternate interior angles)

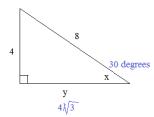
angle 2 = 62 degrees (complementary angles)


angel 3 = 56 degrees

3) Find x and y


a)


small side is 1/2 the hypotenuse

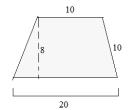

SOLUTIONS

b)

congruent sides, so isosceles 45-45-90 right triangle

 $3\sqrt{2}$ y $3\sqrt{6}$

4) Find the shaded areas.


2 3

area of entire circle: 25 TT

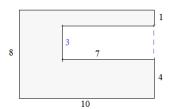
area of cut out white circle: 9 T

shaded area: 16 ↑٢

(trapezoid not drawn to scale)

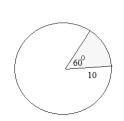
area of trapezoid:

$$\frac{1}{2} \text{(base1 + base2)(height)}$$


$$\frac{1}{2} \text{ (30)(8)} = \boxed{120 \text{ sq. units}}$$

area of triangle = $\frac{1}{2}$ (base)(height)

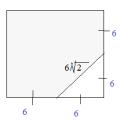
$$=\frac{1}{2}(9)(5)$$


= 22.5 sq units

Area of encased rectangle 8 x 10 = 80

Area of cut out white rectangle $7 \times 3 = 21$

59 sq. units

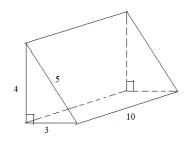


sector area = $\frac{\text{angle}}{360}$ (radius)

$$=\frac{60}{360}(100)$$

$$=$$
 $\frac{50}{3}$

(Square)



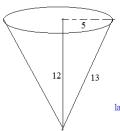
Area of square = 12 x 12 = 144

Area of white triangle = 18

5) Find the volume and surface area of the following figures.

volume:

60 cubic units


surface area: 132 square units this is a triangular prism...

volume = (area of base)(height)

$$\frac{\frac{1}{2}(3)(4)(10)}{\text{triangle height}} = 60$$

For the surface area, we'll add the five sides...

SOLUTIONS

this is a cone (with one base)...

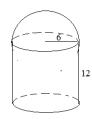
volume =
$$\frac{1}{3}$$
 (area of base)(height)

$$\frac{1}{3}(25)$$
 (12) = 100

lateral area of cone: $\frac{1}{2}$ (circumference)(slant height)

$$\frac{1}{2}(10)(13) = 65)$$

100 🏋 cubic units volume:


surface area: 90 🃉 square units

volume:

surface area:

area of base: 25 T

total surface area: 90 T

576 T cubic units

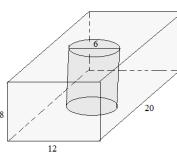
252 square units

this is a cylinder with a hemisphere on top of it...

volume of a cylinder: (area of base)(height)

$$(36)$$
) $(12) = 432$

volume of hemisphere: $\frac{1}{2} \cdot \frac{4}{3} \uparrow \uparrow \text{ (radius)}^3$


$$\frac{2}{3}$$
 (216 $\uparrow\uparrow$) = 144 $\uparrow\uparrow$

To find the surface area, we'll go piece by piece...

middle: (lateral area of a cylinder) = (circumference)(height)

top: (hemisphere) =
$$\frac{1}{2}$$
 · 4 $\uparrow \uparrow$ (radius) 2 = 72 $\uparrow \uparrow$

b)

1694 cubic units (approx)

992 + 30

this is a rectangular prism with a cylinder cut out of it

volume of prism: (8)(12)(20) = 1920

volume of cylinder:

(9^{††})(8) = 72 ↑↑

surface area:

top and bottom:

lateral area: (perimeter)(height)

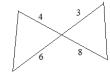
$$(64)(8) = 512$$

inside surface of cut out cylinder: (circumference)(height)

$$(6 \uparrow \uparrow)(8) = 48 \uparrow \uparrow$$

6) Determine which pairs of triangles are similar. (Justify your answer.)

volume:

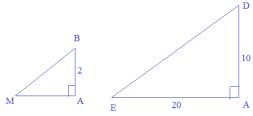

surface area:

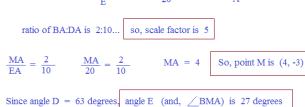
Similar -- (Side-Angle-Side)

sides are proportional and included angle congruent

NOT similiar

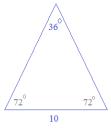
vertical angles congruent, but corresponding sides not proportional

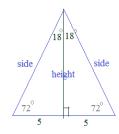



Similar -- (Angle-Angle)

Corresponding angles are congruent 50-60-70 triangles

- b) What is point M?
- c) What is the measure of angle E?


Isolating the triangles, and finding their lengths, we have



8) An isosceles triangle has a vertex angle of 36 degrees and a base length of 10 units. What is the perimeter and area of the triangle?

so, base angles are 72..

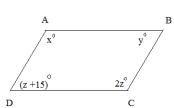
E (-12, -3)

$$\tan(72^{\circ}) = \frac{\text{height}}{5}$$

M

$$\cos(72^{\circ}) = \frac{5}{\text{side}}$$

Area =
$$\frac{1}{2}$$
 (base)(height)


D(8,7)

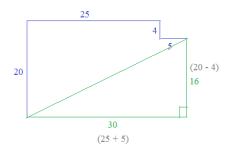
B (8, -1)

A (8, -3)

$$=\frac{1}{2}(10)(15.4)$$

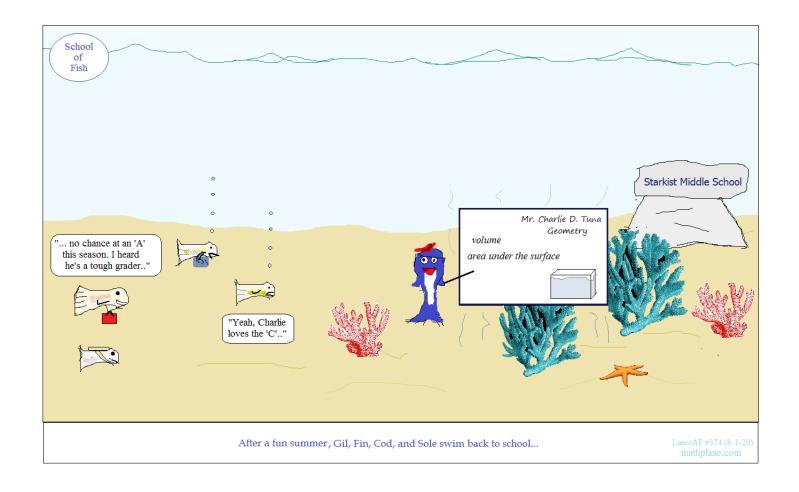
9) In the parallelogram, what is the value of y?

Since consecutive angles are supplementary...


$$(z + 15) + 2z = 180$$

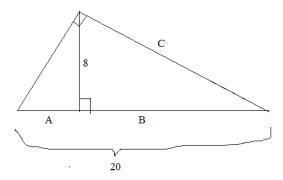
$$3z + 15 = 180$$

$$3z = 165$$
 $z = 55$

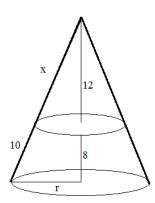

Since opposite angles are congruent,

10) A biker leaves home and rides 20 miles due north, turns and rides 25 miles east, turns right and heads 4 miles south, and finally turns and rides 5 miles east. How far from home is the biker?

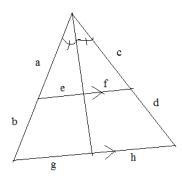
the distance is 34..


.

More math questions-→


Similarity and Proportions

1) Find A, B, and C



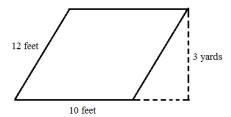
2) The radius (r) of the lower circle is

- a) 6
- b) 9
- c) 10
- d) 12
- e) 15

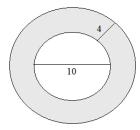
3) Match the proportion with the theorem or justification

1)
$$\frac{b}{a} = \frac{d}{c}$$

2)
$$\frac{e}{f} = \frac{a}{c}$$


3)
$$\frac{a}{e} = \frac{b}{a}$$

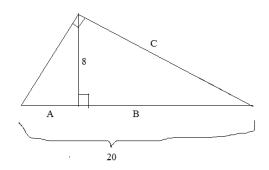
4)
$$\frac{a}{a+b} = \frac{c}{c+d}$$

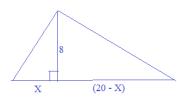

- A) Angle Bisector
- B) Side-Splitter
- C) Triangles ---> corresponding sides are proportional
- D) Equation is not always true

Perimeter and Area

1) Find the area of the parallelogram

2) Find the shaded area:


- a) 6 Ⅲ
- b) 9 Ⅲ
- c) 12 ∏
- d) 56 ∏
- e) 84 🏋
- 3) Find the perimeter of a rhombus with diagonals 14 and 48.


4) The ratio of the sides of a trapezoid are 2:5:8:5

5) Find the perimeter of an equilateral triangle with altitude 12

Similarity and Proportions

1) Find A, B, and C

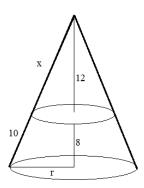
$^2 = (X)(20 - X)$	pro
54 = 20X - X	hyp

operties of itude to potenuse of . ht triangle...

$$X^2 - 20X + 64 = 0$$

$$(X - 16)(X - 4) = 0$$

$$X = 16 \text{ or } 4$$

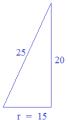

$$A = 4 B = 16$$

Then,
$$C = 8\sqrt{5}$$

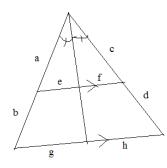
Pythagorean Theorem

2) The radius (r) of the lower circle is

- a) 6
- b) 9
- c) 10
- d) 12
- e) 15



recognizing similar triangles...


$$\frac{x}{(x+10)} = \frac{12}{20}$$

$$20x = 12x + 120$$

$$x = 15$$

3) Match the proportion with the theorem or justification

1)
$$\frac{b}{a} = \frac{d}{c}$$
 B - side-splitter

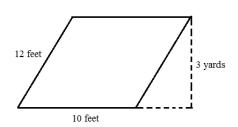
2)
$$\frac{e}{f} = \frac{a}{f}$$

A = angle bisector

B) Side-Splitter

A) Angle Bisector

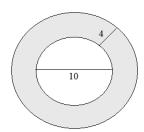
3)
$$\frac{a}{e} = \frac{b}{a}$$


D - not always true

C) Triangles ---> corresponding sides are proportional

D) Equation is not always true

4)
$$\frac{a}{a+b} = \frac{c}{c+d}$$
 C - corresponding sides proportional


1) Find the area of the parallelogram

Area of a parallelogram = base x height

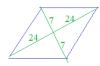
10 feet x 9 feet =
$$90$$
 square feet

2) Find the shaded area:

- a) 6 Ⅲ
- b) 9 Ⅲ
- c) 12 ⊤
- d) 56 ∏
- e) 84 🏋

big circle radius: 5 + 4 = 9

area of big circle: 81

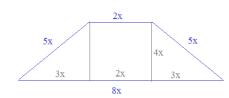

small circle radius: 5

area of small circle: 25 1

56

3) Find the perimeter of a rhombus with diagonals 14 and 48.

The diagonals of a rhombus are perpendicular bisectors...


Pythagorean Triple: 7-24-25

so, each side is 25 units

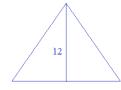
perimeter is
$$4x \ 25 = 100 \text{ units}$$

4) The ratio of the sides of a trapezoid are 2:5:8:5

If the area is 245, what is the base, height, and perimeter of the trapezoid?

3 - 4 - 5 triangles... 3x 4x 5x

$$\frac{1}{2}$$
 (base1 + base2)(height) = 245

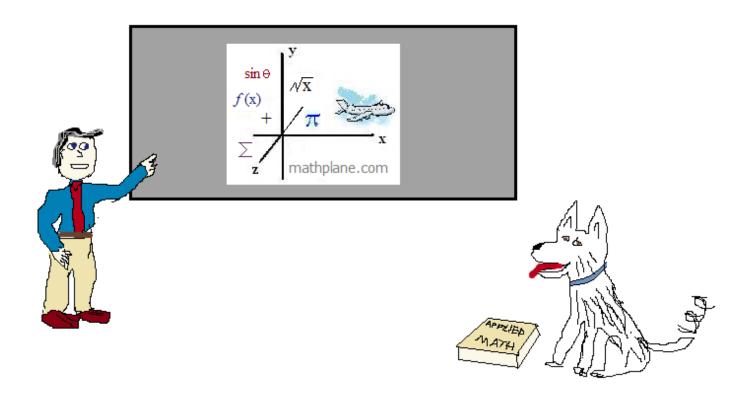

$$\frac{1}{2} (10x)(4x) = 245$$

$$20x^2 = 245$$

$$x = 3.5$$

base: 28 height: 14 perimeter: 70

5) Find the perimeter of an equilateral triangle with altitude $12\,$



perimeter = $24 \sqrt{3}$

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Cheers

Also, at Mathplane.ORG for mobile and tablets.

And, at the mathplane store on TeachersPayTeachers