Calculus: Mean Value Theorem

Notes, Examples,	and Practice	Questions	(with Solutions	;)
------------------	--------------	-----------	-----------------	----

Topics include MVT definition, Rolle's Theorem, Implicit Differentiation, applications, extrema, and more.

Mathplane.com

Derivative Mean Value Theorem

If a function is continuous on the interval [a, b] and differentiable on the interval (a, b), then

there exists at least one point c where

$$f'(c) = \underbrace{f(b) - f(a)}_{b - a}$$
instanteous
rate of change
at c
$$average rate$$
of change
between a and b

 $h(\mathbf{x}) = \mathbf{x}^3 - 2$ Example:

- a) determine the AROC on the interval [-1, 3]
- b) find the value "c" to verify the mean value theorem

First, we recognize that this satisfies the necessary parts of the MVT.. It is continuous on [-1, 3] and differentiable on (-1, 3)...

- Average Rate (slope) Of Change
- Instantaneous $h'(x) = 3x^2 - 0$ Rate Of Change h'(c) = 7at point "c"

$$3c^2 = .7$$
 $c = -1.83$ or 1.53

not in the interval

[-1, 3]

Application: A runner goes 5km is 20 minutes. Show that he ran exactly 12 km/hour at least twice.

Mean Value Theorem

The velocity of the runner is continuous... Initial rate is $0 \longrightarrow (0, 0)$

AROC is 5 km/20 minutes = 15 km/hour

As the runner accelerates from 0 to 15 (or more), he must pass a rate of 12 km/hour. And, when the runner stops, he must slow down from at least 15 km/hour to 0...

If function is continuous and differentiable...
there exists at least one point c where

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 interval [a, b]

What does it mean?

Assume the right side is the formula for slope between two points (AROC) secant line

the left side is the expression for the slope at a point (IROC) tangent line

So, whatever the slope between 2 points, there is some point that has the same slope....

Exceptions:

it's not continuous

slope is 1

slope of tangent line
would be 1, but c
doesn't exist!

it's not differentiable

nowhere with the same slope because of the cusp

slope is 0 (horizontal line), but because of the cusp, there is no slope of 0 function is not differentiable on interval (2, 3)

Example: Let g be a function $g(x) = x^3 - 2x^2$

Find all values c on the interval [-1, 3] that satisfy the conclusion of the mean value theorem

$$g(-1) = +3$$
 $g(3) = 9$ slope between $(-1, -3)$ and $(3, 9)$ is 3

MVT
$$\Rightarrow$$
 $g'(c) = \frac{g(3) - g(-1)}{3 - (-1)} = \frac{9 - (-3)}{4} = 3$

$$g'(x) = 3x^{2} - 4x$$

$$3 = 3c^{2} - 4c$$

$$3c^{2} - 4c - 3 = 0$$

$$c = \frac{4^{+}\sqrt{16 - (-36)}}{2(3)} = \frac{2^{+}\sqrt{13}}{3}$$

What is Rolle's Theorem? It's a specific "version of the Mean Value Theorem (MVT)", when the slope is zero.

Definition: If function is continuous and differentiable... and f(a) = f(b), then there exists at least one point c where

$$f'(c) = \frac{f(b) - f(a)}{b - a} = 0$$
 interval [a, b]

Note: if f(a) = f(b), then the line \overline{ab} is horizontal ---> slope is 0

This implies there is (at least) one critical value in [a, b] ---> a maximum or minimum

Example: For the function $f(x) = x^3 + 5x^2 - 17x - 21$,

find an interval such that Rolle's Theorem would apply... Then, determine the "c" value, such that f(x) is a relative max or relative min.

We'll seek an interval between zeros....

$$f(x) = (x-3)(x+1)(x+7)$$
 so, the zeros are $(3,0), (-1,0),$ and $(-7,0)...$

So, let's choose the interval [-7, 3]....

Slope between (-7, 0) and (3, 0) is 0 (horizontal tangent)

$$f'(x) = 3x^2 + 10x - 17$$

where is f'(x) = 0??

$$3x^2 + 10x - 17 = 0$$
 $x = -4.57$ and $x = 1.24$

- f(x) is continuous on the closed interval [-7, 3]
- f(x) is differentiable on the open interval (-7, 3)

$$f(-7) = f(3)$$

Practice Questions-→

$$f(x) = x^2 - 2x + 5$$

2) For the function $f(x) = x^3 + 2x^2 - 9x - 18$

Apply Rolle's Theorem and explain why there is a (local) minimum between x = -2 and x = 3...

3) What is the tangent line that is parallel to the secant line with points (-3,8) and (4,1) that passes through

$$x^2 + (y-4)^2 = 25$$

Where does the Average Rate of Change equal the Instanteous Rate of Change?

- a) -1.99
- b) 1.55
- c) 2.57
- d) 3.32
- e) 9.96
- 5) Explain and show why the MVT applies to [0, 8], but fails in the interval [-1, 8]...

$$f(x) = x^{\frac{2}{3}}$$

6) $f(x) = \frac{1}{x}$ On the interval [-2, 2], find c that satisfies the mean value theorem. Why doesn't it work?!?!

Step 1: Determine if the function satisfies the MVT

----> it is continuous on [0, 3] and differentiable on (0, 3) so, it qualifies..

Step 2: Find the AROC (i.e. slope between endpoints)

$$f(0) = 5$$
 and $f(3) = 8$

----> the slope between (0, 5) and (3, 8) is 1

Step 3: Find the IROC

$$f'(x) = 2x - 2$$

2) For the function $f(x) = x^3 + 2x^2 - 9x - 18$

f'(c) = 1

$$2(c) - 2 =$$
 $c = 3/2$

Apply Rolle's Theorem and explain why there is a (local) minimum between x = -2 and x = 3...

factor
$$f(x)$$
 --- $x^2(x+2) - 9(x+2)$
 $(x^2 - 9)(x+2)$
 $(x+3)(x-3)(x+2)$
 $f(-2) = f(3) = 0$

f'(c) = 0 at a point in the interval (-2, 3)

$$f'(x) = 3x^{2} + 4x - 9$$

$$0 = 3x^{2} + 4x - 9$$
-2.52 and 1.19

since the derivative equals zero, it is a maximum or a minimum. And, we find that f(c) < 0 ---> minimum

$$f(1.19) = 1.685 + 2.832 - 10.71 - 18 = -24.2$$

3) What is the tangent line that is parallel to the secant line with points (-3, 8) and (4, 1) that passes through

$$x^2 + (y-4)^2 = 25$$

secant line: slope is $\frac{8-1}{-3-4} = -1$

$$y = -x + 5$$

tangent line that is parallel will have a slope of -1

$$x^2 + y^2 - 8y + 16 = 25$$

$$2x + 2y \frac{dy}{dx} - 8 \frac{dy}{dx} + 0 = 0$$

$$\frac{dy}{dx} = \frac{2x}{8 - 2y}$$

plug in the slope -1: $-1 = \frac{x}{4+y}$

$$y = x + 4$$

Find the intersection: y = x + 4

$$y = x + 4$$

 $x^{2} + (y - 4)^{2} = 25$ $2x^{2} = 25$

$$y - 7.53 = -1(x - 3.53)$$

$$y - .47 = -1(x + 3.53)$$

Where does the Average Rate of Change equal the Instanteous Rate of Change?

- a) -1.99
- b) 1.55

AROC: x = 0 f(0) = -1 (0, -1)

x = 3 f(3) = 8.95 (3, 8.95)

Slope between points: $\frac{9.95}{3} = 3.32$

- c) 2.57
- d) 3.32

- IROC: $f'(x) = 2x + e^{-x}$ so, where is f'(x) = 3.32?

e) 9.96

 $2x + e^{-x} = 3.32$

$$x = -1.99 \text{ or } 1.55$$

We cancel -1.99 because it's not in the interval...

5) Explain and show why the MVT applies to [0, 8], but fails in the interval [-1, 8]...

$$f(x) = x^{\frac{2}{3}}$$

Since the function is not differentiable at x = 0, the MVT does not apply...

 $f'(x) = \frac{2}{3} x^{-1/3}$

(i.e it may or may not work)

However, it can apply to the interval [0, 8], because a = 0, b = 8 --- c must be in between! on the interval [0, 8], the function is continuous...

and, differentiable on (0, 8)...

6) $f(x) = \frac{1}{x}$ On the interval [-2, 2], find c that satisfies the mean value theorem.

Why doesn't it work?!?!

Because $f(x) = \frac{1}{x}$ is not continuous (and not differentiable) at x = 0

and, clearly there is no spot between -2 and 2 where the IROC is 1/4

MVT is guaranteed when the interval is differentiable...

Note: if it's not differentiable, it still may work....But, it's not guaranteed..

Example:

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Cheers.

Also, at mathplane.ORG (for mobile and tablets)

Find more content in the mathplane stores at TeachersPayTeachers and TES