Similarity and Proportions

Review Test

Topics include Angle Bisector Theorem, Altitude to hypotenuse, Quadrilaterals, Proofs, and more.

1) $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

$$
\begin{aligned}
& \mathrm{AB}=10 \\
& \mathrm{BC}=\mathrm{x}+12 \\
& \mathrm{DE}=\mathrm{x}+4 \\
& \mathrm{EF}=2
\end{aligned}
$$

Find $\mathrm{x} . .$.
2) The triangles are similar: find x

3)

4)

If the perimeter of $\triangle \mathrm{ADE}$ is 60 , then what are the lengths of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$?
5)

6)

What is the coordinate of point M ?

7) Find $x, y, z . .$.

8) Inside the rectangle RECT, find the length of $\overline{\mathrm{EM}}$

$\mathrm{TC}=12$
9) Given: $\angle \mathrm{B}=\angle \mathrm{D}$

10) Solve the triangle by finding

11) The parallelogram has perimeter 154 feet. Find the area.

12) Given: $\angle \mathrm{DBC}=\lfloor\mathrm{A}$

Find: the length of $\overline{\mathrm{DC}}$

13) An isosceles trapezoid has bases 6 and 18 , and legs with length 8 .

If the legs were extended upward, how long before the legs would meet?

14) ABC is a right triangle where $\overline{\mathrm{AD}}$ and $\overline{\mathrm{AE}}$ are angle trisectors.

Find the length of $\overline{\mathrm{AE}}$

15) Two telephone poles are 80 feet apart.

One pole is 50 feet high. The second pole is 30 feet high.
A wire runs from the top of the first pole to the bottom of the second.
And, another wire runs from the top of the second pole to the bottom of the first.
How far above the ground do the wires pass each other?

16) If $\overline{\mathrm{RM}}$ bisects angle BMA, what is the length of $\overline{\mathrm{BR}}$?

17) Given: $\overline{\mathrm{TI}}$ is an angle bisector
$\overline{\mathrm{RH}}$ is an angle bisector
$\overline{\mathrm{RI}}=4 \quad \overline{\mathrm{RT}}=8 \quad \overline{\mathrm{HT}}=3$
Find: $\overline{\mathrm{GI}}$ and $\overline{\mathrm{GH}}$

18) Given: $\frac{\mathrm{SR}}{\mathrm{MR}}=\frac{\mathrm{LR}}{\mathrm{AR}}$

$$
\overline{\mathrm{SL}}=\overline{\mathrm{IA}}
$$

Prove: SIAL is a parallelogram

Statements	Reasons

SOLUTIONS- -

1) $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

Similarity Review Test

Find $\mathrm{x} . .$.

SOLUTIONS

$$
\frac{10}{x+12}=\frac{x+4}{2}
$$

$$
\begin{aligned}
& x^{2}+16 x+48=20 \\
& (x+2)(x+14)=0 \\
& x=-2,-14
\end{aligned}
$$ be negative)

2)

) The triangles are similar: find x

If $A D \| B C$, then there is one solution..

(angle $\mathrm{A}=$ angle C)
$\triangle \mathrm{AED}^{\sim} \triangle \mathrm{CEB}$
$\frac{8}{14}=\frac{3 x-1}{12}$

$$
96=42 x-14
$$

$$
110=42 \mathrm{x}
$$

$$
x=2.62
$$

But, if angle $A=$ angle B,

$$
\triangle \mathrm{AED}^{\sim} \triangle \mathrm{BEC}
$$

$$
\frac{8}{12}=\frac{3 x-1}{14}
$$

$$
112=36 x-12
$$

$$
124=36 x
$$

$$
x=3.44
$$

3)
4)

If the perimeter of $\triangle \mathrm{ADE}$ is 60 , then what are the lengths of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$?
perimeter is $60 \ldots$
$\mathrm{BD}+\mathrm{CE}+\mathrm{DE}+\mathrm{AB}+\mathrm{AC}=60$
$5+4+26+\mathrm{X}+(25-\mathrm{X})=60$
side-splitter theorem: $\frac{X}{25-X}=\frac{5}{4}$
$125-5 \mathrm{X}=4 \mathrm{X}$
$\mathrm{X}=\frac{125}{9} \quad \mathrm{AB}$
$25-X=\frac{100}{9} \quad A C$

What is the length of $\overline{\mathrm{AB}}$?

AC is 8 (because all radii are congruent)

$$
\text { angle bisector theorem: } \frac{8}{9}=\frac{x}{8-x}
$$

$$
9 x=64-8 x
$$

$$
\mathrm{x}=64 / 17
$$

6)

What is the coordinate of point M?

$$
\begin{aligned}
\begin{array}{l}
\text { Using angle bisector } \\
\text { theorem }
\end{array} & \frac{13}{5}
\end{aligned}=\frac{\mathrm{x}}{12-\mathrm{x}}, \begin{aligned}
5 \mathrm{x} & =156-13 \mathrm{x} \\
18 \mathrm{x} & =156 \\
\mathrm{x} & =8 \frac{2}{3}
\end{aligned}
$$

7) Find $x, y, z . .$.

Side-Splitter Theorem	$\frac{6}{x}$
	$=\frac{4}{8-x}$
$48-6 x$	$=4 x$
$x=4.8$	
Pythagorean Theorem	$4.8^{2}+y^{2}=6^{2}$
$y=3.6$	

Similar Triangles

$$
\begin{aligned}
\frac{z}{3.6} & =\frac{10}{6} \\
z & =6
\end{aligned}
$$

8) Inside the rectangle RECT, find the length of EM

ET is 15 (Pythagorean Theorem)

$$
9^{2}+12^{2}=15^{2}
$$

Using Angle Bisector Theorem, we can find MC

$$
\begin{aligned}
& \frac{15}{12-\mathrm{x}}=\frac{9}{\mathrm{x}} \\
& 15 \mathrm{x}=108-9 \mathrm{x} \\
& 24 \mathrm{x}=108 \\
& \mathrm{x}=4.5 \\
& \begin{array}{l}
\text { Since } \mathrm{MC}=4.5 \\
\text { and } \quad \mathrm{EC}=9, \\
\overline{\mathrm{EM}}=10.06
\end{array}
\end{aligned}
$$

M is the midpoint of $\overline{\mathrm{AD}}$
$\mathrm{BM} \perp \mathrm{AD}$

Find: The length of AD The length of $\overline{A B}$

Label the triangles..

$$
\frac{19}{\mathrm{x}}=\frac{\mathrm{X}}{9} \quad \mathrm{X}=\sqrt{171}
$$

$$
\mathrm{AD}=2 \sqrt{171}
$$

$$
\mathrm{X}^{2}+19^{2}=A B^{2}
$$

$$
171+361=\mathrm{AB}^{2}
$$

$$
\mathrm{AB}=\sqrt{532}
$$

10) Solve the triangle by finding $\overline{\mathrm{BU}, \mathrm{UN}}$, and $\overline{\mathrm{RN}}$

method 1: break into similar triangles
and create proportion...

'left"
"hypotenuse"

$$
\begin{gathered}
x^{2}+16 x=36 \\
x^{2}+36 x-36=0 \\
(x+18)(x-2)=0 \\
x=2 \text { or }-16
\end{gathered}
$$

cannot have negative sides

Since $\mathrm{X}=2, \mathrm{RN}$ is 2
Then, UN is $\sqrt{32}$
Pythagorean Theorem..
And, BU is $/ \sqrt{288}$
12)
A

11) The parallelogram has perimeter 154 feet. Find the area.

Similar right triangles (because opposite angles of parallelogram are congruent)

$$
\begin{aligned}
& \frac{x}{10}=\frac{y}{12} \\
& y=\frac{12 x}{10} \\
& y=\frac{6}{5} x
\end{aligned}
$$

SOLUTIONS

Since the perimeter is 154 , we'll add all the sides...

$4.4 \mathrm{x}=154$
$\mathrm{x}=35$
base of parallelogram: 42 height: 10 area: 420
base of parallelogram: 35 height: 12 area: 420

Given: $\angle \mathrm{DBC}=\swarrow \mathrm{A}$

Find: the length of $\overline{\mathrm{DC}}$

Reorient to show the similar triangles (Angle-Angle)

[^0]since x is a length, then 12 is the solution!
13) An isosceles trapezoid has bases 6 and 18 , and legs with length 8 . If the legs were extended upward, how long before the legs would meet?

\[

$$
\begin{aligned}
\frac{x}{(x+8)} & =\frac{6}{18} \\
18 x & =6 x+48 \\
x & =4
\end{aligned}
$$
\]

14) ABC is a right triangle where $\overline{\mathrm{AD}}$ and $\overline{\mathrm{AE}}$ are angle trisectors. Find the length of $\overline{\mathrm{AE}}$
5-12-13 right triangle

Draw altitude H
$\triangle \mathrm{BAC}$ and $\triangle \mathrm{EPC}$ are similar triangles

$$
\frac{5}{12}=\frac{\mathrm{H}}{\mathrm{~L}} \quad \mathrm{~L}=\frac{12 \mathrm{H}}{5}
$$

$$
\begin{gathered}
\text { Since this is a 30-60-90 triangle, } \\
2 \mathrm{H}=\mathrm{X} \\
(12-\mathrm{L})^{2}+\mathrm{H}^{2}=\mathrm{X}^{2} \quad \text { Pythagorean Theorem } \\
\left(12-\frac{12 \mathrm{H}}{5}\right)^{2}+\mathrm{H}^{2}=(2 \mathrm{H})^{2} \quad \text { Substitution } \\
\left(12-\frac{12 \mathrm{H}}{5}\right)^{2}=3 \mathrm{H}^{2} \\
\left(12-\frac{12 \mathrm{H}}{5}\right)^{2}=\sqrt{3}(\mathrm{H}) \\
\mathrm{H}=\frac{\left(\sqrt{3}+\frac{12 .}{5}\right) \mathrm{H}}{12} \begin{aligned}
\left(\sqrt{3}+\frac{12 .}{5}\right)
\end{aligned}
\end{gathered}
$$

Therefore, $\mathrm{X}=2 \times 2.90$
15) Two telephone poles are 80 feet apart.

One pole is 50 feet high. The second pole is 30 feet high.
A wire runs from the top of the first pole to the bottom of the second.
And, another wire runs from the top of the second pole to the bottom of the first.
How far above the ground do the wires pass each other?

Step 1: Draw and label diagram; Recognize problem.

Step 2: Split the triangles and create proportions

$$
\frac{50}{80}=\frac{\mathrm{h}}{(80-\mathrm{x})} \leadsto \mathrm{h}=\frac{50(80-\mathrm{x})}{80}
$$

80

80

$\frac{30}{80}=\frac{h}{x}$

$$
\leadsto h=\frac{30 \mathrm{x}}{80}
$$

Solve the system:

$$
\begin{array}{rrr}
\mathrm{h}=\frac{50(80-\mathrm{x})}{80} & & \\
\mathrm{~h}=\frac{30 \mathrm{x}}{80} & 4000-50 \mathrm{x} & =30 \mathrm{x} \\
\mathrm{x} & =50 & \text { If } \mathrm{x}=50, \text { then } \mathrm{h}=18.75
\end{array}
$$

16) If $\overline{\mathrm{RM}}$ bisects angle BMA ,
what is the length of $\overline{\mathrm{BR}}$?
$\overline{\mathrm{BA}}$ is 12 (altitude to hypotenuse / geometric mean)
Then, we split $\overline{\mathrm{BA}}$ into segments $\overline{\mathrm{BR}}=\mathrm{x}$ and $\overline{\mathrm{RA}}=(12-\mathrm{x})$
We recognize $\overline{\mathrm{BM}}=20$ (Pythagorean Theorem)
Finally, using Angle bisector theorem...

$$
\begin{aligned}
\frac{20}{\mathrm{x}} & =\frac{16}{12-\mathrm{x}} \\
16 \mathrm{x} & =240-20 \mathrm{x} \\
36 \mathrm{x} & =240
\end{aligned}
$$

17) Given: TI is an angle bisector

$\overline{\mathrm{RH}}$ is an angle bisector

$\overline{\mathrm{RI}}=4 \quad \overline{\mathrm{RT}}=8 \quad \overline{\mathrm{HT}}=3$
Find: $\overline{\mathrm{GI}}$ and $\overline{\mathrm{GH}}$

Step 1: mark the diagram. look for clues
Angle Bisector Theorem!

Step 2: Set up proportions
$\triangle \mathrm{RGT} \quad \frac{4+\mathrm{X}}{8}=\frac{\mathrm{Y}}{3}$
$8 \mathrm{Y}=3 \mathrm{X}+12$
\triangle TRG $\quad \frac{8}{\mathrm{Y}+3}=\frac{4}{\mathrm{X}}$ $8 \mathrm{X}=4 \mathrm{Y}+12$

Step 3: Solve the System

$$
\begin{gathered}
-3 \mathrm{X}+8 \mathrm{Y}=12 \\
8 \mathrm{X}-4 \mathrm{Y}=12 \\
-3 \mathrm{X}+8 \mathrm{Y}=12 \\
16 \mathrm{X}-8 \mathrm{Y}=24
\end{gathered}
$$

$13 \mathrm{X}=36$| $\mathrm{X}=36 / 13$ | $\overline{\mathrm{GI}}$ |
| :--- | :--- |
| $\mathrm{Y}=33 / 13$ | $\overline{\mathrm{GH}}$ |

NOTE: RGT is not a right triangle.
Pythagorean Theorem has no application

SOLUTIONS

Check Answer

18) Given: $\frac{\mathrm{SR}}{\mathrm{MR}}=\frac{\mathrm{LR}}{\mathrm{AR}}$

$$
\overline{\mathrm{SL}}=\overline{\mathrm{IA}}
$$

Prove: SIAL is a parallelogram

Statements	Reasons	
1) $\mathrm{SL}=\mathrm{IA}$	1) Given	
2) $\angle \mathrm{MRA}=\angle \mathrm{SRL}$ 2) Reflexive property 3) $\frac{\mathrm{SR}}{\mathrm{MR}}=-\frac{\mathrm{LR}}{\mathrm{AR}}$ 3) Given 4) $\triangle \mathrm{SRL} \sim \triangle \mathrm{MRA}$ 4) SAS \quad(Side-Angle-Side Similarity) 5) $\angle \mathrm{MAR}=\angle \mathrm{SLR}$ 5) CASTC (Corresponding Angles inSimilar Triangles are Congruent) 6) SL \\| IA 6) If corresponding angles congruent, then, lines are parallel 7) SIAL is parallelogram 7) Definition of parallelogram (if one pair of sides are parallel AND congruent, then quadrilateral is parallelogram)		

Thanks for visiting!
Hope it helped.
If you have questions, suggestions, or requests, let us know.

Also, at mathplane.org for mobile and tablets.
And, visit our store at TeachersPayTeachers

[^0]: $\mathrm{x}=12$ or -27

