# Word Problems: Interest, Growth/Decay, and Half-Life 

Applying logarithms and exponential functions

Topics include simple and compound interest, $e$, depreciation, rule of 72, exponential vs. linear models, and more.


## Simple vs. Compound Interest

Observe the difference:

Simple Interest...
You deposit 10,000 into a bank that pays simple interest at a $10 \%$ interest rate

|  | ears) | Home | Bank | Total |
| :---: | :---: | :---: | :---: | :---: |
| (bank deposit) |  | 10,000 | 0 | 10,000 |
|  | 0 | 0 | 10,000 | 10,000 |
| $\$ 1000$ <br> interest <br> payments <br> every year <br> are sent <br> home | 1 | 1000 | 10,000 | 11,000 |
|  | 2 | 2000 | 10,000 | 12,000 |
|  | 3 | 3000 | 10,000 | 13,000 |
|  | 4 | 4000 | 10,000 | 14,000 |

## Interest Formulas

Simple Interest

$$
\begin{array}{rl}
A=P+P r t & A=\text { future amount } \\
A=P+I & \begin{array}{l}
P=\text { principal amount } \\
r=\text { annual interest rate }
\end{array} \\
I=P \text { rt } & \begin{array}{l}
t=\text { time (years) } \\
I=\text { simple interest earned }
\end{array}
\end{array}
$$

Compound Interest...
You deposit $\$ 10,000$ into a bank that earns $10 \%$ interest compounded annually.

| Total | Bank | Home | t (years) |  |
| :--- | :--- | :---: | :---: | :---: |
| 10,000 | 0 | 10,000 | $\cdots---$ | (bank <br> deposit) |
| 10,000 | 10,000 | 0 | 0 |  |
| 11,000 | 11,000 | 0 | 1 | The $10 \%$ <br> interest <br> payments <br> every year <br> stay in the <br> bank! |
| 12,100 | 12,100 | 0 | 2 | 3 |
| 13,310 | 13,310 | 0 | 4 |  |

## Compound Interest

$$
\left.\begin{array}{c}
\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{r}}{\mathrm{n}}\right)^{\mathrm{nt} \quad \begin{array}{l}
\mathrm{A}=\text { future amount } \\
\mathrm{P}=\text { principal amount } \\
\mathrm{r}=\text { (nominal) annual interest rate } \\
\mathrm{n}=\text { number of times of compounding } \\
\mathrm{t}=\text { years }
\end{array}} \\
\text { note: } \mathrm{nt}=\text { number of times } \\
\text { the amount is } \\
\text { compounded }
\end{array}\right\} \begin{aligned}
& \frac{\mathrm{r}}{\mathrm{n}}=\begin{array}{l}
\text { the rate that is paid at } \\
\text { each comounding time. }
\end{array}
\end{aligned}
$$

## Compound Interest comparisons

Assume $12 \%$ annual interest rate: $\$ 1000$ deposit....

| compounded | annually | semi-annually | Quarterly | Monthly | Daily | Continuously |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# of payments | 1 | 2 | 4 | 12 | 365 | $\ldots--$ |
| rate of each payment | $12 \%$ | $6 \%$ | $3 \%$ | $1 \%$ | $.0328 \%$ | $\mathrm{~A}=\mathrm{Pe}^{\mathrm{rt}}$ |
| Future amount | 1120 | 1123.60 | 1124.86 | 1126.83 | 1127.47 | 1127.50 |
| 1 year earnings | 120 | 123.60 | 124.86 | 126.83 | 127.47 | 127.50 |

**The more times the principal (and interest) compounds, the more the amount grows!!

## "The Rule of 72"

What is it? If a sum is compounding at $\mathrm{X} \%$, that sum will double in approximately $\frac{72}{\mathrm{X}}$ cycles.

Example:
Suppose you deposit \$100 in a bank that earns $10 \%$ interest per year. How many years will it take to double your money?

Using the "rule of 72 "

| time | balance |
| :---: | :---: |
| 0 | 100 (initial deposit) |
| 1 | $110(100+10)$ |
| 2 | $121(110+11)$ |
| 3 | 133.10 (121 + 12.10) |
| 4 | 146.41 (133.1+13.31) |
| 5 | 161.05 (146.41 + 10\% of 146.41) |
| 6 | 177.15 (161.05 + interest payment) |
| 7 | 194.86 (177.15 + interest on 177.15) |
| 8 | 212.57 |

Formula for compounding interest:
Amount $=\mathrm{P}(1+\text { interest rate })^{\mathrm{t}} \quad \begin{aligned} & \text { (where } \mathrm{P} \text { is the principle and } \mathrm{t} \text { is the } \\ & \text { time it compounds) }\end{aligned}$
Using our example:

$$
\begin{aligned}
& 200=100(1+.10)^{\mathrm{t}} \\
& \frac{200}{100}=(1.10)^{\mathrm{t}} \\
& 2=(1.10)^{\mathrm{t}}
\end{aligned}
$$

(Use a calculator to solve. Or, use logarithms)

## Exponential Growth Applications

Example: A cell population $t$ days from now is modeled by $\mathrm{A}(t)=8 e^{0.5 t}$

1) What is the current cell population?

The current population is when time $(\mathrm{t})=0 \quad \mathrm{~A}(0)=8 e^{0.5(0)}=8 \quad$ (also, the initial amount)
2) Determine the cell population 5 days from now.

And, the cell population 5 days from now, occurs when $t=5 \quad \mathrm{~A}(5)=8 e^{0.5(5)}=8 \cdot 12.18=97.46$
$3)$ When will the cell population exceed 200 ?

Let the amount $=200 .$. then solve (using logarithms)

$$
200=8 e^{0.5 t}
$$

$$
\begin{array}{rlrl}
\Rightarrow 25 & =e^{0.5 t} \\
& \\
\ln 25 & =\ln e^{0.5 t} \\
\ln 25 & =0.5 t \cdot \ln e & t=6.44 \text { days } \\
3.219 & =0.5 t &
\end{array}
$$

Example. Stan invests $\$ 10,000$ in an account that earns $7 \%$ compounded annually. Eric invests $\$ 8,000$ in an account that earns $9 \%$ compounded annually.

How many years will it take before Eric has more money in his account?

$$
\mathrm{A}=\mathrm{P}(1+\mathrm{r})^{\mathrm{t}}
$$

Stan's account: $\quad A=10,000(1+.07)^{\mathrm{t}}$
Eric's account: $\quad \mathrm{A}=8,000(1+.09)^{\mathrm{t}}$

$$
\begin{aligned}
& \text { Check: } \\
& 12 \text { years (Stan) } \\
& 10,000(1.07)^{12.1}=\$ 22,674.81 \\
& 12 \text { years (Eric) } \\
& 8,000(1.09)^{12.1}=\$ 22,696.07
\end{aligned}
$$

Since Eric's account is increasing at a faster rate, eventually it'll exceed Stan's...
So, let's find when they are equal....

$$
\begin{aligned}
10,000(1+.07)^{\mathrm{t}} & =8,000(1+.09)^{\mathrm{t}} \\
\frac{5}{4}(1.07)^{\mathrm{t}} & =(1.09)^{\mathrm{t}} \\
\frac{5}{4} & =\frac{(1.09)^{\mathrm{t}}}{(1.07)^{\mathrm{t}}} \\
\log \frac{5}{4} & =\log \left(\frac{1.09}{1.07}\right)^{\mathrm{t}} \\
\log \frac{5}{4} & =\mathrm{t} \cdot \log \left(\frac{1.09}{1.07}\right) \\
\mathrm{t} & =\frac{\log \frac{5}{4}}{\log \left(\frac{1.09}{1.07}\right)}=\frac{.0969}{.0080}=12.05 \text { years }
\end{aligned}
$$

Example: Ian Apple has $\$ 750$ in his savings account that earns $2.5 \%$ compounded
Interest Growth, Decay, and Half-Life continuously. The cost of a phone he likes costs $\$ 500$. But, the price of the phone is increasing continously at a rate of $7 \%$.

When will Mr. Apple no longer have enough savings to buy the phone?


Example: $\$ 20,000$ is deposited into an investment account that offers a $6 \%$ interest rate.
How much will the account have after $61 / 2$ years compounded
a) semi-annually?
b) monthly?
c) continuously?

$$
\begin{aligned}
& \text { Amount }=\text { Principal }\left(1+\frac{\text { rate }}{\mathrm{n}}\right)^{\mathrm{nt}} \\
& \qquad \begin{array}{l}
\mathrm{n} \\
\mathrm{t}
\end{array}=\text { \# of payments per year.. } \\
& \text { Amount }=\text { Pe } e^{\mathrm{rt}} \\
& \qquad \mathrm{P}=\text { Principal } \mathrm{r} \text { = interest rate } \mathrm{t}=\text { time }
\end{aligned}
$$

b) Amount $=20,000\left(1+\frac{.06}{12}\right)^{12(6.5)}$
$=20,000(1.005)^{78}$
$=\$ 29,510.92$
c) Amount $=20,000 e^{.06(6.5)}$
$=20,000 e^{.39}$
$=\$ 29,539.62$

Example: Ancient paintings are discovered in a remote cave.
To estimate the age, scientists take a sampling and measure the carbon count, knowing
that the decay of carbon is

$$
\mathrm{A}=\mathrm{A}_{\mathrm{O}} e^{-.0001201 t}
$$

If the sample contains $15 \%$ of the original carbon-14, estimate how old the painting is.
we'll suppose the original sample was $100 \ldots$
If $15 \%$ remains, then

$$
\begin{aligned}
& 15=100 e^{-.0001201 t} \\
& .15=e^{-.0001201 t}
\end{aligned}
$$

$$
\ln (.15)=\ln e^{-.0001201 t} \quad \text { (Note: without rounding, the time will be closer to approx. } 15,678 \text { years.) }
$$

Example: RC Adams has $\$ 2500$ in a savings account that earns $3.5 \%$ compounded continuously. The current price of a screen tv he likes costs $\$ 6000$. But, the cost of the tv is decreasing continuously at a rate of 7\%

When will RC A. be able to afford the television?

RCA's savings will increase... Meanwhile, the television will decrease...
At some point, they will be equal (and RCA will be able to buy the tv!)

$$
\begin{array}{rlrl}
\text { RCA money }=\$ 2500 e^{.035 t} & \text { set them equal... } & \$ 2500 e^{.035 t} & =\$ 6000 e^{-.07 t} \\
\text { TV cost }=\$ 6000 e^{-.07 t} & e^{.035 t} & =2.4 e^{-.07} \\
e^{.105 t} & =2.4
\end{array}
$$

$$
\begin{aligned}
& \ln (2.4)=.105 t \\
& t=\frac{\ln (2.4)}{.105}=8.34 \text { years } \ldots
\end{aligned}
$$

## Linear vs. Exponential Model

Example: Given the coordinates $(0,100)$ and $(2,400)$
Find a linear equation that passes through the coordinates.
Find an exponential equation that goes through the coordinates.
Graph both functions.

To find a linear equation, you need the slope and a point.

Slope:

$$
\frac{\text { "rise" }}{\text { "run" }}=\frac{\mathrm{y}_{1}-\mathrm{y}_{2}}{\mathrm{x}_{1}-\mathrm{x}_{2}}=\frac{400-100}{2-0}=150
$$

A point: $(0,100)$
Equation of the line: $\quad y-100=150(x-0)$

$$
\text { or } y=150 x+100
$$



To find the exponential equation, use the general form $y=a b^{X}$
Substitute $(0,100): \quad 100=\mathrm{ab}^{0}$

$$
\begin{aligned}
100 & =\mathrm{a}(1) \\
\mathrm{a} & =100
\end{aligned}
$$

Substitute $(2,400): \quad 400=\mathrm{ab}^{2}$

$$
\begin{aligned}
400 & =(100) \mathrm{b}^{2} \\
\mathrm{~b}^{2} & =4 \\
\mathrm{~b} & =2
\end{aligned}
$$

Equation of the exponential curve: $y=100(2)^{x}$

Example: A chemical decays from 50 grams to 10 grams in 20 hours.
What is the half-life? Find the rate of decay.

Method 1: $\quad \mathrm{A}=\mathrm{P} e^{\mathrm{rt}}$

Step 1: Find the rate (r)
Observation: while the half-life exponential is faster, it does not identify the RATE of decay. It only shows the exponential factor and time to cut in half.
From the givens,
We know the principle $(\mathrm{P})$ is 50 grams.
the end amount (A) is 10 grams.
and, the time is 20 hours.
$10=50 e^{\mathrm{r}(20)}$
$\frac{1}{5}=e^{20 r}$
$\ln \left(\frac{1}{5}\right)=20 \mathrm{r}$

```
rate r = -. 0804719
```

Step 2: Find the "half-life".
We reapply the formula $\mathrm{A}=\mathrm{P} e^{\mathrm{rt}}$

$$
\begin{aligned}
25 & =50 e^{-.0804719 \mathrm{t}} \\
& =e^{-.0804719 \mathrm{t}}
\end{aligned}
$$

$$
\ln \left(\frac{1}{2}\right)=-.0804719 t
$$

The time it takes to reduce by $1 / 2$


Method 2: $A=A_{O}\left(\frac{1}{2}\right)^{\frac{t}{h}}$
where, h is the 'half-life', t is time, $\mathrm{A}_{0}$ is the initial amount

Using the givens, we simply substitute and solve...

$$
10=50\left(\frac{1}{2}\right)^{\frac{20}{\mathrm{~h}}}
$$

$$
\frac{1}{5}=\left(\frac{1}{2}\right)^{\frac{20}{\mathrm{~h}}}
$$

$$
\log _{(1 / 2)} \frac{1}{5}=\frac{20}{\mathrm{~h}}
$$

half-life $h=\frac{20}{\log _{(1 / 2)} \frac{1}{5}}=8.61$ hours

Example: A bacteria's population grows from 1000 organisms to 7000 organisms in 40 hours. Find the doubling time and doubling rate. When will the bacteria population reach 50,000 organisms?

Method 1: $\quad \mathrm{A}=\mathrm{P} e^{\mathrm{rt}}$

Step 1: Find the rate (r)

From the givens, we can fill in the formula.

$$
\begin{aligned}
7000 & =1000 e^{\mathrm{r}(40)} \\
7 & =e^{40 \mathrm{r}} \\
\ln (7) & =40 \mathrm{r} \quad \mathrm{r}=.0486478
\end{aligned}
$$

Step 2: Use the formula to find the doubling time.

$$
\begin{aligned}
2000 & =1000 e^{.0486478(\mathrm{t})} \\
2 & =e^{.0486478(\mathrm{t})} \\
\ln (2) & =.0486478(\mathrm{t}) \quad \text { doubling time } \mathrm{t}=14.25 \text { hours }
\end{aligned}
$$

Note: since rate is approximately 4.9 percent, we can use "rule of 72 " to predict/estimate the doubling time..

$$
\frac{72}{4.9}=14.7
$$

Method 2: $A=A_{O}(2)^{\frac{\mathrm{t}}{\mathrm{D}}}$
where D is the 'doubling time', t is the time, and $\mathrm{A}_{0}$ is the initial amount

> From the question's givens, we substitute...
$7000=1000(2)^{\frac{40}{D}} \quad 7=2^{\frac{40}{D}}$

$$
\log _{2}(7)=\frac{40}{\mathrm{D}} \leadsto \mathrm{D}=\frac{40}{\log _{2}(7)}=14.25 \text { hours }
$$

We can use either model to predict when the bacteria will reach $50,000 \ldots$

$$
\begin{aligned}
& A=A_{0}(2)^{\frac{t}{D}} \\
& 50,000=1000(2)^{\frac{t}{14.25}} \\
& \log _{2}(50)=\frac{\mathrm{t}}{14.25} \quad \mathrm{t}=80.4 \text { hours } \\
& \mathrm{A}=\mathrm{P} e^{\mathrm{rt}} \\
& \begin{array}{l}
50000=1000 e^{.0486478(\mathrm{t})} \\
\ln (50)=.0486478(\mathrm{t}) \quad \mathrm{t}=80.4 \text { hours }
\end{array}
\end{aligned}
$$

## Example:

In January 1923, 79,000 residents lived in Emigration City, USA.
Each year, $1 / 3$ of the population would leave. (Assuming there are no births, deaths,
or immigrants,) what year did the population eventually fall to under 100 residents?

If $1 / 3$ leave each year, then $2 / 3$ remain...
We can model the population of Emigration City.

$$
\begin{gathered}
79,000(2 / 3)^{\mathrm{n}}=\text { Population } \\
\text { where } \mathrm{n}=\text { number of years after } 1923 \\
79,000(2 / 3)^{\mathrm{n}}=100 \\
(2 / 3)^{\mathrm{n}}=\frac{100}{79,000} \\
\operatorname{nlog}(2 / 3)=\log \frac{100}{79,000} \\
\mathrm{n}=\frac{\log \frac{100}{79,000}}{\log (2 / 3)}=\frac{-2.898}{-0.176}=16.46 \text { (approximately) }
\end{gathered}
$$

Therefore, in the 17th year, the population will fall under 100 .

$$
1939
$$

Or, calculating 1 year at a time:
(population at the beginning of each year)

| 1st year $\longrightarrow$ 1923: 79,000 |  |  |  |
| :---: | :---: | :---: | :---: |
|  | 1924: | 52667 | 52666 |
|  | 1925: | 35111 | 35110 |
|  | 1926: | 23408 | 23406 |
|  | 1927: | 15605 | 15604 |
|  | 1928: | 10404 | 10402 |
|  | 1929: | 6936 | 6934 |
|  | 1930: | 4624 | 4622 |
|  | 1931: | 3083 | 3081 |
|  | 1932: | 2056 | 2054 |
|  | 1933: | 1371 | 1369 |
|  | 1934: | 914 | 912 |
|  | 1935: | 610 | 608 |
|  | 1936: | 407 | 405 |
|  | 1937: | 272 | 270 |
|  | 1938: | 182 | 180 |
| 17 th year $\rightarrow$ | 1939: | 122 | 120 |
|  | 1940: | 82 | 80 |

(first column is
rounding up.. second column is rounding down...)

1) A bank offers $4.25 \%$ interest rate compounded daily. What is the annual yield?
2) A bacteria grows exponentially. The initial amount was 10,000 . After 1 hour, the amount grew to 25,000 .
a) Find the doubling period. (How long does it take the bacteria to double?)
b) What is the amount after 3 hours?
3) A special element has a half-life of 5 days. The initial amount is 500 grams.
a) How many grams will remain after 15 days?
b) What is the daily rate of decay?
c) How many grams will remain after 12 days?

Growth, Decay, and Interest Rate Questions
4) A radioactive element has a half-life of 1000 years.

What percentage of the sample remains after 250 years?
5) If 250 mg of a radioactive material decays to 200 mg in 48 hours, what is the $1 / 2$ life of the material?
6) Jim deposits $\$ 1000$ into a bank that pays $8 \%$ annual interest, compounded continuously. Carol deposits $\$ 250$ at the beginning of each quarter (Jan., Apr., July, Oct.) into the same bank.

At the end of the year, how much more will Jim have in his account?
7) Compounding and Investing...
A) Scenario \#1: invest $\$ 5,000$ at age $25 \ldots 8 \%$ interest compounded annually

Scenario \#2: invest $\$ 20,000$ at age $45 \ldots 8 \%$ interest compounded annually
Which will have more money at age 65 ?
B) Scenario \#3: invest $\$ 1000$ per year from age 21 to age 30 ( 10 years)

Scenario \#4: invest $\$ 1000$ per year from age 31 to age 65 (35 years)
assume $8 \%$ interest compounded annually

Which will have more money at age 65? Explain..
8) Depreciating.... A car cost $\$ 43.500$. The car's value depreciates at a rate of $4 \%$.
A) How much is the car worth after 7 years if the rate decreases
a) annually?
b) quarterly?
c) continuously?
B) How much was the car worth 5 years ago, if the depreciation occurred
a) quarterly?
b) continuously?
9) What is the doubling time of the following:
a) rate: $8 \%$ compounded: annually
b) rate: $8 \%$ compounded: quarterly
c) rate: $8 \%$ compounded: continuously
10) An decaying element has a half-life of 10 days.

If a lab has 300 mg of the element, how long will it take to reduce to 30 mg ?
11) The population of a town is 43,250 in 1996 and 51,230 in 2010 ..

If the best estimate of future population is determined from an exponential model,
what is the best guess for the population in 2025 ?
12) Garfield puts $\$ 2000$ into savings for 2 years.

He splits the money into 2 accounts.
One account offers $4 \%$ return and the other account offers $5 \%$ return.
If he earns $\$ 189.33$ in interest, how much did he put into each account?
13) John has $\$ 2200$ in an account that increases $7 \%$ annually...

A brand new sports car costs $\$ 48,000$, but it depreciates by $22 \%$ annually...
If John is willing to buy the sports car used, when would he be able to afford it?
14) A bacterial culture contains 1000 bacteria initially.

If the amount triples every hour, write a model representing the bacterial count.

How much will there be after 2 days?


1) A bank offers $4.25 \%$ interest rate compounded daily. What is the annual yield?

Suppose we deposit $\$ 10000$. What is the amount one year later?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{r}}{\mathrm{n}}\right)^{\mathrm{nt}} \\
& \mathrm{~A}=\text { future amount } \\
& \mathrm{P}=\text { principal amount } \\
& \mathrm{r}=\text { interest rate } \\
& \mathrm{n}=\text { number of times the } \\
& \text { amount is compounded per } \\
& \text { year } \\
& \mathrm{t}=\text { number of years }
\end{aligned}
$$

$\mathrm{A}=10000\left(1+\frac{.0425}{365}\right)^{365(1)}=10000(1.00011644)^{365}=10,434.13$
$\begin{aligned} & \text { the rate } \\ & \text { of each } \\ & \text { compounding }\end{aligned}$
the "number of
compoundings"
So, $\$ 10,000$ to $\$ 10,434$ is an increase of $\$ 434$ in one year....

$$
\frac{434}{10,000}=.0434 \quad \begin{aligned}
& 4.34 \% \\
& \text { annual yield... }
\end{aligned}
$$

2) A bacteria grows exponentially. The initial amount was 10,000 . After 1 hour, the amount grew to 25,000 .
a) Find the doubling period. (How long does it take the bacteria to double?)
b) What is the amount after 3 hours?

$$
\begin{aligned}
& \text { Compounding } \\
& \text { exponentially: } \\
& y=a b^{x}
\end{aligned}
$$

$$
\text { We are given } 2 \text { points of measurement: } \quad(0,10,000) \text { and }(1,25,000)
$$

Use substitution: $\quad y=a b^{x}$

$$
\begin{array}{cc}
(10,000)=\mathrm{ab}^{(0)} & \text { then, } \\
10,000=\mathrm{a}(1) & 25,000)=\mathrm{ab} \\
\mathrm{a}=10,000 & \mathrm{~b}=2.5
\end{array}
$$

The bacteria equation is $y=10000(2.5)^{x}$
a) At the end of the doubling period, the bacteria amount will be $20,000 \ldots$

$$
\begin{aligned}
20,000 & =10,000(2.5)^{\mathrm{x}} \\
2 & =(2.5)^{\mathrm{x}} \\
\log 2 & =\log (2.5)^{\mathrm{x}} \\
.301 & =\mathrm{x} \log (2.5) \\
.301 & =.398 \mathrm{x} \\
\mathrm{x}= & .756 \text { hours or } 45.4 \text { minutes }
\end{aligned}
$$

b) After 3 hours,

$$
\mathrm{y}=10000(2.5)^{3}=156,250
$$

3) A special element has a half-life of 5 days. The initial amount is 500 grams.
a) How many grams will remain after 15 days?

a) Days | amount |  |
| :---: | :--- |
| 0 | 500 |
| 5 | 250 |
| 10 | 125 |
| 15 | 62.5 |
| 20 | 31.25 |

62.5 grams

Finding Half life formula:
$\mathrm{A}=\mathrm{Pe}^{\mathrm{rt}} \quad \mathrm{A}=$ final amount $\mathrm{e}=$ euler's number $\mathrm{r}=$ rate $\mathrm{t}=$ time
$\frac{1}{2} \mathrm{P}=\mathrm{Pe}^{\mathrm{It}}$
$\frac{1}{2}=\mathrm{e}^{\mathrm{rt}}$
b) $250=500 \mathrm{e}^{5 \mathrm{r}}$
$\frac{1}{2}=e^{5 r}$
$\ln \frac{1}{2}=\ln e^{5 r}$
c) $\mathrm{A}=500(\mathrm{e})^{(-.1386)(12)}$
$\mathrm{A}=500(.19)$
approximately 95.25
$-.693=5$ r(lne)
grams..

## SOLUTIONS

4) A radioactive element has a half-life of 1000 years.

What percentage of the sample remains after 250 years?
Part 1: Find the rate Part 2: Apply formula

$$
\frac{1}{2}=e^{\mathrm{rt}}
$$

$$
\begin{array}{ll}
\frac{1}{2}=e^{\mathrm{rt}} & \mathrm{~A}=\mathrm{P} e^{250(-.000693)} \\
\mathrm{A}=\mathrm{P} e^{\mathrm{rt}} & \mathrm{~A}=(1) e^{250(-.000693)} \\
\mathrm{ln} \frac{1}{2}=e^{1000 \mathrm{r}} & \ln e^{.1000 \mathrm{r}} \\
-.693=1000 \mathrm{r} & \mathrm{~A}=.841 \\
\mathrm{r}=-.000693 &
\end{array}
$$

5) If 250 mg of a radioactive material decays to 200 mg in 48 hours, what is the $1 / 2$ life of the material?
first, find the rate of decay...

$$
\text { then, find the } 1 / 2 \text { life }
$$

$$
\begin{aligned}
\mathrm{A} & =\mathrm{P} e^{\mathrm{rt}} \\
200 & =250 e^{\mathrm{r}(48)} \\
.8 & =e^{48 \mathrm{r}} \\
\mathrm{r} & =-.0046
\end{aligned}
$$

$$
\begin{aligned}
& 125=250 e^{-.0046(t)} \\
& .5=e^{-.0046(t)} \\
& t=149 \text { hours }
\end{aligned}
$$

6) Jim deposits $\$ 1000$ into a bank that pays $8 \%$ annual interest, compounded continuously.

Carol deposits $\$ 250$ at the beginning of each quarter (Jan., Apr., July, Oct.) into the same bank.
At the end of the year, how much more will Jim have in his account?

$$
\mathrm{A}=\mathrm{P} e^{\mathrm{rt}} \quad \mathrm{Jim}: \quad \mathrm{A}=1000(e)^{.08(1)} \quad=1083.287 \quad \text { Carol: } \mathrm{A}=250(e)^{.08(1)} \quad=270.822
$$

first deposit
Total: \$1083.29
third deposit (compounds for 6 months)

$$
\mathrm{A}=250(e)^{.08(.25)}=255.050
$$

Jim will have $\$ 31.76$ more at the end of the year...
fourth deposit (compounds for 3 months)

$$
\text { Total: } \$ 1051.53
$$

$$
\begin{aligned}
& \mathrm{A}=250(e)^{.08(.75)}=265.459 \\
& \text { second deposit (compounds for } 9 \text { months) } \\
& \mathrm{A}=250(e)^{.08(.50)}=260.203
\end{aligned}
$$

## 7) Compounding and Investing...

Growth, Decay, and Interest Questions
A) Scenario \#1: invest $\$ 5,000$ at age $25 \ldots 8 \%$ interest compounded annually

Scenario \#2: invest $\$ 20,000$ at age $45 \ldots 8 \%$ interest compounded annually

## SOLUTIONS

Which will have more money at age 65 ?
Amount $1=5,000(1+.08)^{40}=\$ 108,622$
Amount $2=20,000(1+.08)^{20}=\$ 93,219$
Note the powering of compounding interest! (Also, notice how investing early is important!) then, recognize the "rule of 72 " ---- at $8 \%$, you would expect your money to roughly double every $\frac{72}{8}=9$ years

Scenario \#1 would double the money almost $41 / 2$ times...
$5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 40 \mathrm{~K}, 80 \mathrm{~K}, 120 \mathrm{~K}$ (doubling 5 times)
Scenario \#2 would double the money twice and a bit more...
$20 \mathrm{~K}, 40 \mathrm{~K}, 80 \mathrm{~K}$ (doubling twice)
B) Scenario \#3: invest $\$ 1000$ per year from age 21 to age 30 (10 years)

Scenario \#4: invest $\$ 1000$ per year from age 31 to age 65 ( 35 years)
assume $8 \%$ interest compounded annually
Which will have more money at age 65? Explain..
$\begin{aligned} \begin{array}{l}\text { Scenario \#3 Amount } \\ \text { segments }\end{array} & =1000(1.08)^{44}=29,555 & \text { (age } 21 \text { deposit) } \\ & =1000(1.08)^{40}=21,724 & \text { (age } 25 \text { deposit) } \\ & =1000(1.08)^{35}=14,785 & \text { (age } 30 \text { deposit) }\end{aligned} \quad$ Apparently, Scenario \#3 will have more money... $\quad$ Using a rough estimate, Scenario \#3 will end up with about 200K;
8) Depreciating.... A car cost $\$ 43.500$. The car's value depreciates at a rate of $4 \%$.
A) How much is the car worth after 7 years if the rate decreases
$\begin{array}{lll}\text { a) annually? } & \mathrm{V}=43,500(1-.04)^{7}=\$ 32,688 & \begin{array}{l}\text { Notice: when you increase the } \\ \text { number of depreciations, the } \\ \text { depreciation/decay slows! }\end{array} \\ \text { b) quarterly? } \quad \mathrm{V}=43,500\left(1-\frac{.04}{4}\right)^{7(4)}=43,500(1-.01)^{28}=\$ 32,830 & \begin{array}{l}\text { EX: taking 1\% each quarter } \\ \text { will decrease LESS than taking }\end{array} \\ \text { c) continuously? } \mathrm{V}=43,500 e^{-.04(7)}=\$ 32,876 & \begin{array}{l}\text { 4\% at the end of the year! }\end{array}\end{array}$
B) How much was the car worth 5 years ago, if the depreciation occurred
a) quarterly? $\quad \mathrm{V}=43,500\left(1-\frac{.04}{4}\right)^{-5(4)}=43,500(.99)^{-20}=\$ 53,184$
b) continuously? $\quad \mathrm{V}=43,500 e^{-.04(-5)}=\$ 53,131$
9) What is the doubling time of the following: I use 2 arbitrary doubling amounts: 1000 and $500 \ldots$
a) rate: $8 \%$ compounded: annually

$$
\begin{array}{rlr}
1000 & =500(1+.08)^{\mathrm{t}} \\
2 & =(1.08)^{\mathrm{t}}
\end{array} \quad \mathrm{t}=\frac{\log 2}{\log (1.08)}=9.0065
$$

b) rate: $8 \%$ compounded: quarterly

$$
1000=500\left(1+\frac{.08}{4}\right)^{4 t}
$$

$$
2=(1.02)^{4 \mathrm{t}}
$$

$$
4 \mathrm{t}=35.0028
$$

c) rate: $8 \%$ compounded: continuously

$$
1000=500 e^{.08 t}
$$

$$
\mathrm{t}=8.7507
$$

$$
2=e^{.08 t}
$$

$$
\begin{aligned}
& \mathrm{A}=\mathrm{A}_{0}\left(1+\frac{\mathrm{r}}{\mathrm{n}}\right)^{\mathrm{nt}} \\
& \mathrm{~A}=\mathrm{P} e^{\mathrm{rt}}
\end{aligned}
$$

Note: as the number of times the amount compounding increases,

$$
\mathrm{t}=8.6643
$$ the doubling time shortens...

$$
\ln 2=.08 \mathrm{t}
$$

## SOLUTIONS

10) An decaying element has a half-life of 10 days.

If a lab has 300 mg of the element, how long will it take to reduce to 30 mg ?
Approach 1:

$$
\begin{aligned}
\mathrm{A} & =\mathrm{A}_{0}(1 / 2)^{\frac{\text { time }}{1 / 2 \text { life }}} \\
30 & =300(1 / 2)^{\frac{\text { time }}{10 \text { days }}} \\
.1 & =(1 / 2)^{\frac{\text { time }}{10 \text { days }}} \\
\log (.1) & =\frac{\text { time }}{10 \text { days }} \log (1 / 2) \\
\text { time } & =10 \text { days } \cdot \frac{\log (.1)}{\log (1 / 2)} \\
& =33.22 \text { days }
\end{aligned}
$$

$$
\text { Approach 2: } \quad \mathrm{A}=\mathrm{P} e^{\mathrm{rt}}
$$

$$
150=300 e^{10 \mathrm{r}}
$$

Either approach (i.e. formula) will give the correct answer...

$$
\ln (1 / 2)=\ln e^{10 \mathrm{r}}
$$

$$
\mathrm{r}=\frac{\ln (1 / 2)}{10}=-.0693
$$

then, find the time:

$$
\begin{aligned}
& 30=300 e^{-.0693 t} \\
& .1=e^{-.0693 t}
\end{aligned}
$$

$$
\ln (.1)=-.0693 t
$$

$$
\mathrm{t}=33.23 \text { days }
$$

11) The population of a town is 43,250 in 1996 and 51,230 in $2010 \ldots$ If the best estimate of future population is determined from an exponential model, what is the best guess for the population in 2025?

$$
\begin{array}{cl}
\mathrm{A}=\mathrm{A}_{0} e^{\mathrm{rt}} \\
51,230=43,250 e^{14 \mathrm{r}} & \\
\ln \left(\frac{51,230}{43,250}\right)=14 \mathrm{r} & \mathrm{~A}=43,250 e^{.012095(29)} \\
\mathrm{r}=.012095 & \mathrm{~A}=61,421 \\
\mathrm{~A}=43,250 e^{.012095 \mathrm{t}} &
\end{array}
$$

Note: the order matters in your model!
Use the correct initial value when finding a growth model...

$$
43,250=51,230 e^{14 \mathrm{r}}
$$

$\ln \left(\frac{43,250}{51,230}\right)=14 \mathrm{r}$
$\mathrm{r}=-.012095$

This model will show decay/decreasing population!
When you project future population, it will show a decline (instead of growth)...
$\mathrm{A}=51,230 e^{-.012095 \mathrm{t}} \quad$ incorrect...
12) Garfield puts $\$ 2000$ into savings for 2 years.

He splits the money into 2 accounts.
One account offers $4 \%$ return and the other account offers $5 \%$ return.
If he earns $\$ 189.33$ in interest, how much did he put into each account?

$$
\begin{array}{ll}
\text { quick check: } & 749.76(.04)=30 \\
& 1250.24(.05)=62.5
\end{array}
$$

```
account 1 4% --- 749.76
account2 5% --- 1250.24
```

approximately 92.5 in interest 1st year
considering it compounds, an amount of 189.33 seems reasonable for 2 years...
13) John has $\$ 2200$ in an account that increases $7 \%$ annually..

A brand new sports car costs $\$ 48,000$, but it depreciates by $22 \%$ annually...
If John is willing to buy the sports car used, when would he be able to afford it?

Exponential Model of John's account...
7\% growth
$t=$ time in years
initial value: $\$ 2200$
$\mathrm{A}_{\mathrm{J}}=2200(1.07)^{\mathrm{t}}$

Exponential Model of the Sport's car's value...
$22 \%$ decay
$\mathrm{t}=$ time in years
intial value: $\$ 48,000$
$\mathrm{A}_{\mathrm{C}}=48,000(.78)^{\mathrm{t}}$

the intersection is when John has enough money to buy the sports car...
A
(dollars)
14) A bacterial culture contains 1000 bacteria initially.

If the amount triples every hour, write a model
representing the bacterial count.
How much will there be after 2 days? The models represent two approaches...

$$
\mathrm{A}=\mathrm{P} e^{\mathrm{rt}}
$$

find the rate of growth...

$$
\begin{aligned}
3000 & =1000 e^{\mathrm{r}(1 \text { hour })} \\
3 & =e^{\mathrm{r}} \\
\mathrm{r} & =1.0986 \text { (per hour) }
\end{aligned}
$$

$$
\mathrm{A}=1000 e^{1.0986(48 \text { hours })} \quad \mathrm{A}=7.977 \times 10^{25}
$$

John would have to wait almost 10 years before he could buy that car!

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Cheers


Also, our stores at TES and TeachersPayTeachers
And, Mathplane Express for mobile at Mathplane.ORG

