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Abstract
The ZAP-X represents the first-of-its-kind "self-shielded" therapeutic radiation device, which by novelty,
challenges regulators to accommodate it within the existing regulatory framework for radiation protection.
To facilitate informed regulatory interpretation, X-ray radiation leakage from the ZAP-X was measured
inside the shielded treatment capsule at the level of the patient and X-ray target plane. Measurements were
performed on a clinically commissioned system calibrated for reference conditions to deliver 1cGy/MU.
Radiation was measured with a FLUKE 451 survey meter and a RadCal ionization chamber as both exposure
and dose and presented as a percentage of the system reference dose. Measurements were taken at thirteen
locations, eight in the patient plane and five in the X-ray target plane. The results showed a maximum X-ray
leakage of 0.000986% in the patient plane and 0.000907% in the target plane. These results are 30 - 100
times lower than existing recommendations as referenced by IEC guidelines standard 60601-2-1 (2020) for
radiotherapy linear accelerators (LINACs). Although most conventional LINACs apply a safety factor of 2-5 to
the design of collimator shielding and patient dose sparing, the ZAP-X delivers less than 10% of the patient
whole body dose compared to this standard, originating from the X-ray target. Even though the ZAP-X
intensity modulated radiation therapy (IMRT) factor is significantly higher than conventional Linacs, the
absolute dose originating from leakage radiation remains lower by 25. The amount of unintended dose
received by the patient's body distant from the isocenter is of interest from the perspective of both clinical
and radiation safety. As this whole-body dose is decreased, the resulting treatment-related cancer incidence
and mortality rates are decreased accordingly.
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Introduction
The Zap-X is a recently designed and developed, dedicated self-contained and self-shielded radiosurgery
system developed and manufactured by ZAP Surgical Systems, Inc. of San Carlos, California. This device is
intended for stereotactic radiosurgery (SRS) treatment of benign and malignant intracranial and cervical
spine lesions. A 3.0 megavolt (MV) S-band linear accelerator (linac) is the source of therapeutic radiation.
Akin to a large gyroscope, the linac is mounted within a combination of yoked gimbals with attached
radiation shielding, each of which accurately rotates around a common isocenter. This mechanical construct
enables the linac beam to potentially crossfire from approximately 2π steradians of solid angle, as is ideally
required for cranial SRS [1].

Accurate therapeutic beam positioning is accomplished through the dual axes, independent accelerator
rotations, and precise robotic patient table movements. Most components needed to produce the beam, such
as the radiofrequency power source, waveguiding system, beam triggering electronics, and significant
radiation shielding, are mounted on or integrated into the rotating spherical patient treatment chamber. The
patient is supported on a moveable treatment table that extends outside the iron sphere and is enclosed by
additional radiation shielding during radiosurgery. This table shielding consists of a rotary iron shell and a
pneumatically raised door on a steel frame.

Due to the ever-increasing IMRT factor of modern precision Radiotherapy systems and the consequent
increase in Monitor Units (MU) to deliver such treatments, the dose delivered to the patient's whole body due
to target leakage is expected to increase for a given prescription dose to the target. In-patient
scatter radiation produced by treatment radiation, and the X-ray target leakage dose contributes to the
patient's whole body dose. While the former is unavoidable and a function of energy, field size, and dose
delivered, the latter originates directly from the X-ray target and is heavily dependent on the amount of
shielding in the collimation system; the exact design of the collimator head directly determines the overall
patient whole body dose. In the case of the ZAP-X, 10.4cm to 15.0 cm of Tungsten shielding is used,
translating into 3.5 to 5.0 Tenth-Value Layers (TVL) [2]. This is significantly more shielding than used in
conventional radiotherapy LINACs. To corroborate the above design and measure the radiation dose
delivered to patients, exposure and dose from X-ray leakage were acquired at various positions inside the
ZAP-X treatment capsule. The results were expressed with the total dose delivered by the treatment beams.
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Technical Report
The Zap-X is shown in Figure 1 and has been described in more detail in previous publications [1-2].

FIGURE 1: Cross-sectional view of Zap-X
MV: megavoltage: DOF: degree of freedom; KV: kilovoltage

The author created the image for the system design.

X-ray target leakage radiation was measured in the patient plane at a Source-to-Axis distance (SAD) of
45cm, perpendicular to the beam's central axis (CAX), including the isocenter and the target plane
perpendicular to the beam CAX, including the target. All measurements were performed with the beam in
the vertical orientation pointing down. A total of thirteen measurement points - eight in the patient plane
and five in the target plane were used at a distance of 1 m from the CAX or the largest available distance
inside the treatment capsule. The number and location of measurement points were chosen to distribute
them equidistantly (30cm) from each other on accessible inside surfaces of the gyroscopically moving
treatment capsule. The orientations of the measurement planes are shown in Figures 2a, 2b, and the
positions of the measured points are shown in Figures 3a, 3b.

FIGURE 2: a: Elevation view and b: Cross-sectional view of the patient
plane and target plane; measurement planes are indicated in red
The author created the image for the experiment design.
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FIGURE 3: a: Indication of measurement stations in the patient plane; b:
Indication of measurement stations in the target plane.
The author created the image for the experiment design.

A radiation survey meter (Fluke Biomedical Model 451 BRYR, S/N 0000003284, Fluke Biomedical, Everett,
WA) and a large-volume leakage chamber from Radcal (model #ADDM+, S/N 47-0657, Radcal Corporation,
Monrovia, CA) were used to measure radiation leakage and are shown in Figure 4a, 4b. Both radiation
detectors are calibrated periodically at one-year intervals, and the latest calibration for both systems was
less than 12 months ago. Reported readings were acquired with this survey meter; redundant readings were
performed with additional survey meters of the same type for verification. All measurements were
performed with a blank collimator selected. The collimator wheel was positioned, so the beam intercepted
the solid tungsten material; therefore, only X-ray target leakage was detected [2]. For each reading, 1,000
MU were delivered. 1,000 MU corresponds to 1,000 cGy under reference conditions (SAD=45cm, 25mm
collimator, dmax=7mm). 1000 cGy was chosen as a typical and most commonly used dose per fraction with
the ZAP-X.

FIGURE 4: a: Fluke 451 survey meter and b: RadCal leakage ionization
chamber

Measurements setup at positions 3, 5, and 7 are shown in Figure 5a, while positions 9 and 10 are shown in
Figures 5b, 5c.
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FIGURE 5: a: Measurement positions 3, 5, 7; b: position 9; c: position 10
All positions were measured with a FLUKE survey meter and the RadCal ionization chamber.

Author acquired image.

1000 MUs were delivered for each measurement position, and absolute exposure in units of milliRoentgen
(mR) was measured with the FLUKE BIOMEDICAL survey meter. The absolute dose in centiGray (cGy) was
measured with the RadCal ionization chamber. The respective distance from the beam CAX was recorded,
and the distance from the X-ray source was calculated based on the known geometry of the ZAP-X of
SAD=45cm. For each measurement station, three readings were acquired. For standardization purposes, the
readings were adjusted where necessary by an inverse square correction factor for equivalence at a 1m
distance from the beam CAX. Lastly, the readings were expressed as a percentage of the reference dose
delivered. Table 1 shows exposure measurements, and Table 2 shows dose measurement-based
determination of X-ray Leakage Radiation. The position of the measured points and their distance from CAX
was dictated by the inside dimensions of the ZAP-X treatment capsule in the patient and target planes.
Measurement point distances for the survey meter are 2.8 cm smaller than for the RadCal ionization
chamber, as both detectors were physically mounted on the inside surface of the treatment capsule; the
center of the detection volume for the bulky survey meter is 2.8 cm closer to the CAX than the center of the
flat pancake detector.
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Station
Distance to CAX
[cm]

X
[mR]

Distance to Source
[cm]

ISC
Adjusted
mR

D Water
[cGy]

Percentage Leakage [%]

1 61 10.65 75.80 0.478 5.09 0.00494 0.000494

2 50 13.1 67.27 0.376 4.93 0.00478 0.000478

3 46 14.6 64.35 0.344 5.03 0.00488 0.000488

4 100 6.15 109.7 1.00 6.15 0.00597 0.000597

5 76 7.00 88.32 0.649 4.54 0.00440 0.000440

6 55 16.4 71.06 0.420 6.89 0.00668 0.000668

7 33 17.8 55.80 0.259 4.61 0.00447 0.000447

8 38 13.3 58.90 0.288 3.84 0.00372 0.000372

9 65 17.5 65.00 0.423 7.39 0.00717 0.000717

10 65 16.2 65.00 0.423 6.82 0.00662 0.000662

11 70 13.9 70.00 0.490 6.81 0.00661 0.000661

12 59 18.0 59.00 0.348 6.27 0.00608 0.000608

13 70 17.25 70.00 0.490 8.45 0.00820 0.000820

TABLE 1: Measurement stations for Exposure readings, distance from CAX, exposure, distance
from the source, inverse square correction, adjusted exposure, dose to water, and percent
leakage
Three exposures were taken for each measurement point, with the mean value recorded in the table. The dose to water was calculated by multiplying the
exposure by 0.97cGy/R for 3MV photon radiation.

X: Exposure; mR: milliRoentgen; ISC: Inverse Square Correction; D: Dose
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Station
Distance to CAX
[cm]

D [µSv] Distance to Source [cm] ISC Adjusted D µSv D [cGy] Percentage Leakage [%]

1 63.8 95.21 78.07 0.507 48.27 0.00483 0.000483

2 52.8 128.0 69.37 0.400 51.21 0.00512 0.000512

3 48.8 269.0 66.38 0.366 98.59 0.00986 0.000986

4 102.8 66.95 112.2 1.047 70.11 0.00701 0.000701

5 78.8 70.4 90.74 0.685 48.21 0.00482 0.000482

6 57.8 110.8 73.25 0.446 49.44 0.00494 0.000494

7 35.8 176.0 57.50 0.275 48.38 0.00484 0.000484

8 40.8 118.5 60.74 0.307 36.36 0.00364 0.000364

9 67.8 144.0 67.80 0.460 66.20 0.00662 0.000662

10 67.8 173.6 67.80 0.460 79.82 0.00798 0.000798

11 72.8 171.1 72.80 0.530 90.68 0.00907 0.000907

12 61.8 219.9 61.80 0.382 83.99 0.00840 0.000840

13 72.8 99.0 72.80 0.530 52.47 0.00525 0.000525

TABLE 2: Measurement stations for dose measurements, distance from CAX, Dose reading,
distance from the source, inverse square correction, adjusted dose, percentage leakage radiation
Three dose measurements were taken for each measurement point, with the mean value recorded in the table.

D: Dose; ISC: Inverse Square Correction

D Water in Table 1 was calculated by applying the f factor for water for the 3 MV energy range by applying the
formula:

fmed = 0.876 x (µen/ρ)med/(µen/ρ)air = 0.97.

The analysis of X-ray Target leakage for exposure-based measurements resulted in 0.000820%, while for
dose-based measurements resulted in 0.000986%. Both values are below 0.001%.

Discussion
As the X-ray target shielding of the ZAP-X collimator housing consists of 5.0 TVL of Tungsten, the expected
dose rate at 1m from the target is expected to be 0.001 % of the primary reference dose defined at the
isocenter. The radiation leakage measurements showed a maximum value of 0.000986 % in the patient plane
and 0.000907% in the target plane, below the expected level of 0.001 %. The results confirm the correct
implementation of the ZAP-X shielding design requirements and demonstrate its radiation leakage per unit
dose delivered to be a factor of up to 51 smaller compared to a typical value of 0.05 % derived from the IEC
standard.

As the IEC 60601-2-1 standard is used for the design of typical Radiotherapy Linear Accelerators (Linacs),
conventional multi-purpose and dedicated Linacs with Multi-leaf collimators (MLC) do not exceed 0.05 % of
leakage radiation [3]. The typical IMRT factors for MLC-defined treatments are 3-4 so that for a single
fraction treatment to 20 Gy, 6000 MUs to 8000 MUs will be delivered. The ZAP-X uses approximately 12,000
MUs for complex treatment of 20 Gy with an IMRT factor of 6 [4]. Since the X-ray target leakage is expressed
as a percentage of reference dose delivered by each beam throughout the treatment, the total ZAP-X
radiation leakage for a 25mm reference collimator is expected to be 0.000986 % x 12,000 cGy = 0.118 cGy,
which is equivalent to 1.18 mSv (for a Quality Factor of 1). A conventional Linac is expected to exert a target
leakage radiation intensity of 0.05 % x 6000 cGy = 3.0 cGy, equivalent to 30 mSv. Even though the ZAP-X
delivers approximately twice the amount of MUs, the total ZAP-X target radiation leakage is a factor of 25.4
lower compared to conventional Linacs. The reason for such a low ZAP-X leakage radiation can be found in
the system's more compact size and lower beam energy, which results in smaller TVL thickness and thereby
provides more shielding effect for an equivalent amount of shielding material.
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General Radiation Shielding guidelines are published as consensus by the National Council on Radiation
Protection (NCRP) report no. 151 for Radiotherapy operations using Linacs and specialized Radiosurgery
devices [5]. When the ZAP-X was designed, these guidelines were strictly followed by providing the shielding
materials as integrated system components in the axial and oblique shells of the gyroscopic ZAP-X
skeleton [6]. The shielding effect of the ZAP-X ensures extremely low radiation leakage within the treatment
room, allowing members of the public to access the room during radiation delivery. This same philosophy of
ultra-low radiation exposure was applied to the X-ray target shielding that provides for a very low patient
whole body dose which was investigated here. Both persons close to the treatment system within the
treatment room and the patient herself are expected to receive a small fraction of approximately 10%
compared to conventional Radiotherapy operations.

Conclusions
In a side-by-side comparison of the X-ray target leakage radiation of the ZAP-X with conventional Linear
Accelerators, the ZAP-X produces a significantly lower dose received by the patient during the treatment
delivery. The ZAP-X's target leakage per beam reference dose is 51 lower than the expected standard; during
a typical treatment, the target leakage radiation is 25.4 lower compared to this standard. The Tungsten
Shielding thickness alongside the ZAP-X Linear Accelerator consists of 10.4cm or 3.5 TVL. However, only
oblique beams from the X-ray target reach the patient during the treatment delivery, penetrating the
tungsten shield in directions that result in a minimum thickness of 5.0 TVL.

The secondary cancer incidence and mortality rates induced by whole-body radiation during treatment are
directly proportional to the amount of radiation; therefore, such side effects are expected to be lower by a
factor of 25.4 for ZAP-X treatments compared to the expected Linac standard. The ZAP-X target shielding is
significantly superior to that of conventional Linear Accelerators. Therefore, the ZAP-X can be considered a
safe alternative for patient treatments with a significantly lower risk of patient morbidity and mortality than
conventional Linear Accelerators.
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