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ABSTRACT 

The study of mobile robots is a new field of research in the 
area of artificial intelligence. The main objective of this field is 
to create intelligent robots that can perform tasks independently. 
These tasks can include household chores and personal 
assistance. In the past few years, there has been an increase in 
the number of mobile robots being developed and used around 
the world. Mobile robotics is a relatively new field that focuses 
on designing and building autonomous mobile robots for 
performing various tasks independently or with minimal human 
supervision. Mobile robotics involves many different disciplines 
to accomplish this objective.   

Path planning is a process that a robot must go through in 
order to find the shortest route from one point to another, often 
in a dynamic environment. This process involves several 
different steps, and each step depends on the current position in 
the environment. This paper aims to explain the findings from 
researching and reviewing various studies and published content 
about how mobile robot path planning works, what the 
challenges are, and how it can be improved. Mobile robots are 
very useful for humans because they can perform dangerous or 
difficult tasks, such as inspecting an area for bombs or searching 
for survivors after a disaster.   

Mobile robots are used in many different applications. These 
robots are used for a variety of purposes, such as to perform tasks 
that would be difficult or impossible for humans to do. For these 
mobile robots to perform their tasks effectively, they must have 
the ability to navigate and plan their paths through an 
environment. This paper will discuss three different algorithms 
that can be used for path planning: A* search, Bio-inspired, and 
Rapidly-exploring Random Trees* (RRT*). 
 
1. INTRODUCTION 

This paper summarizes the findings after reviewing several 
journals and conference papers on path planning for mobile 
robots. These self-driving or autonomous mobile robots are 
distinguished by their exceptional ability to perform duties 
without any operator inputs or human involvement. Decision 
making requires some understanding of the surrounding 
environment, or domain, in which the bot is operating. Path 
planning has been an obstacle and/or challenge in the field of 
robotics.   

  The path planning phase involves formulating a 
“collision-free” approach from the current location, or structure, 
to a desired location, or end point.  Path planning is a geometric 

process and is usually concerned with determining a “collision-
free” path regardless of the viability of the path.   

As technology progresses, software architectures and 
algorithms are advancing to allow these mobile robotic platforms 
a greater ability to navigate in more complex domains and are of 
vital towards achieving fully autonomous capabilities that could 
enrich the lives of humans, daily. Yet, to reach these levels of 
autonomy, in complex and dynamic environments, will require 
further development.   

The process of developing a map leverages sensing 
technology, such as lidar, camera, and radar, to navigate and is 
critical for mobile robots. The robot receives inputs 
(environmental, location, and matching details) that allow the 
robot to understand its position and surroundings. The local map 
is constructed with previous details and the global map is 
updated to provide conditions for path planning.   

When it comes to approaches, there are several methods 
leveraged for path planning, e.g., ant colony algorithm, fuzzy 
logic method, artificial potential field method, etc [1-6]. 
However, one path-planning method has huge limitations in 
dealing with complex domains and environments. Several 
scholars have suggested using a hybrid path-planning approach. 
A Hybrid path planning method increase the ability of mobile 
robots to operate in dynamic environments.   

 
 
2. MATERIALS AND METHODS 

A total of 30 published research papers were used to 
establish this body of work. The proceeding sections summarize 
our findings for each algorithm mentioned above. 

 
2.1 A* Algorithm 

A popular technique for path planning is the A* Search 
algorithm. This approach is used by mobile robots with the help 
of an environmental grid. While the Dijkstra algorithm is the 
most efficient method for shortest path finding, the A* Algorithm 
leverages heuristics to increase efficiencies to find the shortest 
path, according to experts. A* algorithm utilizes the advantages 
of Dijkstra and breadth-first search (BFS) algorithm, but the 
benefit is that its cost function is compatible with both:   

(1) N represents the raster node in the path.   
(2) g(n) is the shortest path cost function to current point;   
(3) h(n) the shortest path cost function to reach destination 

point.   
Compared to Dijkstra's algorithm, the A* algorithm is used 

to find the shortest path from an identified source to a determined 
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goal, not the shortest path from an identified source to all 
possible outcomes. This would be a necessary trade-off for using 
a specific-goal-directed heuristic. 

 

 
 

FIGURE 1: Traditional A* Path Planning [1] 
 
When using Dijkstra's algorithm, the entire shortest-path is 

generated, every node is a path, and there is no specific-goal-
directed heuristic. There are three factors or parameters for A * 
algorithm: g(n) = actual cost of traversal from initial state to the 
current state; h(n) = estimated cost of traversal from the current 
state to the goal state; and f(n) = actual cost of traversal from the 
initial state to the goal state.   

There are a couple of disadvantages of A* algorithm, such 
as the algorithm is complete if the branching factor is finite, and 
every action has fixed cost and the performance of A* search is 
contingent on accuracy of heuristic algorithm used to compute 
the function h(n).  

A* path planning has become a widely researched topic in 
the field of hexapod robotics. This approach involves finding the 
optimal path between two points by considering the cost of travel 
and the estimated cost to reach the goal. A* is known for its 
efficient performance and accuracy in finding the shortest path, 
making it an attractive solution for hexapod robots which often 
need to navigate complex environments.  

Several studies have demonstrated the effectiveness of A* 
in path planning for hexapod robots. For example, researchers 
have implemented A* algorithms in hexapod robots to achieve 
high-speed and efficient navigation in various environments 
such as urban environments, rough terrains, and cluttered 
environments. These studies have shown that A* can provide fast 
and reliable path planning for hexapod robots, enabling them to 
navigate autonomously and avoid obstacles in their path.  

In addition, A* algorithms have been integrated with other 
techniques such as reinforcement learning and evolutionary 
algorithms to improve the performance of hexapod robots. These 
hybrid approaches have demonstrated improved navigation and 

obstacle avoidance capabilities, leading to more robust and 
flexible hexapod robots.  

Overall, A* path planning is a promising area of research in 
the field of hexapod robotics, with many studies showings its 
effectiveness in providing efficient and accurate path planning 
solutions. As technology continues to advance, it is expected that 
A* will play an even more important role in the development of 
autonomous hexapod robots. There are various studies that have 
explored this topic  

The first study is "Path planning and navigation for hexapod 
robots in urban environments using A* algorithm" by L. Zhang 
et al., published in the Journal of Ambient Intelligence and 
Humanized Computing in 2020. This study demonstrates the 
effectiveness of A* in path planning for hexapod robots in urban 
environments and shows improved navigation performance 
compared to other path planning methods.  

Another study that explores this topic would be "A* 
algorithm-based path planning for hexapod robots on rough 
terrain" by J. Li et al., published in the Journal of Advanced 
Robotics in 2018. This study presents a path planning system for 
hexapod robots on rough terrain using A* and shows how it can 
effectively avoid obstacles and improve the stability and 
efficiency of the robot.  

The final study is "Adaptive A* path planning for hexapod 
robots in cluttered environments" by H. Yu et al., published in 
the Journal of Intelligent and Robotic Systems in 2019. This 
study proposes an adaptive A* path planning algorithm for 
hexapod robots in cluttered environments and shows that it can 
effectively avoid obstacles and improve the efficiency and speed 
of navigation.  

In conclusion, leveraging the advantages of the A* 
algorithm can support real-world applications by providing the 
shortest path of a predetermined goal in the most effective way 

 
 

2.2 Ant Colony Algorithm 
One of the most common bio-inspired mobile robot path 

planning algorithms is known as Ant Colony Optimization 
(ACO), which is a heuristic algorithm imitating the scavenging 
behavior of ants in nature. Much research has been done on the 
ACO algorithms since the 1990s. In nature, as ants forage for 
food, they communicate with other ants in the colony using 
pheromones. Ants ultimately follow the paths with the highest 
number of pheromones generated by the most traffic.[16] The 
Double Bridge experiment summarizes this ant colony behavior. 
[Figure1] In the experiment, there are two bridges between the 
ant colony’s nest and the desired food target. Ants explore the 
area in search of food by randomly crossing both bridges. Since 
bridge 1 is shorter than bridge 2, the ants using bridge 1 make 
the journey to the food much faster than those ants using bridge 
2. The pheromones on bridge 1 increase in intensity, attracting 
more ants to bridge 1. Overtime, all the ants in the colony use 
bridge 1, which is the shortest path between the nest and the food 
source. [15] 
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    FIGURE 2: Bridge experiment [2] 

 
The ACO algorithm leverages this model with a positive feedback 

mechanism (aka pheromone calculation update). The ACO algorithm 
basically has the below steps. [3]   

The surrounding environment is converted into a graph with X 
number of nodes and links. The nodes represent way points (start, 
intermediate, end) while the links represent possible and found paths 
between the nodes.  

The model starts with a predefined number of ants. Weight is 
allocated to each link. The ants use probability to select the next node 
in their path from origin to destination. The graph can also include nodes 
that are obstacles to avoid. [see Figure 2]  

The next step is often referred to as the pheromone update 
calculation. The model is updated with pheromone intensity for those 
links traversed most, and the pheromone intensity is reduced for other 
links. This step helps create further exploration for links not travelled, 
as well as reward for shorter links traversed.   

The final step is when the algorithm reaches a predefined number 
of iterations or time goals. 

 

 
 
FIGURE 3: ACO Link/Node Graph [5] 

 
With the traditional ACO algorithm, there exist a few 

challenges for path planning. Some of the disadvantages are 
redundant paths, slower convergence, and lower accuracy, 
especially with more complex environments. Similar with ants 
in nature, it takes time to explore the environment, with ants 
following similar paths in the beginning and taking time to find 
the most optimal path. The ACO algorithm also has similar 
issues of redundancy and slow convergence, especially with 
larger or more complex environments requiring obstacle 

avoidance. Secondly, the path selected may not always be the 
most optimal path based on requirements. As with ants in nature, 
the path with the most pheromones may not necessarily be the 
shortest path in the environment. This path just happens to be 
shorter than the other previous paths explored, and convergence 
on this path happened quicker with the pheromone intensity. The 
ACO algorithm also has this same risk where the path selected 
by the pheromone update calculation may not always be the most 
optimal.[16]    

In recent years, there has been additional research in 
optimizing the traditional ACO algorithm. One of these methods 
is called Green Ant (G-Ant), which seeks to update the ACO 
algorithms with a power or energy consumption prediction 
model. The G-Ant seeks to provide not only the shortest path but 
also a path with lowest power and energy consumption.[17] 
Another model looks at exploring secondary, alternate paths.  
This mode rewards the ant for finding an alternate shorter path. 
For example, when two ants meet, a new path is formed, and the 
model rewards the ant with the shorter path and punishes the ant 
with the longer path. The final goal is to find the absolute shortest 
path while also still reducing the number of redundant paths and 
reducing convergence time.[18] Finally, another method has 
been developed to introduce a genetic algorithm, which seeks to 
introduce genetic concepts like elite retention, crossover, and 
mutation probability. By introducing these genetic-based factors 
into the ACO algorithm, the pheromone update calculation is 
improved by allowing pheromone concentration of different 
paths to be updated differentially, thereby speeding up the time 
of convergence.[19]   

In conclusion, the Ant Colony Optimization algorithm is a 
bio-inspired, heuristic algorithm that imitates the nature of an ant 
colony. Various research and modifications have been made to 
the original algorithm with the goal of improving its heuristic 
and path-guiding functions in order to speed up path 
convergence, reduce path redundancy, and improve path 
accuracy.  

 
2.3 Bio-Inspired 
 

In addition to the Ant Colony Optimization algorithm, 
there are other bioinspired path planning algorithms. These 
heuristic algorithms attempt to solve path planning & 
optimization challenges by mimicking the natural world.  These 
nature-inspired methods can be grouped into evolution-based, 
physics-based, and swarm-based methods.[19] Evolution-based 
methods seek to mimic the laws of Darwinian evolution. These 
genetic-based algorithms start with a randomly generated 
population that is refined over subsequent iterations by always 
selecting the best result. Another group is physics-based methods 
which seek to mimic the universe’s physical rules, such as the 
Gravitational Search algorithms. Finally, a third bioinspired 
group replicates swarm-based, social behaviors found in insects 
and animals. [21] This research literature review provides 
examples for two of these categories: evolution-based and 
swarm-based methods.  
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One of the evolution-based methods is the Genetic Algorithm 
(GA).  GA is another heuristic method that finds the most optimal 
path by mimicking the natural evolutionary process. GA 
leverages the processes of natural selection, crossover, and 
mutation.[6] It can conduct parallel searches simultaneously 
along multiple routes and is commonly used for mobile robot 
path planning. However, the algorithm has disadvantages. The 
GA cannot be improved after the initial selection of the 
population, which increases the inaccuracy of the algorithm. 
Also, in many cases, the approaching of obstacles is not 
considered. [15]  

One of the swarm-based methods is the Whale 
Optimization Algorithm (WOA) which is based on the predatory, 
hunting techniques of humpback whales.  Humpback whales 
hunt in three steps: search for prey, encircle the prey, and feed 
using a bubble-net. With WOA, mathematical algorithms mimic 
this predatory, bubble-net hunting strategy. WOA searches for 
the target path randomly from each whale’s position. The best 
whale is assumed to be closest to the target path, and other 
whales update their position to encircle this target path. Finally, 
the whales create the bubble net and spiral towards the target 
path. In summary, according to the nearest principle, the WOA 
algorithm will select the best path and constantly update towards 
this location. The WOA has several disadvantages such as slower 
convergence than other methods, lower solution accuracy than 
other methods, and the risk of selecting a path because there are 
no other feasible solutions found. [20] 

 

 
 
FIGURE 4: Flowchart of whale optimization [1] 
 

Another bioinspired method is known as Particle Swarm 
Optimization (PSO).  PSO is inspired by the social behavior of 
animals that swarm, like fish schooling or birds flocking. The 
main concept behind PSO is collaborative information sharing 
within the swarm of particles. Each particle attempts to find the 
best path within the environment and updates the swarm 
accordingly. The search process continues by including a 
particle’s individual knowledge as well as the collective 
knowledge of the whole swarm. Since PSO is an iterative 
process, each particle updates the swarm’s collective knowledge 

toward finding this optimal path with each iteration. The 
disadvantage of the PSO approach is that it can be 
computationally heavy and often result in a low convergence 
rate.  [7] 

 

 
 

FIGURE 5: Flowchart of PSO algorithm [7] 
 
Another bioinspired algorithm for mobile robot path planning 

is the Artificial Bee Colony algorithm (ABC). The ABC method is a 
swarm algorithm proposed by the Karaboga group in 2005. [1] The ABC 
method mimics bees in nature, especially as the bee colony searches for 
food sources like pollen and nectar. The ABC algorithm includes food 
sources and bees.  The bees are divided into different types: hired bees, 
follower bees, and scout bees. The goal of the hired bee is to locate 
nearby nectar sources and then share their locations with follower bees.  
Follower bees then expand their search scope around these specific 
nectar sources to search for other nearby food sources. The 
communication between hired bees and follower bees allows the 
algorithm to share optimal paths as well as learn. If a nectar source is 
never initially found by a hired bee, the hired bee transforms into a scout 
bee in order to expand the search area. This transformation allows the 
ABC algorithm to escape out of the local optimal solution with a goal 
of finding the global optimal solution.[1] Compared with other heuristic 
algorithms, the ABC algorithm is more flexible and optimal while still 
finding the most direct path [2]. Like other bioinspired algorithms, it 
does have a low convergence speed as well as accuracy issues.  
Therefore, recent research has worked to make the ABC algorithm more 
efficient by applying other bioinspired methods like the Genetic 
Algorithm.  These improved ABC methods increase optimization 
performance by applying evolutionary-based processes, like rewarding 
the hired bees that find quicker, more optimal paths.  

A slightly different bioinspired method is the Bat Algorithm (BA). 
BA, introduced in 2010, mimics bats’ echolocation behavior when they 
hunt. Bats emit and analyze ultrasonic waves to determine the location 
and type of prey. Bats search for prey by changing ultrasonic frequency, 
flying velocity and relative position. The BA method mimics the bat’s 
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ability to use echolocation to sense distance, to avoid obstacles, and to 
find prey. In addition, the BA method assumes that the bat can tune 
ultrasonic frequency and emissivity based on location and proximity to 
the desired target.[3] The natural behavior is transformed into a 
mathematical algorithm similar to the below pseudo-code:  

o Generate bat population and initial velocity   
o Define pulse frequency & pulse emissivity  
o while searching  
o Adjust frequency   
o Update velocities   
o Update positions    
o Select a best position   
o Generate a local position   
o Accept the new position   
o Find the current best target  
o Break if target reached or stop condition met  

In conclusion, there are many bioinspired path planning 
methods which can be grouped into evolutionary-based, physics-based, 
and swarm-based methods. However, individually these methods 
include some disadvantages like low convergence, inaccuracy, high 
computational needs, and local optimum issues.  Therefore, recent 
research has focused on developing hybrid approaches that combine 
multiple bioinspired methods (e.g., combining a genetic algorithm with 
a swarm algorithm).  These hybrid methods work more efficiently in 
optimizing mobile robot path planning and overcoming disadvantages. 

 
2.4 RPP & RRT 

 
Rapidly-exploring Random Trees* (RRT*) is a popular 

algorithm used in robotics for path planning and exploration. 
This paper aims to explore the application of RRT* in hexapod 
robotics and its potential benefits for this type of system.  [28-
30] 

Hexapod robots, also known as six-legged robots, are a type 
of legged robot that can traverse a wide range of terrains and 
environments. They have many advantages over traditional 
wheeled or tracked robots, such as increased mobility and the 
ability to navigate uneven terrain. However, the complex nature 
of hexapod movement and control can make it difficult to plan 
efficient and safe paths for these robots to follow.  

RRT* is a variant of the Rapidly-exploring Random Trees 
(RRT) algorithm, which is a popular method for path planning 
and exploration in robotics. RRT* improves upon the original 
RRT algorithm by incorporating a "rewiring" step, in which the 
algorithm looks for nearby nodes that can be connected to the 
tree more efficiently. This allows RRT* to find shorter, more 
efficient paths than the original RRT algorithm.  

In hexapod robotics, RRT* has been shown to be an 
effective method for path planning and exploration. One of the 
key advantages of RRT* in this context is its ability to handle the 
high degree of freedom and complexity of hexapod movement. 
The rewiring step in RRT* allows the algorithm to adapt to the 
unique constraints and capabilities of the hexapod robot, 
resulting in more efficient and safe paths.  

Additionally, RRT* has been found to be a robust algorithm 
that can handle real-world environments, which may contain 
obstacles and other sources of uncertainty. This is particularly 

important for hexapod robots, as they are often used in 
unstructured environments where traditional path planning 
methods may fail. [29] 

In conclusion, RRT* is a powerful algorithm that can be 
applied to the path planning and exploration of hexapod robots. 
Its ability to handle the high degree of freedom and complexity 
of hexapod movement, as well as its robustness in real-world 
environments, make it an attractive option for this type of 
system. Further research is needed to fully explore the potential 
of RRT* in hexapod robotics and to develop new techniques for 
integrating it into hexapod control systems. 
 
 
 

 
 

3. RESULTS AND DISCUSSION 
Further technological advances in the area of path planning 

will enable not only more effective navigation in a complex 
environment, but it will allow more applications or uses of 
mobile robots in our everyday life. The reduction of traffic 
congestion in many cities in America and improve safety on 
highways are only the aspects of the improved path planning 
approach. Soon, in the near future, AI and ML will continue to 
revolutionize the path planning process, making it more 
effective, efficient, reliable, and safer than ever before. A hybrid 
path planning approach will be needed to ensure the 
shortcomings of individual methods, such as A* & bio-inspired, 
are supported by another method. [2] This diverse method 
approach with leverage the best aspects of one method with the 
strengths of another approach to achieve path planning in the 
most effective and efficient manner. Determining which methods 
to combine will present a unique set of challenges and obstacle 
 
4. CONCLUSION 

In summary, path planning for mobile robots is a 
very dynamic domain with various different approaches to 
a common problem. After reviewing various papers from 
the scientific community, the methodologies investigated to 
resolve some of the issues has come a long way and has 
new approaches being discovered every day. Despite 
decades of theoretical merit in the space, the 
implementation of such method in actual applications has 
largely been limited due to significant technological 
obstacles & challenges related to planning and control. 
However, in recent times, the hybrid approach to path 
planning methodology has been stated to have the best 
outcome. This approach leverages the strengths of two 
methods, which helps compensate for the shortfalls of just 
one traditional method. These hybrid capabilities have now 
allowed for continued study in the path planning realm 
with more real-world applications. Since this paper’s focus 
has been limited to the path planning of mobile robots in 
the past ten, several research challenges & future obstacles 
are documented in this study.  
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Path planning for mobile robots has a very exciting and 
bright future! With the advancement of Artificial 
Intelligence (AI) and Machine Learning (ML), these two 
powerful technologies will be used to create more efficient 
and accurate paths for these robots to navigate dynamic 
real-world environments autonomously. These two 
technologies will complement each other because AI can 
analyze data from past path planning decisions to optimize 
future paths, while ML can be used to identify patterns in 
the data and create models to accurately predict the best 
paths for a given situation. With AI and ML, path planners 
can save time and resources by finding the most efficient 
routes for their journey.   
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