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Abstract

Calorie restriction (CR), a nutritional intervention of reduced energy intake but with adequate 

nutrition, has been shown to extend healthspan and lifespan in rodent and primate models. 

Accumulating data from observational and randomized clinical trials indicate that CR in humans 

results in some of the same metabolic and molecular adaptations that have been shown to improve 

health and retard the accumulation of molecular damage in animal models of longevity. In 

particular, moderate CR in humans ameliorates multiple metabolic and hormonal factors that are 

implicated in the pathogenesis of type 2 diabetes, cardiovascular diseases, and cancer, the leading 

causes of morbidity, disability and mortality. In this paper, we will discuss the effects of CR in 

non-obese humans on these physiological parameters. Special emphasis is committed to recent 

clinical intervention trials that have investigated the feasibility and effects of CR in young and 

middle-aged men and women on parameters of energy metabolism and metabolic risk factors of 

age-associated disease in great detail. Additionally, data from individuals who are either naturally 

exposed to CR or those who are self-practicing this dietary intervention allows us to speculate on 

longer-term effects of more severe CR in humans.
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Introduction

Calorie restriction (CR) without malnutrition is the most studied and robust non-genetic 

non-pharmacological experimental intervention for extending healthspan and lifespan in 

multiple animal models. In budding yeast, fruit flies and worms, CR can extend lifespan 

dramatically (2–3 fold). A 20 to 50% reduction in caloric intake, without malnutrition, in 

some strains of rats and mice prolongs median and maximal lifespan up to 50%, and 

prevents or delays the onset of many chronic diseases, such as obesity, type 2 diabetes, 

cancer, nephropathy, cardiomyopathy, neurodegeneration and multiple autoimmune diseases 

(Heilbronn and Ravussin, 2003). The effects and mechanisms through which CR modulates 

health and lifespan in simple model organisms and rodents are discussed in more detail in 

two separate review articles of this special issue of Ageing Research Review (ref #1, ref #2).

During the past two decades, the biology of aging scientific community has kept a close 

watch on studies of prolonged CR in non-human primates. As discussed in more detail by 

De Cabo et al. (ref#) in this issue, accumulating data from two long-term ongoing primate 

studies clearly indicate that 30% CR drastically reduces the incidence of glucose 

intolerance/type 2 diabetes, cardiovascular disease and cancer (Colman et al., 2009; Colman 

et al., 2014; Mattison et al., 2012). Moreover, in the Wisconsin National Primate Research 

Center (WNPRC) study, CR has been shown to slow down age-related sarcopenia, hearing 

loss and brain atrophy in several subcortical regions (Colman et al., 2009; Colman et al., 

2014). For the time being, data on longevity are still discordant, but differences in study 

design, husbandry and diet composition likely contribute to the controversial findings 

between the primate colonies studies (Cava and Fontana, 2013).

While studies to elucidate the CR-mediated effects on disease prevention and life extension 

continue in experimental animals, evidence for the benefit of CR on metabolic and 

molecular adaptations in humans is also growing. In this review, we discuss findings from 

the NIH funded CALERIE randomized clinical trials and ongoing longitudinal studies on 

the effects to date of CR on human health. We also consider the importance of diet quality, 

and meal frequency and timing in mediating some of the beneficial effects of CR. Finally, 

we highlight the importance of human studies in the context of aging research and its 

potential to advance our understanding of interventions that could prevent the accumulation 

of molecular damage leading to multiple chronic diseases in humans.

INSIGHTS FROM POPULATION STUDIES WITH CALORIE RESTRICTION IN 

HUMANS

Calorie restriction without malnutrition in World War I and II

Involuntary episodes of CR are not uncommon in human history, but only few of these 

events were not accompanied by malnutrition, because the local governments wisely 

enforced food restriction with an adequate consumption of essential nutrient-dense foods. 

During World War 1 in 1917, Danish men and women were forced to reduce food 

consumption for 2 years, but with a well-planned and adequate consumption of whole grain 

cereals, vegetables, and milk. The result of this undesired experiment was an impressive 
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34% reduction in death rates (Hindhede, 1920). Similarly, in Norway during World War 2, 

the citizens of Oslo underwent a forced 20% CR without malnutrition (i.e. Norwegians were 

provided with adequate intake of fresh vegetables, potatoes, fish and whole cereals) for 

approximately 4 years (1941–45). In this forced experiment, mortality dropped by 30% 

compared to the pre-war level in both men and women (Strom and Jensen, 1951).

The Centenarians of Okinawa

Another natural CR experiment took place in Okinawa, a beautiful island located 640 

kilometers south of mainland Japan. On this island, an estimated 50 in every 100,000 people 

were 100 years of age or older; this is approximately 4–5 times higher than the number of 

centenarians residing in any other industrialized country (Japan Ministry of Health, 2005). 

All-cause mortality at age 60–64 for people living on Okinawa was half of that of other 

Japanese for the year 1995 (Willcox et al., 2006), and the mortality from ischemic heart 

disease and cancer (i.e. prostate, colon, breast, and lymphoma) was markedly lower than in 

the average mainland Japanese and US population (Kagawa, 1978). In the same year, both 

the average and maximum lifespan of people living on Okinawa (average 83.8 years, 

maximum: 104.9 years) was higher compared to Japanese living on mainland Japan (82.3 

years, 101.1 years), and Americans residing in the USA (78.9 years, 101.3 years) (Willcox et 

al., 2007a).

Studies investigating the dietary intake of adults living on Okinawa suggest that Okinawans’ 

consumed approximately 17% fewer calories than the average adult in Japan (Suzuki et al., 

2001), and 40% less than the average adult in the United States (Bureau of Agricultural 

Economics, 1950). Importantly, the lower energy intake was not (exclusively) explained by 

overeating (energy intake exceeding energy requirements) in the latter populations. For 

Okinawans, a 10–15% deficit in energy intake was estimated according to the Harris-

Benedict-equation of the energy requirements (Frankenfield et al., 1998; Willcox et al., 

2007b). The Okinawan diet is also reported to be lower in protein (9% of calories) and rich 

in fresh vegetables, fruits, sweet potatoes, soy and fish (Willcox et al., 2006). Sadly, because 

of an increase in fast food chains brought by US soldiers in the 1960’s, dietary habits of 

Okinawan’s have become more westernized and as a result, body mass index has increased 

and so has mortality (Kagawa, 1978). In 2010, life expectancy for newborns on Okinawa is 

no longer different than in mainland Japan (girls, 87.0 vs. 86.4; boys, 79.4 vs. 79.5), whereas 

life expectancy for Okinawans, aged 65 and older, was still higher (women, 89.9 vs. 88.9; 

men, 84.5 vs. 83.8) (System of Social and Demographic Statistics, 2016).

INSIGHTS FROM RANDOMIZED CONTROLLED TRIALS OF CALORIE 

RESTRICTION

Short duration CR clinical trials

In three independent studies of short-term CR in non-obese humans, energy expenditure 

assessed as resting metabolic rate was reduced by −100±27 kcal/day after 3 weeks of 20% 

CR (Heyman et al., 1992), by 12% after 6 weeks of 1000 kcal/d CR (Webb and Abrams, 

1983) and by −255±151 kcal/day after 10 weeks of 20% CR (Velthuis-te Wierik et al., 

1995c). Changes in total daily energy expenditure assessed by doubly labeled water after 3 
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weeks (−296±170 kcal/day) also were decreased, however did not reach statistical 

significance (Velthuis-te Wierik et al., 1995c). No change in sedentary energy expenditure 

with a 25% reduction in food intake has also been reported (Garby et al., 1988), however 

this may be due to poor compliance, since subjects were only asked to reduce food intake by 

25% without any oversight or scientific control. Interestingly, after 20% CR, the resting 

metabolic rate per kg of FFM was reduced (Velthuis-te Wierik et al., 1995c), indicating that 

the energy expended per FFM is not fixed, and thus indicating metabolic adaptation (−7.4 kg 

body mass, −1.3 kg FFM). In this study, the reduction in energy expenditure after 10 weeks 

of 20% CR did not lead to a concomitant reduction of indicators of oxidative stress or 

insulin levels (Loft et al., 1995; Velthuis-te Wierik et al., 1995b). In the 10-week CR study 

of Velthuis et al. (Velthuis-te Wierik et al., 1994), blood pressure was significantly reduced 

(124 to 118 mmHg and 79 to 74 mmHg, for systolic and diastolic blood pressure, 

respectively). Impaired fibrinolytic activity has been shown to be predictive for developing 

CVD (Anand et al., 2003; Tofler et al., 2016) and the 10 week CR intervention reversed 

markers of these impairments and induced fibrinolytic activity, particularly in subjects that 

were more impaired at baseline (Loft et al., 1995; Velthuis-te Wierik et al., 1995a). Also in 

the study of Velthuis and Loft et al. (Loft et al., 1995), glucose concentrations were reduced 

significantly from 4.8 to 4.6 mmol/L in the CR-group (age, 42.9 years; BMI, 24.6 kg/m2). 

Of note, the subjects in this study, were likely still in active weight loss and had not reached 

new energy balance or weight maintenance on the CR diet. Thus, longer term studies of CR 

in humans were designed to elucidate the metabolic effect of prolonged CR in non-obese 

humans.

CALERIE randomized clinical trials

The CALERIE (Comprehensive Assessment of Long-term Effects of Reducing Intake of 

Energy) trials were initiated by the US National Institute of Aging to provide the first 

controlled clinical trials of CR with adequate nutrient provision in healthy, non-obese 

humans. In CALERIE-1, three pilot studies were performed to evaluate the feasibility and 

effects of CR on metabolic health after 6 months (Das et al., 2007a; Heilbronn et al., 2006) 

or 12 months (Racette et al., 2006a). In the pilot studies, CR was studied by achieving a 

negative energy balance through different modalities 1) reduced calorie intake (CR), 2) 

increased exercise energy expenditure, or 3) CR and exercise in combination. The volunteers 

randomized in the CALERIE-1 trials were mostly overweight and their body mass index 

dropped to the upper limit of normality at the end of the study. The results of these studies 

were collated and thereafter a phase 2 multi-center trial was conducted to investigate the 

efficacy and safety of 2 years 25% CR in leaner and younger men and women. The 

CALERIE 2 study enrolled 220 healthy, young and middle-aged (21–51 years old), healthy 

non-obese (body mass index between 22 to 27.8 kg/m2) men and women and tested the 

effectiveness of the CR intervention on energy metabolism, metabolic adaptations, immune 

function, chronic disease risk factors and quality of life (Rickman et al., 2011; Rochon et al., 

2011).

CALERIE-1 at the Pennington Center in Baton Rouge

At Pennington Biomedical Research Center (PBRC), a reduction of energy intake alone 

(25% CR) was compared to combined reduction in energy intake (12.5%) and a 12.5% 
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increase in energy expenditure through exercise (−12.5% energy intake +12.5% energy 

expenditure = 25% CR), a positive weight loss control group that through a very low-calorie 

diet achieved a 15 kg weight loss and a weight-maintenance control group (Heilbronn et al., 

2006; Redman et al., 2007). In the 6 month study the level of CR was estimated (by doubly 

labeled water) to be 18% (Redman et al., 2007). The CALERIE phase 1 trial conducted at 

Pennington Biomedical in Louisiana arguably provides the most compelling evidence for 

CR-induced metabolic adaptation. Energy expenditure was assessed by various independent 

gold-standard measurement techniques: doubly-labeled water for 14 days assessing daily 

free-living energy expenditure (Redman et al., 2009), metabolic chamber for 23 hours 

assessing sedentary and sleeping energy expenditure (Heilbronn et al., 2006), and ventilated 

hood system for assessing resting metabolic rate (Martin et al., 2007b). In this 6-month 

study, all components of energy expenditure, that is, sleeping (Heilbronn et al., 2006), 

resting (Martin et al., 2007b), 24h sedentary (Heilbronn et al., 2006) and free-living 

(Redman et al., 2009) were reduced below baseline levels. The metabolic adaptation in 

sedentary energy expenditures (sleep/24h) was ~6% based on a smaller energy expenditure 

than predicted on the basis of the metabolic size of the individuals at the end of the study 

(Heilbronn et al., 2006). The 24h sedentary energy expenditure was also significantly lower 

than 865 individuals matched for age and BMI studied in the NIDDK Chambers in Phoenix 

(Heilbronn et al., 2006; Weyer et al., 1999). Interestingly it does not appear that the 

metabolic cost of activity is affected by CR, as the relation between energy expenditure to 

spontaneous physical activity (simultaneously assessed in metabolic chamber, spontaneous 

physical activity as % activity by radar motion detector) was unchanged (Martin et al., 

2007b). Since the metabolic cost of spontaneous activity was unchanged and the energy 

expenditures of free-living activity were reduced, the findings from this study suggest that 

individuals undergoing CR also make behavioral adjustments (conscious or unconscious) to 

decrease physical activity during CR (Redman et al., 2009).

In this pilot study, core body temperature was assessed over 24 hours on a metabolic ward 

and was reduced by 0.2° C after 6 months of 25% CR (Heilbronn et al., 2006). Also, fasting 

insulin concentrations declined after CR in CALERIE 1 and more sophisticated assessments 

of glucose homeostasis suggest a more pronounced benefit of CR on carbohydrate 

metabolism and potential risk for development of T2DM. Insulin sensitivity, assessed by an 

intravenous glucose tolerance test (with delayed insulin-infusion) was improved by 40% 

(p=0.08) (Larson-Meyer et al., 2006). Moreover, the acute insulin-response to glucose-

infusion was increased by 29% which suggests an improvement in β-cell function (Larson-

Meyer et al., 2006). Similarly, CR (−1000 kcal/d) increased insulin sensitivity (glucose 

infusion rate during hyperinsulinemic euglycemic clamp) by 46% (p<0.0001) after 16 weeks 

in older, obese subjects (55±2 yrs, 35.2±1.3kg/m2) (Johnson et al., 2016).

T2DM and insulin resistance are related to increased adipocyte size and ectopic fat 

deposition including the liver and skeletal muscle (Fox et al., 2007; Perry et al., 2014; Weyer 

et al., 2000). In line with the improvements in glucose homeostasis, 25% CR in CALERIE 1 

resulted in a significant reduction in subcutaneous adipocyte size and deposition of lipid in 

the liver (intrahepatic lipid) but not in skeletal muscle (Larson-Meyer et al., 2006; Redman 

et al., 2007).
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Surprisingly, in this CALERIE I trial, various factors that are associated with CVD (blood 

pressure, LDL, HDL, fibrinogen, homocysteine, CRP, TNFα, and Factor VIIc) were not 

affected by CR (Lefevre et al., 2009; Tam et al., 2012). Also, flow-mediated dilatation, a 

measure of endothelial function, was not improved and factors that have been associated 

with CR and aging such as IGF-1, DHEA-s, GH secretion (both GH pulse amplitude and 

pulse mass) were also unchanged in overweight subjects studied in CALERIE 1 (Heilbronn 

et al., 2006; Lefevre et al., 2009; Redman et al., 2010). This could be related to the young 

age of the study participants and their impeccable health status even before beginning the 

CR intervention (age, 39.0 years; BMI, 27.8 kg/m2, fasting glucose, 4.9 mmol/l). 

Nevertheless, based on values for total and HDL cholesterol (expressed as their ratio), 

systolic blood pressure, age and gender (Anderson et al., 1991), it was estimated that the 

25% CR diet for 6 months induced a 29% reduction in the ten-year risk for CVD (Lefevre et 

al., 2009).

For the first time in humans undergoing CR, a decline in markers of oxidative stress was 

observed (DNA-damage and SOD-activity, indicating oxidative stress defense activity) 

(Civitarese et al., 2007; Heilbronn et al., 2006). The reduction in DNA damage to red blood 

cells was however not correlated to any measure of energy expenditure (Heilbronn et al., 

2006). In line with previous results of the short-term CR-intervention studies discussed 

earlier (Velthuis-te Wierik et al., 1995b; Walford et al., 2002), thyroid hormone (T3 and T4) 

concentrations were reduced in CALERIE 1 after 6 months (Heilbronn et al., 2006). More 

important than the absolute changes in thyroid hormones which might be solely related to 

the energy deficit/weight loss, is that changes in thyroid hormone and leptin concentrations 

were significantly related to metabolic adaptation (Heilbronn et al., 2006; Lecoultre et al., 

2011). Since the major contributor of metabolic rate is fat-free mass, molecular studies in the 

skeletal muscle of CR people may provide insight into the mechanisms of CR-induced 

metabolic adaptation or metabolic efficiency. In skeletal muscle biopsies collected from the 

CR participants, mitochondrial DNA content increased by 35%, suggesting an increase in 

mitochondrial mass. In line with this observation, expression of genes encoding proteins 

involved in mitochondrial function such as PGC1α, TFAM, eNOS, SIRT1, and PARL were 

also increased by CR (Civitarese et al., 2007). An increased number of mitochondria may 

enhance coupling due to a reduced mitochondrial membrane potential and contribute to 

reduce energy expenditure and oxidative stress. However, the activity of enzymes of the 

tricarboxylic acid cycle (citrate synthase), β-oxidation (β-hydroxyacyl-CoA dehydrogenase), 

and ETC (cytochrome C oxidase II) was unchanged. This lack of effect on mitochondrial 

enzyme activities questions whether skeletal muscle mitochondrial dynamics could affect 

whole-body energy expenditure.

CALERIE-1 at Washington University in St. Louis

At Washington University, 48 overweight (BMI, 23.5–29.9 kg/m2) individuals, aged 50–60 

years, were randomized for 1-year to 20% CR, or 20% increase in energy expenditure by 

means of endurance exercise or to a control group of healthy lifestyle (Racette et al., 2006a). 

At the end of the study, the CR group achieved only a 11.5±2.1% reduction in calorie intake 

(measured with doubly-labeled water), BMI dropped from 27.3±0.3 kg/m2 to 24.4±0.6 

kg/m2, and visceral fat mass measured by MRI was reduced by 37% (Racette et al., 2006b). 

Most et al. Page 6

Ageing Res Rev. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As in experimental animals, CR-induced weight loss improved insulin sensitivity, increased 

adiponectin and reduced the serum concentrations of leptin, insulin, LDL-cholesterol, and 

C-reactive protein (Fontana et al., 2007b; Villareal et al., 2006; Weiss et al., 2006). Plasma 

triiodothyronine levels were decreased in the CR, but not in the exercise groups (Weiss et al., 

2008). In this study, both CR and exercise induced weight loss resulted in a significant 

reduction in oxidative damage to DNA and RNA measured ex-vivo in white blood cells, and 

in improvements of left ventricular diastolic function (Hofer et al., 2008; Riordan et al., 

2008). CR decreased bone mass, muscle size and strength, and maximal aerobic capacity in 

proportion to the reduction in body weight (Villareal et al., 2006; Weiss et al., 2007). In this 

pilot trial, unlike in CR rodents, serum concentration of IGF-1, estradiol, testosterone and 

cortisol did not change with CR (Fontana et al., 2008; Villareal et al., 2006; Weiss et al., 

2006).

CALERIE-1 at Tufts University in Boston

At Tufts University, 46 young (24–42 years old) overweight (BMI, 25–29.9 kg/m2) 

individuals were randomized to low versus high glycemic load during 30% CR (Das et al., 

2007a). At 6 months, the individuals randomized to 30% CR experienced a significant 

reduction in body weight, and improvements in fasting insulin concentration, insulin 

sensitivity, first-phase acute insulin secretion, and lipid profile independent of the glycemic 

load of the diets (Das et al., 2007b; Pittas et al., 2006). Serum concentrations of CRP were 

reduced in the 30% low-glycemic CR group, but not in the 30% high-glycemic CR group 

(Pittas et al., 2006). Moreover, 30% CR significantly improved T-cell function (i.e. delayed-

type hypersensitivity response and proliferative response of T cells to T-cell mitogens), and 

prostaglandin E2 production (Ahmed et al., 2009).

CALERIE-2 multicenter trial

The main goal of CALERIE-2 was to test the hypothesis that 2-years of sustained CR, 

involving a reduction in energy intake to 75% of baseline (25% CR) will result in the same 

adaptive changes that occur in rodents subjected to CR (Ravussin et al., 2015). One reason 

for 2-years of CR intervention is that the 6-mo and 1-yr in CALERIE-1 pilot trials were not 

sufficient to induce many of the metabolic and hormonal adaptations in humans that are 

thought to increase longevity in rodents. Overall, the intervention was safe and well-

tolerated; only two participants were withdrawn from the study because of treatment-

resistant anemia and one because of excessive bone mass loss (≥5% compared to baseline) 

(Romashkan et al., 2016). Unfortunately, in this large trial (CR: n=143, ad libitum: n=75), 

which required study subjects to self-select their own diets, compliance was not as good as 

expected, and average CR during the first 6-months was 19.5±0.8% and 9.1±0.7% over the 

next 18 months of the study.

In this study, food intake was monitored by self-reporting and estimated by the intake/

balance method, which is described in Racette et al. (Racette et al., 2012). As imposed by 

the study design, the reduction in weight and body composition was achieved at 12 months; 

body weight at month 12 was reduced by 11.5% and was maintained throughout the study 

(9.9% at month 24 vs. baseline), FFM by 4.3% (4.2%) and FM by 23% (26%) (Ravussin et 

al., 2015; Villareal et al., 2016). Metabolic adaptation in resting metabolic rate was evident 

Most et al. Page 7

Ageing Res Rev. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the CR group at both 12 months and 24 months. However, it was only significantly 

different from the group adhering to the ad libitum-diet after the first period of 12 months 

(Ravussin et al., 2015). A declining level CR throughout the study might explain this lack of 

significance at the 24 month-assessment. The measurement of indirect calorimetry in the 

metabolic chamber is considered the gold-standard because all components of daily energy 

expenditure are assessed and the individual can properly equilibrate to sedentary activities 

over the course of 24 hour measurements. While we await official publication from an 

ancillary study of CALERIE-2 where additional measurements of 24h energy expenditure 

were performed at one center (ClinicalTrials.gov Identifier: NCT02695511) and in a subset 

of people, the first reported results indicate confirmation of metabolic slowing with a CR 

diet (Redman et al., 2014). In the ancillary, both 24h and sleeping energy expenditure were 

reduced to a larger extent than predicted based on their body composition, indicating 

metabolic adaptation which was significant after both one and two years of intervention in 

the CR group. Additional insight on the effect of CR on skeletal muscle metabolism will be 

provided by skeletal muscle biopsies that have been collected in CALERIE-2, yet these data 

have not been published. More advanced measurement techniques of mitochondrial 

respiration and oxidative stress by ex vivo respirometry may provide a clearer picture of 

mitochondrial adaptations to CR. Also, the involvement of other tissues in the reduced 

energy expenditure observed with CR remains to be investigated since skeletal muscle only 

accounts for ~20% of resting energy expenditure and metabolic adaptations are likely to 

occur in other tissues as well (Heymsfield et al., 2007; Muller et al., 2015).

The results of this large trial are important because they demonstrate that mild CR improves 

cardiometabolic risk factors, well below the conventional thresholds used in the clinical 

practice, even when implemented in healthy lean or overweight young and middle-aged men 

and women. Total cholesterol, LDL-cholesterol, triglycerides, C-reactive protein, TNFα and 

blood pressure decreased significantly and HDL-cholesterol increased in CR group, even in 

people who had normal risk factor at baseline (Ravussin et al., 2015). HOMA-IR, which is a 

measure of insulin resistance, was also reduced from baseline to 24 months (1.2 to 0.9), 

(Ravussin et al., 2015). Importantly, the baseline values of the participants in all studies are 

already within the normative ranges (<6.1 mmol/L for glucose and <2.2 for HOMA-IR), 

thus it remains arguable whether the observed reductions of these fasting parameters are 

physiologically relevant with respect to the development of T2DM.

Finally, in CALERIE-2 CR caused a significant increase in serum IGFBP-1 and a reduction 

in leptin, and T3, but unlike in rodents did not change IGF-1 and IGF-1:IGFBP-3 ratio or 

cortisol levels (Fontana et al., 2016). Moreover, in this study CR like the CALERIE 1 trials 

had no effect on core body temperature, and serum concentrations of DHEA-s, PDGF-AB 

and TGFβ-1 (Fontana et al., 2016). Most likely, the lack of the typical CR-induced 

adaptations on several important hormonal and physiological factors is due to insufficient 

reduction in calorie intake achieved in the CALERIE trials. Thus, the findings of these 

studies may be more relevant to the effects of weight loss than of chronic severe CR.
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INSIGHTS FROM OBSERVATIONAL STUDIES OF SEVERE CALORIE 

RESTRICTION

Biosphere 2 Study

Biosphere 2 is a 3.15-acre ecological enclosure that was designed as a laboratory for 

ecological investigations (e.g., biogeochemical cycles, food web systems, and the population 

genetics of speciation), and unintentionally provided an opportunity to study the effects of 

severe CR in non-obese metabolically healthy human beings (Walford et al., 1992). A very 

small group of 8 non-obese individuals between the ages of 25 and 67 entered Biosphere 2 

for 24 months. Due to unforeseen agricultural problems with growing foods, the crew 

underwent a forced ~29% CR for 18 months. The diet composition was diverse, largely 

vegetarian, very low in fat (~10% energy from fat) and provided adequate protein and high 

fiber. The CR diet coupled with high levels of physical activity (70–80 hours of high 

intensity work per week) resulted in a ~15% weight loss (BMI decreased from 23.9 to 19.7 

kg/m2). The 8 members of this crew experienced several of the same adaptations previously 

reported in CR rodents, including marked reductions in levels of insulin, cholesterol, 

triglycerides and white blood cell count, and an increase in cortisol concentration (Walford 

et al., 1992; Walford et al., 2002). Furthermore, glucose concentrations (5.1 to 4.1 mmol/L), 

HDL (62 to 38 mg/dl), systolic (109 to 89 mmHg) and diastolic blood pressures (74 to 58 

mmHg) were significantly decreased below values that are considered healthy.

However, CR in these individuals did not result in reductions of serum concentration of 

IGF-1, testosterone and DHEA-s (Walford et al., 2002). Despite a significant reduction in 

serum T3 concentrations, this degree of CR produced only a subtle effect on core body 

temperature, but this may have been masked by technical limitations because the thermostats 

were not calibrated for temperatures <96 °F (Walford et al., 1999). Interestingly, 24-hr 

energy expenditure in the Biosphere inhabitants assessed one week and 6 months after 

exiting the Biosphere enclosure was lower when compared to non-CR subjects who were 

free-living and with appropriate statistical adjustment for age, sex, fat-free mass (FFM) and 

fat mass (FM) (Weyer et al., 1999). It should be noted that several years after the first 

publication, it was discovered that the 8 biospherians most likely endured chronic hypoxia 

(i.e. oxygen in the internal atmosphere recorded at only ~14%), which may have influenced 

the observed results and conclusions related to the potential role of the CR diet on some 

metabolic outcomes (Paglia and Walford, 2005). For example, chronic environmental 

(hypobaric) hypoxia has been reported to lead to weight loss and reduced appetite in obese 

men (Lippl et al., 2010). Furthermore, chronic hypoxia is also known to induce favorable 

effects on insulin sensitivity (Jain et al., 2016; Lecoultre et al., 2013).

CRON Study

Currently, the only direct evidence that CR may influence the biology of aging in humans 

comes from data collected in members of the Calorie Restriction Society, who follow a 

regimen of self-imposed severe CR with optimal nutrition (CRON) in the belief that this 

dietary lifestyle will prolong their healthy lifespan. These individuals are very lean (BMI 

19.7±1.8 kg/m2) men and women, who had been voluntary restricting their caloric intake 

(~1800 kcal/d) for an average of 15 years, and consume approximately 30% less energy as 
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compared to a group of individuals (matched for age, sex and socioeconomic status) 

consuming a regular Western diet. Importantly, their diet meets all dietary recommendations 

for essential nutrients, and is very high in vegetable fiber and low glycemic foods packed 

with a wide variety of phytochemicals, which may modulate metabolic health independently 

of caloric intake (Fontana et al., 2004).

While data on longevity and mortality are not yet available, data indicate that moderate/

severe CR in humans results in the same metabolic and molecular adaptations typical of 

long-lived CR animals (Fig.1). Moreover, CR with optimal intake of nutrients in these 

individuals reduces metabolic and hormonal risk factors implicated in the pathogenesis of 

type 2 diabetes, cardiovascular disease, stroke, cancer and vascular dementia. All 

cardiometabolic risk factors in the members of the CR Society are remarkably low (Fontana 

et al., 2004). The cholesterol-HDL ratio was 2.6 with triglycerides in the 50 mg/dl range. 

Systolic and diastolic blood pressure, even in people in their late 70s, was 110/70 mmHg, 

and C-reactive protein almost undetectable (Fontana et al., 2004; Meyer et al., 2006). Serum 

TNFα, IL6, fasting glucose and insulin were also remarkably low, and insulin sensitivity 

based on HOMA-IR and the Matsuda and DeFronzo indexes were improved (Fontana et al., 

2010). Historical data from their medical records prior to starting CR strongly supports a 

cause-effect diet-induced beneficial adaptation on cardiovascular risk (Holloszy and 

Fontana, 2007). As a consequence of these cardiometabolic improvements, the intima-media 

thickness of the common carotid arteries was significantly lower in these CR individuals 

than in the age-matched controls eating usual Western diets (Fontana et al., 2004). 

Additionally, the CRONies had significantly better echocardiographic markers of left 

ventricular diastolic function (i.e. lower chamber stiffness and augmented viscoelasticity), 

and improved autonomic function with a reduction in sympathetic and increased in 

parasympathetic modulation of heart rate variability (Fontana et al., 2007a; Meyer et al., 

2006; Stein et al., 2012). Heart rate variability in the CR practitioners was comparable with 

published norms for healthy men and women 20 years younger (Stein et al., 2012).

Unlike in the CALERIE trials, the great majority of the hormonal adaptations that have been 

reported in long-lived CR rodents, and are also implicated in the pathogenesis of several 

common cancers (Longo and Fontana, 2010), occurred in these individuals practicing severe 

CR. Plasma triiodothyronine concentration, and as a consequence 24-hr core body 

temperature, were significantly lower in the CR society members (Fontana et al., 2006). 

Total and free testosterone and estradiol were also lower, and serum SHBG, adiponectin and 

cortisol concentration were higher in the CR group than in the age- and sex- matched control 

group. Consistent with the study of Biosphere 2 inhabitants, long-term CR in the CRONies 

did not affect DHEAS concentrations (Cangemi et al., 2010). However, unlike in rodents in 

which CR decreases circulating IGF-1 levels by ~20–40%, even in these individuals severe 

CR did not decrease total IGF-1 or IGF-1/IGFBP-3 ratio levels, unless protein intake was 

also reduced (Fontana et al., 2008; Sonntag et al., 1999).

At a molecular levels metabolic pathways that modulate the accumulation of molecular 

damage such as the PI3K/AKT and AMPK/SIRT pathway were changed by CR to an extent 

that resembles younger individuals, which again indicates the anti-aging potential of CR 

(Mercken et al., 2013). In particular, AKT mRNA expression and protein phosphorylation 
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were significantly reduced by CR in the skeletal muscle, and transcription factors 

downstream of AKT, such as FOXO-3A and FOXO-4, were up-regulated. FOXO activation 

resulted in up-regulation of several anti-aging genes, including the antioxidant enzyme 

SOD2, the DNA repair transcript DDB1, and the autophagy genes beclin-1 and LC3 

(Mercken et al., 2013). Consistent with some of these gene expression changes, beclin-1 and 

LC3 protein levels were significantly higher in the skeletal muscle of the CR volunteers 

(Yang et al., 2016). Moreover, key stress-induced cytosolic chaperones transcript and protein 

levels, such as HSP70 and GRP78, were significantly higher in the CR skeletal muscle 

(Yang et al., 2016). These data strongly suggest that CR in humans is associated with an 

increase in key molecular chaperones and autophagic mediators involved in cellular protein 

quality control and removal of dysfunctional proteins and organelles. To our knowledge, this 

is the first set of data showing that long-term CR in humans up-regulates the HSF/HSP 

pathway and down-regulates the activity of the insulin/IGF pathway, which have been shown 

to play a key roles in promoting health and longevity in several experimental model 

organisms (Hsu et al., 2003; Kenyon et al., 1993; Yokoyama et al., 2002).

INSIGHTS FROM STUDIES OF EXTREME CALORIE RESTRICTION

It is well established that energy restriction lacking sufficient protein and micronutrients is 

associated with, but not limited to, short stature, late reproductive maturation (Eveleth and 

Tanner, 1990), lower baseline gonadal steroid production in adults (Ellison, 1996a, b), 

suppressed ovarian function (Ellison et al., 1993), impaired lactation performance (Roberts 

et al., 1982), impaired fecundity (Lee, 1979), and impaired immune function (Martorell, 

1980; Ulijaszek, 1990). However, the health effects of extreme CR without protein and 

vitamin malnutrition in humans are less understood. Data from patients with anorexia 

nervosa - a psychiatric disease characterized by disturbed body image, heightened desire to 

lose more weight, and pervasive fear of fatness – indicate that extreme CR (i.e. weight <75% 

of the expected weight) may be associated with increased mortality, hypokalemia, 

hypophosphatemia, symptomatic hypoglycemia, dehydration, orthostatic hypotension, 

hypothermia (temperature <36.1°C), impaired menstrual and reproductive function, anemia, 

osteoporotic bone fractures, and cardiac arrhythmias (Fairburn and Harrison, 2003). The 

effects of extreme CR in metabolically and psychologically healthy individuals have been 

studied in the Minnesota Semi-Starvation Study.

The Minnesota Semi-Starvation Experiment

The pioneering ‘Minnesota Starvation Experiment’ by Ancel Keys (Kalm and Semba, 2005; 

Keys et al., 1950) is the only human study describing the physical and psychological effects 

of extreme CR in a clinical experiment. Designed to mimic dietary conditions during World 

War II, 32 lean and young 24 years old conscientious objectors were carefully studied during 

a 40% reduction in energy intake for 6 months. Participants were allowed to consume 1800 

kcal/d, but were expected to walk 5 km/d and expend 3000 kcal/d. At the conclusion of the 

study, the men had lost ~25% body weight, of which 67% was fat mass (FM) and 17% fat-

free mass. To properly reflect the diet during war, the quality of the diet was poor owing to 

the inadequate intake of protein (<0.8 g/kg body mass/d) as well as insufficient intake of 

fruits and vegetables. Therefore while this may be considered a study of extreme CR, the 
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study diet was not indicative of true CR diets, which meet intake recommendations for 

macro- and micronutrients. The malnourished CR diet led to chronic weakness, reduced 

aerobic capacity, and severe painful lower limb edema (Keys et al., 1950). Abnormal 

psychological behaviors which emerged by 6 weeks included severe emotional distress, 

confusion, apathy, depression, hysteria, hypochondriasis, suicidal thoughts, and loss of sex 

drive. This study was concluded when these young men reached the 25% target weight loss 

by 6 months at average body mass index of 16. With refeeding, mood, behavior, and muscle 

mass very slowly normalized (Kalm and Semba, 2005). Interestingly, 50% of these objectors 

who survived to age 80 lived at least 8 years longer than expected for men born in 1920 

(Kalm and Semba, 2005).

Psychological and mental capacity

In contrast to the Minnesota Semi-Starvation Experiment, well-controlled studies with a 

lesser degree of CR with adequate nutrition and interventions providing behavioral support 

to participants have reported no adverse effects of CR on psychological and mental capacity. 

For example, mood and mental performance were unchanged after 20% CR for 10 weeks 

(Velthuis-te Wierik et al., 1994) and cognitive performance, memory, attention and 

concentration were not affected by 6 months of 25% CR in CALERIE-1 (Martin et al., 

2007a). Moreover, a 25% CR did not lead to the development of clinical signs or symptoms 

of eating disorders or binge eating (Williamson et al., 2008). Despite having higher dietary 

restraint scores the CR subjects also had reduced disinhibition regarding food and fewer 

concerns about body weight. Recent data from CALERIE-2 consistently showed, that mild 

CR for 2 years had no negative effects on health-related quality of life, based on assessments 

of vitality, mental health and bodily pain (SF-36) (Martin et al., 2016). Moreover, measures 

of mood were unaffected (anger, fatigue, confusion) or even improved (depression, less 

tension) in the CR-group as compared to the control group. Also, quality of sleep (assessed 

by PSQI) and sexual function (DISF-SR) were not affected or even improved (sexual drive 

and relationship). Nonetheless, more severe energy restriction such as in some members of 

the CR Society may result in reduction of libido, which seems to correlate with the reduction 

in circulating testosterone levels.

Bone mineral density and metabolism

No untoward effect of CR was observed on bone mass after 6 months of CR, but turnover 

increased, which may relate to the altered hormonal environment caused by the reduced 

body mass (Redman et al., 2008). In the longer term CALERIE-2 trial, bone mass 

significantly decreased at clinically important sites of osteoporotic fractures such as the hip 

and femoral neck and the lumbar spine (Villareal et al., 2016). Changes in body 

composition, macronutrient intake, physical activity and plasma hormones (Vitamin A and 

D, cortisol, IGF-1, adiponectin and leptin) explained 31% of these changes in a multiple 

regression analysis. These findings clearly represent a potential limitation of the 

implementation of CR perhaps in some older persons where accelerated bone loss is a cause 

for concern. Longer term studies should assess trabecular bone architecture (a major 

determinant of bone strength and a good predictor of the risk of developing fragility 

fracture) to ensure that bone quality is preserved with CR, and whether the observed 

reductions in bone mass indeed contribute to increased fracture risk. However, data from 
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members of the CR Society have shown that trabecular bone microarchitecture of the distal 

radius (i.e. surface-to-curve ratio and erosion index) assessed by high resolution MRI was 

not significantly different between the CR and control groups, despite the CR-mediated low 

bone mineral density (Villareal et al., 2011). Serum CTX-1 and bone specific ALP, two well-

accepted markers of bone resorption and formation, were also not significantly different 

between the two groups, which suggest that long-term CR with adequate micronutrient 

intake does not persistently increase the rate of bone turnover (Villareal et al., 2011). These 

results are consistent with the majority of studies published so far indicating that CR reduces 

bone mineral density in both rodents and monkeys, but improves bone quality and strength 

through a reduction of bone turnover and a prevention of secondary hyperparathyroidism 

(Kalu et al., 1984; Tatsumi et al., 2008). More studies are needed to understand the 

interactions between CR, dietary micronutrient content and resistance exercise in preserving 

bone health.

Physical functioning

In short-term CR studies, in which nutritional requirements are met, a reduced physical 

functioning was indicated by a reduced cycling time until exhaustion and reduced maximal 

power (Velthuis-te Wierik et al., 1995b). These findings are in line with CALERIE-1, which 

reported declines in muscle mass, strength and aerobic fitness, which were assessed by MRI 

of both thighs, concentric isokinetic and isometric knee flexor and knee extensor strength by 

dynamometer and absolute maximal aerobic capacity (VO2max and VO2peak) by a 

progressive treadmill test (Larson-Meyer et al., 2010; Weiss et al., 2007). However, 

VO2peak/VO2max expressed per kilogram of body mass were maintained or increased during 

CR, suggesting that the reduction in body weight may preserve or even beneficially affect 

physical functioning. A similar effect of CR on aerobic fitness has been observed in older 

and more obese subjects (>60 yrs, BMI≥30kg/m2) with heart failure with preserved ejection 

fraction (>50%) (Kitzman et al., 2016). Despite decreased body mass and lean body mass 

(−7 and −2%), CR by 400 up to 1000 kcal/d significantly increased VO2peak (expressed per 

kg body weight or per lean body mass, but not expressed without correction), 6-min walking 

distance and leg muscle quality (expressed in Watts per cm2 thigh muscle area). In addition, 

quality of life improved based on data on increased Short Form 36 Health survey physical 

component scores, reduced MEADS depression scores, and physical functioning improved 

after 4, 6 or 24 months of ~25% CR in metabolically compromised (Kitzman et al., 2016) 

and healthy participants (Ravussin et al., 2015; Williamson et al., 2008).

BEYOND SEVERE CALORIE RESTRICTION

Data from the CALERIE trials, the Biosphere-2 and CRON studies clearly indicate that 

moderate CR with adequate nutrition improves human health and drastically reduces 

multiple metabolic factors implicated in the pathogenesis of the most common chronic 

diseases typical of Western countries, including type 2 diabetes, heart and cerebrovascular 

disease, and cancer. Accumulating data suggest that more severe CR may slow, or even 

revert, the accumulation of molecular damage with age and preserve some key physiological 

functions (i.e. left ventricular diastolic function and heart rate variability) at a younger stage 

(Mercken et al., 2013; Meyer et al., 2006; Stein et al., 2012; Yang et al., 2016). However, 
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severe CR with optimal intake of vitamins and minerals is not feasible for most people 

because it is impractical and very difficult to sustain. Side effects such as extreme leanness, 

loss of sex drive, cold sensitivity and impaired menstrual cycles are also important deterrents 

to severe CR. Moreover, it is currently unknown which is the ideal caloric intake associated 

with optimal health. As studies in recombinant inbred mouse strains suggest (Harper et al., 

2006; Liao et al., 2010), a definite degree of energy restriction that is ideal for some 

individuals might be excessive and detrimental in others. Interestingly, accumulating data 

suggest that severe CR possibly is not needed, other interventions such as intermittent 

fasting, restricted feeding, protein or selective amino acid restriction may recapture some of 

the beneficial effects of severe CR in modulating certain anti-aging pathways (Fontana and 

Partridge, 2015). The effects and mechanisms through which intermittent fasting, restricted 

feeding, protein or selective amino acid restriction modulates health and lifespan in model 

organisms will be discussed in more detail in two separate review articles of this special 

issue of Ageing Research Review (ref #3, ref #4).

CONCLUSION

Data from epidemiological, experimental and clinical studies strongly indicate that 

maintaining a healthy body weight and preventing the accumulation of abdominal fat is 

essential for the prevention of multiple chronic diseases and the promotion of healthy aging 

(Fontana and Hu, 2014). Hundreds of preclinical studies have shown that dietary restriction, 

by inhibiting key nutrient-sensing and inflammatory pathways, activates multiple molecular 

pathways that promote proteostasis, genome stability, stress resistance and stem cell function 

(Fontana and Partridge, 2015). Data collected in non-human primates indicate that CR in 

combination with diet quality modifications markedly decrease the incidence of 

cardiovascular disease, cancer and diabetes, and attenuates age-related neurodegeneration, 

sarcopenia, and auditory loss. Finally, data from human studies show that CR remains the 

cornerstone in the prevention and treatment of obesity and its complications. Moderate CR 

achieved through intermittent fasting or restricting feeding in combination with regular 

physical activity most likely exerts additional beneficial health effects even in non-obese 

individuals. More studies are warranted to elucidate the role of specific amino acid 

restriction with and without CR, and the effects of nutritional modulation of gut microbiome 

in promoting health and longevity in humans.
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Highlights

Well-nourished calorie restriction promotes metabolic and molecular health in non-obese 

humans

Calorie restriction reduces aging-associated biomarkers in humans

Calorie restriction induces metabolic adaptation and behavioral compensation in physical 

activity

Calorie restriction induces no adverse effects on quality of life or eating behavior
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Fig.1. 
A proposed hierarchical model for the effects of calorie restriction on health and longevity
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