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Abstract Heart failure is a progressive muscular disorder leading to a deterioration of the heart characterized by a contractile
dysfunction and a chronic energy deficit. As a consequence, the failing heart is unable to meet the normal metabolic
and energy needs of the body. The transition between compensated left ventricular hypertrophy and the de-compen-
sated heart is multifactorial, although metabolic disturbances are considered to play a significant role. In this respect, the
AMP-activated protein kinase (AMPK) could be a potential target in heart failure development. AMPK senses the energy
state of the cell and orchestrates a global metabolic response to energy deprivation. We briefly review here the current
knowledge about the chronic energy deficit of the failing heart, as well as the role of AMPK in energy homeostasis and in
the control of non-metabolic targets in relation to cardiac hypertrophy and heart failure. The relative importance of
energetic and non-metabolic effects in the potential cardioprotective action of AMPK is discussed.
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1. Introduction
Heart failure (HF) is a multifactorial, progressive, and disabling syn-
drome, characterized by symptoms resulting from ventricular dysfunc-
tion, either diastolic (impaired relaxation) or systolic (impaired
contraction). The most common cause of HF is coronary artery
disease and myocardial infarction, often linked with co-morbidities
(e.g. hypertension, diabetes).

HF is in fact a muscular disorder leading to a progressive deterio-
ration of the heart, characterized by contractile dysfunction linked
to chronic energy deficit.1– 5 It is also a systemic disease in which a
neurohormonal response of the body activates the renin–angiotenin
and adrenergic systems, and leads to left ventricular remodelling and
dilatation. Consequently, the increased wall stress enhances local
oxygen consumption and worsens the energy deficiency and contrac-
tile dysfunction. The heart enters a vicious circle, which precipitates
the clinical evolution and aggravates the prognosis. In addition,
repeated ischaemic attacks decrease the number of functional cardio-
myocytes and lead to maladapted cardiac remodelling.

Restoration of muscle contraction by inotropic support acting on
beta-adrenergic signalling fails to improve the short- and long-term
prognosis.6 In contrast, the current HF therapies that inhibit the
renin–angiotensin system and the catecholamine response,

dramatically improve the prognosis of HF patients.7 Although they
do provide benefits, HF remains a life-threatening condition. Alterna-
tive therapies that could improve the energetic state and disrupt the
vicious circle of the failing heart are of particular interest.

In this context, the AMP-activated protein kinase (AMPK) appears
as a potential therapeutic target. AMPK is a highly conserved eukary-
otic protein serine/threonine kinase that senses the energy status of
the cell and coordinates a global metabolic response to energy depri-
vation.8,9 The question then arises of its potential beneficial metabolic
and/or therapeutic effects in the energy-deprived failing heart. In this
chapter, we summarize the current knowledge on the energetic state
of the failing heart, the biochemical characteristics of AMPK, and its
role in energy homeostasis. We also briefly describe non-metabolic,
anti-proliferative, anti-fibrotic, and angiogenic effects of AMPK that
are independent of energy but related to cardiac hypertrophy and
HF. The relative importance of these effects in the potential cardio-
protective action of AMPK is discussed.

2. Energetic state of the
failing heart
There is a continuum between compensated left ventricular hypertro-
phy and de-compensated HF. The pathological transition is probably
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multifactorial, although metabolic disturbances are considered to play
a significant role.1,2

Energy depletion characterizes the failing heart, although the extent
of the deficit may vary depending on the stage of HF1,2,4,10. In several
models of left ventricular hypertrophy as well as in patients suffering
from HF, measurements of the changes in cardiac energy charge by
NMR techniques revealed significant decreases in phosphorylation
potential (decreased phosphocreatine and ATP and increased ADP
concentrations) that were proportional to the degree of hypertrophy
and could be used as predictors of mortality.2,11 –14 The low energetic
potential of the failing heart affects contraction and relaxation, both of
which depend on ATP. Clearly, energy deprivation results from the
decreased ability of the failing heart to produce ATP from the avail-
able substrates—‘the failing heart: an engine out of fuel’.3 Actually
the defect affects all steps of energy production and includes disturb-
ances in substrate utilization, mitochondrial oxidative capacity, and
ATP transfer.1,2 Moreover, this does not exclude abnormal ATP util-
ization by non-contractile biochemical systems.

With regard to substrate utilization, fatty acids are preferred sub-
strates. Their oxidation inhibits glucose uptake, whereas glucose
together with insulin inhibits fatty acid oxidation. This reciprocal
metabolic control, known as the Randle cycle,2,15,16 is perturbed in
HF. In animal models of HF, the failing heart favours glucose utilization
at the expense of fatty acids. The changes are however progressive
and depend on the stage of HF.4 At early stages, fatty acid oxidation
is either unchanged or even slightly increased, whereas at more
advanced stages, fatty acid oxidation is clearly limited. The metabolic
shift corresponds to fundamental changes in the expression of genes
controlling fatty acid oxidation and mitochondrial biogenesis, thus
leading to metabolic inflexibility and lack of substrate adaptability to
the energy needs.2,4,17,18 It is also interesting to note that overexpres-
sion of GLUT1 protects against contractile dysfunction and prevents
pressure overload-induced HF.19 It also rescues the contractile dys-
function in peroxisomal proliferator-activated receptor (PPAR)
alpha null hearts submitted to high workload.20 However, increased
glucose uptake and oxidation in transgenic mice overexpressing
GLUT1 decreases fatty acid oxidation and remodels metabolism
towards glucose utilization, but at the same time increases oxidative
stress and results in cardiac dysfunction when these mice are fed a
high-fat diet.21

Mitochondrial dysfunction has emerged as a characteristic feature
of the failing heart and contributes to energy deprivation. The failing
heart contains more mitochondria, which are however reduced in
size and display ultrastructural abnormalities.18,22–24 Their electron
transfer chain complexes and oxidative phosphorylation capacity are
decreased.1,2,18 Fatty acid oxidation is especially affected in severe
HF with a decreased content of enzymes, such as carnitine palmitoyl
transferase 1 (CPT1) and acyl-CoA dehydrogenses that control fatty
acid oxidation. This deficient fatty acid oxidation is explained by a
decreased expression of peroxisome proliferator-activated receptor
gamma co-activator (PGC1 alpha),25 which is probably the most
important transcriptional factor involved in heart mitochondrial
biogenesis.

On top of a deficient oxidative mitochondrial capacity, the failing
heart is also unable to couple energy production to utilization
through the compartmentalized creatine kinase system. In the failing
heart, decreased content and isoform alteration of this energy trans-
fer system concur to an inefficient adaptation of energy production to
utilization.1

3. AMPK, a metabolic master
switch and more
AMPK senses the energy status of the cell—the fuel gauge of the
cell26—and orchestrates an integrated metabolic response to
energy deprivation in order to conserve ATP via short- and long-term
metabolic control. AMPK is therefore regarded as a metabolic master
switch in normal and pathological conditions.8

3.1 AMPK structure
AMPK is a heterotrimeric complex containing a catalytic (alpha) and
two regulatory (beta and gamma) subunits. Each subunit has multiple
isoforms (alpha 1 and 2, beta 1 and 2, and gamma 1, 2, and 3) giving 12
possible combinations of holoenzyme, which are present in murine
and human hearts. The catalytic alpha subunit contains the protein
kinase domain and a threonine residue (Thr172) whose phosphoryl-
ation by upstream kinases is responsible for AMPK activation.8 In
mouse hearts, AMPK alpha-2 accounts for 60–80% of total AMPK
activity, whereas in human hearts both alpha-1 and alpha-2 catalytic
subunits equally contribute to the total AMPK activity.27 The beta
subunit acts as a scaffold for the other two subunits. It also contains
a glycogen-binding domain, whose physiological role might be to
control glycogen metabolism.28 The beta-2 isoform is the main
isoform expressed in the heart.29 The gamma subunit contains
three AMP-binding domains, one of which binds a non-exchangeable
nucleotide, whereas the others can bind AMP or ATP, with however a
lower affinity for the latter.30 Mutations in the gamma-2 subunit cause
glycogen accumulation and lead to cardiac arrhythmias, also called
Wolff–Parkinson–White syndrome.31

3.2 Control of AMPK activity
3.2.1 Biochemical mechanisms of activation
AMPK is activated when AMP concentration increases as a result of
insufficient ATP production or unmatched energy demand. AMPK
can also be activated independently of adenine nucleotides, by
changes in calcium concentrations as well as by increased production
of reactive oxygen species (ROS). Whatever the stimulus, AMPK acti-
vation requires phosphorylation by upstream kinases of a threonine
residue (Thr172) located in the activation loop of the alpha catalytic
subunit. At least two pathways lead to AMPK activation by phos-
phorylation of Thr172.8,32,33 The first one senses energy depletion
and is mediated by AMP and LKB1 (Peutz–Jeghers protein), which
seems to be specific for AMPK alpha-2, because in heart from LKB1
KO mice, AMPK alpha-2, but not AMPK alpha-1 activation is abro-
gated.34,35 The AMPK alpha-1 kinase acting under these conditions
is not known. The second activation pathway is triggered by increased
calcium concentration and is mediated by calcium/calmodulin-
dependent protein kinase kinase-beta, which phosphorylates
Thr172.36– 38 Although this protein kinase is present in heart, the
demonstration of its participation in AMPK activation has not been
reported.

3.2.2 AMPK activation following ATP depletion
Conditions leading to changes in AMP concentrations and AMPK acti-
vation are directly related to changes in ATP concentrations, which
adenylate kinase translates into relatively larger changes in AMP.
Accordingly, ischaemia and mitochondrial inhibitors activate AMPK
within a few minutes39,40 (Figure 1). Increased ATP demand also
leads to AMPK activation, especially when combined with decreased
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ATP supply, as is the case in contracting skeletal muscle during intense
exercise. Remarkably, this is not the case in perfused hearts subjected
to high workload, presumably because this organ can adapt its ATP
supply to increased energy demand.41

3.2.3 Control of AMPK by hormones and agonists
Norepinephrine, phenylephrine, isoproterenol, or vasopressin acti-
vate heart AMPK42–45 (Figure 1 and Table 1). Interestingly, AMPK acti-
vation in response to certain cytokines protects the heart against
pressure overload or ischaemic injury. The cardioprotective effects
of adiponectin46– 48 and leptin,49 and of the macrophage migration
inhibitory factor (MIF), a proinflammatory component released by
the ischaemic heart,50 are mediated, at least in part,51 by AMPK acti-
vation. The precise mechanism of AMPK activation by these agents is
however not clear. In addition, AMPK activation also counteracts the
angiotensin II-induced hypertrophy.52 On the other hand, certain hor-
mones inhibit AMPK activation. Insulin antagonizes AMPK activation
independently of adenine nucleotide,53,54 via a hierarchical mechanism
whereby phosphorylation by protein kinase B (PKB) of a serine
residue (Ser485) in the AMPK alpha subunit prevents subsequent
phosphorylation of Thr172 by LKB1.55 Angiotensin II has also been
reported to inactivate AMPK by a still unknown mechanism.52 But
interestingly, if AMPK is activated by a pharmacological agent, it
then inhibits cardiac hypertrophy52 and vascular smooth muscle pro-
liferation induced by angiotensin II.56

3.2.4 AMPK activation by pharmacological agents
Among the substances and drugs known to activate AMPK
(Figure 1), AICA (5-amino-4-imidazole-carboxamide) riboside has

been widely used. It is an analogue of adenosine that, in certain
cells, is phosphorylated to the corresponding nucleotide, ZMP,
which mimics several effects of AMP, including AMPK acti-
vation.57,58 Its use to activate AMPK in cardiomyocytes is not rec-
ommended, because of its poor metabolism in these cells,39,59 and
of several unwanted side effects.60,61 Other more specific tools,
such as the Abbott compound A762669, should be preferred.62,63

Metformin, the most prescribed anti-Type 2 diabetic drug, and its
more potent but toxic analogue, phenformin, as well as thiazolidi-
nediones, another class of anti-diabetic drugs, are known to activate
AMPK.64,65 Their initial metabolic effect is to inhibit mitochondrial
respiration, thus decreasing ATP production.66,67 It should
however be noted that several effects of metformin are thought
to be mediated by p38-MAPK or by an inhibition of mTORC1,
independently of AMPK.68,69 Finally, AMPK could be redox-
sensitive: hydrogen peroxide and increased production of ROS acti-
vate AMPK,70,71 possibly by oxidation of two cysteine residues in
the alpha subunit of AMPK.72

A mechanism connecting caloric restriction and AMPK activation
has been described recently. SIRT1, a member of the sirtuin family
of NAD-dependent protein deacetylases, is activated by nutrient
deprivation and by resveratrol, a cardioprotective polyphenol of
red wine. It was initially thought that the anti-ageing effects of
resveratrol were mediated by SIRT1.73 However, resveratrol also
activates AMPK, probably by inhibiting mitochondrial respiration,74

and recent evidence indicates that the protective effect of resvera-
trol on mitochondrial function is mediated by AMPK, whereas
SIRT1 would act downstream of AMPK by de-acetylating PGC1
alpha.75

Figure 1 Upstream stimulatory factors and downstream targets of AMPK in the heart. Dashed lines correspond to indirect mechanisms. Question
mark signifies that this pathway has not been studied in the heart. Abbreviations: 4E-BP1, 4E binding protein-1;140 ACC, acetyl-CoA carboxylase;141

eEF2K, eukaryotic elongation factor 2 kinase;87,142,143 eNOS, endothelial nitric oxide synthase;92–94 Glut4, glucose transporter 4;144 MIF, migration
inhibitory factor;50 MLCK, myosin light chain kinase;44 mTOR, mammalian target of rapamycin;145 p70S6K, p70 ribosomal S6 protein kinase;146

PGC1alpha, peroxisome proliferator-activated receptor gamma co-activator alpha;77 PFK-2, 6-phosphofructo-2-kinase;39 ROS, reactive oxygen
species;70-72 S6, ribosomal S6 protein;147 TGFbeta, transforming growth factor beta;122 TSC2, tuberous sclerosis factor 2;85 ULK1, uncoordinated51-
like kinase 1;88-90 VEGF, Vascular endothelial growth factor.95

C. Beauloye et al.226



3.3 AMPK targets
3.3.1 Metabolic targets
When activated, AMPK aims at restoring the cellular energy charge by
switching off anabolic ATP-consuming pathways, while switching on
catabolic ATP-producing pathways. It does so by phosphorylating key
metabolic enzymes and transcription factors8,9 (Figure 1). Transcription
activation could be mediated through histone H2B phosphorylation.76

Biosynthetic processes, such as gluconeogenesis, glycogen synthesis,
lipogenesis, cholesterol synthesis, and protein synthesis are inhibited,
whereas glucose utilization, fatty acid oxidation, and mitochondrial bio-
genesis are stimulated.8,9,40 AMPK does not affect the mitochondrial
oxidative capacity in the short term. It does however stimulate mito-
chondrial biogenesis via activation of PGC1 alpha,77 which is particu-
larly relevant to the energy-deficient failing heart.

3.3.2 Anti-stress effects of AMPK
Recent evidence suggests that AMPK could inhibit (i) endoplasmic
stress, although the mechanism remains to be elucidated;78 (ii)
cJUN kinase activation;79 and (iii) oxidative stress in several cellular
models, including cardiomyocytes. The latter could result from the
phosphorylation and activation of the forkhead transcription factor
3, which reduces ROS levels by inducing anti-oxidant systems includ-
ing thioredoxin.80,81 Finally, AMPK has been reported to inhibit
glucose-induced oxidative stress and NADPH oxidase activation in
endothelial cells.82

3.3.3 Control of protein synthesis, cell growth, and
autophagy
AMPK inhibits the mammalian target of rapamycin (mTOR) pathway,
which controls protein synthesis and cell growth9,40,83 (Figure 1). This
effect is relevant to cardiac hypertrophy. It is mediated by the phos-
phorylation of upstream controlling elements, such as tuberous scler-
osis complex 2 (TSC2) and/or Raptor.84,85 Downstream of mTOR,
p70 ribosomal S6 protein kinase (p70S6K), and 4E-binding protein-1
(4EBP1) are involved in protein translation and cell growth.83,86 In
addition, AMPK directly phosphorylates eukaryotic elongation factor

2 kinase (eEF2K), thereby inhibiting protein elongation through
eEF2 phosphorylation.87 Moreover, AMPK has recently been shown
to promote autophagy. It directly phosphorylates and activates
ULK1, an initiator of autophagy that is inactivated by mTOR.88– 91

Taken together these data indicate that AMPK inhibits protein syn-
thesis and cell growth and stimulates autophagy.

3.3.4 AMPK and the vascular system
In endothelial cells, AMPK is activated by VEGF and controls eNOS
activation.92,93 eNOS is also known to be a direct target of AMPK
in cardiomyocytes,94 although the role of this phosphorylation is
not known. In vascular smooth muscle, direct phosphorylation of
myosin light chain kinase by AMPK allows this protein kinase to par-
ticipate in the control of vascular tone.44 Interestingly, in skeletal
muscle and cardiomyocytes, AMPK activation induces VEGF
expression and secretion. The latter plays an important role in mus-
cular adaptation to exercise and coordinates angiogenesis to hyper-
trophy in response to pressure overload.95

4. From hypertrophy to failure

4.1 Cardiac hypertrophy
AMPK is activated in models of chronic pressure overload.96 This acti-
vation is responsible for an increase in glucose metabolism and prob-
ably acts as a negative feed-back on hypertrophy by inhibiting the
mTOR pathway. Indeed, inhibition of mTOR by its specific inhibitor
rapamycin or partial ablation of mTOR blocked p70S6K activation
and counteracted the development of cardiac hypertrophy (Tables 2
and 3).97,98 Moreover, pharmacological activation of AMPK inhibits
the mTOR pathway and attenuates the development of hypertro-
phy.99– 101 In addition, in AMPK alpha-2 null mice, cardiac hypertrophy
induced by isoproterenol or aortic constriction is significantly larger
than in controls and is correlated with p70S6K activation.102,103 Fur-
thermore, the cardio-specific deletion of LKB1 led to hypertrophy,
correlated with a stimulation of mTOR signalling and reduced
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Table 1 Mechanisms of modulation of AMPK activity by hormones and pharmacological agents

Cardiac stimuli AMPK activity Mechanisms for modulation of AMPK activity References

Norepinephrine, Phenylephrine � ? 42

Isoproterenol � Phosphorylation of LKB1 43

Vasopressin � ? 44,45

Adiponectin � Binding of APPL1 with AMPKa2 46–48

Leptin � ? 49

MIF � ? 50

H2O2 ROS � Inhibition of respiratory chain, AMP� ATP� 70,71

Insulin � Phosphorylation of Ser 485/491 55

Angiotensin � ? 52

AICAr � ZMP accumulation 57,58

A762669 � Allosteric stimulation 62

Metformin/Phenformin � Inhibition of respiratory chain, AMP� ATP� 64,65

Resveratrol � Inhibition of ATP synthase, AMP� ATP� 74

A762669, Abbott compound A-762669; AICAr, 5-aminoimidazole-4-carboxamide ribonucleoside; APPL1, Adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper
containing 1; LKB1, also called STK11, serine/threonine kinase 11; MIF, macrophage inhibitory factor; ROS, reactive oxygen species; ZMP, 5-aminoimidazole-4-carboxamide
ribonucleotide.
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AMPK phosphorylation and could be prevented by overexpressing a
constitutively active form of AMPK or by inhibiting mTOR with rapa-
mycin.104,105 Interestingly, the hypertrophic response to pressure
overload is amplified in adiponectin-deficient mice, which exhibit
diminished AMPK activity.106

4.2 Transition from cardiac hypertrophy
to HF
AMPK and its upstream kinase LKB1 not only antagonizes the hyper-
trophic response, it also delays the transition to HF, as demonstrated
by studies resorting to genetic manipulations of these protein kinases.
Under normal conditions, the crucial role played by LKB1 in maintain-
ing cardiac function stems from the phenotype following LKB1 del-
etion. In these LKB1 deficient hearts, the lack of AMPK alpha-2
subunit activation increases mTOR signalling, decreases energy effi-
ciency and VEGF expression, and impairs cardiac function.104,105,107

Under pathological conditions, as in a model of chronic pressure
overload, the lack of AMPK alpha-2 exacerbates hypertrophy and
favours the transition to HF.103 In addition, disruption of the coordi-
nation between angiogenesis and hypertrophy is another crucial
factor in the pathological transition to HF.108 And in adiponectin-
deficient animals, the lack of AMPK activation by this hormone
exacerbates the transition to HF in pressure overloaded hypertro-
phied hearts due to an angiogenesis deficiency (Tables 2 and 3).109

As regards energy depletion, AMPK activation, which is expected in
energy deficient hearts, is not sufficient to maintain ATP. Several
reports indicate that expression of PPAR alpha and PGC1 alpha is
decreased and may explain the low-energetic state of the failing
heart.25 However, although PGC1 alpha down-regulation contributes
to energy deficiency, it does not suffice by itself to induce HF. In two
genetic models of PGC1 alpha deficiency, the overall metabolic dis-
turbances did not lead to HF, except when the hearts were submitted
to chronic haemodynamic overloads.110 – 112 Thus energy deprivation
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Table 2 Changes in cardiac function in AMPK transgenic/KO mice and effects of pharmacological agents

Animal model Surgery AMPK
activity

Pharmacological treatment Downstream effects References

Wild-type (mouse) TAC � Compound C (inhibits AMPK) � Systolic dysfunction 95

� Hypertrophy, � capillary
formation

Wild-type (mouse) CAL � Metformin (activates AMPK) � Systolic dysfunction 135

� Hypertrophy
� eNOS phosphorylation
� PGC-1a expression,
� Mitochondrial respiration

AMPKa2-DN(D157A) CAL � Metformin (no AMPK activation) No cardioprotective effect 135

AMPKa2-KO TAC � — � Systolic dysfunction 103

� Hypertrophy, fibrosis

AMPKa2-KO — � Isoproterenol � Hypertrophy 102

� p70S6K activity

LKB1-KO
(cardiac-specific)

— � — � Systolic dysfunction 105

� Hypertrophy, fibrosis

ObR-KO CAL � AICAr (activates AMPK) � Systolic dysfunction, �
hypertrophy

49

� Inflammation, fibrosis, apoptosis

APN/KO TAC � — � Systolic dysfunction 95

� Hypertrophy, � capillary
formation

Wild-type (dog) Rapid ventricular
pacing

� Metformin AICAr (activates
AMPK)

� Systolic dysfunction 136

� eNOS phosphorylation
� Plasma NO levels
� Apoptosis

AICAr, 5-aminoimidazole-4-carboxamide ribonucleoside; APN, adiponectin; CAL, coronary artery ligation; DN, dominant negative; eNOS, endothelial nitric oxide synthase; KO, knock
out; ObR, leptin receptor; p70S6K, p70-ribosomal S6 kinase; PGC-1a, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; TAC, trans-aortic constriction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 AMPK activity in cardiac pathologies

Cardiac pathologies AMPK
activity

Putative role of AMPK References

Hypertrophy(Left ventricular pressure overload) � Chronically activated, protective 96,101–103,105,132

Ischaemia (ex vivo, in vivo) � Acutely activated, protective 34,35,39,48,53,55,79,127–129

Hypertrophic cardiomyopathy (HCM) associated with Wolf–Parkinson–
White syndrome

� or � Chronically (in)activated,
deleterious

See reference125 for a
review
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alone is not sufficient to cause HF but may contribute to the
mal-adaptative response of the heart. It follows that the pathological
transition from compensated cardiac hypertrophy to HF implies
more than energy depletion.

4.3 Remodelling and fibrosis
Cardiac remodelling occurs following any form of cardiac injury113

and remodelling of the extracellular matrix (ECM) contributes to con-
tractile dysfunction.114 It develops in response to increased ventricu-
lar walls tension and to different hormones (including angiotensin,
catecholamines, and endothelins) and inflammatory cytokines (IL1-b,
TGF-b, TNF-a, IL-6 . . .).115,116 Myocardial fibrosis is a pathological
entity of ECM remodelling, which contributes to HF by increasing
myocardial stiffness and reducing pumping capacity.117 The synthesis
and turnover regulation of ECM components constitute the primary
role of cardiac fibroblasts (CFs), which represent 26–63% of cells
within the myocardium of mouse and rat, respectively.118,119

Angiotensin II is a critical mediator of cardiomyocyte hypertrophy
and cardiac fibrosis.120 AMPK could interfere with this phenomenon
by inhibiting the angiotensin II-induced stimulation of proliferation
via a cross-talk with extracellular signal-regulated kinase (ERK), as
shown in CFs.121 Interaction with myodifferentiation has also been
studied in mesangial cells in which AMPK inhibits TGF-b-induced
smad3-dependent transcription.122 Finally, AMPK could alter cell–
cell or ECM–cell communication in the heart by modulating assembly
of cellular junctions, as it does in epithelial kidney cells.123,124

Together, these in vitro results suggest that AMPK activators might
have therapeutic potential for HF, in terms of cardiac fibrosis.

5. Cardio-protective effects of
AMPK

5.1 Protection against ischaemia/
reperfusion injury
The cardioprotective effect of AMPK in ischaemic hearts is well docu-
mented and involves a stimulation of glucose uptake and glycoly-
sis.39,125 However, during reperfusion with fatty acids, AMPK

favours fatty acid oxidation, which inhibits glucose oxidation and
may decrease cardiac efficiency.126,127 In mice lacking AMPK alpha-2
or expressing a cardio-specific dominant negative mutant of the
same subunit, the ischaemia-induced stimulation of glucose uptake
and glycolysis was inhibited leading to ATP depletion and ischaemic
contracture, which were obviously not prevented by the residual
activity of the AMPK alpha-1.35,128 –130 Similarly, the infarct size fol-
lowing coronary ligation was larger in mice expressing a dominant
negative AMPK than in controls (Tables 3 and 4).131

5.2 Potential protection by hormones and
pharmacological activators against
transition to HF
Several indirect arguments indicate that AMPK could prevent the
deleterious effects of hypertrophy on cardiac metabolism and func-
tion. Leptin has been reported to protect against cardiac injury in
the failing heart by increasing STAT-3 and AMPK activation. It dimin-
ished cardiac hypertrophy, inflammation, and cardiac dysfunction.49

Similarly, adiponectin could prevent the transition between cardiac
hypertrophy to HF by promoting an AMPK-dependent angiogenic
regulatory axis95 and/or by inhibiting NF-kappaB activation.132 It has
also been reported that the metabolic changes and hypertrophy
induced by angiotensin II in cultured H9C2 cardiomyocytes are pre-
vented by AMPK activation.52

A large number of papers report the beneficial effects of metformin
(Table 2). For example, clinical studies have shown that metformin is
cardioprotective and improves outcomes in patients with HF.133,134 In
addition, metformin exerts beneficial effects on cardiac function and
survival in murine models of HF.135 The effects of MF are mediated,
at least in part, by activation of AMPK40,51,65 and, interestingly, the
cardioprotective effects of MF on murine models of HF are mediated
by AMPK activation.135 In dogs, metformin attenuated oxidative
stress-induced cardiomyocyte apoptosis and prevented the
progression of HF along with AMPK activation.136 In addition,
metformin could also affect the fibrotic response induced by pressure
overload.137 The protection results from an inhibition of the
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Table 4 Changes in metabolism and function in hearts of AMPK transgenic/KO mice submitted to ischaemia

Animal model Surgery/perfusion AMPK
activation

Pharmacological
treatment

Downstream effects References

AMPKa2-DN
(D157A)

No flow ischaemia (ex
vivo)

� — � Glucose uptake 130

More rapid ischaemic contracture

AMPKa2-DN
(D157A)

CAL � Metformin � Myocardial infarct size 131

AMPKa2-DN (K45R) No flow ischaemia � — � Glucose uptake, glycolysis 128

� Myocardial function recovery

AMPKa2-KO No flow ischaemia � — � Glycogen content, � glycolytic flux 35

More rapid ischaemic contracture
No effect on myocardial function

recovery

AMPKa2-KO Low-flow ischaemia � – � Glucose uptake 129

More rapid ischaemic contracture
Delayed post-ischaemic contractile

recovery

CAL, coronary artery ligation.
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TGF-beta-smad-signalling pathway but is however independent of
AMPK activation.137

6. Conclusions and perspectives
Despite its known involvement in energy homeostasis, AMPK acti-
vation fails to restore energy balance in the failing heart. Once
de-compensated, the heart takes little advantage from AMPK, prob-
ably because other deficiencies have brought the failing heart to a
point of no return. Clearly, the cardio-protective effects of AMPK
activators are obtained on the long term by preventing or delaying
the pathological transition from hypertrophy to HF. Whether these
beneficial effects only result from energetic recovery of the heart
remains to be demonstrated. We speculate that they could instead
result from non-metabolic effects, which include anti-proliferative,
anti-fibrotic, and angiogenic effects of AMPK.

The evidence for cardioprotective effects of AMPK is only circum-
stantial and indirect. It relies on the use of pharmacological drugs, with
off-target effects, and on the phenotype analysis of mice with whole-
body deletion of AMPK alpha subunits. To validate AMPK as a poten-
tial target in HF progression, new AMPK-specific, and ideally heart-
specific, AMPK activators are needed but remain to be discovered.
Similarly, our understanding of the importance of AMPK in the tran-
sition between hypertrophy and HF would benefit from the study
of mice with a heart-specific deletion of AMPK specific isoforms. In
addition, a comprehensive and comparative analysis of the various
AMPK isoforms expressed in mice and humans could help to
improve an AMPK-mediated therapeutic approach.138 Hopefully, the
tools to achieve these goals do not seem out of reach.

Finally and as stated in the introduction, HF is a many-sided muscu-
lar disorder in which chronic energy deficit is but one aspect. Dys-
functions of calcium handling and of the contractile machinery are
integral parts of HF and go together with energy deficit. And the
lack of coordination between contraction, calcium, and energy in
HF has been appropriately called ‘failing complexity’.139 As far as we
know, the pathological transition to HF is multifactorial and cannot
be reduced to a single preponderant disturbed event. To understand
this transition and hence to develop a coherent therapeutic approach,
the temporal changes of these disturbances should be analysed by
systems level integration.4,139
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