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ABSTRACT 

 

Today the defense industry, the Warfighter, and government leaders are all looking to modeling and simulation to 

solve new technology and security challenges such as a) the creation of large-scale battlespaces to test new 

technologies and concepts, b) create the vast amounts of data required to train machine learning models, and c) 

provide new ways to inform decision makers with campaign-level simulation. Unfortunately, creating complex, 

multi-domain simulations is a time-consuming and expensive endeavor.  This paper presents a unique hybrid 

Artificial Intelligence (AI) framework rooted in cognitive science and enabled by natural language understanding 

(NLU) for rapidly generating large and complex multi-domain battlespaces and communicating with intelligent 

agents within simulations.  This hybrid AI framework is then demonstrated via several applied use cases introducing 

technologies illustrating how intuitive commands can be given to a simulation to generate large formations of 

entities as well as issue orders and commands to the formations.  These use cases further illustrate how a system of 

intelligent synthetic agents interpret these commands as mission objectives, which are then further broken down into 

platform-specific tactics that can be applied to the specific scenario to get a desired outcome. Finally, specific 

research applications are presented to support a validation approach for achieving a true digital twin of the 

battlespace. 
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INTRODUCTION 

 

Faced with new and significant security challenges posed by near-peer adversaries, we believe there will be an 

increased emphasis on the use of high-fidelity battlespace simulations to guide decision makers, test and validate new 

concepts and weapons, provide realistic Multi Domain Operations (MDO) training scenarios, and generate the vast 

amounts of high-quality data required to train artificial intelligence systems.  To create truly realistic synthetic 

battlespace that can provide for realistic training and aid in decision making is a monumental undertaking because of 

the complexity of modern MDO scenarios.  However, the potential payoff is huge in that the result will be a better 

prepared Warfighter, with better decision making to guide them and better platforms, weapons, sensors to enable them 

to achieve mission objectives.  More succinctly, if Warfighters are to dominate the real battlespaces of the near future, 

they must first dominate the synthetic MDO battlefields that the M&S community creates in high-fidelity battlespace 

simulations (see Figure 1).   

Virtual battlespace environments have evolved over time to do a reasonably good job of simulating the physics of 

the various platforms, weapons, and sensors.  From our perspective, these applications typically fall into two 

categories: computer-generated forces (CGF) and modeling and simulation (M&S) applications.  CGF applications 

are geared more towards training, while M&S applications are focused on analysis and engineering.  Since they both 

model the battlespace using physics-based computations and often can be used interchangeably, for this paper we 

group them together as “battlespace simulations”. Examples include the Advanced Framework for Simulation, 

Integration and Modeling (AFSIM) ) (e.g., Zeh, Birkmire, Clive, Johnson, Krisby, Marjamaa, Miklos, Moss, and 

Yallaly, 2014),  Modern Air Combat Environment (MACE) (Battlespace Simulations, Inc, 2022) and Next 
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Figure 1.  Augmented Reality view of a multi-domain operations scenario. 
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Generation Threat System (NGTS) (Naval Air Warfare Center Aircraft Division (NAWCAD), 2018).  AFSIM and 

NGTS are examples of Government Off-The-Shelf (GOTS) solutions, while MACE is a Commercial Off-The-Shelf 

(COTS) solution.  All use physics modeling to represent vehicle dynamics, sensors, and weapons to a high degree of 

fidelity across multiple domains.  

 

What we see missing from current battlespace simulation is the modeling of the Warfighters inside the platforms. 

We believe this is important and the lack of human modeling limits the realism (thus the utility) of modern 

battlespace simulations.  Warfighters, for example, communicate with each other in natural language,  can learn 

through experience to perform tasks more quickly with less conscious effort and aren’t limited to decisions based on 

scripted behaviors. It has been convention to exclude these kinds of details in the synthetic battlespace as 

complicated physics modeling was previously not available before the advent of adequate computational power. 

However, now that Artificial Intelligence (AI) is improving, so are the prospects for the rise of more realistic 

intelligent agents that leverage AI technology.  With the recent explosion in capability of modern AI, we believe we 

can create battlespace simulations that feature intelligent synthetic agents having Warfighter characteristics 

(anthropomorphic) that can take the place of real Warfighters to facilitate training and analysis.   

 

A second area where we believe AI can improve high-fidelity battlespace simulation is to aid in the creation of 

large, complex scenarios that will be required for decision 

support and large-scale training events. Battlespace 

simulations with large numbers of air, surface, ground, 

sub-surface, space, and cyber assets will be necessary to 

support training and decision-making.  Since most 

scenario “laydowns”, which are files that contain the 

locations, type and even behaviors of platforms, are 

typically done manually using scripts or by placing 

entities on a computer-generated map in a scenario 

laydown editor, as scenario scope and complexity 

increases, so will the cost and time to create them.  As an 

example, the 100,000 Entity Scenario in Figure 2 took 

over 6 months and a full team to enable proper low-, mid-, 

and high-level behaviors. 

  

Paper Overview 

 

This paper aims to demonstrate that by adding intelligent synthetic agents enabled by AI and Natural Language 

Understanding (NLU) to existing battlespace simulations, the following can be achieved:  

1. Enhance the realism of existing battlespace simulations by modeling the Warfighters who control the 

platforms, weapons, and sensors. 

2. Create command, control, and communication structures in the battlespace. 

3. Greatly simplify the creation of large, complex, MDO battlespace scenarios. 

4. Reduce the reliance on Warfighter participation in large scale training events such as exercises and mission 

rehearsals. 

 

Our aim is to share with the M&S community a description of the technical approach utilized to build a set of 

capabilities enabling the creation of effective intelligent synthetic agents to act as Warfighters that can communicate 

via a natural language framework. Additionally, we also show the importance of making NLU a first class foundational 

AI capability, and how it can be leveraged to support the generation of complex scenarios.  

 

This paper first introduces a technical overview of traditional approaches and corresponding limitations. This leads to 

the presentation of our hybrid AI framework, inspired by the cognitive sciences, to promote communication with 

intelligent agents via a symbolic AI inferencing engine.  After presenting our hybrid AI framework, we share some 

actual applied use-cases, identifying the various challenges they posed and some key findings.  The paper concludes 

with a discussion of future research plans as well as possible use cases where we believe our approach can provide 

tangible benefit. 

 

Figure 2 - 100,000 Entity Scenario for Training 
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TECHNICAL OVERVIEW 

  

This section provides an overview of current approaches to model entity behaviors, the need for anthropomorphizing 

communications with intelligent synthetic Warfighters, and then a few of the main issues associated with the exclusive 

use of ML methods.    

 

Current Approaches to Modeling Entity Behaviors 

 

Before diving deeper into our approach of modeling the Warfighters, we present a brief survey of some the current 

methods for modeling entity behaviors in M&S and CGF applications like MACE, AFSIM and NGTS.  These range 

from scripts and state machines to behavior graphs (see Table 1) and typically model platform and Warfighter 

(abstractly) together as a single entity.   

 

Table 1.  A comparison of three different methods for creating entity behaviors with benefits and drawbacks 

based on our experience. 

 

Method CGF/M&S 

Application 

Benefit  Drawback 

Scripts MACE, AFSIM Good for simple scenarios Limited dynamics behavior.  Often must 

be modified when scenario is changed 

State Machine AFSIM Can result in relatively complex 

behaviors. 

AFSIM state machines can be difficult 

to construct. Have logic gates that must 

be evaluated. 

Behavior Graph NGTS Can create moderately complex 

behaviors through use of a 

graphical editor.  

Graphs can grow to be quite complex.  

Can have many logic gates that require 

evaluation. 

 

The above table shows a comparison between different methods of creating entity behaviors in a few of the common 

battlespace simulations.  Scripts can be relatively quick and useful for very simple scenarios.  State machines and 

behavior graphs require more time to build but can result in more dynamic behaviors than what a script can typically 

provide.  Behavior graphs like those used in NGTS are a feature in gaming engines such as Epic’s Unreal engine and 

can work quite well for the creation of convincing behaviors.  However, for complex behaviors the graphs can 

become quite time consuming to create by hand and may contain a very large number of logic gates that need to be 

evaluated, potentially slowing execution of the simulation.   

 

Using AI to Model the Warfighter as a Separate Entity 

 

Something common to the approach to creating entity behaviors in battlespace simulations regardless of the 

implementation method is that none model the Warfighter as a separate and distinct entity from the platform they 

control.  Also, they completely lack any natural language communication capability which makes intuitive 

interaction with them difficult.  Thus, our research has led to the idea of modeling the Warfighter by using 

intelligent synthetic agents that are separate from the platforms in the simulation, and that can be directed by issuing 

them high-level orders with natural language commands as well as military-specific brevity language commands.  

This research has resulted in the creation of a standalone AI software application that communicates with 

battlespace simulations such as MACE.  This AI software is responsible for modeling the Warfighter decision 

making and communication networks that are critical to achieving realism and leaves the battlespace simulations to 

handle the physics of the platforms and environment. 

 

Thus, our goal is the creation of intelligent synthetic agents using AI to model the Warfighter in the platform.  We 

then define AI as the study and design of intelligent agents that can perceive their environment and take autonomous 

actions.  However, to properly model Warfighters, other disciplines of science should be considered to better 

understand how they think and make decisions.  It is also necessary to give them the ability to communicate with 

understandable language, including brevity codes or other shorthand.  In our view, the modeling of Warfighters is 

the intersection of neuroscience, cognitive science, and AI.  This view has defined our approach to the modeling of 

Warfighters and has led to an interesting conclusion:  ML alone may not to be the best way to model Warfighter 

behavior in a battlespace simulation because of some practical limitations and that ML does not really reflect how 
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Warfighters think and make decisions.  Before we dive into this last point, we shall first discuss the current state of 

ML in battlespace simulation and our perspective on where it can fit in.  

 

Why Not Machine Learning? 

 

With its inherent strengths in NLU, image recognition and making predictions, ML would seem to be the “go-to” 

solution for building intelligent synthetic agents that behave like real Warfighters.  However, ML is still not found in 

today’s battlespace simulations (e.g., Oijen and Toubman, 2021) despite what would appear to be inherent benefits 

to its use.  Presented at the Interservice/Industry Training, Simulation, and Education Conference (IITSEC), Oijen 

and Toubman (2021) revealed that when they surveyed 9 different battlespace simulation applications, there was not 

one mention of ML.  There are practical reasons for this apparent lack of ML in modern battlespace applications: 

1. The sheer breadth of platforms that must be modeled would require numerous trained ML models.  

Training even a single ML model to get reliable results is a non-trivial undertaking. 

2. The lack of quality data available and/or difficulty in generating quality data to train ML models to perform 

as Warfighters in a modern battlespace. 

3. The recent focus on assurance and trust in ML algorithms.  If we cannot trust that our ML models will 

behave according to the laws of physics and other real constraints, then how can we trust the outcome of 

the simulation as a whole? 

 

 

A HYBRID AI FRAMEWORK INSPIRED BY COGNITIVE SCIENCE 

 

A few practical reasons have been established for not relying solely on ML.  However, there is a more fundamental 

concern with ML in that it does not necessarily represent how Warfighters think and make decisions. What resonates 

and has shaped our approach to AI is the Kahneman Decision Making Model (e.g., Kahneman, 2011).  In this 

model, decision making is broken down into so called System-1 and System-2 thinking.  System-1 thinking 

represents the fast brain which uses associative thinking based on experience and intuition.  Driving a car, catching a 

ball, and making a gut decision all use System-1 thinking.  Decisions made using System-1 thinking are based on 

repeated training, association, or heuristics.  We can think of System-1 as being roughly analogous to how ML 

models operate and arrive at decisions.  System-2 thinking represents the slow brain which relies upon on rules and 

logic to arrive at decisions.  System-2 thinking is comparatively slow and deliberate.  Symbolic logic as found in 

traditional AI is representative of this type of reasoning.  By leveraging both systems together, Warfighters can learn 

new tasks more quickly and offload these learned tasks from the slow brain to the fast brain.   

 

To do a better job of modeling Warfighters with AI we strive to leverage both traditional symbolic code that mimics 

System-2 and ML that mimics System-1 in a hybrid AI.  Thus our AI solution to model Warfighter decision making 

in battlespace simulations is to take a hybrid approach.  Oijen and Toubman (2021) also mention the benefit of a 

hybrid AI approach in the realm of battlespace 

simulations in that Warfighters may have constraints in 

how they can arrive at decisions (rules) as well as a 

need to react to unfamiliar situations.  A distinction 

can be made with our hybrid AI approach in that we 

are relying primarily on symbolic AI for Warfighter 

decision making, and ML techniques for 

communication and NLU.  Specifically, our hybrid AI 

relies on a symbolic core based on a specialized form 

of directed graph and ML for its natural language 

understanding capability (see Figure 3).   

 

In taking this hybrid approach some of the practical difficulties of relying on ML for decision making are avoided, 

though we have a desire to eventually use ML for some decision making where it makes sense.  The resulting 

intelligent agents think and make decisions symbolically by using a system of semantic graphs that are 

autogenerated from facts.  The key difference between this form of graph and an Artificial Neural Network (ANN) 

found in ML is that our graphs are trained by facts, and not by probabilistic learning. The resulting intelligent agents 

can be commanded using high-level natural-language orders via a chat interface or orders file read in at runtime, and 

control platforms modeled in battlespace simulation applications.  This design can potentially also address two of 

Figure 3. Simplified Diagram of our Technology Stack 
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the drawbacks for finite state machines and behavior graphs in that there are no logic gates that require evaluation 

and with the addition of an ingestion engine (using ML) the creation of large and complex graphs can be (at least 

partially) automated. 

 

Communicating with Intelligent Agents 

 

Intelligent agents require a means of communication that is understandable by the Warfighter to maximize the agent’s  

flexibility and utility.  Thus, we have chosen to focus much of our AI efforts on the use of NLU in our intelligent 

agents to give them a means of communicating.  By taking this approach, we believe the following can be achieved: 

1. Facilitate natural communication between intelligent synthetic agents and Warfighters . 

2. Build Command, Control, and Communication (C3) networks within the simulation. 

3. Rapidly generate complex, multi-domain scenarios. 

 

Using the hybrid AI, an analyst or engineer can send orders to an intelligent synthetic Warfighter using layperson 

language, or a Warfighter can communicate using the North Atlantic Treaty Organization (NATO) brevity language.  

These orders are processed in an NLU engine where they are broken down into structured language.  This structured 

language flows down a command chain populated by other intelligent agents, who communicate to each other with 

the same structured language.   A simple example is ordering an attack on a portion of an enemy Integrated Air Defense 

System (IADS).  This order is given in layperson language and is directed to the theater commander “BlueBoss” (see 

Figure 4).  The system’s NLU engine processes the command and generates the correct structured language which is 

passed on to the next agent in the command chain.  As orders flow down the command chain, each intelligent agent 

issues orders to a subordinate via structured language.  This structured language can be translated back to the correct 

natural language or brevity language based on the identity of the sender and receiver as well as their location in the 

command hierarchy.   

 

To facilitate different types of users, in this hierarchical language framework we have the notion of having views into 

the NLU. A view can be thought of as a type of user in the system.  Examples of views are “analyst”, “Viper-1”, and 

“IADS commander.”  If the user is logged into the “analyst” view, they are at the top of the command chain and can 

command any entity using layperson language to allow them to fully control a simulation without having to learn 

military jargon or brevity language.  The view that a user is logged into determines who they can command and what 

language they use.  If logged in as an “analyst”, then they communicate in layperson language, or if the user is logged 

into the system as “Viper-1”, then they communicate in brevity language.  With multiple views and the associated 

language, the hope is to allow for maximum flexibility of use cases.   

 

The high-level orders given to the intelligent synthetic agents result in specific tactics being carried out by platforms 

in the scenario, as well as the generation of scenarios containing formations of synthetic warfighters (and their 

platforms) along with their mission objectives.  While the initial focus has primarily been in the air-domain, eventually 

we aim to map the same high-level orders command set across multiple domains and to expand the scenario generation 

capability, so that an analyst can rapidly generate a realistic scenario in multiple domains and issue the same 

Figure 4. Orders given for a user logged into the "Analyst" view as compared to a user logged in as “Rogue-1”. 
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commands (for example “destroy”, “defend”) to synthetic pilots as they can to synthetic ground vehicle operators and 

have the resulting behavior adhere to doctrine while contributing to a desired mission outcome.   

 

Natural Language Understanding and Semantic Networks 

 

NLU takes spoken utterances in the form of text and transforms them into structured data. A user, for example, may 

say “climb to 10000ft” and the NLU will output 

{“intent”: “set data”, “entity name”: “altitude”, “entity 

value”: “10000ft”}. Of course, for this to be useful the 

intelligent agent must be able to derive meaning from the 

structured data so it can act on it. The branch of 

linguistics concerned with meaning is called semantics 

and semantic graphs are concerned with concepts and 

relationships between them. These graphs are not 

sufficient for our purposes since the graph needs to be 

executable in the sense of driving Application 

Programming Interface (API) calls to our Software 

Development Kit (SDK). Regardless, in seeking to 

construct a form of executable directed graph that goes 

beyond behavior graphs to incorporate semantics and 

other traits such the ability to compose complex data like natural language text, we have been inspired by a highly 

specialized form of semantic graph called an executable semantic graph (Sowa, J. 1991). Executable semantic 

graphs (see Figure 5) differ from semantic graphs in that they allow for specialized features such messaging passing, 

attached procedures and learning. 

 

Directed graphs of the kind that we need are too big and complex for manual generation. This has led us to seeking 

automation to create them from requirements. One key aspect of this process is visualization of the graph using an 

open-source graphing tool called Gephi.  These visualizations distinguish between 5 different categories of node: 

1. Action nodes (red) make one or more API calls to our SDK. 

2. Branching nodes (purple) enable joins between fact patterns in decision making. 

3. Compose nodes (yellow) represent nested data. Edges between nodes allow for higher degrees of nesting. 

4. Decision nodes (blue) represent fact patterns. The edges between these nodes add additional information to 

the fact patterns (logical and) and the splits on nodes (logical or) allows for alternate paths through the 

graph. 

5. Event nodes (green) constitute the input layer to the directed graph.  

 

It is our practice to package all the event data entering the intelligent synthetic agents into datagrams giving the 

appearance of a single input. This single input could represent many things such as a Distributed Interactive 

Simulation (DIS) packet, an event from a Graphical User Interface (GUI), or structured data from our NLU 

algorithm. 

 

Mapping Inputs to Actions 

 

Natural-language orders are eventually mapped to actions, which can be anything from calling a network API to 

setting event triggers for reactive behaviors.  However, orders must first be converted into structured language that 

can be interpreted by the nodes in the executable semantic network.  It is also here that context (such as intent, 

nationality, platform type, and domain as well as other factors) is evaluated so that the correct tactics and doctrines 

can be followed.  This is possible because the AI knows a wealth of information about the synthetic Warfighters as 

well as the platforms and systems.  The information is captured in data files that define a “knowledge database” for 

the scenario that the AI can access to influence which actions to take for a given Warfighter in a mission.  The 

knowledge database is still early in development and currently focuses on the air domain.  However, we look to 

eventually map high-level orders given in layperson language to tactics and behaviors across all domains.  For 

example, a simple “defend” command could map into Combat Air Patrol (CAP) or Defensive Counter-Air (DCA) 

missions for the air domain, or convoy escort missions in both land and sea domains. 

 

Figure 5.  A graph generated with Gephi showing our chat 

application.  The different colors reflect the different types 

of nodes.  See body of this section for further explanation. 
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Achieving the goal of issuing orders in layperson language to create realistic and doctrinally correct behaviors will 

require the entry of a large amount of data into the hybrid AI to create a suitable knowledge database. The hope is that 

eventually the construction of the database can be automated using an ingestion engine and ML.  This approach of 

using ML to populate a knowledge database which is then accessed by a symbolic AI inferencing engine is gaining 

traction and was notably demonstrated by a research project that studied the use of neuro-symbolic AI with reasoning 

abilities similar to those of humans (Ananthaswamy, A. 2020). 

 

 

USE CASE 1: VIRTUAL ISR TRAINER 

 

Our first use of intelligent agents with natural language capabilities came with the development of the Virtual 

Intelligence Surveillance Reconnaissance Synthetic Training Application (VISTA) prototype in late 2018.  This 

software allows for the training of intelligence officers without the use of expensive remotely piloted drones and 

their associated personnel and equipment infrastructure.  It does this by placing the student in a realistic scenario 

where they can task drone operators and receive synthetic data from virtual sensor feeds.  This normally requires an 

operator to pilot each drone while another operator controls the drone’s sensors.  In a typical scenario, four people 

would be required to facilitate a realistic training session (and two real drones).  To reduce the reliance on humans 

and equipment, constructive drones piloted by intelligent synthetic agents were created, and a chat interface was 

developed to communicate with the synthetic agents.   

 

Tactical Chat 

 

Chat interfaces based on Internet Relay Chat (IRC) are commonly used by intelligence officers to communicate with 

drone operators, so they are a natural fit to serve as the user interface to communicate to the intelligent synthetic 

agents that replace the drone operators.  Chat interfaces (see figure 6) have the additional advantages of being highly 

effective for distributed, low bandwidth environments and 

they provide a persistent record of the communication.  

This enables the user to participate in multiple chat rooms 

simultaneously for updating a common operational picture. 

 

The intelligent synthetic agent used here is capable of 

responding to 20 instructions giving the chat user fine 

control over the size, shape, and location of the orbit as 

well as more basic flight control information such as 

altitude and speed. Also, the sensor operator agent will 

need instruction on where to point the sensor ball, what 

zoom level to apply and what scan pattern to use. The user 

can also command additional options for video mode, 

switching between manual and automated tracking, buddy lasing and weapons deployment. 

 

The Intelligence Surveillance Reconnaissance (ISR) use case is similar to pilot training using synthetic Air Traffic 

Controller (ATC) agents (e.g., Harrison, Hobbs, Howes, and Cope, 1986; Lin, 2021) that listen to pilots through 

speech recognition and send instructions back using speech synthesis. The synthetic ATC agents must be smart in 

the sense of inferencing situational awareness as the basis of formulating their instructions to the pilots but clearly 

differ from our synthetic agents both in the use of speech versus IRC chat as well as in the detail that our intelligent 

synthetic agents are the actual equipment operators. 

 

Key Findings 

 

A few key findings from this ISR research and development effort: 

1. There is a loss of fidelity in speech to text translation, since no speech recognition system is perfect, that is 

avoided if the text is typed rather than spoken. 

2. Our first approach to interpreting tactical chat in 2018 used Rasa NLU (Bocklisch, Faulkner, Pawlowski, 

and Nichol, 2017) for intent classification. This worked quite well but did not give a significant benefit 

over simply picking out key phrases and abbreviations using a regular expression approach owing to the 

small size and highly specialized nature of the language. 

Figure 6. Example of chat commands to the intelligent 

synthetic agents. 
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3. Our intelligent agents have been successful in reducing the number of drone and sensor operators by a 

factor of four but have not yet met our goal of a completely dependable autonomous system. 

4. The challenge of interpreting tactical chat is that it is not a perfectly defined standard. There are rules and 

standard terminology and abbreviations, but it needs be flexible enough to support multi-service tactics and 

behaviors.    

 

 

USE CASE 2: AVIONICS RESOURCE MANAGER 

 

This study required a scenario with dozens of constructive entities to serve as a threat environment for a virtual 

mission trainer (with human pilot) outfitted with a ML model for a new avionics system.  The goal was to generate a 

large amount of electromagnetic data to train the ML model in an avionics resource manager.  The pilot in the 

virtual aircraft configured the avionics resource manager as the mission unfolded to set the correct mode for the ML 

model training.  The scenario laydown consisted of enemy fighters, enemy IADS, and a high-value target.  Friendly 

assets included virtual and constructive fighters.  The scenario required that the human pilot in the virtual mission 

trainer task constructive wingmen in real-time as the mission unfolded to help generate the necessary stimulating 

data for the ML model.   

 

The challenges in this study were: 

• Ingestion of an existing scenario laydown into the simulation environment. 

• The composition of simulated avionics data from low-level data in network packets. 

 

Both challenges were solved by leveraging the NLU capability that is foundational to our AI and that underpins the 

chat interface.  An ingestion engine (leveraging existing NLU capability) was developed to read in natural language 

orders files at runtime.  An data composition agent was then designed using the same executable semantic network 

architecture that serves as the enabling technology for the NLU capability to successfully compose complex avionics 

bus data from low level data observed by the aircraft’s sensors.   

 

Laydown Via Natural Language Orders 

 

For the scenario laydown, we realized that reformatting an AFSIM laydown script into a natural language text file 

and using our new natural language orders file ingestion engine to read the file into our AI at runtime (example in 

Figure 7) was the quickest way to build the scenario.  Once the AI ingests the scenario laydown file, it 

communicates to MACE via a network API to generate the scenario laydown.  This is significant in that our AI can 

ingest scenario laydowns from one simulation application and then control the execution of the scenario in a 

different battlespace simulation application if desired.  MACE has been the preferred battlespace simulation because 

it has a well-developed network API that allows for an external application to have full control of a mission.  

Network interfaces to other battlespace simulations that enable a similar level of control (as we have with MACE) 

are planned to be developed to give expand the interoperability of the hybrid AI. 

 

Leveraging the NLU Architecture to Solve the Data Composition Problem 

 

Since the goal for the study was to properly train the ML model for the avionics resource manager, a large amount 

of training data in the form of Open Mission Systems (OMS) Universal Command and Control Interface (UCI) data 

packets needed to be generated.  This presented an interesting problem in that well-composed avionic bus data 

packets would be synthesized from raw electromagnetic data generated by the simulation environment.  A solution 

was straightforward since the executable semantic networks that our AI is built upon can handle more than mapping 

Figure 7. Example Scenario Via Natural Language Orders. 
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the structured data from natural language understanding into actions. In particular, the agents can implement 

behaviors and compose information from data in memory. The resulting graphs use compose nodes to access deeply 

nested data from simulated electromagnetic emissions observed by aircraft sensors.  This raw data is then used to 

construct more complex data blocks via a process of backwards chaining.  The resulting fully formed UCI-OMS 

compliant data packets were then used to train the avionics resource ML model. 

 

Key Findings 

 

There were two interesting findings from this research effort: 

1. An estimated 20 hours in MACE laydown time was saved because we could ingest a modified version of 

an AFSIM laydown instead of duplicating the entire laydown by hand in MACE. 

2. The NLU capability was something more fundamental and foundational than first realized.  The same 

underlaying executable semantic network architecture used for communication can solve other computer 

science problems, such as the data composition problem. 

 

 

USE CASE 3: OFFENSIVE COUNTER AIR STUDY 

 

In the previous use cases, it was learned that we could easily generate a scenario and command individual 

constructive pilots via a chat interface.  However, it became apparent that the relatively low-level orders used to 

command individual platforms would not be suitable for the command of the numerous entities in more complex 

scenarios.   This led to the idea of commanding groups of entities with high-level orders to reduce the number of 

orders required to create a scenario.  This updated approach was key to successful completion of a project requiring 

a sizable multi-domain scenario consisting of 160 air, maritime and ground platforms to simulate an anti-access, 

area-denial fight.   

 

Enabling High-Level Orders to Synthetic Warfighters and Platforms  

 

To create smarter constructive agents that can be issued high-level orders in the form of mission goals, a knowledge 

database was built within the AI that captures tactics and 

doctrines.  This maps tactics to scenario specific input criteria, 

such as mission orders, nationality, weapons loadout, and 

target type among others (see Figure 8).  With this approach, 

the number of orders to create a scenario is reduced and a 

library of synthetic Warfighters is created.  In fact, several of 

the platforms used in this study were reused in follow-on 

efforts where they were given orders to attack targets in 

different situations and each used the correct tactics. 

 

 

 

Commanding a Group of Synthetic Warfighters 

 

By defining groups of Warfighters (and their platforms) and giving the group commander a callsign the number of 

orders required to obtain a desired mission outcome in a 

scenario was further reduced.  Overall, by combining 

grouping with high-level orders, the number of orders 

needed to produce a given mission outcome was reduced by 

a factor of five.  An orders file like the example shown in 

Figure 9 (the Gen 2 version) was created that puts orders on 

the group and not each individual entity. 

 

The creation of a database of predefined groups within the 

AI not only allows for smaller orders files, but for more 

efficient laydown of larger scenarios down the road.  

Scenario laydowns and their required entity behaviors can be constructed quickly via these prefabricated building 

Figure 9. Comparison of low-level orders given to 

individual entities vs high-level orders to groups. 

Figure 8. Simplified diagram showing how different 

input criteria influence which tactics the AI employs. 
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blocks.  For example, an entire fighter wing could be built up by simply defining new groups that are built from 

other smaller groups.   It also serves as a convenient way to build command and control hierarchies within the AI 

that can be reused in future efforts. 

 

Key Findings 

 

There were three key findings in this study:   

1. By issuing high-level orders to groups and group commanders, it was possible to reduce the number of 

orders by a factor of five.  This approach allows for scenarios to be generated with less effort. 

2. We found that the best way to command the intelligent synthetic agents is the same as how one would 

command real Warfighters – by assigning them high-level goals instead of low-level tasks.  This brings us 

a step closer to the goal of creating anthropomorphic, intelligent synthetic agents that think and 

communicate like real Warfighters. 

3. The grouping of Warfighters (and platforms) also enables the definition of command-and-control 

hierarchies within the groups.  

 

 

FUTURE USE CASES AND POSSIBLE APPLICATIONS FOR INTELLIGENT AGENTS 

 

We have shown three examples of how intelligent synthetic agents with NLU capability can overcome the challenges 

in creating realistic and complex battlespace simulations.  For each project, key findings were provided as both lessons 

learned and to help shape follow-on research to build ever more capable intelligent synthetic agents that can 

communicate naturally.  To further advance the state-of-the-art, research efforts should be pursued to develop the 

following capabilities: 

1. Adding speech recognition capability to intelligent synthetic agents within battlespace simulation exercises.   

2. Expanding high-level orders command set and additional “views.” For example,  we are developing a pilot 

“view” that allows them to communicate with constructive pilots using NATO brevity language. 

3. Building command, control, and communications networks within the hybrid AI framework by using agent-

to-agent communication that can be viewed as natural language. The aim is to improve complex battlespace 

simulations, such as VISTA or MACE, to allow for more realistic and cost-effective training. 

4. Adding new interfaces to the hybrid AI to support additional battlespace simulations such as AFSIM and 

NGTS. 

5. Further enhancing the hybrid AI framework through: 

a. Developing the capability to ingest facts to speed up the creation of large and complex executable 

semantic networks.   

b. Incorporating ML models in areas where the symbolic AI may not give the best solution.  

Ultimately, the goal is to create a neuro-symbolic AI that builds upon our current hybrid AI.  

6. Automating laydowns through the creation of a synthetic lab assistant using the hybrid AI.  This could 

drastically speed up scenario laydown in various ways such as creating an optimum IADS laydown based on 

the location of high value targets and automatic creation of realistic routes for strike missions.   

 

A few examples of research areas and use cases that we believe could benefit from the research presented in this paper 

are: 

1. Development and testing of collaborative AI for Warfighter-Machine-Teaming applications.  AI that works 

alongside Warfighters will leverage NLU to communicate effectively with their human teammates (and their 

synthetic teammates as well).  Next generation air platforms and systems that are optionally crewed and that 

work alongside with unmanned systems are of particular interest to us. 

2. Reducing the use of Warfighters in exercises and training activities as a force multiplier to generate more 

complex simulated multi-domain battlespaces. Specifically, using  agents with NLU and speech recognition 

that can serve as replacements for Warfighters and other roles to facilitate lengthy large scale training 

activities.   

3. The creation of large and complex scenarios to aid in decision-making.  Here a hybrid AI could generate 

optimal force allocations that are based on rules and constraints, but with an adaptive learning capability as 

well.  The NLU capability would serve as a convenient way to communicate constraints and desired outcomes 

for the scenario. 
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CONCLUSION 

 

This paper introduces the novel concept of issuing high-level, natural language orders to intelligent agents in a 

hybrid AI framework along with three applied use-cases highlighting its viability and desirability for the generation 

of high-fidelity battlespace simulations.  Through our research, applied use cases, and overall key findings we hope 

to help the M&S community build a true digital twin of the battlespace that is realistic and scalable, as well as to 

reduce the time and effort required to create complex simulations. We believe the key to the realization of this 

hyper-realistic, digital battlespace is by using intelligent synthetic agents that are anthropomorphic.  These agents 

will both realistically model the Warfighter in the simulations and will assist in their creation and analysis.  We 

believe this will be transformative by: 

1. Enhancing Warfighter readiness by allowing for the frequent holding of large-scale, MDO training events 

where intelligent agents take the place of human players (effectively creating a “Red Flag event in a box”).   

2. Speeding up M&S efforts through the generation of complex and realistic scenarios as well as aiding in the 

presenting and inferencing of simulation data.   

3. Enabling of commanders and decision makers to make the right decisions based on results of battlespace 

simulations featuring realistic Warfighter modeling.   

4. Accelerating the development, testing, and validation of agents that can work alongside Warfighters in a 

collaborative way to achieve the goal of true Warfighter-Machine-Teaming.  

 

Finally, a main driving point throughout this paper was that our hybrid AI conceptually aligns with cognitive science 

and how the brain processes information. In the research presented in this paper, we have adopted Kahneman’s 

decision making model to produce an AI framework that behaves in a manner consistent with how the Warfighter 

brain operates.  It is with this type of AI and natural language understanding that we will eventually realize the 

vision of anthropomorphic intelligent synthetic agents to support, extend, and optimize high-fidelity battlespace 

simulations. 
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