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Abstract

Resilience engineering aims to enhance the resilience of systems and process safety under
varying conditions. Its effectiveness is primarily governed by how resilience is measured. Among
the myriad efforts to quantify resilience, composite indicators have emerged as promising tools.
They mostly rely on statistical methods to derive weights reflecting the importance of their
underlying indicators. However, reliance on statistical homogeneity among indicators to inform
weights can limit the scope and fidelity of the resulting composite. Alternatively, we propose
a novel resilience index derived from the system’s structure and the conditions essential for
a system to operate safely during and after disruptions. The proposed measure reflects the
systems’ ability to resist and respond to failures by addressing possibilities of impact propagation
to other infrastructure systems. Moreover, it eliminates the need for deriving weights and allows
for compensability among its leading indicators. Using a case study based on the On-Site
Wastewater Treatment and Disposal Systems (OSTDS) in South Florida that faces increasing
risks due to rising sea levels, we investigate the validity of the proposed index by a comparative
analysis with statistically-driven measures. Our analysis demonstrates the improved efficacy
enabled by the proposed index in capturing the overall system resilience.
Keywords: resilience metric; composite index, leading indicators; sea-level rise; adaptation;
decentralized wastewater treatment systems

1 Introduction and Background

The exacerbating risks due to climate change have increased interest in integrating resilience into

adapting urban and rural infrastructure systems. These systems typically consist of critical utilities

that fulfill the communities’ basic needs by providing vital services such as supplying food, water,

and energy, managing waste, and enabling mobility. Since such systems are usually highly complex

and interconnected, their disruption is likely to result in debilitating and cascading ramifications

that extend over larger areas (Huang and Ling, 2018). To effectively adapt to and safely operate

under the adverse effects of climate change, considerable attention has been given to enhancing the
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resilience of those infrastructure systems. This has proven to be a nontrivial goal that cannot be

achieved without understanding how resilience can be assessed and measured.

Resilience metrics are instrumental in setting measurable thresholds and priorities for adapta-

tion decisions. They guide assessing and monitoring the resilience of systems across time and space,

thus, helping communities make adaptation decisions at the right time and with proper scope. In

this regard, their integration into decision-making can be direct and indirect. Indirectly, they can

help evaluate and validate adaptation solutions. They are particularly beneficial for running ”what-

if” analyses to explore and analyze decisions under multiple future climate scenarios. Thus, they

guide evaluating potential future impacts, identifying risks and opportunities to enhance systems’

resilience, and determining the best courses of action (Molinos-Senante et al., 2012). In a more

comprehensive and practical approach, resilience metrics can be directly incorporated into decision

models as variables. Through assessing potential resilience gains or losses as a result of a set of

actions, these variables can be utilized to form “resilience functions” that can serve as objectives

or constraints under a structured decision-making model.

For complex infrastructure systems, resilience embodies multi-dimensional facets that might be

driven by varying perspectives of diverse stakeholders, which can be subjective and compounded.

Composite metrics have been proposed as an effective approach to integrate multiple perspectives

and facets into resilience measures (Beccari, 2016). Composite metrics can measure the overall sys-

tem resilience while accounting for its spatial dependencies and connectedness with its surroundings.

Moreover, they can be instrumental in developing a functional representation of resilience. However,

several challenges impact their validity. Typically, building a composite metric follows a system-

atic process, including identifying resilience-critical indicators and their normalization, allocating

weights, and aggregating them into a single index. The quality and functionality of composite

metrics depend on the combination of weighting and aggregation schemes. Usually, weights are

determined by statistical methods which rely on statistical homogeneity and correlations among

indicators. Such approaches can be limiting in capturing the indicators’ actual contribution to the

composite metric representing the phenomenon under study (Nardo et al., 2005). More importantly,

without the appropriate underlying theory, they may lead to misleading conclusions (OECD, 2008).

With this understanding, in this paper, we propose a novel resilience index that is: i) derived

from leading indicators that are precursors of systems’ survivability and safe operation post dis-

ruptions, ii) designed to fuse these indicators into a multidimensional composite measure, and iii)

tailored to support a functional form that can be employed to construct objectives and constraints

in decision-making models. In contrast to the traditional approaches that utilize lagging indicators

to characterize the so-called resilience trapezoid ex-post, we propose a resilience measure that in-

tegrates leading resilience indicators. These indicators can capture potential system failure modes

and system characteristics that contribute to the failure or survival of systems ex-ante, therefore

integrating the fault-tolerance dimension of resilience, as proposed by Azadeh et al. (2014). The

primary motivation of this alternative approach is to detect early signals of systems’ partial or

complete failure and thus guide deducing the right actions for adaptation.
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Accordingly, we identify a set of system-related measures critical to shaping the system’s re-

silience and develop a set of axioms to establish the relationships among these indicators using a

deductive fault analysis (DFA) approach. The axioms translate the logical sequence of incidents

under which systems can survive and operate safely. They incorporate both operational and envi-

ronmental failures into the construct of the resilience metric. In this respect, in accordance with

the definition of resilience adopted by Chen et al. (2022), we propose a resilience measure that can

capture a system’s ability to operate safely and, at the same time, limit the negative environmental

impacts of its processes. We design and propose mechanisms for transforming the identified leading

indicators to a normalized scale based on preset indicator-specific thresholds and reference points

that indicate necessary conditions for the safe operations of a system. The axioms are utilized to

develop an aggregation methodology that does not rely on statistical or participatory techniques

as the proposed approach gleans the criticality of indicators from the outset, eliminating the need

for weights.

We demonstrate the performance of our proposed approach in the context of the on-site wastew-

ater treatment and disposal systems (OSTDS) using a real-life case study from South Florida that

face the increasing operational and environmental risks due to rising sea levels. The contributions

of the study presented in this paper include i) a novel composite aggregation approach designed

for resilience-leading indicators using deductive fault analysis, ii) a novel transformation method

that accounts for minimum operating requirements for each indicator and the relative importance

between the indicators, iii) a comparative analysis using statistical models that demonstrates the

practicality of the fault-driven approach for measuring resilience, iv) a framework that integrates

the proposed resilience index into adaptation decision-making is introduced. Moreover, to the best

of our knowledge, this study is the first to provide a method that quantitatively assesses the re-

silience of OSTDS in the context of sea-level rise. Before we discuss the details of the proposed

approach, we provide a brief review of the relevant in the following subsections.

1.1 Resilience Indicators

Various taxonomies are introduced in the literature to review and classify quantitative resilience

measures by researchers such as Beccari (2016), Hosseini et al. (2016), Asadzadeh et al. (2017),

and Liu and Song (2020). In general, the majority of the proposed measures can be grouped under

two approaches: performance-based (or functional) resilience and structural resilience (Henry and

Ramirez-Marquez, 2012). Performance-based resilience measures were introduced in the literature

with an initial application in seismic-related hazards (Bruneau et al., 2003). This method captures

the time-dependent performance measure(s) during a system’s degradation and recovery phases

and post disruptions resulting in a multi-phase curvature known as the resilience trapezoid. When

sufficient historical data is available, simulation can generate the resilience trapezoid associated

with a system subject to specific threats (Ghosh and Mohanta, 2021; Pawar et al., 2022). It can

also be predicted based on pre-determined probabilistic damage and fragility curves, loss functions,

and recovery curves. Because performance-based resilience measures are derived from the systems’
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performance after incidents, such as in (Ba-Alawi et al., 2020; Núñez-López et al., 2021), they can

be classified as lagging indicators. Lagging indicators are criticized regarding their use as future

predictors of systems’ response to incidents (Grabowski et al., 2007; Mengolini and Debarberis,

2008). They may provide limited insight into what constitutes a resilient system as they fail to

capture its capacities and dependencies within the system components and between the system

and its surrounding environment. Moreover, in many cases, data may not be available to model or

predict the shape of the resilience trapezoid. Therefore, structure-based measures are proposed as

effective alternatives to assess the resilience of dynamic processes and systems (Woltjer, 2008).

Structure-based indicators rely on a system’s intrinsic characteristics, structure, and spatial

relationships with its surroundings. As such, they can serve as leading indicators that characterize

the system’s ability to resist and respond to disruptions ex-ante. Structural resilience indicators are

widely deployed in assessing the resilience of network-based infrastructure systems such as trans-

portation networks (Demirel et al., 2015; Kim et al., 2015) and power generation and transmission

networks (Shafieezadeh et al., 2013; Panteli and Mancarella, 2015). Metrics such as connectivity,

criticality, and accessibility are utilized to assess the adaptive capacity of a network under possible

disruptions in links and/or nodes (Tachaudomdach et al., 2021). These indicators are not limited

to capturing only the physical operational parameters. They can also incorporate socioeconomic

factors related to process safety and environmental impacts. To obtain an overall resilience mea-

sure, the leading indicators must be aggregated or mapped to a resilience function in a systematic

method. Composite indicators are employed as a medium to achieve this critical task.

1.2 Composite Indicators

Composite indicators have been designed in the context of a diverse range of areas, including

socioeconomic status, sustainability, and disaster resilience. The typical process for developing a

composite indicator consists of seven main steps: (1) establishing the theoretical framework, (2)

data selection, (3) imputation of missing data, (4) multivariate analysis, (5) normalization, (6)

weighting and aggregation, and (7) validation for robustness and sensitivity against the established

theory (OECD, 2008).

Despite the increased research output on disaster resilience in recent years, the application of

composite indicators in this context remains in its infancy (Asadzadeh et al., 2017). The majority

of the applications are limited to high-level measures of social and community resilience (Orencio

and Fujii, 2013), ecological resilience (Kotzee and Reyers, 2016) and agro-ecosystem resilience (Rao

et al., 2019). In many cases, global composite metrics are often deployed to compare regions or

countries based on Environmental, Social, and Governance (ESG) outlooks (Global, 2020). Few

papers have emerged recently focusing on building composite resilience indicators for engineering

systems such as energy systems (Lindén et al., 2021), wastewater management systems (Sun et al.,

2020), and transportation infrastructure (Vajjarapu and Verma, 2021).

The quality of the resulting composite indicator usually depends on the methodologies used in

normalizing, weighting, and aggregating the individual indicators at different levels and the appro-
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priateness and soundness of the underlying theory and the input data. While the appropriateness of

the laid-out approach is subject to the judgment of the modeler and expert opinions, the suitability

of the data is often assessed by employing multivariate analysis techniques. Typically, the efficacy

of a composite depends on the statistical ability to group multiple indicators into a single proxy,

which is often governed by the degree of correlations between the indicators. Higher correlation

between the indicators implies fewer statistical dimensions resulting in higher suitability of group-

ing data to form a composite indicator (Nardo et al., 2005). Although this assumption might be

valid for some constructs, we contend that it should not be treated as a compulsory precondition

for all composite indicators, especially in the context of the resilience of complex systems.

In essence, building composite metrics is analogous to modeling latent variables in the presence

of some observed variables (Otoiu et al., 2021). In these models, the direction of the hypothesized

causal relationship between the latent construct and its measurable indicators governs the statis-

tical homogeneity of the data. These causal relationships are either reflective or formative. In a

reflective relationship, the latent variable is considered to be the determinant (i.e., the cause) of the

observed variables, whereas, in the formative relationship, the latter causes the former. Because re-

flective indicators map to the same underlying latent variable, they need to have substantial mutual

associations (Sanchez, 2013). Unlike reflective indicators, formative indicators do not necessarily

measure the same underlying constructs; that is, they do not need to be correlated (Blalock Jr,

1982; Becker et al., 2012). Therefore, assessing the suitability of the data must not be irrespec-

tive of the established causation theory. This is a fundamental issue that is often overlooked and

mistreated in the literature on the formation of composite indicators (Otoiu et al., 2021).

A critical stage in constructing composite metrics is the normalization of data. Because indica-

tors often reflect different dimensions of the phenomena under study, they are measured on different

units or scales. As such, normalization is needed to establish a standard basis for comparison and

aggregation. Several normalization methods are introduced in the relevant literature, such as rank-

ing, z-score standardization, Min-Max standardization, distance to a reference subject, scaling to

the mean, etc.(OECD, 2008). Although these methods are instrumental and widely utilized, they

might fail to meet the composite’s objectives when developed primarily for measuring engineer-

ing systems’ resilience. For engineered systems, we argue that the ideal resilience measure must

incorporate the operating requirements to ensure the survivability of a system during and after

disruptions. In this context, unlike risk and vulnerability, resilience does not reveal the system’s

weaknesses but rather its conjoint abilities to resist, adapt and recover. Since minimum operating

conditions must be satisfied to maintain the functionality and survivability of a system, they must

be the central focus and driver in identifying and normalizing the indicators. The transformation

methodology in our proposed metric design explicitly employs this view by accounting for the sys-

tem’s operational requirements and the relativity among the leading indicators representing the

properties contributing to the system resilience.

Another crucial step in developing composite metrics is weighting and aggregating the underly-

ing indicators into a unified index. These techniques critically influence the soundness and validity
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of the composite metrics. Several weighting and aggregation techniques are reviewed in detail in

OECD (2008). Weighting techniques generally rely on either statistical or participatory models to

inform weights. Statistical models, such as Factor Analysis (FA), Principal Component Analysis

(PCA), and Data Envelopment Analysis (DEA), typically group indicators based on the degree

of correlation among them. Whereas participatory models, such as Budget Allocation Processes

(BAP), Analytic Hierarchy Processes (AHP), and Conjoint Analysis (CA), rely on stakeholders’ and

experts’ opinions to derive weights. While the former approach is ineffectual when no correlations

exist among the indicators, the latter might result in a composite biased by the experts’ subjective

sentiments. They rely on pair-wise comparisons between indicators, making them computationally

expensive with a relatively large number of indicators.

Aggregation techniques following the weighting stage are classified according to how they trans-

late weights. Weights can either represent (i) a trade-off, as in the compensatory aggregation

methods such as linear and geometric aggregation, or (ii) a measure of importance, as in the

non-compensatory methods demonstrated by the Multi-criteria analysis (MCA) techniques. In the

compensatory methods, the poor performance of one indicator can be compensated for by high

performance in some other indicators, resulting in a moderate-to-high performance for the aggre-

gated measure. In contrast, in non-compensatory methods, the impact of each indicator on the

composite measure is exclusive (Banihabib et al., 2017). Incorporating compensability relations in

the composite metric is a pertinent requisite in modeling the resilience of complex systems. For

instance, a system’s low ability to resist disruptions can be counterbalanced by its ability to adapt

and recover, eventually resulting in moderate-to-high system resilience.

2 Methodology

The resilience index proposed in this paper employs formative and compensatory relationships.

It is formative in the sense that the observed variables are assumed to shape resilience. In this

case, correlations among the individual indicators are not required, thus eliminating the need to

assess the statistical homogeneity of the data. Moreover, high-performing indicators can balance

other underperforming ones; thus, the compensability effect is incorporated. The proposed aggre-

gation method maps the logically constructed relationships between the individual indicators into

a functional form of resilience based on a deductive fault-driven analysis. Since the established

logical relationships account for the indicators’ relative importance from the outset, the proposed

methodology rules out the need for weighting the individual indicators.

Capturing resilience effectively in this context necessitates a clear understanding of what factors

make up a resilient system and how these factors coalesce into the state and functioning of the

system. To construct the theoretical foundation and axioms on how the system behaves under

current and future sea levels, we start by exploring all direct and indirect relationships between

various failure modes triggered when systems are subject to risks due to sea-level rise. Subsequently,

a set of system-related indicators are identified. These indicators are critical in shaping the system’s
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ability to respond, adapt and recover post disruptions. As such, we refer to them as the resilience-

critical indicators. After shortlisting these indicators, we introduce a deductive fault analysis-based

methodology for building composite metrics. Our ultimate goal is to enable a methodology that

can effectively deploy resilience in a functional form to inform adaptation decision-making. The

rationale and mechanisms of the proposed approach are elaborated in the following subsections.

2.1 Theoretical Framework

As mentioned earlier, our framework is built in the context of OSTDS, also known as septic systems,

that treat and dispose waste from individual properties. In such systems, wastewater is partially

treated in the septic tank, where solid waste rests at the bottom of the tank, and the effluent flows

from the septic tank to a drain field. The drain field is a set of perforated pipes that discharge

effluent to the ground. The discharged waste undergoes final treatment as it percolates through

unsaturated soils to the groundwater (see Figure 1). For septic systems to function effectively and

ensure complete treatment of the effluent before it reaches the groundwater, the soil underneath

and surrounding the drain field must be unsaturated, and a minimum vertical separation distance

(VSD) between the bottom of the drain field and the high wet season groundwater level must be

satisfied. In Florida, the minimum VSD ranges from 12 to 42 inches (2-4 ft), depending on the soil

percolation characteristics.

Figure 1: Operation of conventional OSTDS with the discharge of the effluent (source: Hoover and
Konsler (2004))

With the rising sea levels, septic systems face increasing risks of surface and in-land flooding,

both of which may disrupt their proper functioning or cause complete failure. Failed septic systems

result in financial burdens to homeowners due to substantial investments in repairs or degraded

property values. In addition to their economic impacts, environmental and subsequent public health

hazards are of significant concern due to the increased likelihood of contamination of freshwater

resources. Contamination occurs when partially treated wastewater containing human-caused Ni-

trogen (N) mixes with freshwater resources, including groundwater and surface water.

To identify the factors critical in shaping the response of septic systems to risks due to sea-

level rise, we first map these risks to different system failure modes. Our proposed theory is

established following the minimum requirements for feasible operating conditions dictated by the
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OSTDS design, siting, and management manual published by the U.S. Environmental Protection

Agency (EPA 625/1-80-012), the Florida Administrative Code (rule chapter 64E-6: Standards for

OSTDS), and the septic vulnerability report prepared by the Miami-Dade County Department of

Regulatory and Economic Resources. Based on our exploratory study, we shortlist 12 indicators

that are deemed critical to resilience. Since resilience can be categorized into three main phases,

namely, prevention (resistive or absorption capacity), damage propagation (adaptive capacity), and

recovery (restorative capacity) (Shandiz et al., 2020; Yarveisy et al., 2020), we group the identified

indicators accordingly under three groups as detailed in Figure 2 and elaborated in what follows.

2.1.1 Resistive Capacity

Figure 2: Causal relationships between
critical indicators and resilience

When exposed to risks, systems with high resistive capac-

ity can withstand failures and sustain their performance.

Under sea-level rise, septic systems may experience hy-

draulic failures due to surface or inland flooding of the

drain field. While surface flooding is very likely to occur

for systems located within high-risk flood zones, where

the base-flood elevation (BFE) is greater than zero, in-

land flooding may follow rising groundwater levels associ-

ated with the rising seas. As the groundwater levels rise

above a certain threshold, the vertical separation distance

(VSD) is reduced, which may result in inland flooding of

the drain field. In addition to hydraulic failure, envi-

ronmental failures might occur due to the compromised

VSD or the saturation of soils underneath the drain field

caused by excessive precipitation and frequent flooding

events. Therefore, along with VSD and BFE, distance to

hydric soils is also considered to be critical in shaping the

system’s resistive capacity. The further the site is located

from an area with hydric soils, the more it will resist to

treatment failures. For a given septic system i, factors

that shape the resistive capacity of the septic system are

listed in Figure 2 and denoted by xi1 through xi3.

2.1.2 Adaptive Capacity

Another component of resilience, the ability of septic systems to adapt to disruptions, is associated

with the likelihood and extent of impact propagation to other critical infrastructure systems. This

is typically the result of the so-called ”domino effect.” Domino effect is an undesirable event that

emerges in one system and spreads to other systems through escalation vectors. Thus, it causes

secondary or high-order events leading to more severe consequences compared to the initial event
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itself (Tong and Gernay, 2023). For septic systems, a major domino effect of failure related to

freshwater contamination, which can occur in two ways: i) groundwater contamination and ii)

surface water contamination. As discussed earlier, groundwater contamination occurs if the VSD

(xi3) is below a minimum threshold or if the soil underneath the drain field is saturated (xi1). In

addition, groundwater contamination occurs if a system at risk of surface flooding is proximal to

groundwater recharge wells (also known as injection wells) (xi8). These wells are generally utilized

to artificially recharge aquifers by surface waters and waters coming from other sources. Surface

water contamination is more likely to occur when systems at risk are close to surface drainage lines

(also known as watersheds) (xi6). These surface drainage lines function as transfer channels for the

untreated wastewater to nearby surface water bodies, including canals (xi5) and basins (xi7).

Besides the environmental risks, public health risks are expected when potable water resources

are contaminated. In this regard, systems close to or within well-field protection zones (xi4) are

deemed critical. In the event of groundwater contamination, polluted waters within these zones

are more likely to be drawn into potable water wells. Similar relation also applies to proximity to

private water wells (xi9). According to the Florida Department of Health 2020 statistics, nearly

12% of the state population relies on private wells for drinking water consumption. These private

wells are not regulated under the federal Safe Drinking Water Act, and as such, the unobserved

failures of septic systems close to these private wells pose health risks.

2.1.3 Restorative Capacity

In the context of a system’s ability to recover, the leading indicators must relate to the technical or

socio-economic abilities to recuperate from potential disruptions. On the one hand, the technical

factors capture the systems’ ability to fully transform into a new state by connecting to alternate

wastewater management systems. On the other hand, the socio-economic indicators reflect the

household’s economic ability to support the recovery of their failed systems. While the former is

assessed through proximity to sewer lines (xi10) and existing stresses to the sewer network through

observing the sewer overflow locations (xi12), the latter is evaluated based on the median household

income (xi11). We consider these indicators to be instrumental in expressing the system’s potential

for resuming regular wastewater disposal and treatment operations after a disruption, either by

recovering the existing system or transforming its structure.

2.2 Data Collection and Processing

The input geospatial datasets used in our analysis were obtained from open data sources, includ-

ing Miami-Dade Open Data Hub, the U.S. Geological Survey (USGS) LiDAR Digital Elevation

Model (DEM) at 5ft resolution, Groundwater Levels Data at 250m resolution, and the Wastewater

Management Methods embedded in the Florida Water Management Inventory dataset. The input

data was processed in two phases, as illustrated in Figure 3. Three data sets were generated in

the initial phase: the vertical separation distance raster layer, surface drainage lines (watersheds)

vector layer, and parcels with active septic systems vector data. For septic system (i), given the
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average ground elevation per parcel (ḠLi), the maximum groundwater level (GWLmax
i ), and the

average standard drain field depth (d), we compute the VSD (xi3) using the following equation:

xi3 = ḠLi − d−GWLmax
i (1)

Watersheds (or surface drainage lines) were generated from the DEM according to the direction

of flow accumulating from each grid cell to its steepest down-slope neighbor. Next, data pertaining

to parcels with active septic systems was compiled by querying the “wastewater management meth-

ods” database for active septic systems. Subsequently, the final data was processed to compute the

identified leading indicators for each OSTDS. For this purpose, distances from the center of each

parcel with an active OSTDS to the nearest relevant components, such as sewer lines, basins, and

potable water wells, were calculated. The resulting data set is an n×m matrix which we denote by

X, where xij represent the raw value of indicator j for system i, such that i ∈ N , and j ∈ M, where

N = {1, 2, ...n} is the set of active septic systems, and M = {1, 2, ...m} is the set of indicators.

(a) Initial Data Processing (b) Final Data Processing

Figure 3: Data Processing

2.3 Transformation

Since it is often challenging to quantify the absolute value of resilience without any reference or

benchmark (Schneiderbauer and Ehrlich, 2006), indicators are typically tailored to assess relative

resilience. Relative resilience measures help compare systems and analyze resilience trends over

time (Cutter et al., 2008). With this regard, we developed a transformation methodology that

standardizes raw indicator values relative to one another to inform and prioritize adaptation de-

cisions. The resilience-critical indicators have positive and negative polarities in the context of
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the respective system response capacities. In the case of positive polarities, larger values indicate

higher resilience. For example, as the VSD at a septic site increases, the system’s ability to resist

failures caused by inland flooding increases. On the other hand, larger values imply lower resilience

for indicators with negative polarities, such as Base Flood Elevation (BFE), where septic systems

become more prone to failures resulting from surface flooding as the base flood elevation increases.

To account for these positive and negative relations, we employ sigmoid (eq. 2) and inverse logistic

(eq. 3) transformation functions as given below:

x′ij =
1

1 + (
xij

f2
j
)−f1

j

(2)

x′ij =
1

1 + (
xij

f2
j
)f

1
j

(3)

where xij denotes the raw value of indicator j for system i, f1
j is the parameter to control the shape

of the curve, and f2
j is the reference value (e.g., 4 ft for the VSD case). The resulting transformed

values range between 0 and 1, where a higher value implies a better ability to respond, hence, a

more significant contribution to resilience. Figure 4 shows the transformation curves for the VSD

and the distance to sewer lines as examples.

Reference values and thresholds (f2
j ) signify the “operating variables” that reflect the condi-

tions for safe operation of the system. In a recent study, Pawar et al. (2022) employ a similar

approach and map a system’s operating variables to resilience metrics using performance-based

indicators. In the context of septic systems, the operating variables are determined based on the

recommendations dictated by the OSTDS design, siting, and management manuals published by

the U.S. Environmental Protection Agency (EPA 625/1-80-012) and the Florida Administrative

Code (rule chapter 64E-6: Standards for OSTDS). In this configuration, values slightly below or

almost equal to the minimum threshold (reference value) return a transformed value of 0.5. For

instance, the transformation produces a value of 0.5 for a VSD of 4 ft. In the absence of regulated

feasible distances, such as distance to sewer lines and sewer overflow, a min-max normalization is

performed in the range of [0,1]. An example of such a case is the distance to sewer lines.

In addition to the minimum operating conditions, the shape parameters (f1
j ) in the transforma-

tion functions are tuned to account for the relativity between the indicators. For instance, a septic

system located 100 ft from hydric soils is considered more resilient than another system located

at an equivalent distance from a potable water wellhead, provided that all other indicators remain

the same. Although the system in the former case is close to hydric soils, it still meets the required

operating conditions as long as the soil underneath the drain field is suitable for treatment, i.e.,

the distance to hydric soils is greater than 0. However, for the latter case, the 100 ft distance from

potable water wellheads does not meet the minimum required feasible distance, which is 200 ft in

Florida. Consequently, the shape parameters for the relevant indicators are selected in a way to

satisfy the following ordering:
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Figure 4: Transformation curves for the VSD (left) and the distance to sewer lines (right)

Γ1 > Γ6 > Γ5 ≥ Γ7 ≥ Γ8 > Γ9 > Γ4, (4)

where

Γj = f1
j [ln(

xij
f2
j

)] ∀j ∈ M/{2, 3, 10 : 12},∀i ∈ N (5)

The resultant transformation functions are illustrated in Figure 5. In cases where relative

transformations are irrelevant, such as in transforming the VSD, where no other indicators are

referenced to this measure, the shape of the transformation function is adjusted to ensure that the

transformed value converges to 1 under a zero-risk condition. This is achieved by accounting for the

current and expected future sea levels and the associated rise in the groundwater table. According

to the IPCC 6th Assessment Report, under the intermediate greenhouse gas emission scenarios,

global sea levels are projected to rise by 0.56 m ± 0.2 (1.837 ft ± 0.656 ) by 2100. In addition,

according to USGS and other studies that assess SLR-induced groundwater rise, such as Knott

et al. (2019), the projected mean groundwater rise relative to sea-level rise is expected to be 31 to

35% depending on the distance from the shoreline and other hydraulic characteristics. This means

that by 2100, under the worst-case scenario, the rise in the groundwater table will be approximately

0.87ft. Under this scenario, systems with vertical separation distance nearly greater than or equal

to 5 ft are anticipated to function effectively by 2100, provided that all other conditions are ideal.

Based on this inference, the vertical separation distance transformation is adjusted to converge to

1 between 5 and 6 ft, as demonstrated in Figure 4.

2.4 The Composite Resilience Function

We propose a logical aggregation strategy for the indicators founded on failure analysis and systems

engineering principles. Systems engineering views systems as complex structures composed of con-
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Figure 5: Transformation curves for several resilient-critical indicators

nected multiple elements and modules whose mutual dependencies influence the resultant system

reliability. Based on this rationale, we view a septic system as an apparatus whose performance

depends on the functionality of multiple other systems or components represented by the leading

resilience indicators. These indicators are employed to aggregate a system’s resistive capacity (RC),

adaptive capacity (AC), and restorative capacity (SC) into a baseline function to define its overall

survivability and, thus, resilience based on the hierarchical causal relationship structure illustrated

in Figure 2. These causal relations help us establish a system of axioms that provide the blueprint

for the said aggregation. In what follows, we detail these axioms:

Axiom 1: An OSTDS system is said to be highly resistive if it can resist both surface and inland

flooding. This occurs only if it maintains a high VSD (i.e., large x′i3), high distance to hydric soils

(i.e., large x′i1) and low base-flood elevation (i.e., large x′i2). If the system fails to achieve at least

one of these conditions, it fails to resist disruptions. Mathematically, the system’s resistivity is

calculated as the product of these factors as represented by the following equation:

RCi = Pr(x′i1 ∨ x′i2 ∨ x′i3) =
∏
j=1:3

x′ij (6)

Axiom 2: A septic system is considered to be adaptive if, in the event of failure, impacts can

be contained and do not propagate to other infrastructure systems such as drinking water and

freshwater resources, groundwater, and surface water. We let IPi1, IPi2, and IPi3 represent the

likelihood of impact propagation to groundwater, surface water, and drinking water, respectively.

Subsequently, the adaptive capacity of septic tank i is abstracted by the following expression:

ACi = 1− [IPi1 ∧ IPi2 ∧ IPi3] (7)
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These Impact propagation components are derived based on the following postulations:

Axiom 2.1 (Groundwater contamination): The likelihood of the septic site impacting ground-

water increases as partially treated wastewater seeps into the groundwater resources. One major

cause for this is the percolation of partially treated waste through soil due to either proximity to

hydric soil or compromised VSD. As such, the likelihood of groundwater contamination via soil

(GWCsoils) is a function of x′i1 and x′i3 and captured by the following equation:

GWCsoils = 1− Pr(x′i1 ∨ x′i3) = 1− [
∏
j=1,3

x′ij ] (8)

Another condition causing groundwater contamination is the likelihood of partially treated

waste flowing through surface runoff to nearby watersheds or injection wells, which are mapped by

xi6 and xi8. Consequently, the following function can be used to assess the likelihood of groundwater

contamination via surface runoff (GWCrunoff ):

GWCRunoff = 1− Pr(x′i6 ∧ x′i8) = [
∏
j=6,8

(1− x′ij)] (9)

Subsequently, the impact propagation of septic tank i on groundwater can be computed by the

following equation:

IPi1 = Pr(GWCsoils ∧GWCRunoff )

= 1− [(1−GWCsoils)(1−GWCRunoff )]

= 1− [
∏
j=1,3

x′ij ][1−
∏
j=6,8

(1− x′ij)]

(10)

Axiom 2.2 (Surface Water contamination): The likelihood of the septic site impacting

the surface water (IPi2) increases if it gets closer to surface water bodies. Distance to surface water

bodies is assessed by the indicators representing proximity to canals (x′i5) and basins (x′i7). Hence,

the impact propagation of septic tank i on surface water can be framed by the following equation:

IPi2 = 1− Pr(x′i5 ∨ x′i7) = 1−
∏
j=5,7

x′ij (11)

Axiom 2.3 (Drinking Water contamination) The likelihood of the septic site impacting

the drinking water resources increases if it gets closer to the water wellheads. Distance to drinking

water resources is assessed by the indicators representing proximity to public potable water wells

(x′i4) and private potable water wells (x′i9). In addition, drinking water resources can be indirectly

impacted by impact propagation on groundwater. As such, indicators used in Axiom 2.1 are also

relevant here. Consequently, the impact propagation of septic tank i on drinking water resources

can be modeled by the following equation:
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IPi3 = (IPi1)[1−
∏
j=4,9

x′ij ] (12)

Given IPi1, IPi2, and IPi3, we can rewrite eq (7) and get the system’s ability to adapt to

disruptions as follows:

ACi =
∏
z=1:3

(1− IPiz) (13)

Axiom 3: A system is said to have a high restorative capacity if it has the technical or the financial

abilities to recover or both. The feasibility of sewer extension decisions governs the technical abilities

of systems to transfer into a new state and thus recover. This is governed by the pump station

basin status, whether it is on moratorium or can accept new connections. On the other hand, the

financial ability of communities to recover is guided by the median household income and economies

of sewer extensions. This relation can be mathematically abstracted as the following:

SCi = Pr((x′i10 ∨ x′i12) ∧ x′i11) = 1− (1− (x′i10 × x′i12))(1− x′i11) (14)

Axiom 4: Finally, a system is said to be resilient if it has the ability to resist failure and respond

to disruptions. The system’s overall response capacity is determined by its adaptive or restorative

capacities or both. Consequently, using equations (6), (13), and (14), we model the overall resilience

of a system using the following mathematical expression:

Ri = Pr(RCi ∧ (ACi ∨ SCi)) = 1− [(1−RCi)(1−ACi × SCi)] (15)

Although this aggregated function is specific to septic systems under study, the presented axioms

and the resulting framework can be generalized for applications of other infrastructure systems. An

essential requirement is the clear delineation of factors, their impact on the system’s failure risk,

and how these factors link together to shape the system’s overall resilience. In what follows, we

demonstrate our approach with application to a real-life septic system network.

3 Case Study

We present a case study concerning the septic systems in Miami-Dade County (MDC) in Florida

to demonstrate the application of the proposed DFA resilience assessment methodology. Septic

systems are commonplace in Florida, where an estimated 2.6 million onsite sewage treatment and

disposal systems (OSTDS) serve 30% of the state’s residents and visitors. These systems discharge

over 426 million gallons of treated effluent daily into the subsurface soil (Lusk et al., 2020). At

the county level, according to the Florida Water Management Inventory dataset for parcel-level

wastewater management methods, Miami-Dade County has approximately 107,000 active septic

systems. In a recent OSTDS vulnerability assessment report, MDC officials reported that, out

of these 107,000 septic systems, nearly 56% might be periodically compromised during storms or
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wet years. With the rising sea levels within the next 25 years, the County expects this number to

significantly increase to more than 64% by 2040 (Elmir, 2018).

Figure 6: DFA-based resilience levels for OSTDS in
Miami-Dade County, Florida, USA

Using the proposed DFA model, we derive

the resilience levels of all the septic sites located

in MDC. The geographical distributions and

computed resilience values are presented in Fig-

ures 6 and 7. Considering the current sea lev-

els and flood-risk zoning, the assessment indi-

cates that nearly 32% of the existing sites have

a resilience index below 0.5, and around 18%

of them have a resilience index less than 0.1.

Geographically, Figure 6 shows clusters of low-

moderate resilience sites located in the northern

and southern regions of the County. In addition

to providing the overall system resilience mea-

sures, the DFA framework offers the ability to

assess the resilience capacities at sub-aggregate

levels, namely, resistive, adaptive, and restora-

tive capacities. For instance, our results for

MDC indicate that nearly 58,000 sites have a

resistive capacity below 0.5. Because resis-

tivity merely evaluates the systems’ exposure

to certain risks due to sea-level rise, it reflects

their vulnerability (Figure 7a). In that respect,

DFA-based measures for the resistive capacities

align with the aforementioned vulnerability levels reported in the MDC study.

(a) Resistive capacities (b) Overall resilience

Figure 7: Cumulative resistance capacities and overall resilience distributions in MDC

A bi-variate statistical analysis is performed to understand better the mappings between the

measured resilience index and the response capacities. The DFA model output is smoothed using
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the Kernel density estimation as depicted in Figure 8 to handle the large data size and provide better

visualization of these mappings. The plots show that both the resistive and adaptive capacities

have a strong positive relationship with resilience, unlike the restorative capacity. For systems

with very poor resistive capacity (less than 0.2), resilience is observed to be strictly low (less than

0.2). Whereas systems with low adaptive capacity (less than 0.2) could possess moderate or high

overall resilience. On the contrary, for high resistive and high adaptive capacities, the system’s

resilience is usually high (greater than 0.8) or moderately high (greater than 0.6), respectively. The

computed restorative capacities are generally moderate-to-high (greater than 0.5), with larger values

corresponding to slightly higher resilience measures. These observations reflect the compensatory

relations between the indicators established by the axioms of the proposed DFA approach.

Figure 8: The relation between resilience and the system’s three response capacities

We further our analysis using three specific septic systems selected from the case study to

demonstrate the relationship between response capacities and resilience. These septic sites ex-

emplify three distinct operational and environmental conditions impacting the systems’ resilience.

The first case involves a septic site with low resistive capacity yet high overall resilience. Whereas

the second case exemplifies a system with low response capacity (high adaptive and restorative ca-

pacities) and high overall resilience. Lastly, we present a system with moderate resistive capacity,

moderate response capacities, and overall moderate system resilience. Figure 9 exhibits how the

overall resilience measures for these systems are broken down into their building blocks, namely, the

leading indicators. As discussed in the previous section, these indicators include the transformed

values of vertical separation distance (VSD Tr), distance to hydric (saturated) soils (HydSoils Tr),

base flood elevation (BFE Tr), distance to canals (Dist Canal Tr), distance to surface drainage

lines (Dist SD Tr), distance to basins (Dist Basin Tr), distance to public potable water well head

(D PubW Tr), distance to private potable water well head (D Priv Tr), distance to injection wells

(Dist InjW Tr), distance to the nearest sewer line (D Sewer Tr), distance to the nearest sewer

overflow point (D Overflow Tr), and median household income (Income Tr).

In the first case (Figure 9a), the base flood elevation is very low (nearly zero), implying a higher

likelihood of surface flooding and, therefore, a low ability to resist disruptions. Despite that, since
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(a) System with low resistive capacity but high response capacity (Resilience = 0.79)

(b) System with high resistive capacity but low response capacity (Resilience = 0.86)

(c) System with moderate resistive and response capacities (Resilience = 0.48)

Figure 9: Baseline resilience measures under varying resistive and responsive capacities.
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all the other resilience-critical indicators representing the site’s response capacity are reasonably

high, the system maintains a relatively high resilience level of 0.79. The intuition is that no impacts

are anticipated to propagate from this site since the system is not proximal to any drinking water

resources or surface water bodies. Moreover, no groundwater contamination is expected due to

the relatively large vertical separation distance and unsaturated soil conditions. In the second case

(Figure 9b), a system with low adaptive capacity but high resistive and recovery abilities can still

achieve a high overall resilience measure of 0.86. For this system, although impact propagation is

a potential risk in the event of failure, the system’s high resistivity substantially diminishes the

possibility of failure, resulting in a high degree of resilience. In other words, the former capacity

is compensated by the latter. Finally, in the third case (Figure 9c), as expected, the system has a

moderate degree of resilience due to its moderate abilities to both resist and respond to disruptions.

These examples show that the proposed aggregation strategy aligns with the universal under-

standing of resilience that accounts not only for exposure and risk but also for the system’s ability

to respond to disruptions through modeling its resistive, adaptive, and restorative capacities. It

incorporates the compensatory relationships between these system capacities. Hence, we can find

situations where a system with a low capacity to resist (resp. respond) but a high capacity to

respond (resp. resist) can still, in fact, maintain a moderate-to-high degree of resilience.

4 DFA Approach vs Statistical-Driven Methods

As detailed in Section 2 and illustrated by the case study in Section 3, the proposed DFA models

system resilience as a multidimensional index that explicitly reflects compensability between the

associated indicators. To provide a more cogent analysis of the proposed method, we compare the

proposed methodology against other statistically-driven models adopted in the context of composite

indicators building. The main goal of this discussion is to identify the similarities and gaps between

the DFA-based resilience metric and the latter group of models. We aim to derive insights from

such a comparison concerning the connotation of resilience implied by different assessment methods.

Two statistical models that differ in their weighting strategy are selected for the analysis. The first

model is the Partial-Least Squares - Path Model (PLS-PM) for latent variables, which can be viewed

as an extension of factor analysis and path analysis. The second model uses Principal Component

Analysis (PCA) to derive weights and compute the aggregate scores.

4.1 Partial-Least Squares Path Model (PLS-PM)

The variance-based Partial-Least Squares Path Model (PLS-PM) fits a composite model to given

data by maximizing the amount of variance explained. Thus, it enables the estimation of complex

cause-effect relationships in path models with latent variable(s) that directly or indirectly causes,

or is caused by, a group of measured indicators. In this sense, PLS-PM quantifies the hypothesized

relations among a hierarchy of manifest (measured) and latent variable(s) using a system of mul-

tiple interconnected linear regressions (Sanchez, 2013). Consequently, the model estimates factor
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loadings representing the correlation between the latent variable(s) and the underlying manifest

variables. As such, it provides a measure of the adequacy and significance of the latter in reflecting

the latent construct(s) (Kline, 2015). Although the PLS-PM is widely addressed in management,

marketing, and psychology (Latan et al., 2017), it has recently been utilized to construct composite

indicators, such as in Cataldo et al. (2017), Lauro et al. (2018), and Tomaselli et al. (2021).

The PLS-PM tests the theoretically hypothesized causal relationships by developing two sub-

models: the measurement model and the structural model. While the measurement model captures

the relations between each latent variable and its corresponding measured variables, the structural

model formulates the relations among the latent variables. In the context of the axiomatic frame-

work introduced in Section 2.4, the measurement model specifies the relation between the leading

resilience indicators and their corresponding latent variables representing the system’s response ca-

pacities. Because these measurable indicators are perceived as the cause for the latent constructs,

formative relations are considered in this analysis. In this case, the latent variables are defined

as a linear combination of their corresponding measurable variables. This measurement model is

expressed mathematically as follows:

ξq =

Pq∑
p=1

ωpqxpq + δq ∀q ∈ Q (16)

where ξq is the score of the latent variable (q), xpq are the values for the variables measuring the

construct q, ωpq are the coefficients linking each measured variable p to the corresponding latent

variable q, and δq is the error term representing the fraction of the corresponding latent variable

q not accounted by the considered measured variables P . The structural model among the latent

variables, on the other hand, is expressed as follows:

ξj = β0j +
∑
q∈Q

βqjξq + δj (17)

where ξj is the generic latent variable, e.g. resilience, βqj is the generic path coefficient interrelating

the latent variable q to the generic latent variable j, and ϵj is the error term for latent variable j.

We note that an additional intermediate model is needed in our context to map the adaptive

capacity constructing blocks, namely IP1, IP2, and IP3 as defined in Axiom 2. In that respect,

our setting exploits a higher-order PLS-PM model where the parameters are estimated using a

two-step approach. In the first step, the first-order latent variables’ scores are computed using

Principal Component Analysis (PCA). Subsequently, in the second step, the PLS-PM analysis is

performed using the computed scores as indicators for the 2nd order constructs, which are adaptive

capacity and resilience.

The results for the measurement model are summarized in Table 1. In general, for models

assuming formative relations, the loadings of indicators are investigated to determine their absolute

contribution to the latent construct. As highlighted in the table, the PLS-PM model identifies

the vertical separation distance, the groundwater contamination, and the distance to sewer lines

20



as the primal contributors in shaping the system’s resistive, adaptive and restorative capacities,

respectively. Since the compromised vertical separation distance is a primal cause of groundwater

contamination, the results indicate that the vertical separation distance is pivotal in shaping not

only the resistive capacities of the systems but also their adaptive capacities. In this sense, the

model’s conclusions support the underlying causal theory employed by the proposed DFA approach.

Table 1: The Measurement Model Loadings

Measured Indicator Latent Construct Loadings

Vertical Separation Distance Resist 0.41
Distance to hydric Soils 0.25
Base-flood Elevation 0.33

Distance to surface Drainage IP1 0.06
Distance to injection Wells 0.16
GW Cont1 = f(V SD, Soils) 0.70

Distance to basins IP2 0.58
Distance to canals 0.42

Distance to public wells IP3 0.09
Distance to Private Wells 0.15
GW Cont = f(V SD, Soils) 0.76

Distance to sewer lines Recover 0.36
Distance to sewer overflow 0.35
Median Income 0.29

The application of the structural model is carried out primarily by examining the R2 deter-

mination coefficients and the redundancy index. In addition, path coefficients’ significance level

(t-test) and magnitude are also assessed. Results are summarized in Table 2. In this case, endoge-

nous latent variables are the latent proxies representing adaptive capacity as defined in (13) and

resilience as defined in (15). While the former is shaped by the three impact propagation latent

constructs, namely, IP1, IP2, and IP3, the latter is determined by the latent resistive, adaptive, and

restorative constructs. R2 values of 0.96 and 0.98 for the adaptive and resilience constructs evince

the significance of the proposed hierarchical structure in mapping the resilience-critical indicators

to the system’s response capacities and overall resilience.

Table 2: The Structural Model Metrics

Metric Latent Endogenous Variable Value

R2 Coefficient of Determination Adapt 0.96
Resilience 0.98

Redundancy Adapt 0.58
Resilience 0.66

Goodness of Fit Index (GOF) 0.66

The Redundancy Index measures the performance of predicting the structural model given the

measurement model. As shown in Table 2, redundancies of 0.58 and 0.66 are obtained for the

adaptive capacity and resilience, respectively. These results imply that the resilience construct’s
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adaptive, resistive, and restorative capacities can predict 66% of variability within the resilience

indicators. According to research, these values indicate a satisfactory level of explanation in the

context of the PLS-PM model (Sanchez, 2013).

Path Coefficients capture the causal relations between variables, specifically the direct effect of a

variable in causing another variable. In the context of the structural model, these variables are the

latent constructs of their underlying latent or manifest variables. Path coefficients produced by the

PLS-PM approach are presented in Table 3. These results indicate that despite their significance,

the path coefficients do not seem to be entirely compatible with the premise of the proposed DFA

approach, particularly the relations posited in equations (13) and (15). The results imply that

impact propagation to drinking water resources has the highest path coefficient and, therefore, the

highest influence in shaping the system’s ability to adapt, followed by surface water and groundwater

contamination according to the PLS-PM approach. However, as previously discussed in Axiom 4,

impacts can’t propagate to the potable water wells prior to contaminating the groundwater or

freshwater resources first. Axioms of the DFA approach explicitly establish this relation resulting

in high criticality in its context. In addition, all system response capacities are nearly equally

important in shaping resilience, with slightly higher path coefficient values corresponding to the

adaptive and recovery abilities. These findings contradict the original theory under which the

resistive and adaptive capacities are expected to have a higher effect than the ability to recover, as

implied by Axiom 4 and the results presented in Figure 8.

Table 3: The Structural Model Path Coefficients

2nd Order Latent 1st Order Latent Path Coefficient Significance

Adapt IP1 (Cont. Groundwater Resources) 0.24 ***
IP2 (Cont. Surface water resources) 0.31 ***
IP3 (Cont. Drinking Water Resources) 0.45 ***

Resilience Resist 0.30 ***
Adapt 0.36 ***
Recover 0.34 ***

The results of the PLS-PM indicate that although the fitness metrics obtained by this approach

are statistically acceptable, the extent of the individual indicators’ impact on the system response

capacities and overall resilience does not entirely align with the proposed DFA approach. As

expected, this gap emerges due to the differences in the formative and deductive views of the PLS-

PM and DFA approaches. Before discussing the intuitions behind these observations in detail, we

first examine the application of the Principal Component Analysis (PCA).

4.2 Principal Component Analysis (PCA)

The effectiveness of PCA in mapping high-dimensional data to fewer proxies has made this approach

and its extensions, such as the spatially dependent PCA (Saib et al., 2015), an appealing tool to

construct composite indicators (OECD, 2008; Li et al., 2012; Kotzee and Reyers, 2016). PCA is
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primarily utilized to identify how different variables are associated. This is achieved by transforming

the originally correlated variables into a new set of uncorrelated variables, known as Principal

Components (PCs). The latter variables are computed as weighted linear combinations of their

respective indicators, where weights are optimized such that the retained PCs account for the

greatest possible variance in the data. The results of PCA are typically evaluated in terms of the

proportion of the variance within the data captured and the loadings among the original variables

and the retained PCs.

Following the methodology adopted in constructing the Environmental Sustainability Index (Li

et al., 2012), we employ a PCA-based framework for constructing the resilience composite for the

OSDS case study. In this approach, similar to the DFA model, the leading indicators are grouped

according to the hypothesized relations depicted in Figure 2. The analysis is performed in two

stages. In the first stage, the first set of PCs, each representing a respective system response

capacity, and their factor loadings are computed. These PC scores are then used to compute the

loading and the final PC score for the overall system resilience in the second stage.

The PCA results for the case study are summarized in Table 4. The results indicate that

all the retained principal components representing resilience and the underlying system response

capacities capture most of the variance within the data. In the first aggregation stage, we observe

that indicators projecting the respective system response capacities are weighed almost equally,

with a few exceptions. For the resistive capacity, the weight of distance to hydric soils, represented

by the loadings, is slightly higher than the BFE and the VSD. Whereas for the adaptive capacity,

the contribution of the distance to watersheds and groundwater contamination is considerably lower

than the other indicators in this group. These results are not entirely aligned with the findings of

both the PLS-PM and the proposed DFA approaches. Recall that the vertical separation distance

and groundwater contamination are identified as primal factors shaping the resistive and adaptive

capacities under the latter approaches. In the second stage analysis, both the adaptive and resistive

capacities have the highest influence in forming resilience, which is comparable to the findings of the

proposed DFA approach. However, both approaches contradict in identifying the primal contributor

to resilience. While the DFA highlights resistive capacity as the primary contributor to resilience,

the PCA-based approach concludes that adaptive capacity significantly influences resilience. In

that respect, the latter approach is more consistent with the PLS-PM, which is, like PCA, a

statistically-driven method.

For the most part, the gaps between the DFA approach and the statistically-driven methods

such as PLS-PM and PCA can be explained by the fact that the latter methods rely on correlations

among variables for calculating the factor loadings and hence, the factor scores. Such reliance can be

a consequential limitation in the context of resilience since these implicitly assumed correlations do

not necessarily represent the sub-indicators’ real influence (importance) on the phenomenon being

assessed (Nardo et al., 2005), especially when formative relationships are considered. As such,

when the indicators are aggregated to form the composite index, they fail to accurately reflect the

underlying phenomenon.
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Table 4: Results of the Principal Component Analysis

PCA-Stage Proxies (Latent Vars) Indicators Loadings % Variance

Stage 1 Resist Base-Flood Elev. 0.31 91.99%
Vertical Sep. Dist. 0.31
Dist. to Hydric Soils 0.37

Adapt GW Cont = f(V SD, Soils) 0.11 94.34%
Dist. to Injection Wells 0.16
Dist. to Watersheds 0.07
Dist. to Canals 0.16
Dist. to Basins 0.16
Dist. to Public Wells 0.17
Dist. to Private Wells 0.17

Recover Dist. to Sewer Lines 0.34 87.6%
Dist. to Sewer Overflows 0.31
Median Income 0.35

Stage 2 Resilience Resist 0.30 98.6%
Adapt 0.51
Recover 0.19

Figure 10: Distribution of the Resilience Index
computed by the proposed DFA approach, the

PLS-PM, and the PCA-based model

To capture the factors leading to the ob-

served gaps in resilience measures, we generate

the distributions of the resilience indices ob-

tained by the three approaches across the en-

tire dataset of 107,000 septic systems, as de-

picted in Figure 10. It can be observed from

the graph that the statistically-driven methods

tend to produce moderate-to-high resilience val-

ues, with the PCA-based model yielding con-

siderably higher values. The DFA measures, on

the other hand, extend across the entire range

in [0, 1]. Notably, in terms of resilience, septic

sites tend to cluster around low (below 0.20)

and high (above 0.8) values with a nearly uniform distribution in between. This observation is

expected as the DFA approach does not synthesize any correlation across the data.

These findings reveal that the three models may result in varying degrees of resilience, a con-

clusion substantiating our contention that a composite index may send misleading messages if

not aptly constructed. The approaches that rely on linear aggregation and statistically-computed

weights may lead to an over-reduction of dimensionality, which can obscure the adequate represen-

tation of an indicator’s importance. In this regard, we deduce that the proposed DFA approach can

be utilized to address the above-mentioned challenges and develop a composite index that; (i) aptly

accounts for compensatory relations between indicators, (ii) is not prone to statistical homogeneity

of data, (iii) accounts for indicators’ relative importance and thus, eliminates the need for weights,

and most importantly, (iv) maps the system capacities to resilience consistently and accurately.
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To sum up, we reiterate that all three approaches employed in our analysis consistently agree

on the significance of the selected indicators. However, they differ considerably in measuring the

extent of these indicators’ impact on the overall resilience of a system. While the first conclusion

is relevant and essential, the second is especially critical in decision-making pertaining to resilience

improvement and adaptation. Clearly, effective adaptation decisions cannot be made without cor-

rectly incorporating their impact on the objectives or criteria related to resilience. In the next

section, we introduce a general framework to demonstrate how DFA-based metrics can actuate

decision-making models in the context of adaptation for resilience.

5 Resilience-based Decision Making

While building consistent and effective metrics for resilience is a critical stage, the loop in resilience

engineering cannot be closed until these metricsare utilized to build decision models that result

in effective adaptation solutions. Previous work due to Weiss et al. (2008), Molinos-Senante et al.

(2012), and Abdalla et al. (2021) refer to four main strategies for adapting a septic systems to rising

sea levels: (i) abandoning the existing system and connecting the site to the sewer network, (ii)

considering a mound septic system by elevating the drain field, (iii) considering a non-conventional

advanced treatment system, and (iv) abandoning the existing system and connecting the site to a

micro (or community) sewer network with a decentralized treatment facility (also known as package

plant). Each of these strategies is subject to constraints that set the limits for feasible solutions.

For instance, according to the septic design and siting manual, a mound system cannot be installed

if the vertical separation distance is less than 1ft. Also, connection to the sewer network cannot

be considered when the pump station basin to which the site belongs is in moratorium condition.

In addition to the technical considerations, financial limitations pose additional constraints when

making adaptation decisions. Moreover, the decision-making framework should determine not only

the “optimal” actions but also the sequence in which these actions should be implemented. This

sequence can be influenced by a variety of factors, such as the resilience of the site, financial

limitations, and equity.

The baseline function for resilience given in (15) can be incorporated into a decision model

in several ways. It can be used to form the model’s objective function, where maximization of

resilience bears on the goal of the decision-making. In this context, it can also serve as one of the

objectives under a multi-objective decision-making setting. Alternatively, it can be incorporated

into the set of constraints to establish lower bounds on resilience under various objectives (e.g.,

cost minimization, equity maximization, etc.). The resilience function influences decision-making

by responding to changes in the adaptation decision variables. For example, if the sewer extension

solution is adopted, most of the resilience-critical indicators initially identified for shaping the septic

system’s resilience no longer constitute a threat to the functionality of the sewage collection and

disposal from the site. These include distance to saturated soil, proximity to drinking water wells,

and proximity to the sewer lines, given that a site is already connected. Moreover, after merging

25



the OSTDS with the sewer system, the significance of vertical separation distance measure changes

in that it now reflects the clearance between the buried components of the infrastructure, such

as pipes, and the groundwater level. On the other hand, proximity to sewer overflow points may

become a significant indicator as the site may coincide with a stressed section of the sewer network,

making it less resistant to future stresses. Consequently, the resilience function must be updated

to reflect the system’s response under alternative adaptation options.

To set up the mathematical model, we let L denote the set of all possible adaptation actions,

and l ∈ L represents a particular action in this set, where l = 0 corresponds to ”Do nothing.” We

let Ril denote the resilience function for site i under adaptation action l. For example, if we let

l = 1 indicate the sewer line connection option, the resilience function under this option will be:

Ril = 1− [(1−
∏

j=2,12

x′ij)(1−
∏

j=3,5,7,11

x′ij)] ∀ l = 1 (18)

Similarly, if we let l = 2 represent the option of elevating the drain field (i.e., mounding the

septic system), the resilience function under this option can be rewritten as

Ril = 1− [(1−RC ′
i)(1−ACi × SCi)] ∀ l = 2 (19)

where, both; ACi and SCi follow equations (13) and (14), whereas RC ′
i is updated using the new

vertical separation distance, xni3, expressed by:

xni3 = xi3 + yi (20)

where yi is the drain field mounding height for septic site i.

Consequently, we can develop a general adaptation decision-making framework by integrating

the estimated current resilience levels and the proposed post-adaptation resilience relations. A

sample framework, where resilience is incorporated as a constraint, is given by the following generic

integer programming formulation:

Min Z
∑
i∈N

∑
l∈L

cilγil (21)

∑
l∈L

γilRil ≥ bi ∀i ∈ N (22)

∑
l∈L

γil = 1 ∀i ∈ N (23)

γil ∈ [0, 1] ∀i ∈ N, l ∈ L (24)

In this generic formulation, N is the set of septic sites, cil is the cost of adopting adaptation

strategy l for septic site i, and γil is the binary variable that indicates whether a strategy is selected
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(γil = 1) or not (γil = 0). The overall objective of the model is to minimize the total investment

in adaptation under a constraint set that stipulates a minimum preset level of resilience for site i

denoted by bi (22). Constraint 23 ensures that exactly one adaptation strategy is selected for each

site, including the do-nothing option.

It should be emphasized that this generic formulation is for illustration purposes. A context-

specific and more comprehensive version may include additional operational, technological, and

socio-ethical constraints and associated decision variables. Our discussion and the presentation of

the generic model aim to i) illustrate the integration of the proposed composite resilience measure

into decision-making and ii) provide potential research directions pertaining to adaptation decision-

making while explicitly incorporating resilience. The resilience function can be incorporated into the

decision model in varying formations depending on the context. For example, it can be reconfigured

to maximize resilience under budget constraints. In a broader and more realistic context, the

model can be tailored for goal programming and multi-objective optimization to embrace multiple

stakeholders’ perspectives. In the latter case, the decision model can be utilized to obtain a frontier

of solutions with non-dominated outcomes, thus helping decision-makers evaluate alternative plans

capable of meeting a range of goals and stakeholder perspectives.

In many real applications, adaptation actions are carried out in multiple stages and periods

due to budget constraints and/or the progression of changes in environmental conditions over time

(e.g., sea level rise projections over time). In that respect, the proposed modeling framework can be

tailored to multi-stage, multi-period structures to address such settings. Stochastic programming

and robust optimization techniques can be incorporated to reflect the dynamic and uncertain nature

of climate change-related parameters. The integration of the proposed resilience measure to a

decision-making framework has the potential to enable a future research venue for developing large-

scale mathematical programming models for a myriad of regional adaptation problems that can

consolidate varying objectives, relationships, constraints, and decision variables over time (multiple

periods), space (multiple locations) and domain (connected networks of green and gray systems).
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6 Conclusions

Extreme stresses caused by climate change, such as the rising seas, are growing more severe, threat-

ening different aspects of society including the infrastructure systems. To meet the gravest threats,

planners and communities have been devising solutions to climate adaptation by enhancing systems’

resilience. The effectiveness of the adaptation decision framework depends on how well it models

resilience and incorporates it into a holistic decision-making process. Although there has been grow-

ing literature on integrating resilience into adaptation policy-making, several challenges are yet to

be addressed. First, developing a multidimensional resilience index that reflects the significance

of the underlying resilience-critical indicators consistently and accurately with the proper scope is

challenging. Second, the failure to capture the relationship between resilience and adaptation and

adequately integrate it into decision-making might lead to maladaptive outcomes.

To tackle these challenges, in this paper, we propose a framework for a composite resilience

metric that can be incorporated into adaptation decision-making. In our approach, we follow the

general principles of risk engineering that include hazard identification, risk analysis, risk evalua-

tion and risk treatment. In the context of the on-site wastewater treatment and disposal systems

(OSTDS), we first identify the hazards for these systems caused by the rising sea levels. We then

develop a framework that employs a deductive (formative) construct based on the conditions es-

sential for systems’ survival during and after disruptions. The proposed deductive fault analysis

(DFA) framework is founded on a set of axioms that map the individual resilience leading mea-

sures into a multidimensional composite resilience index. These axioms address compensatory and

non-compensatory relations between indicators. Moreover, they do not require the assumption of

statistical homogeneity of data and do not resort to weights to map the system capacities to re-

silience. We contextualize the proposed approach using a case study based on the on-site wastewater

treatment and disposal systems (OSTDS) located in Miami-Dade County in Florida.

Using the case study, we compare and contrast the proposed DFA with two statistically-driven

models: the Partial-Least Squares Path Model (PLS-PM) and the Principal Component Analysis

(PCA). Although all three approaches are primarily in accord with each other concerning the

significance of the selected indicators, we observe that they differ considerably in measuring the

extent of these indicators’ impact on the overall resilience of a system. On one hand, the reliance
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of the statistically-driven models on the statistical homogeneity of the data and correlations among

the indicators to inform weights limit their extent and spread. On the other hand, the DFA

approach provides higher degrees of freedom and does not synthesize any correlations across the

data set. Moreover, the latitude of incorporating compensatory relations in this approach provides

an additional advantage to establishing more accurate mapping across indicators.

Although the proposed approach is demonstrated in the context of OSTDS, it can be generalized

to other infrastructure systems subject to varying risks. An essential precondition is a clear under-

standing of the system, its various failure modes, and operating requirements. Such knowledge will

help establish the premise on which the resilience-critical indicators are identified and the potential

causality relations between the indicators and resilience. As a limitation, this methodology could

become intricate with extensively complex systems. Under such settings, more aggregation layers

may be needed to capture the complex structure, resulting in tractability challenges.

The proposed metric integrates system characteristics, as well as varying environment and so-

cial factors that shape the overall system’s ability to resist, adapt to, and recover from disruptions.

Because our proposed resilience index is a multi-dimensional measure, it can serve as a practi-

cal tool for decision-making by mapping the relationships between adaptation decisions and the

factors constituting the resilience index formulation. The proposed transformation and modeling

approaches address the challenging task of explicitly integrating “resilience” into quantitative and

systematic decision-making. Accordingly, as future work, we plan to leverage our framework to de-

velop comprehensive decision-making models and solution algorithms that can produce adaptation

solutions over a multi-period planning horizon with a continuing focus on the OSTDS.
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