Factors Contributing to and Limiting Vegetable Crop Productivity Across an Urban to Rural Transect in Greater Chicago, Illinois

Ross Wagstaff^a, Sam Wortman^b, Adam Davis^c, Carl Bernacchi^c, Jack Juvik^a

^a Crop Science, University of Illinois Urbana-Champaign

^b Department of Agronomy and Horticulture, University of Nebraska - Lincoln

^c USDA-ARS Photosynthesis Research Unit, Urbana, Winois

Urban Agriculture: Growing Food in City

Mapping public and private spaces of urban agriculture in Chicago through the analysis of high-resolution aerial images in Google Earth, Taylor and Lovell 2012

Hypothesized environmental challenges of UA

Environmental Challenges Threatening the Growth of Urban Agriculture in the United States. Wortman and Lovell 2013.

Objectives

- Quantify urban, peri-urban, and rural microclimate
 - Relevant to plant production
- Quantify vegetable crop response in raised bed production system
- Determine variety differences across the urban to rural transect
- Model effects of urban environmental measures on vegetable responses
- Make empirical recommendations for urban farmers and policy makers

Garden Site Selection

Garden Selection

Experiment Materials and Methods

Approach: Garden Setup

Approach: Vegetable production

Material and Methods

Approach: Crops

- > Three sowing dates per year
 - >Spring (kale and onion)
 - > Summer (tomato, pepper, and snap bean)
 - > Fall (table beet and Brussel sprout)
- > Two varieties as sub-plot within each bed

Material and Methods

Approach: Climate Monitoring

Material and Methods

Microclimate Monitoring Results

Test Gardens: Rural to Urban

Wind Speed (M/s)

Ozone (ppb) 2013-2015

Micrometeorological Modelling

Transmission Coefficient and LAI

Micrometeorological Modelling

Vegetable response to environment

Spring Crops: Kale

Spring Crops: Onions

Summer Crops: Beans

Summer Crops: Peppers

Summer Crops: Tomatoes

Fall Crops: Beets

Fall Crops: Brussels sprouts

Conclusions

Conclusions

- Peri-urban sites (Cantata and Cantigny) had the highest ozone concentrations and most light impedance
- Temperature and CO₂ were greater closer to the city center, RH was lower in the city
- Temperature, light, ozone, and CO₂ were the largest drivers of plant response
- Early and late season crops (cool season) can gain advantage from extra heat in urban environments, but were negatively affected by ozone

Conclusions

- Summer (warm-season) crops responded to light and CO₂ and unexplained variance
- Summer crops did not respond to temperature differences
- Light had reduced effect in spring crops, likely because tree canopy had not closed during growing period
- Peri-urban gardens had lowest yields in many crops and years
- SEM models showed different variety responses to environment in kale, tomato, beet, and Brussel sprout

Acknowledgments

- Advisory Committee
 Sam Wortman
 Jack Juvik
 Carl Bernacchi
 Adam Davis
- Sites

 Growing Home
 Garfield Park
 Cantata
 Cantigny Park
 Kuipers Family Farm

- NCR-SARE
- Illinois Department of Agriculture Specialty Crop Block Grant Program
- Agroecology and Sustainable Agriculture Scholars Program

Questions?